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ABSTRACT
Drug repositioning methods attempt to identify novel therapeutic indications for
marketed drugs. Strategies include the use of side-effects to assign new disease
indications, based on the premise that both therapeutic effects and side-effects
are measurable physiological changes resulting from drug intervention. Drugs
with similar side-effects might share a common mechanism of action linking
side-effects with disease treatment, or may serve as a treatment by “rescuing” a
disease phenotype on the basis of their side-effects; therefore it may be possible to
infer new indications based on the similarity of side-effect profiles. While existing
methods leverage side-effect data from clinical studies and drug labels, evidence
suggests this information is often incomplete due to under-reporting. Here, we
describe a novel computational method that uses side-effect data mined from social
media to generate a sparse undirected graphical model using inverse covariance
estimation with ℓ1-norm regularization. Results show that known indications are
well recovered while current trial indications can also be identified, suggesting that
sparse graphical models generated using side-effect data mined from social media
may be useful for computational drug repositioning.

Subjects Bioinformatics, Data Mining and Machine Learning, Computational Biology, Social
Computing
Keywords Drug repositioning, Drug repurposing, Side-effect, Adverse drug reaction, Social
media, Graphical model, Graphical lasso, Inverse covariance estimation

INTRODUCTION
Drug repositioning is the process of identifying novel therapeutic indications for marketed

drugs. Compared to traditional drug development, repositioned drugs have the advantage

of decreased development time and costs given that significant pharmacokinetic,

toxicology and safety data will have already been accumulated, drastically reducing the

risk of attrition during clinical trials. In addition to marketed drugs, it is estimated

that drug libraries may contain upwards of 2,000 failed drugs that have the potential

to be repositioned, with this number increasing at a rate of 150–200 compounds per

year (Jarvis, 2006). Repositioning of marketed or failed drugs has opened up new sources

of revenue for pharmaceutical companies with estimates suggesting the market could

generate multi-billion dollar annual sales in coming years (Thomson Reuters, 2012;

Tobinick, 2009). While many of the current successes of drug repositioning have come

about through serendipitous clinical observations, systematic data-driven approaches are

now showing increasing promise given their ability to generate repositioning hypotheses
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for multiple drugs and diseases simultaneously using a wide range of data sources,

while also incorporating prioritisation information to further accelerate development

time (Hurle et al., 2013). Existing computational repositioning strategies generally

use similar approaches but attempt to link different concepts. They include the use of

transcriptomics methods which compare drug response gene-expression with disease

gene-expression signatures (Lamb et al., 2006; Hu & Agarwal, 2009; Iorio et al., 2010; Sirota

et al., 2011; Dudley et al., 2011), genetics-based methods which connect a known drug

target with a genetically associated phenotype (Franke et al., 2010; Zhang et al., 2015; Wang

& Zhang, 2013; Sanseau et al., 2012; Wang et al., 2015), network-based methods which

link drugs or diseases in a network based on shared features (Krauthammer et al., 2004;

Barabasi, Gulbahce & Loscalzo, 2011; Kohler et al., 2008; Vanunu et al., 2010; Emig et al.,

2013), and methods that use side-effect similarity to infer novel indications (Campillos et

al., 2008; Yang & Agarwal, 2011; Zhang et al., 2013; Cheng et al., 2013; Bisgin et al., 2012;

Duran-Frigola & Aloy, 2012; Wang et al., 2014; Ye, Liu & Wei, 2014).

Drug side-effects can be attributed to a number of molecular interactions including

on or off-target binding, drug–drug interactions (Vilar et al., 2014; Tatonetti et al.,

2012), dose-dependent pharmacokinetics, metabolic activities, downstream pathway

perturbations, aggregation effects, and irreversible target binding (Xie et al., 2012;

Campillos et al., 2008). While side-effects are considered the unintended consequence

of drug intervention, they can provide valuable insight into the physiological changes

caused by the drug that are difficult to predict using pre-clinical or animal models. This

relationship between drugs and side-effects has been exploited and used to identify

shared target proteins between chemically dissimilar drugs, allowing new indications to

be inferred based on the similarity of side-effect profiles (Campillos et al., 2008). One

rationale behind this and related approaches is that drugs sharing a significant number

of side-effects might share a common mechanism of action linking side-effects with

disease treatment—side-effects essentially become a phenotypic biomarker for a particular

disease (Yang & Agarwal, 2011; Duran-Frigola & Aloy, 2012). Repositioned drugs can also

be said to “rescue” a disease phenotype, on the basis of their side-effects; for example, drugs

which cause hair growth as a side-effect can potentially be repositioned for the treatment

of hair loss, while drugs which cause hypotension as a side-effect can be used to treat

hypertension (Yang & Agarwal, 2011). Examples of drugs successfully repositioned based

on phenotypic rescue that have made it to market include exenatide, which was shown to

cause significant weight loss as a side-effect of type 2 diabetes treatment, leading to a trial

of its therapeutic effect in non-diabetic obese subjects (Buse et al., 2004; Ladenheim, 2015),

minoxidil which was originally developed for hypertension but found to cause hair growth

as a side-effect, leading to its repositioning for the treatment of hair loss and androgenetic

alopecia (Shorter et al., 2008; Li et al., 2001), and, perhaps most famously, sildenafil citrate

which was repositioned while being studied for the primary indication of angina to the

treatment of erectile dysfunction (Ghofrani, Osterloh & Grimminger, 2006).

