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Abstract—Interconnected power system is a typical nonlinear 

dynamical system, it will cause great harm to the 

interconnected power system when the chaos occurred. This 

paper analyses the nonlinear dynamical behavior of the 

interconnected power system with a uncertain electromagnetic 

disturbance amplitude, and the influence of the 

electromagnetic disturbance amplitude on the stability of the 

system is obtained. Thus, this paper proposes a novel 

non-singular terminal sliding mode control to restrain the 

chaos, then the system will reach a stable state in a fixed time. 

According to the theoretical analysis, by introducing the 

saturation function, the control method can solve the 

singularity problem in the sliding mode control, and the 

interconnected power system will be stable in a short time 

when it’s in chaos. The simulation prove the correctness of the 

method. 

Keywords-Interconnected Power System; Saturation 

Function; Non-singularity; Sliding Mode Control; Fixed Time 

I. INTRODUCTION 

Power system is a kind of nonlinear dynamical system 

with multi-degree of freedom, strong coupling and 

multi-variable, which has rich dynamical behaviors. With the 

development of power grid system, grid interconnection has 

became a inevitable trend, and it can improve the quality of 

power. At the same time, it also provides convenience for the 

dispatching optimization of power system[1-3]. However, 

chaos often appears in the interconnected power system, it 

will bring great challenge to the stability of power system. 

For example, as the result of chaotic oscillations[4-6], 

several large area power outages appear in the United States, 

China and Canada in 1955. And it is difficult to suppress this 

phenomenon by using linear controller[7]. Therefore, it is 

necessary to study the mechanism of chaos in interconnected 

power systems and it is meaningful to design the nonlinear 

controller to suppress the chaos. 

Due to the high nonlinear characteristics of the 

interconnected power system, its stability is very sensitive to 

outside disturbance. If the perturbation is too large, its 

operating point will change obviously. There are also some 

tools to analyze its stability which include geometric method, 

energy function, bifurcation theory and  numerical 

simulation[8]. Recently, there are a lot of scholars to study 

the stability of power grid system. For example, Nayfeh [9] 

uses the multi-scale perturbation method to study the 

stability of single machine power system and the bifurcation 

analysis of a single machine infinite power system is 

investigated by Duan[10]. Because coupling power angle 

exists in the interconnected power system, the inherent 

dynamical behavior of interconnected power system will be 

more abundant. Through the detailed numerical simulation, 

the influence of the conventional non-linearity index on the 

dynamic characteristics of the interconnected power system 

is expounded[11]. 
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In recent years, with the development of control method, 

the system is controlled from the single machine infinite 

system to multiple machine system, and the interconnected 

power system. In this paper, by proposing a fix-time 

non-singular terminal sliding mode control to realize stability 

when chaos occurred in interconnection power system. Some 

systems can be stabilized in a fixed time by using finite time 

control, this control method can be used in a lot of fields (for 

instance[12-13]). However, it is difficult to ensure the 

boundary convergence time when it is independent of the 

initial state. Therefore, in some practical system, it is not 

workable to use this control method when the initial 

condition is uncertain. Fortunately, this question was solved 

by Polyakov with the fixed-time stability theory[14]. Zuo[15] 

proposed a non-singular fixed-time terminal sliding mode 

controller for a class of second order nonlinear systems that 

can solve the singularity problem of terminal sliding mode 

controller in most instances. In this paper, by using the fast 

terminal sliding mode control can make the system 

convergence to steady state in finite time, the saturation 

function[16] and fast fixed time stability theory that can 

solve the singular problem through theoretical proof in this 

control method. This control method not only solve the 

singularity problem of the sliding mode controller, but the 

convergence speed is faster. 

Motivated by the above analysis, this paper investigated 

the dynamical characteristics and control of interconnected 

power system. Section 2 introduces the dynamical 

characteristics of the interconnected power system, by 

introducing the maximum Lyapunov index, power spectrum, 

phase diagram and timing diagram, the paper decribe the 

dynamic of the interconnected power system. when the 

amplitude of electromagnetic disturbance is v=1.3,the system 

is in chaos. a non-sigular  sliding mode variable structure 

control method has been introduced in Section 3 and the 

effectiveness of the control method can be obtained by 

theoretical analysis, the advantages of this method are 

verified, and the convergence time is calculated in Section 

4.And Section 5 gives the conclusion of this paper. 

