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ABSTRACT
Background. Mass Spectrometry (MS) based chemoproteomics has recently become a
main tool to identify and quantify cellular target protein interactions with ligands/drugs
in drug discovery. The complexity associated with these new types of data requires
scientists with a limited computational background to perform systematic data quality
controls as well as to visualize the results derived from the analysis to enable rapid
decision making. To date, there are no readily accessible platforms specifically designed
for chemoproteomics data analysis.
Results. We developed a Shiny-based web application named DOSCHEDA (Down
Stream Chemoproteomics Data Analysis) to assess the quality of chemoproteomics
experiments, to filter peptide intensities based on linear correlations between replicates,
and to perform statistical analysis based on the experimental design. In order to increase
its accessibility, DOSCHEDA is designed to be used with minimal user input and it
does not require programming knowledge. Typical inputs can be protein fold changes
or peptide intensities obtained from Proteome Discover, MaxQuant or other similar
software. DOSCHEDA aggregates results from bioinformatics analyses performed on
the input dataset into a dynamic interface, it encompasses interactive graphics and
enables customized output reports.
Conclusions. DOSCHEDA is implemented entirely in R language. It can be launched
by any system with R installed, including Windows, Mac OS and Linux distributions.
DOSCHEDA is hosted on a shiny-server at https://doscheda.shinyapps.io/doscheda
and is also available as a Bioconductor package (http://www.bioconductor.org/).

Subjects Bioinformatics
Keywords Quantitative Chemoproteomics, Statistical Models, Web interface, Shiny, TMT,
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BACKGROUND
Many drugs fail in the clinic for lack of efficacy or for toxicity and as such, some of
the most important steps in drug discovery are evaluation of target engagement and
off-targets liabilities. Next Generation Sequencing (NGS) and mass spectrometry
proteomics-based drug discovery (Jones & Neubert, 2017) approaches offer unique
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opportunities to deeply characterize drug-targets biology and pharmaceutical agents
(Bantscheff et al., 2007; Bantscheff et al., 2008).

Quantitative chemical proteomics (Bantscheff & Drewes, 2012) andMS-Cellular Thermal
Shift Assay (MS-CETSA) (Martinez & Nordlund, 2016) have been recently deployed in drug
discovery to aid target deconvolution in the context of phenotypic screens, to elucidate
drugs’ mechanisms of action and evaluation of drug repurposing (Schirle, Bantscheff &
Kuster, 2012).

A generous number of computational tools has been developed for MS-spectral analysis
and protein quantification, such as ProteomeDiscoverer (https://www.thermofisher.com/),
MaxQuant (Cox & Mann, 2008) or PEAKS (http://www1.bioinfor.com) for de novo
peptide sequencing. However, the increasing variety of MS based approaches for drug
target deconvolution can produce data that need dedicated downstream analysis platforms
for facilitating the biological interpretation of results.

Here, we focus on quantitative chemoproteomics used to determine protein interaction
profiles of small molecules from whole cell or tissue lysates (Manning, 2002).
Chemoproteomics includes reverse competition-based experiments that, in combination
with quantitative MS (e.g., tandem mass tags (TMT) or isobaric tag for relative
quantification (iTRAQ)), are used for rank-ordering of small molecule-protein interactions
by binding affinity (Bantscheff & Drewes, 2012).

Although several comprehensive analysis pipelines, such as OCAP (Wang, Yang &
Yang, 2012), ProSightPC (http://proteinaceous.net/software/), TopPIC (Kou, Xun & Liu,
2016), MSstats (Choi et al., 2014), Skyline (MacLean et al., 2010), MaxQuant & Perseus
(Tyanova et al., 2016) and DAPAR & ProStaR (Wieczorek et al., 2017), have been developed
for the downstream data analysis, to the best of our knowledge there are no tools
specifically designed to facilitate chemoproteomics data analysis for scientists with a
limited computational background and available as a public server application.