Existing repositioning methods based on side-effects, such as the work of Campillos et

al. (2008) and Yang & Agarwal (2011), have used data from the SIDER database (Kuhn
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et al., 2010), which contains side-effect data extracted from drug labels, largely collected

from clinical trials during the pre-marketing phase of drug development. Other resources

include Meyler’s Side Effects of Drugs (Aronson, 2015), which is updated annually in the

Side Effects of Drugs Annual (Ray, 2014), and the Drugs@FDA database (US Food and

Drug Administraction, 2016), while pharmacovigilance authorities attempt to detect, assess

and monitor reported drug side-effects post-market. Despite regular updates to these

resources and voluntary reporting systems, there is evidence to suggest that side-effects are

substantially under-reported, with some estimates indicating that up to 86% of adverse

drug reactions go unreported for reasons that include lack of incentives, indifference,

complacency, workload and lack of training among healthcare professionals (Backstrom,

Mjorndal & Dahlqvist, 2004; Lopez-Gonzalez, Herdeiro & Figueiras, 2009; Hazell & Shakir,

2006; Tandon et al., 2015). Side-effects reported from clinical trials also have limitations

due to constraints on scale and time, as well as pharmacogenomic effects (Evans &

McLeod, 2003). A number of cancer drug studies have also observed that women are often

significantly under-represented in clinical trials, making it difficult to study the efficacy,

dosing and side-effects of treatments which can work differently in women and men;

similar problems of under-representation also affect paediatrics, as many drugs are only

ever tested on adults (Jones, 2009).

Recently, efforts to mine user-generated content and social media for public-health

issues and side-effects have shown promising performance, demonstrating correlations

between the frequency of side-effects extracted from unlabelled data and the frequency of

documented adverse drug reactions (Leaman et al., 2010). Despite this success, a number of

significant natural language processing challenges remain. These include dealing with

idiomatic expressions, linguistic variability of expression and creativity, ambiguous

terminology, spelling errors, word shortenings, and distinguishing between the symptoms

that a drug is treating and the side-effects it causes. Some of the solutions proposed to deal

with these issues include the use of specialist lexicons, appropriate use of semantic analysis,

and improvements to approximate string matching, modeling of spelling errors, and

contextual analysis surrounding the mentions of side-effects (Leaman et al., 2010; Segura-

Bedmar et al., 2015), while maintaining a list of symptoms for which a drug is prescribed

can help to eliminate them from the list of side-effects identified (Sampathkumar, Chen

& Luo, 2014). Although much of the focus has explored the use of online forums where

users discuss their experience with pharmaceutical drugs and report side-effects (Chee,

Berlin & Schatz, 2011), the growing popularity of Twitter (2015), which at the time of

writing has over 300 million active monthly users, provides a novel resource upon which

to perform large-scale mining of reported drug side-effects in near real-time from the

500 millions tweets posted daily (Internet Live Stats, 2015). While only a small fraction of

these daily tweets are related to health issues, the sheer volume of data available presents an

opportunity to bridge the gap left by conventional side-effects reporting strategies. Over

time, the accumulation of side-effect data from social media may become comparable or

even exceed the volume of traditional resources, and at the very least should be sufficient to
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augment existing databases. Additionally, the cost of running such a system continuously

is relatively cheap compared to existing pharmacovigilance monitoring, presenting a

compelling economic argument supporting the use of social media for such purposes.

Furthermore, the issues related to under-representation described above may be addressed.

Freifeld et al. (2014) presented a comparison study between drug side-effects found on

Twitter and adverse events reported in the FDA Adverse Event Reporting System (FAERS).

Starting with 6.9 million tweets, they used a set of 23 drug names and a list of symptoms to

reduce that data to a subset of 60,000 tweets. After manual examination, there were 4,401

tweets identified as mentioning a side-effect, with a Spearman rank correlation found

to be 0.75. Nikfarjam et al. (2015) introduce a method based on Conditional Random

Fields (CRF) to tag mentions of drug side-effects in social media posts from Twitter

or the online health community DailyStrength. They use features based on the context

of tokens, a lexicon of adverse drug reactions, Part-Of-Speech (POS) tags and a feature

indicating whether a token is negated or not. They also used embedding clusters learned

with Word2Vec (Mikolov et al., 2013). They reported an F1 score of 82.1% for data from

DailyStrength and 72.1% for Twitter data. Sarker & Gonzalez (2015) developed classifiers

to detect side-effects using training data from multiple sources, including tweets (Ginn

et al., 2014), DailyStrength, and a corpus of adverse drug events obtained from medical

case reports. They reported an F1 score of 59.7% when training a Support Vector Machine

(SVM) with Radial Basis Function (RBF) kernel on all three datasets. Recently, Karimi et al.

(2015) presented a survey of the field of surveillance for adverse drug events with automatic

text and data mining techniques.

