
Submitted 31 January 2017
Accepted 3 October 2017
Published 27 November 2017

Corresponding author
Dimitris Mitropoulos,
dimitro@aueb.gr

Academic editor
Cynthia Irvine

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.136

Copyright
2017 Mitropoulos and Spinellis

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Fatal injection: a survey of modern code
injection attack countermeasures
Dimitris Mitropoulos and Diomidis Spinellis
Department of Management Science and Technology, Athens University of Economics and Business, Greece

ABSTRACT
With a code injection attack (CIA) an attacker can introduce malicious code into a
computer program or system that fails to properly encode data that comes from an
untrusted source. A CIA can have different forms depending on the execution context
of the application and the location of the programming flaw that leads to the attack.
Currently, CIAs are considered one of the most damaging classes of application attacks
since they can severely affect an organisation’s infrastructure and cause financial and
reputational damage to it. In this paper we examine and categorize the countermeasures
developed to detect the various attack forms. In particular, we identify two distinct
categories. The first incorporates static program analysis tools used to eliminate flaws
that can lead to such attacks during the development of the system. The second involves
the use of dynamic detection safeguards that prevent code injection attacks while the
system is in production mode. Our analysis is based on nonfunctional characteristics
that are considered critical when creating security mechanisms. Such characteristics
involve usability, overhead, implementation dependencies, false positives and false
negatives. Our categorization and analysis can help both researchers and practitioners
either to develop novel approaches, or use the appropriate mechanisms according to
their needs.

Subjects Security and Privacy
Keywords Application security, Code injection attacks, Countermeasures, Static analysis,
Dynamic prevention, Software vulnerabilities, Cross-site scripting

INTRODUCTION AND COVERED AREA
Security vulnerabilities derive from a small number of programming flaws that lead to
security breaches (Wurster & Van Oorschot, 2008; Viega & McGraw, 2001). One common
mistake that developers make concerns user input, assuming, for example, that only word
characters will be entered by the user, or that the user input will never exceed a certain
length (Mitropoulos et al., 2011). Developers may assume, correctly, that a high-level
language in an applicationwill protect them against threats like buffer overflows (Keromytis,
2011). Developers may also assume, incorrectly, that user input is not a security issue any
more. Such an assumpion can lead to the processing of invalid data that an attacker can
introduce into a program and cause it to execute malicious code. This kind of exploit is
known as a code injection attack (CIA) (Ray & Ligatti, 2012; Mitropoulos et al., 2011).

Code injection attacks have been topping the vulnerability lists of numerous
bulletin providers for several years. (http://www.sans.org/top-cyber-security-risks/,
http://cwe.mitre.org/top25/) Consider the Open Web Application Security Project

How to cite this article Mitropoulos and Spinellis (2017), Fatal injection: a survey of modern code injection attack countermeasures.
PeerJ Comput. Sci. 3:e136; DOI 10.7717/peerj-cs.136

https://peerj.com
mailto:dimitro@aueb.gr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.136
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sans.org/top-cyber-security-risks/
http://cwe.mitre.org/top25/
http://dx.doi.org/10.7717/peerj-cs.136

(https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project) (OWASP)
Top Ten project which represents a broad consensus about what the most critical web
application security flaws are, and is referenced by Payment Card Industry Security
Standards Council (https://www.pcisecuritystandards.org/security_standards/) (PCI DSS),
Defense Information Systems Agency (www.disa.mil/) (DISA) and numerous researchers.
In its three consecutive Top Ten lists (2007, 2010, 2013), different classes of code injection
are included in the top five positions.

Over several years of efforts, a large body of knowledge has been assembled regarding
code injection attacks consisting of countermeasures, novel ways of attacking, and others.
In this paper we first identify the basic categories of CIAs (‘Code Injection Attacks’). Then,
we analyze the basic approaches used to counter such attacks, and the mechanisms
that implement them (‘Countermeasures’). Specifically, there are two categories of
countermeasures that can be used by developers to: (a) identify and eliminate the
vulnerabilities that the system contains during the development process, (b) guard the
system against code injection attacks while it is in production mode. Then, we highlight the
positive and negative aspects of each countermeasure and finally we evaluate them based
on the following requirements (see ‘Analysis and Discussion’):

• Flexibility: We check if an approach can be adjusted in order to detect different code
injection attack categories.
• Effectiveness Tests: As long as we examine security mechanisms that detect either
attacks or defects, we want to see if researchers have measured the effectiveness of their
proposed mechanisms in terms of false positive and negative rates.
• Implementation independence: We check if the mechanisms depend either on the
characteristics of the programming language that was used to develop them or on the
implementation details of the protecting entity.
• Computational Overhead: Finally, we examine if a mechanisms imposes a cost due to
its use, as it may introduce an amount of extra computation on an application.