Based on this, we have developed a Shiny-based web application named DOSCHEDA
(Down Stream Chemoproteomics Data Analysis), which includes: (i) an open-source code
available on Bioconductor for R-users; (ii) a user-friendly Graphical User Interface (GUI)
with no programming knowledge required (iii) a traffic-light system to enable the user to
rapidly identify and address data incongruences; (iv) an OS-independent implementation
which generates a comprehensive final report in addition to analysis results; (v) a flexible
data-input routine which enables the user to import different file types (.txt, .xlsx, .csv),
typically exported from MS-software such as Proteome Discover or MaxQuant; (vi) the
CRAPome flagged proteins based on the contaminant repository database (Mellacheruvu
et al., 2013)

DOSCHEDA addresses the need to perform fit for purpose statistical analysis of
chemoproteomics experiments, including linear and non-linear models, to provide a
ranking of the protein(s)most competed by the investigational compound (the competitor)
as well as to generate standardized results that can be further used for downstream analysis
or for different experiment comparisons.
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Table 1 Required inputs for DOSCHEDA.

Input data from PD2.1 Input data not from PD2.1

Peptide intensities Peptide qvality score, protein accessions,
peptide names, intensities

Peptide qvality score, protein accessions,
peptide names, intensities

Fold changes Protein fold changes Protein accessions, protein fold changes,
unique peptides

Log-fold changes Protein log-fold changes Protein accessions, protein log-fold changes, unique
peptides

IMPLEMENTATION
DOSCHEDA is implemented using R (R Core Team, 2014), an open-source software for
statistical computing and coded in Shiny (Chang et al., 2015).

DOSCHEDA processes the data based on a series of pipelines developed and integrated
into the application. The user selects what pipeline to be executed based on the experimental
design and data input.

Data input
The application is designed to take three different types of data:
1. Peptide Intensities. These are obtained from Proteome Discoverer, MaxQuant or

similar software. The same procedure applied in Proteome Discoverer 2.1 has been
implemented in DOSCHEDA for summing the reporter ions to protein relative
quantification. The protein fold changes [Ctrl]/[treated] are then converted to log2
scale and then passed into the pipeline.

2. Fold Changes. These are the protein fold changes, [Ctrl]/[treated].
3. Log2 Fold Changes. These are the log2 protein fold changes.
DOSCHEDA has been optimized for Proteome Discoverer 2.1 (PD 2.1), but it can also

use data from other software given that the input file contains specific columns as described
in Table 1.

Statistical analyses
The experimental design as shown in Table 2 will determine the type of analysis that can be
performed in DOSCHEDA. The standard pipeline utilizes a linear model with a quadratic
form

f (x)= a0+a1x+a2x2

where a0 is the intercept, a1 the slope and a2 the quadratic coefficient. This pipeline is
suitable for experimental designs with less than 5 channels (4-plex) and more than 1
replicate (Table 2). Increasing free drug concentrations and generation of a dose-response
relationship with the protein target(s) provides information about specific drug-target
interactions. The linear model analysis implemented in DOSCHEDA by using the limma
R package (Smyth, 2004) will identify proteins with a significant p value (slope, intercept,
quadratic) as the protein drug-target(s).

Alternatively, in cases where biological input material is not a limiting factor,
chemoproteomics experiments consist of a full-scale dose-response, in which 5 or more
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Table 2 Type of analysis performed in DOSCHEDA.

1 Replicate More than 1 replicate

Less than 5 channels Not enough data Linear model
5 or more channels Sigmoidal Linear model

concentrations are tested (e.g., 6-plex or 10-plex). In this case, the user can run the sigmoidal
pipeline where the four-parameter log- logistic (Ritz et al., 2015) model is applied (Table 2).
Here, the p values of the model parameters (min, max, slope, RB50) will be computed to
rank proteins based on their selectivity profile (Smyth & Collins, 2009). The half maximal
residual binding (RB50) is a measure of the effectiveness of a drug in binding to a protein.
Thus, this quantitative measure indicates how much of a drug or small molecule is needed
to saturate binding to a protein by half, and can be used to compare drug-protein profiles.
The RB50 values are typically expressed as molar concentration and are computed in the
sigmoidal pipeline for each protein within DOSCHEDA. Furthermore, the corrected RB50,
according to Daub (2015) corresponds to the ratio (r) of the proteins enriched in the
second incubation (supernatant) versus those retained in the first incubation (DMSO or
blank) with the affinity matrix. This pulldown of pulldown or depletion factor (r) enables
the calculation of a Kd for each protein and it will be part of DOSCHEDA’s outputs.