In this study, we describe a drug repositioning methodology that uses side-effect data

mined from social media to infer novel indications for marketed drugs. We use data

from a pharmacovigilance system for mining Twitter for drug side-effects (Plachouras,

Leidner & Garrow, under review). The system uses a set of cascading filters to eliminate

large quantities of irrelevant messages and identify the most relevant data for further

processing, before applying a SVM classifier to identify tweets that mention suspected

adverse drug reactions. Using this data we apply sparse inverse covariance estimation to

construct an undirected graphical model, which offers a way to describe the relationship

between all drug pairs (Meinshausen & Bühlmann, 2006; Friedman, Hastie & Tibshirani,

2008; Banerjee, ElGhaoui & d’Aspremont, 2008). This is achieved by solving a maximum

likelihood problem using ℓ1-norm regularization to make the resulting graph as sparse as

possible, in order to generate the simplest graphical model which fully explains the data.

Results from testing the method on known and proposed trial indication recovery suggest

that side-effect data mined from social media in combination with a regularized sparse

graphical model can be used for systematic drug repositioning.

METHODS
Mining Twitter for drug side-effects
We used the SoMeDoSEs pharmacovigilance system (Plachouras, Leidner & Garrow, under

review) to extract reports of drug side-effects from Twitter over a 6 month period between
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January and June 2014. SoMeDoSEs works by first applying topic filters to identify tweets

that contain keywords related to drugs, before applying volume filters which remove tweets

that are not written in English, are re-tweets or contain a hyperlink to a web page, since

these posts are typically commercial offerings. Side-effects were then mapped to an entry in

the FDA Adverse Event Reporting System. Tweets that pass these filters are then classified

by a linear SVM to distinguish those that mention a drug side-effect from those that do

not. The SVM classifier uses a number of natural language features including unigrams

and bigrams, part-of-speech tags, sentiment scores, text surface features, and matches

to gazetteers related to human body parts, side-effect synonyms, side-effect symptoms,

causality indicators, clinical trials, medical professional roles, side effect-triggers and drugs.

For each gazetteer, three features were created: a binary feature, which is set to 1 if a

tweet contains at least one sequence of tokens matching an entry from the gazetteer, the

number of tokens matching entries from the gazetteer, and the fraction of characters

in tokens matching entries from the gazetteer. For side-effect synonyms we used the

Consumer Health Vocabulary (CHV) (Zeng et al., 2005), which maps phrases to Unified

Medical Language System concept universal identifiers (CUI) and partially addresses the

issue of misspellings and informal language used to discuss medical issues in tweets. The

matched CUIs were also used as additional features.

To develop the system, 10,000 tweets which passed the topic and volume filters were

manually annotated as mentioning a side-effect or not, resulting in a Cohen’s Kappa for

inter-annotator agreement on a sample of 404 tweets annotated by two non-healthcare

professional of 0.535. Using a time-based split of 8,000 tweets for training, 1,000 for

development, and 1,000 for testing, the SVM classifier that used all the features achieved a

precision of 55.0%, recall of 66.9%, and F1 score of 60.4% when evaluated using the 1,000

test tweets. This is statistically significantly higher than the results achieved by a linear SVM

classifier using only unigrams and bigrams as features (precision of 56.0%, recall of 54.0%

and F1 score of 54.9%). One of the sources of false negatives was the use of colloquial and

indirect expressions by Twitter users to express that they have experienced a side-effect.

We also observed that a number of false positives discuss the efficacy of drugs rather than

side-effects.

Twitter data
Over the 6 month period, SoMeDoSEs typically identified ∼700 tweets per day that

mentioned a drug side-effect, resulting in a data set of 620 unique drugs and 2,196

unique side-effects from 108,009 tweets, once drugs with only a single side-effect were

excluded and drug synonyms had been resolved to a common name using exact string

matches to entries in World Drug Index (Thomson Reuters, 2015b), which worked for

approximately half of the data set with the remainder matched manually. We were

also careful to remove indications that were falsely identified as side-effects using drug

indications from Cortellis Clinical Trials Intelligence (Thomson Reuters, 2015a). We used

this data to construct a 2,196 row by 620 column matrix of binary variables X, where

x∈ {0,1}, indicating whether each drug was reported to cause each side-effect in the Twitter

data set.

Nugent et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.46 5/24

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.46


Calculating the sample covariance matrix
Using this data, we are able to form the sample covariance matrix S for binary variables as

follows (Allen, 1997), such that element Si,j gives the covariance of drug i with drug j:

Si,j =
1

n− 1

n
k=1

(xki− x̄i)(xkj− x̄j)

=
1

n− 1

n
k=1

xkixkj− x̄ix̄j

(1)

where x̄i =
1
n

n
k=1xki and xki is the k-th observation (side-effect) of variable (drug) Xi. It

can be shown than the average product of two binary variables is equal to their observed

joint probabilities such that:

1

n− 1

n
k=1

xkixkj = P(Xj = 1|Xi = 1) (2)

where P(Xj = 1|Xi = 1) refers to the conditional probability that variable Xj equals one

given that variable Xi equals one. Similarly, the product of the means of two binary

variables is equal to the expected probability that both variables are equal to one, under

the assumption of statistical independence:

x̄ix̄j = P(Xi = 1)P(Xj = 1). (3)

Consequently, the covariance of two binary variables is equal to the difference between the

observed joint probability and the expected joint probability:

Si,j = P(Xj = 1|Xi = 1)− P(Xi = 1)P(Xj = 1). (4)

Our objective is to find the precision or concentration matrix θ by inverting the sample

covariance matrix S. Using θ , we can obtain the matrix of partial correlation coefficients ρ

for all pairs of variables as follows:

ρi,j =−
θi,j
θi,iθj,j

. (5)

The partial correlation between two variables X and Y given a third, Z, can be defined as

the correlation between the residuals Rx and Ry after performing least-squares regression

of X with Z and Y with Z, respectively. This value, denotated ρx,y|z, provides a measure

of the correlation between two variables when conditioned on the third, with a value

of zero implying conditional independence if the input data distribution is multivariate

Gaussian. The partial correlation matrix ρ, however, gives the correlations between all

pairs of variables conditioning on all other variables. Off-diagonal elements in ρ that

are significantly different from zero will therefore be indicative of pairs of drugs that

show unique covariance between their side-effect profiles when taking into account (i.e.,

removing) the variance of side-effects profiles amongst all the other drugs.
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Shrinkage estimation
For the sample covariance matrix to be easily invertible, two desirable characteristics are

that it should be positive definite, i.e., all eigenvalues should be distinct from zero, and

well-conditioned, i.e., the ratio of its maximum and minimum singular value should

not be too large. This can be particularly problematic when the sample size is small and

the number of variables is large (n < p) and estimates of the covariance matrix become

singular. To ensure these characteristics, and speed up convergence of the inversion, we

condition the sample covariance matrix by shrinking towards an improved covariance

estimator T, a process which tends to pull the most extreme coefficients towards more

central values thereby systematically reducing estimation error (Ledoit & Wolf, 2003), using

a linear shrinkage approach to combine the estimator and sample matrix in a weighted

average:

S′ = αT+ (1−α)S (6)

where α ∈ {0,1} denotes the analytically determined shrinkage intensity. We apply the

approach of Schäfer and Strimmer, which uses a distribution-free, diagonal, unequal

variance model which shrinks off-diagonal elements to zero but leaves diagonal entries

intact, i.e., it does not shrink the variances (Schäfer & Strimmer, 2005). Shrinkage is

actually applied to the correlations rather than the covariances, which has two distinct

advantages: the off-diagonal elements determining the shrinkage intensity are all on the

same scale, while the partial correlations derived from the resulting covariance estimator

are independent of scale.

Graphical lasso for sparse inverse covariance estimation
A useful output from the covariance matrix inversion is a sparse ρ matrix containing

many zero elements, since, intuitively, we know that relatively few drug pairs will share

a common mechanism of action, so removing any spurious correlations is desirable and

results in a more parsimonious relationship model, while the non-zero elements will

typically reflect the correct positive correlations in the true inverse covariance matrix

more accurately (Jones et al., 2012). However, elements of ρ are unlikely to be zero unless

many elements of the sample covariance matrix are zero. The graphical lasso (Friedman,

Hastie & Tibshirani, 2008; Banerjee, ElGhaoui & d’Aspremont, 2008; Hastie, Tibshirani &

Wainwright, 2015) provides a way to induce zero partial correlations in ρ by penalizing the

maximum likelihood estimate of the inverse covariance matrix using an ℓ1-norm penalty

function. The estimate can be found by maximizing the following log-likelihood using the

block coordinate descent approach described by Friedman, Hastie & Tibshirani (2008):

logdetθ − tr(S′θ)− λ∥θ∥1. (7)

Here, the first term is the Gaussian log-likelihood of the data, tr denotes the trace operator

and ∥θ∥1 is the ℓ1-norm—the sum of the absolute values of the elements of θ , weighted

by the non-negative tuning paramater λ. The specific use of the ℓ1-norm penalty has the
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desirable effect of setting elements in θ to zero, resulting in a sparse matrix, while the

parameter λ effectively controls the sparsity of the solution. This contrasts with the use of

an ℓ2-norm penalty which will shrink elements but will never reduce them to zero. While

this graphical lasso formulation is based on the assumption that the input data distribution

is multivariate Gaussian, Banerjee, ElGhaoui & d’Aspremont (2008) showed that the dual

optimization solution also applies to binary data, as is the case in our application.

It has been noted that the graphical lasso produces an approximation of θ that is not

symmetric, so we update it as follows (Sustik & Calderhead, 2012):

θ←
(θ + θT)

2
. (8)

The matrix ρ is then calculated according to Eq. (5), before repositioning predictions for

drug i are determined by ranking all other drugs according to their absolute values in ρi

and assigning their indications to drug i.

RESULTS AND DISCUSSION
Recovering known indications
To evaluate our method we have attempted to predict repositioning targets for indications

that are already known. If, by exploiting hindsight, we can recover these, then our method

should provide a viable strategy with which to augment existing approaches that adopt

an integrated approach to drug repositioning (Emig et al., 2013). Figure 1A shows the

performance of the method at identifying co-indicated drugs at a range of λ values,

resulting in different sparsity levels in the resulting ρ matrix. We measured the percentage

at which a co-indicated drug was ranked amongst the top 5, 10, 15, 20 and 25 predictions

for the target drug, respectively. Of the 620 drugs in our data set, 595 had a primary

indication listed in Cortellis Clinical Trials Intelligence, with the majority of the remainder

being made up of dietary supplements (e.g., methylsulfonylmethane) or plant extracts

(e.g., Agaricus brasiliensis extract) which have no approved therapeutic effect. Rather than

removing these from the data set, they were left in as they may contribute to the partial

correlation between pairs of drugs that do have approved indications.