All the aforementioned requirements are considered critical when building security
mechanisms (Anderson, 2001; Romero-Mariona et al., 2009; Mellado, Fernández-Medina &
Piattini, 2010;Halfond, Viegas & Orso, 2006). Finally, we discuss some emerging challenges
for future research on the field (‘Emerging Challenges’), and provide some general
observations together with some concluding remarks (‘Conclusions’).

There is already a survey on mitigating software vulnerabilities in general (Shahriar
& Zulkernine, 2012). The scope of that research is very broad and leaves out many
approaches and mechanisms that we report here. Also, countermeasures that prevent
two subcategories, namely: binary code injection (Younan, Joosen & Piessens, 2012) and
SQL injection (Halfond, Viegas & Orso, 2006) in particular, have already been surveyed.
The body of work done on the field though, exceeds the boundaries of this research too.
Furthermore, in the latter case (Halfond, Viegas & Orso, 2006), the survey is quite old and
since then the number of countermeasures that detect SQL injection attacks alone, has
doubled. Finally, the authors of this survey do not take false positives and false negatives
into account in their research.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 2/40

https://peerj.com
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.pcisecuritystandards.org/security_standards/
www.disa.mil/
http://dx.doi.org/10.7717/peerj-cs.136

CODE INJECTION ATTACKS
Code injection is a technique to introduce malicious code into a computer program
by taking advantage of unchecked or wrong assumptions the program makes about
its inputs (Mitropoulos et al., 2011). Bratus et al. (2011) portray the issue in a generic
fashion: ‘‘unexpected (and unexpectedly powerful) computational models inside targeted
systems, which turn a part of the target into a so-called ‘‘weird machine’’ programmable by
the attacker via crafted inputs (a.k.a. ‘‘exploits’’)’’. An example of the above definition is
the following: The code fragment below, defines the operation of addition in the Scheme
programming language (Abelson & Sussman, 1996; Dybvig, 2009):

(d e f i n e (add x y) (+ x y))

Consider the case where instead of a number, a function that leads to an endless loop
is passed as an argument by the user. This will cause the interpreter to enter an endless
loop and lead to a denial of service. The intuition here is that ‘‘every application that copies
untrusted input verbatim into an output program is vulnerable to code injection attacks’’. Ray
& Ligatti (2012) actually proved the above claim based on formal language theory.

Code injection attacks are one of the most critical class of attacks (Francillon &
Castelluccia, 2008; Su & Wassermann, 2006; Baca, Carlsson & Lundberg, 2008) due to the
following reasons:

• They can occur in different layers, such as databases, libraries, native code and the
browser.
• They span a wide range of security issues, such as viewing sensitive information, editing
of personal data, or even stopping the execution of a system.

Figure 1 presents a categorization of CIAs divided into two categories. The first involves
binary code and the second source code.We illustrate the attack categories and subcategories
that have been analyzed in other research papers, in grey color. JavaScript injection has lately
become a prominent subcategory, hence we provide some basic examples in Appendix.

Binary Code Injection Attacks: Such attacks involve the insertion of binary code into an
application to alter its execution flow and execute malicious compiled code. This category
involves buffer-overflow attacks (Cowan et al., 1998; Keromytis, 2011; Szekeres et al., 2013),
a staple of security problems. These attacks may occur when the bounds of memory areas
are not checked, and access beyond these bounds is possible by the program. Based on
this, malicious users can inject additional data overwriting the existing data of adjacent
memory. From there they can take control over a program or crash it. Another attack vector
involves format string vulnerabilities. The basis of this defect is the unexpected behaviour
of functions with variable arguments. Typically, a function that handles a number of
arguments has to read them from the stack. If we specify a format string that will make
printf expect two integers on the stack, and we provide only one parameter, the second
one will have to be something else on the stack. If attackers have control over the format
string, then they could eiter read from or write to arbitrary memory addresses. C and C++

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 3/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

Code Injection
Attacks

Binary Code
Attacks

Dynamic Language
Attacks

Domain-Specific
Language Attacks

PHP
Attacks

Javascript
Attacks

[...]

SQL
Attacks

XPath
Attacks

[...]

Stack Smashing
Attacks

Heap Smashing
Attacks

[...]