Peptide removal process using Pearson correlation
When peptide intensities and two replicates are available, DOSCHEDA implements
a prior step to the peptide aggregation process to consider of potential technical
experimental errors.

The peptide removal function is tailored having in mind the typical chemoproteomics
experimental design and aims to leverage the empirical peptides information of
experimental replicates avoiding data imputation or using spectra features of peptides
(Fischer & Renard, 2016) as they might not be necessarily available information to the
final user.

The peptide removal algorithm is described in Fig. 1, in this procedure peptides that are
inconsistent (e.g., anti-correlate) between replicates are excluded. This implementation
is not intended to address the ratio compression (Savitski et al., 2013) but to leverage the
information available on the same peptide between the two replicates.

In fact, the peptide removal process is based on the calculation of the Pearson correlation
coefficient between the same peptide abundances of two replicates as a pre-filtering
step before summing the remaining peptide intensities to finally infer back the protein
abundance.

Initially, the peptides are filtered by their Peptide Quality score (Qs < 0.05) column,
a mandatory input column in this case. Next, data are filtered to have a minimum of 2
peptides (shared or unique) per protein and per replicate such that the Pearson correlation
coefficient (R2) can be calculated between matched peptides. Peptides with R2 < 0.4 are
removed and summed intensities are computed from the remaining peptides; although this
cut-off can bemodified by the user withinDOSCHEDA,we observed that 0.4 is a reasonable
default threshold that removes extreme peptide quantifications (e.g., low correlated and
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Figure 1 Schematic of the Peptide Removal process algorithm.

Table 3 Summary scenarios in peptide removal process.

Prot. name Peptides Rep1 Peptides Rep2 Pearson correlation
coefficient

Action

Protein 1 A, B A, B RA>0.4
RB>0.4

No removal, computed the summed intensities as in PD2.1

Protein 2 A, B A NULL Lack of peptide measurements; Protein 2 will be removed
Protein 3 A, B, C A, B, C RA>0.4

RB>0.4
RC <0.4

A, B considered and summed. C is removed, reason of noise
in the data

Notes.
A,B,C in the real case scenario are peptide sequences.

anti-correlated peptides) and keeps almost unchanged the proteome coverage, as shown in
Fig. 2 R2 < 0.4. Intuitively, larger R2 values will reflect into a larger peptide removal and
consequently proteins loss as shown by Figs. 2A–2D.

The R2 can be adjusted by the user within DOSCHEDA allowing quick results
comparison in a similar fashion of Fig. 2 and, empowering the analyst to fine tuning
this threshold based on project aims.

Finally, only proteinswithmore than one unique peptide are retained for the downstream
analysis. Table 3 summarizes all the possible scenarios handled by the peptide removal
function.
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Figure 2 Effect of different Pearson coefficient cut offs. X- and Y -axis are Log2 fold changes. The total
number of proteins 1,360 (A, 100%) reduces to 1,084 with Pearson coefficient R2

= 0.2 (B,∼80%), 1,044
with R2

= 0.4 (C,∼77%), and 382 with R2
= 0.8 (D, 28%).

The user should initially run the exploratory data analysis in DOSCHEDA up to the
Principal Component Analysis (PCA) and the correlogram plot to evaluate the correlation
between replicates. Only at this point the user can make an informed decision whether
to apply the peptide removal function or continue to analyze the data without applying
the removal process. Yet, being an open source tool the peptide removal process could
be replaced by any other similar function that might be available in literature (see the
DOSCHEDA Bioconductor vignette).