Results indiciate that the method achieves its best performance with a λ value of 10−9

where 42.41% (243/595) of targets have a co-indicated drug returned amongst the top 5

ranked predictions (Fig. 1A). This value compares favourably with both a strategy in which

drug ranking is randomized (13.54%, standard error±0.65), and another in which drugs

are ranked according to the Jaccard index (28.75%). In Ye, Liu & Wei (2014), a related

approach is used to construct a repositioning network based on side-effects extracted from

the SIDER database, Meyler’s Side Effects of Drugs, Side Effects of Drugs Annual, and the

Drugs@FDA database (Kuhn et al., 2010; Aronson, 2015; Ray, 2014; US Food and Drug

Administraction, 2016), also using the Jaccard index as the measure of drug–drug similarity.

Here, they report an equivilent value of 32.77% of drugs having their indication correctly

predicted amongst the top 5 results. While data sets and underlying statistical models

clearly differ, these results taken together suggest that the use of side-effect data mined from

Nugent et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.46 8/24

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.46


Figure 1 Recovery of known indications. (A) Percentage at which a co-indicated drug is returned
amongst the top 5, 10, 15, 20 and 25 ranked predictions for a given target, at different λ values—the
parameter that weights the ℓ1-norm penalty in the graphical lasso (Eq. (7)). (B) Sparsity of ρ matrix at
different λ values, i.e., the number of non-zero elements in the upper triangle divided by (n2

− n)/2.

social media can certainly offer comparable performance to methods using side-effect data

extracted from more conventional resources, while the use of a global statistical model

such as the graphical lasso does result in improved performance compared to a pairwise

similarity coefficient such as the Jaccard index.

To further investigate the influence of the provenance of the data, we mapped our

data set of drugs to ChEMBL identifiers (Gaulton et al., 2012; Bento et al., 2014) which

we then used to query SIDER for side-effects extracted from drug labels. This resulted in

a reduced data set of 229 drugs, in part due to the absence of many combination drugs

from SIDER (e.g. the antidepressant Symbyax which contains olanzapine and fluoxetine).

Using the same protocol described above, best performance of 53.67% (117/229) was

achieved with a slightly higher λ value of 10−6. Best performance on the same data set

using side-effects derived from Twitter was 38.43% (88/229), again using a λ value of 10−9,

while the randomized strategy achieved 12.05% (standard error± 1.14), indicating that

the use of higher quality side-effect data from SIDER allows the model to achieve better

performance than is possible using Twitter data. Perhaps more interestingly, combining the

correct predictions between the two datasources reveals that 30 are unique to the Twitter

model, 59 are unique to the SIDER model, with 58 shared, supporting the use side-effect

data mined from social media to augment conventional resources.

We also investigated whether our results were biased by the over-representation

of particular drug classes within our data set. Using Using Cortellis Clinical Trials

Intelligence, we were able to identify the broad class for 479 of the drugs (77.26%) in

our data set. The five largest classes were benzodiazepine receptor agonists (3/14 drugs

returned amongst the top 5 ranked predictions), analgesics (6/12), H1-antihistamines

(8/11), cyclooxygenase inhibitors (9/11), and anti-cancer (2/11). This indicates that the

over-representation of H1-antihistamines and cyclooxygenase inhibitors did result in a

bias, and to a lesser extent analgesics, but that the overall effect of these five classes was

more subtle (28/59 returned amongst the top 5 ranked predictions, 47.46%).
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Figure 2 The overall layout of the side-effect network. Drugs are yellow, connecting edges are green.
The layout is performed using a relative entropy optimization-based method (Kovács, Mizsei & Csermely,
2014). In total, there are 616 connected nodes, with each having an average of 267 neighbours. Painkillers
such as paracetamol and ibuprofen have the highest number of connections (587 and 585, respectively),
which corresponds to them having the largest number of unique side-effects (256 and 224) reported on
Twitter. The strongest connection is between chondroitin and glucosamine (partial correlation coefficient
(PCC) 0.628), both of which are dietary supplements used to treat osteoarthritis, closely followed by the
antidepressant and anxiolytic agents phenelzine and tranylcypromine (PCC 0.614).

The best performance of our approach at the top 5 level is achieved when the resulting

ρ matrix has a sparsity of 35.59% (Figs. 1B and 2) which both justifies the use of the

ℓ1-norm penalized graphical lasso, and generates a graphical model with approximately

a third of the parameters of a fully dense matrix, while the comparable performance at λ

values between 10−12 and 10−7 also indicates a degree of robustness to the choice of this

parameter. Beyond the top 5 ranked predictions, results are encouraging as the majority

of targets (56.02%) will have a co-indicated drug identified by considering only the top 10

predictions, suggesting the method is a feasible strategy for prioritisation of repositioning

candidates.