Source Code
Attacks

Figure 1 A categorization of code injection attacks. The subcategories that have been extensively ana-
lyzed in other research papers (Lhee & Chapin, 2003; Pincus & Baker, 2004) can be seen in grey colour.

Full-size DOI: 10.7717/peerjcs.136/fig-1

are two programming languages vulnerable to this kind of attacks since corresponding
implementations lack a protection scheme against overwriting data in any part of the
memory (Mitropoulos et al., 2011).

There are two research papers that present various techniques that belong to this category.
In particular, an extensive survey on binary code injection attacks can be found in reference
(Lhee & Chapin, 2003). Furthermore, specific advances in exploiting such vulnerabilities
(i.e., heap smashing, arc injection and others) have been presented in reference (Pincus &
Baker, 2004). Finally, the countermeasures used to detect such defects have already been
surveyed (Younan, Joosen & Piessens, 2012) (many of them are also included in a book:
Das, Kant & Zhang, 2012—Section 13.8). Nevertheless, we include some of them in this
survey because they prompted the development of some sophisticated countermeasures.

Source Code Injection Attacks: Code injection also includes the use of source code,
either of a Domain Specific Language (DSL) or a Dynamic Language. Note that binary code
injection attacks can only occur when the target system is implemented in languages lacking
array bounds checking, like C and C++. Contrariwise, source code-driven injection attacks
can target applications written in various programming languages with different features
and characteristics.

Code injection attacks that involve DSLs are critical, as DSLs like SQL and XML play an
important role in the development of web applications. For instance,manyweb applications
have interfaces through which web users enter input to interact with the application’s data.
In this way, they interact with the underlying RDBMS (Relational Database Management
System). Typically, this input can become part of an SQL statement and then gets executed
on the corresponding RDBMS. An attack that exploits the defects of these interfaces by
taking advantage of input validation issues (e.g., inefficient type handling), is called an ‘‘SQL
injection attack’’ (CERT, 2002;Mitropoulos & Spinellis, 2009). The various techniques used

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 4/40

https://peerj.com
https://doi.org/10.7717/peerjcs.136/fig-1
http://dx.doi.org/10.7717/peerj-cs.136

Code injection Attack
Countermeasures

Static Analysis Dynamic
Detection

Simple Pattern
Matching

Lexical Analysis

Data-Flow Analysis

Model Checking

Type System
Extensions

Symbolic Execution

Instruction Set
Randomization

Policy Enforcement

Whitelisting

Runtime Tainting

Figure 2 The basic categories of code injection attack countermeasures.
Full-size DOI: 10.7717/peerjcs.136/fig-2

to perform such attacks have can be found in reference (Halfond, Viegas & Orso, 2006).
Instructive examples can be also found in reference (Su & Wassermann, 2006). By using
very similar techniques to the ones presented in the aforementioned references, attackers
can perform other exploits based on DSLs, like XML (Mattos, Santin & Malucelli, 2013)
and XPath (Su & Wassermann, 2006; Cannings, Dwivedi & Lackey, 2007; Mitropoulos,
Karakoidas & Spinellis, 2009).

A critical class of code injection attacks involve dynamic languages such as Python,
Perl, JavaScript, and PHP (Seixas et al., 2009; Egele et al., 2009; Son, McKinley & Shmatikov,
2013). In particular, JavaScript injection attacks comprise a wide subset of dynamic
language-driven attacks. Such attacks are manifested when an application accepts and
redisplays data of unknown origin without appropriate validation and filtering. Based on
this vulnerability, a malicious user can manage to inject a script in the JavaScript engine
of a browser and alter its execution flow (Erlingsson, Livshits & Xie, 2007). JavaScript
injection attacks are considered as a crucial issue in application security because they are
associated with major vulnerabilities such as: XSS attacks (Sivakumar & Garg, 2007) and
XCS (Cross-Channel Scripting) attacks (Wang, 2010; Bojinov, Bursztein & Boneh, 2009).
As we mentioned earlier, typical examples of JavaScript injection attacks can be found on
the Appendix of this paper—A.

COUNTERMEASURES
Two different basic methods are used to deal with the code injection problem (see Fig. 2):
• Static Analysis involves the inspection of either source or binary code to find software
bugs that could lead to a code injection attack without actually executing the program.
• Dynamic Detection observes the behavior of a running system in order to detect and
prevent a code injection attack.