Additional Features. The server version of DOSCHEDA comprises additional uploads
that are useful when researchers are comparing datasets, including: (i) intersections of
the enriched proteins with a user uploaded GeneID list (e.g., protein kinesis); (ii) default
mapping from Uniprot accession to GeneIDs using InterMine or in case the organism of
interest is not present in the drop-down list, DOSCHEDA allows the user to specify the
mapping file.

Furthermore, DOSCHEDA allows: (i) two normalization/scaling options (see
DOSCHEDA manual); (ii) interactive 2D plots with user-defined x- and y- axes; (iii)
quality control (QC) traffic lights flags; (iv) downloadable results and detailed report of
the analyses.
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Figure 3 DOSCHEDAworkflow.

RESULTS
DOSCHEDA generates a variety of different plots depending on the user’s data input, as
outlined in Fig. 3. Overall there are two sets of output plots, one designed for the quality
control (QC), the other one to visualize the results of the analyzed data.
The DOSCHEDA application provides standard QC plots such as box, whisker plots,

data distributions within each iTRAQ/TMT channel, correlogram plots to quantify the
correlation between replicates, a 2D-plot to verify the variance independence from the
data mean, and a plot of the first two principal components. Based on the QC outcomes, if
data are consistent the user can proceed to the inspection of the statistical analysis results,
otherwise, if peptide intensities are available the peptide removal process can be applied.

For the analysis, depending on the chosen statistical model, DOSCHEDA will generate
different outputs.

In case of a linear model the p values distributions for the three coefficients (a0, a1 and
a2) and their corresponding interactive volcano plots are displayed.

In case of a sigmoidal model DOSCHEDA will output three plots: the first showing the
sigmoidal curves with a difference higher than 30% between the top and the bottom value;
the second and the third showing the proteins that have a significant RB50 (p value <0.05)
and a significant slope (p value <0.05), respectively.

Independently of the applied statistical model, the R package d3heatmap is used to
generate an interactive heatmap of the input data.
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Figure 4 DOSCHEDA traffic lights flags system. Two types of QCs’ are available, type 1 based on pair-
wise samples correlation obtained from the correlogram plot (A–C) and, type 2 based on model’s p val-
ues coefficients (D–E) obtained by running the linear or sigmoidal statistical analysis. In both types, green
flags will be displayed when there is no anti-correlation between any samples and the number of pro-
teins with p value(s) <0.05 is larger than zero. On the contrary orange flags will be displayed when anti-
correlation is observed (B) in at least one of the pairwise samples (i.e., Pearson Correlation Coefficient,
R2 < 0) and/or there are no proteins that passes the threshold of p value(s) < 0.05 (F).

Once the analysis has been completed, the summary section of the application allows the
user to visualize the results in a table format, where functions like ‘‘search’’ and ‘‘sorting’’
are also enabled for quick queries.

The summary section contains quality control (QC) traffic light flags with green for data
consistency and orange for data incongruences with an accompanying warning message.
There are two types of traffic lights flags; see Fig. 4.

Finally, in the download section of the application the user can download (i) a .csv file
containing the results of the analysis which also includes the user-input dataset and (ii)
an html report with all the plots produced in the current run, the key tables as well as the
session information to facilitate data reproducibility.

CONCLUSION
DOSCHEDA enables researchers with limited programming experience to perform,
evaluate, and interactively visualize chemoproteomics data analysis. DOSCHEDA includes
linear and non-linear statistical analysis whose results can be exported in excel spreadsheet
format. Also, the user will be able to generate a full report of the executed data analysis,
facilitating data reproducibility. Being open source, DOSCHEDA can be easily extended
and modified to fit specific additional analyses.

Availability and requirements
DOSCHEDA server lives at https://doscheda.shinyapps.io/doscheda/ and it will be
constantly maintained by the authors; the users by following the link above can upload and
analyze their own datasets without additional requirements. Finally, to facilitate traceability
and reproducibilityDOSCHEDA is also available as an open source Bioconductor package.
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Abbreviations

DOSCHEDA Down Stream Chemoproteomics Data Analysis
QC Quality Controls
iTRAQ Isobaric tag for relative and absolute quantitation
TMT Tandem Mass Tag
MS Mass Spectrometry
GUI Graphical User Interface
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