Predicting proposed indications of compounds currently in
clinical trials
While the previous section demonstrated our approach can effectively recover known

indications, predictions after the fact are—while useful—best supported by more

forward-looking evidence. In this section, we use clinical trial data to support our

predictions where the ultimate success of our target drug is still unknown. Using Cortellis

Clinical Trials Intelligence, we extracted drugs present in our Twitter data set that were

currently undergoing clinical trials (ending after 2014) for a novel indication (i.e., for
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Figure 3 Recovery of proposed clinical trial indications. Percentage at which a co-indicated drug is
returned amongst the top 5, 10, 15, 20 and 25 ranked predictions for a given target, at different λ values.

which they were not already indicated), resulting in a subset of 277 drugs currently in trials

for 397 indications. Figure 3 shows the percentage at which a co-indicated drug was ranked

amongst the top 5, 10, 15, 20 and 25 predictions for the target. Similar to the recovery

of known indications, best performance when considering the top 5 ranked predictions

was achieved with a λ value of 10−9, resulting in 16.25% (45/277) of targets having a

co-indicated drug, which again compares well to a randomized strategy (5.42%, standard

error± 0.32) or a strategy using the Jaccard index (10.07%).

Recovery of proposed clinical trial indications is clearly more challenging than known

indications, possibly reflecting the fact that a large proportion of drugs will fail during

trials and therfore many of the 397 proposed indications analysed here will in time prove

false, although the general trend in performance as the sparsity parameter λ is adjusted

tends to mirror the recovery of known indications. Despite this, a number of interesting

predictions with a diverse range of novel indications are made that are supported by exper-

imental and clinical evidence; a selection of 10 of the 45 drugs where the trial indication

was correctly predicted are presented in Table 1. We further investigated three reposition-

ing candidates with interesting pharmacology to understand their predicted results.

Oxytocin
Oxytocin is a nonapeptide hormone that acts primarily as a neuromodulator in the brain

via the specific, high-affinity oxytocin receptor—a class I (Rhodopsin-like) G-protein-

coupled receptor (GPCR) (Gimpl et al., 2002). Currently, oxytocin is used for labor

induction and the treatment of Prader-Willi syndrome, but there is compelling pre-clinical

evidence to suggest that it may play a crucial role in the regulation of brain-mediated

processes that are highly relevant to many neuropsychiatric disorders (Feifel, 2012).

Nugent et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.46 11/24

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.46


Table 1 Predicted indications for drugs currently in clinical trials. A selection of drugs which are currently in clinical trials for a new indication, and have a co-indicated
drug (“Evidence”) ranked amongst the top 5 predictions. “PCC” is the absolute partial correlation coefficient, “ID” is the Cortellis Clinical Trials Intelligence identifier.
Average PCC scores for co-indicated drugs ranked amongst the top 5, 10, 15, 20 and 25 positions were 0.162, 0.0804, 0.0620, 0.0515, and 0.0468, respectively.

Drug Current indication New indication Evidence PCC Rank ID Title

Ramelteon Insomnia Bipolar I disorder Ziprasidone 0.197 2 6991 Ramelteon for the treatment of insomnia and
mood stability in patients with euthymic
bipolar disorder

Denosumab Osteoporosis Breast cancer Capecitabine 0.133 3 85503 Pilot study to evaluate the impact of denosumab
on disseminated tumor cells (DTC) in patients
with early stage breast cancer

Meloxicam Inflammation Non-Hodgkin
lymphoma

Rituximab 0.131 1 176379 A phase II trial using meloxicam plus filgrastim in
patients with multiple myeloma and non-Hodgkins
lymphoma

Sulfasalazine Rheumatoid arthritis Diarrhea Loperamide 0.106 5 155516 Sulfasalazine in preventing acute diarrhea in
patients with cancer who are undergoing pelvic
radiation therapy

Pyridostigmine Myasthenia gravis Cardiac failure Digitoxin 0.100 4 190789 Safety study of pyridostigmine in heart failure

Alprazolam Anxiety disorder Epilepsy Clonazepam 0.097 4 220920 Staccato alprazolam and EEG photoparoxysmal
response

Oxytocin Prader-Willi syndrome Schizophrenia Chlorpromazine 0.096 3 163871 Antipsychotic effects of oxytocin

Interferon alfa Leukemia Thrombocythemia Hydroxyurea 0.094 3 73064 Pegylated interferon Alfa-2a salvage therapy in
high-risk polycythemia vera (PV) or essential
thrombocythemia (ET)

Etomidate General anesthesia Depression Trazodone 0.091 5 157982 Comparison of effects of propofol and etomidate
on rate pressure product and oxygen saturation in
patients undergoing electroconvulsive therapy

Guaifenesin Respiratory tract infections Rhinitis Ipratropium 0.090 5 110111 The effect of oral Guaifenesin on pediatric chronic
rhinitis: a pilot study
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A number of animal studies have revealed that oxytocin has a positive effect as an

antipsychotic (Feifel & Reza, 1999; Lee et al., 2005), while human trials have revealed

that intranasal oxytocin administered to highly symptomatic schizophrenia patients as an

adjunct to their antipsychotic drugs improves positive and negative symptoms significantly

more than placebo (Feifel et al., 2010; Pedersen et al., 2011). These therapeutic findings are

supported by growing evidence of oxytocin’s role in the manifestation of schizophrenia

symptoms such as a recent study linking higher plasma oxytocin levels with increased

pro-social behavior in schizophrenia patients and with less severe psychopathology in

female patients (Rubin et al., 2010). The mechanisms underlying oxytocin’s therapeutic

effects on schizophrenia symptoms are poorly understood, but its ability to regulate

mesolimbic dopamine pathways are thought to be responsible (Feifel, 2012). Here, our

method predicts schizophrenia as a novel indication for oxytocin based on its proximity to