II. THE ANALYSIS OF THE MODEL AND DYNAMIC 

CHARACTERISTICS OF THE INTERCONNECTED POWER SYSTEM 

There are two kinds of oscillation modes in 

interconnection power system, one is a single generator acts 

on other generators in the system with the frequency is 

between 0.5 and 2.0 Hz. The other oscillation mode is 

mainly expressed as a generator group in a region interacts 

with a generator group in another area, the frequency is 

between 0.1-1.0 Hz. This paper studies the interconnected 

power system model with two generators. Considering the 

influence of the amplitude of the electromagnetic disturbance 

power, the model is as follows: 

( )
( ),

( ) 1
[ sin( ( )) ( ) cos( )sin( ( )) cos( )]s m k e

d t
t

dt

d t
P t D t P P t t P t
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Where, ( )t is the phase angle between the excitation 

potential and the terminal voltage between the two 

generators, and ( )t  is the angular velocity of the two 

generators. D  is the equivalent damping coefficient. 

, , ,s m e kP P P P
 represents the amplitude of the electromagnetic 

power, the mechanical power, the load disturbance power, 

and the electromagnetic disturbance power, respectively. 

,   is the electromagnetic power disturbance frequency 

and the load disturbance frequency. H  is the equivalent 

moment of inertia. 

In order to analyses the dynamics of the interconnected 

power system, the simplified model is obtained: 

1
2
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1 2( ) ( ), ( ) ( ) / , / , / , / ,

/ , / , / , /
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x t x t H P D HP P P v P P

P P H P H P t P H
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     

    

     

Here, the parameters can be selected 

as 0.4, 0.02, 0.2, 0.8           . 

A. Lyapunov exponent 

The Lyapunov exponent is an important parameter of the 

system that can be used to measure and determine whether 
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the dynamic system is in the chaos. When the maximum 

Lyapunov exponent of the dynamic system is greater than 0, 

it can be concluded that the system is in chaotic oscillation 

state. 

 

Figure 1. The Lyapunov exponent 

B. Power spectrum 

To study the chaotic behavior of a system, it is effective 

to use power spectrum analysis methods. Actually, power 

spectrum analysis is through the time and space translate to 

the frequency space for the signal frequency structure. When 

the chaos occurs in the system, the power spectrum of the 

system behaves as a continuous irregular distribution, for 

example in fig.2(c). 

 

 

(a)                            (b)                                (c) 

Figure 2. Power spectrum 

Similarly, the phase space map also is a tool to determine whether the system is in chaos. 

 

(a)                              (b)                              (c) 

Figure 3. Phase plane plots 
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According to the maximum Lyapunov exponent, phase 

diagram, and power spectrum of interconnected power 

system, we can know that the interconnected power system 

is in an irregular non-periodic chaotic state when the 

parameter 1.3v  .This chaotic state will cause great harm 

to the stability of the system, it will lead to a large area of 

power outages. Therefore, it is necessary to study the method 

to restrain the chaos in interconnected power system. 

III. THE SLIDING MODE CONTROLLER DESIGN 

In this section, the paper proposes a control scheme that 

can restrain chaos in power system, this paper needs to add 

control law in the second item in control equation that can 

make the system output 1x
 convergences to the control 

target, namely, 

1 2

2

,

( ) ( , ) ( ) ,

x x

x f x g x t d t u




   




(3)

Where : 

1 2( ) sinf x x x    
: 1( , ) cos( )sing x t v t x 

, 

( ) cos( )d t t  . 

By proposing a timing non-singular fast terminal control 

method, the system can be smoothly stabilized on the sliding 

surface s . The sliding surface s  is designed as: 

1 1 1
1

1 1 1

1 1
( ) (| | 1)

2 2 2 2
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the paper can get the reach law : 

2 2 2
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Here, after reading the relevant literature [18 ] about how 

to overcome the singularity in terminal sliding mode control. 