chlorpromazine, which is currently used to treat schizophrenia (Fig. 4). Chlorpromazine

also modulates the dopamine pathway by acting as an antagonist of the dopamine receptor,

another class I GPCR. Interestingly, the subgraph indicates that dopamine also has a high

partial correlation coefficient with oxytocin, adding further support to the hypothesis that

oxytocin, chlorpromazine and dopamine all act on the same pathway and therefore have

similar side-effect profiles. Side-effects shared by oxytocin and chlorpromazine include

hallucinations, excessive salivation and anxiety, while shivering, weight gain, abdominal

pain, nausea, and constipation are common side-effects also shared by other drugs within

the subgraph. Currently, larger scale clinical trials of intranasal oxytocin in schizophrenia

are underway. If the early positive results hold up, it may signal the beginning of an new era

in the treatment of schizophrenia, a field which has seen little progress in the development

of novel efficacious treatments over recent years.

Ramelteon
Ramelteon, currently indicated for the treatment of insomnia, is predicted to be useful

for the treatment of bipolar depression (Fig. 5). Ramelteon is the first in a new class

of sleep agents that selectively binds the MT1 and MT2 melatonin receptors in the

suprachiasmatic nucleus, with high affinity over the MT3 receptor (Owen, 2006). It is

believed that the activity of ramelteon at MT1 and MT2 receptors contributes to its

sleep-promoting properties, since these receptors are thought to play a crucial role in

the maintenance of the circadian rhythm underlying the normal sleep-wake cycle upon

binding of endogenous melatonin. Abnormalities in circadian rhythms are prominent

features of bipolar I disorder, with evidence suggesting that disrupted sleep-wake circadian

rhythms are associated with an increased risk of relapse in bipolar disorder (Jung et al.,

2014). As bipolar patients tend to exhibit shorter and more variable circadian activity, it has

been proposed that normalisation of the circadian rhythm pattern may improve sleep and

consequently lead to a reduction in mood exacerbations. Melatonin receptor agonists such

as ramelteon may have a potential therapeutic effect in depression due to their ability to

resynchronize the suprachiasmatic nucleus (Wu et al., 2013). In Fig. 5, evidence supporting

the repositioning of ramelteon comes from ziprasidone, an atypical antipsychotic used

to treat bipolar I disorder and schizophrenia (Nicolson & Nemeroff, 2007). Ziprasidone is
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Figure 4 Predicted repositioning of oxytocin (red) for the treatment of schizophrenia based on its
proximity to the schizophrenia drug chlorpromazine (grey). Drugs in the graph are sized according to
their degree (number of edges), while the thickness of a connecting edge is proportional to the partial
correlation coefficient between the two drugs. The graph layout is performed by Cytoscape (Lopes et
al., 2010) which applies a force-directed approach based on the partial correlation coefficient. Nodes are
arranged so that edges are of more or less equal length and there are as few edge crossings as possible. For
clarity, only the top ten drugs ranked by partial correlation coefficient are shown.

the second-ranked drug by partial correlation coefficient; a number of other drugs used to

treat mood disorders can also be located in the immediate vicinity including phenelzine,

a non-selective and irreversible monoamine oxidase inhibitor (MAOI) used as an an-

tidepressant and anxiolytic, milnacipran, a serotonin–norepinephrine reuptake inhibitor

used to treat major depressive disorder, and tranylcypromine, another MAOI used as an

antidepressant and anxiolytic agent. The co-location of these drugs in the same region of

the graph suggests a degree of overlap in their respective mechanistic pathways, resulting

in a high degree of similarity between their side-effect profiles. Nodes in this subgraph also

have a relatively large degree indicating a tighter association than for other predictions,

with common shared side-effects including dry mouth, sexual dysfunction, migraine, and

orthostatic hypotension, while weight gain is shared between ramelteon and ziprasidone.

Meloxicam
Meloxicam, a nonsteroidal anti-inflammatory drug (NSAID) used to treat arthritis, is

predicted to be a repositioning candidate for the treatment of non-Hodgkin lymphoma,

via the mobilisation of autologous peripheral blood stem cells from bone marrow.

By inhibiting cyclooxygenase 2, meloxicam is understood to inhibit generation of

prostaglandin E2, which is known to stimulate osteoblasts to release osteopontin, a protein

which encourages bone resorption by osteoclasts (Rainsford, Ying & Smith, 1997; Ogino et

al., 2000). By inhibiting prostaglandin E2 and disrupting the production of osteopontin,

meloxicam may encourage the departure of stem cells, which otherwise would be anchored
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Figure 5 Predicted repositioning of ramelteon (red) for the treatment of bipolar I disorder based
on its proximity to ziprasidone (grey). Along with ziprasidone, phenelzine, milnacipran and tranyl-
cypromine are all used to treat mood disorders.

to the bone marrow by osteopontin (Reinholt et al., 1990). In Fig. 6, rituximab, a B-cell

depleting monoclonal antibody that is currently indicated for treatment of non-Hodgkin

lymphoma, is the top ranked drug by partial correlation, which provides evidence for

repositioning to this indication. Interestingly, depletion of B-cells by rituximab has recently

been demonstrated to result in decreased bone resorption in patients with rheumatoid

arthritis, possibly via a direct effect on both osteoblasts and osteoclasts (Wheater et al.,

2011; Boumans et al., 2012), suggesting a common mechanism of action between meloxi-

cam and rituximab. Further evidence is provided by the fifth-ranked drug clopidogrel, an

antiplatelet agent used to inhibit blood clots in coronary artery disease, peripheral vascular

disease, cerebrovascular disease, and to prevent myocardial infarction. Clopidogrel works

by irreversibly inhibiting the adenosine diphosphate receptor P2Y12, which is known to

increase osteoclast activity (BonekEY Watch, 2012). Similarly to the ramelteon subgraph,

many drugs in the vicinity of meloxicam are used to treat inflammation including

diclofenac, naproxen (both NSAIDs) and betamethasone, resulting in close association

between these drugs, with shared side-effects in the subgraph including pain, cramping,

flushing and fever, while swelling, indigestion, inflammation and skin rash are shared by

meloxicam and rituximab.

While the side-effects shared within the subgraphs of our three examples are commonly

associated with a large number of drugs, some of the side-effects shared by the three drug

pairs such as hallucinations, excessive salivation and anxiety are somewhat less common.

To investigate this relationship for the data set as a whole, we calculated log frequencies
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Figure 6 Predicted repositioning of meloxicam (red) for the treatment of non-Hodgkin lymphoma
based on its proximity to rituximab (grey).

for all side-effects and compared these values against the normalized average rank of pairs

where the side-effect was shared by both the query and target drug. If we assume that

a higher ranking in our model indicates a higher likelihood of drugs sharing a protein

target, this relationship demonstrates similar properties to the observations of Campillos

et al. (2008) in that there is a negative correlation between the rank and frequency of a

side-effect. The correlation coefficient has a value of−0.045 which is significantly different

from zero at the 0.001 level, although the linear relationship appears to break down where

the frequency of the side-effect is lower than about 0.025.

CONCLUSIONS
In this study, we have used side-effect data mined from social media to generate a sparse

graphical model, with nodes in the resulting graph representing drugs, and edges between

them representing the similarity of their side-effect profiles. We demonstrated that known

indications can be inferred based on the indications of neighbouring drugs in the network,

with 42.41% of targets having their known indication identified amongst the top 5 ranked

predictions, while 16.25% of drugs that are currently in a clinical trial have their proposed

trial indication correctly identified. These results indicate that the volume and diversity of

drug side-effects reported using social media is sufficient to be of use in side-effect-based

drug repositioning, and this influence is likely to increase as the audience of platforms

such as Twitter continues to see rapid growth. It may also help to address the problem

of side-effect under-reporting. We also demonstrate that global statistical models such

as the graphical lasso are well-suited to the analysis of large multivariate systems such

as drug–drug networks. They offer significant advantages over conventional pairwise

similarity methods by incorporating indirect relationships between all variables, while the

use of the lasso penalty allows a sparse, parsimonious model to be generated with fewer

spurious connections resulting in a simpler theory of relationships.
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While our method shows encouraging results, it is more likely to play a role in drug

repositioning as a component in an integrated approach. Whether this is achieved by

combining reported side-effects with those mined from resources such as SIDER, or by

using predictions as the inputs to a supervised learning algorithm, a consensus approach

is likely to achieve higher performance by incorporating a range of different data sources

in addition to drug side-effects, while also compensating for the weaknesses of any single

method (Emig et al., 2013). Limitations of our method largely stem from the underlying

Twitter data (Plachouras, Leidner & Garrow, under review). Only a small fraction of

daily tweets contain reports of drug side-effects, therefore restricting the number of drugs

we are able to analyse. However, given that systems such as SoMeDoSEs are capable of

continuously monitoring Twitter, the numbers of drugs and reported side-effects should

steadily accumulate over time.

To address this, in the future it may be possible to extend monitoring of social media

to include additional platforms. For example, Weibo is a Chinese microblogging site akin

to Twitter, with over 600 million users as of 2013. Clearly, tools will have to be adapted to

deal with multilingual data processing or translation issues, while differences in cultural

attitudes to sharing medical information may present further challenges. Extensions

to the statistical approach may also result in improved performance. Methods such

as the joint graphical lasso allow the generation of a graphical model using data with

observations belonging to distinct classes (Danaher, Wang & Witten, 2014). For example,

two covariances matrices generated using data from Twitter and SIDER could be combined

in this way, resulting in a single model that best represents both sources. An extension

to the graphical lasso also allows the decomposition of the sample covariance graph into

smaller connected components via a thresholding approach (Mazumder & Hastie, 2012).

This leads not only to large performance gains, but significantly increases the scalability of

the graphical lasso approach.

Another caveat to consider, common to many other repositioning strategies based

on side-effect similarity, is that there is no evidence to suggest whether a repositioning

candidate will be a better therapeutic than the drug from which the novel indication was

inferred. While side-effects can provide useful information for inferring novel indications,

they are in general undesirable and need to be balanced against any therapeutic benefits.

Our model does not attempt to quantify efficacy or side-effect severity, but it might

be possible to modify the natural language processing step during Twitter mining in

order to capture comparative mentions of side-effects, since tweets discussing both the

therapeutic and side-effects of two related drugs are not uncommon. Incorporating this

information into our model may allow a more quantitative assessment of the trade-off

between therapeutic and side-effects to be made as part of the prediction.
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