This paper quotes saturation function that can solve the 

question. 
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In control input, the paper quotes saturation function to 

limit the amplitude of singularity term

1

1

1

1 2

p

q
x x



,where the 

saturation function is 

, | | ,
( , )

( ), | | ,

x if x y
sat x y

y sign x if x y


 

  (7)

Theorem 1 

In control law(6), if there is a positive number  

1 2 1 2, , ,    ,and also 1m
, 1n

, 2m
, 2n

, 1p
, 1q

, 2p
, 2q is odd 

positive integers satisfying 1 1m n , 2 2m n , 1 1p q , 

2 2p q
, and 1 1( ) / 2m n

, 2 2( ) / 2m n
, 1 1( ) / 2p q

, 

2 2( )p q
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stable in a fixed time. 
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When 
| | 1s 
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2

1

2
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p

q
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
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Obviously, 1 0V 
, so the control system will stable in 

expect target non-singularity. 

Theorem 2 

The singularity item of the control input is restricted by 

the saturation function method, so that the system does not 

affect the stability analysis even if there is a singular region. 

Proof 

Defined inequality

1

1

1
1

1 1 2

1

| |

p

qp
x x h

q






 as the singularity area. 

The state variable 1x
 in first equation at system(3).  

1 1 2
0

( ) (0) ( )
t

x t x x d                   (12) 

When 2 ( ) 0x t 
, 1( )x t

will increase monotonically and 

leave the singularity. If 2 ( ) 0x t 
, 1( )x t

 will decrease 

monotoniclly and leave the singularity. Therefore, the 

existence of the singular region does not affect the results of 

the stability analysis . 

Arrival time analysis 

Consider the following differential equation 

1 1
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2 2 2 2

pm m
sign y

qn nx x x 
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Where, assuming 
0, 0  

, and 
, , ,m n p q

 is 

odd positive integers, the system will stable in a fix time. 

Proof  

The above system can be written as follows: 
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A new variable is defined as

1
p

qz x


 , so, the first 

equation in the above system can be written  
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Similarly available, the second equation in system can be 

obtained 

0
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So, the maximum convergence time is 
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Without losing the general consideration of second order 

systems, the fix time for the controlled system to reach the 

slid surface is 
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2 2
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2
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When the controlled system reaches the sliding surface 

0s  , the target sliding mode of the system satisfies the 

following  
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sign x
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The corresponding system 1x
 will converge in a fixed 

time: 
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1 1
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T
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The convergence time for system is 
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 
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 
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IV. SIMULATION EXPERIMENT 

The proposed control method is applied to suppress 

chaotic oscillation in studied power system. The parameters 
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of the controller is 1 10 
, 1 5  , 2 10 

, 2 5  , 

1 9m 
, 1 5n 

, 2 9m 
, 2 5n 

, 100h  , 1 5p 
, 1 9q 

, 2 5p 
,

2 9q 
. The initial value of the controlled system is 

1 2[ , ] [0.5,0.1]x x  .The dynamics of the system under this 

parameter have been obtained in the second part, and the 

system is in a chaotic state before it is controlled. As shown 

in figure 4, before being controlled, the system is in a chaos. 

 

Figure 4. Time domain waveform(uncontrolled) 

 
Figure 5. Time domain waveform after control 

 
Figure 6. Phase plane plots 
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Figure 7. Power spectrum 

From Fig.5, this paper can get that the system under 

chaotic oscillation is controlled by the control method 

proposed in this paper, then it will converge quickly to the 

desired target within a fixed time. 

By contrasting the Fig.6, Fig.7, this can find this result. 

The system will be in chaos when it’s uncontrolled, but the 

method which have proposed in this paper apply in the 

interconnected system, the system is stabilized.  

V. CONCLUSION 

In this paper, by plotting the Lyapunov exponent diagram, 

power spectrum and phase diagram of the interconnected 

power system, the influence of the amplitude of the 

electromagnetic disturbance for the system has been 

analyzed. According to  the three stability criteria, when the 

system parameter 1.3v  , the interconnected power system 

will be in chaos. So, a non-singular terminal sliding mode 

control method with fixed time stability has been applied in 

the system when it’s in chaos. By comparing the system 

output, we can find that the control method proposed in this 

paper can restrain the chaotic oscillation, and the 

interconnection system is stabilized in a fixed time. The 

singularity problem in the terminal sliding mode control is 

eliminated by introducing the saturation function. Due to the 

timing convergence characteristics and non-singularity of the 

proposed method, it will be applied to the actual power 

equipment. 
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