In the first case, programmers try to eliminate software vulnerabilities while applications
are created (also known as the build-in security (McGraw, 2006) concept). The second
concept involves the development of methods and tools that secure systems after their

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 5/40

https://peerj.com
https://doi.org/10.7717/peerjcs.136/fig-2
http://dx.doi.org/10.7717/peerj-cs.136

deployment. There are numerous approaches that belong to each of these two basic
methods and for each approach Fig. 2, provides the corresponding bibliography.

Static analysis
The main concept behind static analysis is to identify security vulnerabilities during
the development process. Currently, there are many software development processes
that include static analysis tools for security as their integral parts (Brown & Paller, 2008;
Gregoire et al., 2007; Fagan, 1999). From the usage of utilities like grep to complexmethods,
static analysis has been an evolving approach to detect software vulnerabilities (Chess &
West, 2007).

Initially, the most straightforward approach is the adoption of secure coding practices
(Howard & LeBlanc, 2003;Viega & McGraw, 2001;McGraw, 2006). For example, to prevent
an SQL injection attack, developers can use specific features provided by the language they
use (e.g., Java’s PreparedStatement object). Nevertheless, this does not usually happen, as
developers may not be aware of them, or time schedules may be tight, encouraging sloppy
practices instead.

Simple pattern matching
During a manual code review it is easy to look for functions associated with code injection
defects. Using existing tools available in almost every operating system, security auditors
can search through a set of files for an arbitrary text pattern. These patterns are commonly
specified through a regular expression. Accompanied by a well organized list of patterns,
the auditor can quickly identify locations at which a programmight face security problems.

If auditors choose to use utilities like grep and qgrep though, they must check for every
vulnerability manually. Apart from this, they must have an expert knowledge because there
are many different kinds of such defects. Furthermore, the analysis these utilities perform is
naive. For example there is no distinction between a vulnerable function call, a comment,
and an unrelated identifier. Hence, a higher prevalence of false positives should be expected
(Chess & McGraw, 2004). Finally the output can be disorganized and overwhelming. The
distinct disadvantages of pattern scanning and the continuous emergence of new defects
were some of the main reasons that led to more sophisticated approaches.

Lexical analysis
Lexical analysis is one of the first approaches used for detecting security defects. This is
because it is simple and easy to use. Lexical analysis is based upon formal language theory
and finite state automata (Aho et al., 2006). As a term, it is mostly used to describe the first
phase of the compilation process. However, there is no difference between this phase and
the method that we describe here (McGraw, 2008). The two differ only in the manipulation
of their outcome.

There are three phases that can be distinguished here, namely: scanning, tokenizing
and matching (Kantorovitz, 2004). In the first two phases possible character sequences are
recognized, classified and transformed into various tokens. Then the resulting sequences
are associated with security vulnerabilities. Specifically, there are lists that contain entries
of vulnerable constructs used during the matching phase. After a successful match an

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 6/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

alert message warns auditors, describing the vulnerability and providing them with
alternative usages.

The lexical analysis approach is implemented by security utilities such as BOON
(Wagner et al., 2000), PScan (Johnson, 2006; Heffley & Meunier, 2004; Chen & Wagner,
2007), ITS4 (Viega et al., 2002; Viega et al., 2000; Wilander & Kamkar, 2002), Flawfinder
(http://www.dwheeler.com/flawfinder/) (Wilander & Kamkar, 2002) and RATS (http:
//www.security-database.com/toolswatch/RATS-v2-3-Rough-Auditing-Tool-for.html)
(Kong et al., 2007; Chess & McGraw, 2004; Wilander & Kamkar, 2002). For the most part,
these tools scan source code pointing out unsafe calls of string-handling functions that
could lead to a CIA. Then, they provide a list of possible threats ranked by risk level. This
level is usually specified by checking the arguments of such functions. The vulnerability
lists are simply constructed making the addition, removal, and modification of an entry
quite easy. All the aforementioned tools scan C and C++. This exclusiveness lies on the fact
that C and its standard libraries are very susceptible to binary code injection attacks as we
mentioned in ‘Code Injection Attacks’.

Lexical analysis can be flexible, straightforward and extremely fast. With one or more
non-processed files as input, and simple descriptions as output, developers can quickly
check their code for vulnerabilities. Also they can easily update and edit their vulnerability
library with new possible threats due to its simplistic nature. Although superior to manual
pattern matching, this approach has no knowledge of the code’s semantics or how data
circulates throughout a program. As a result there are several false positive and negative
reports (Chess & West, 2007; Cowan, 2003). Note though, that lexical analysis utilities
helped the gathering and depiction of a tentative set of security rules in one place for the
first time (McGraw, 2008).

Data-flow analysis
Data-flow analysis is another compiler-associated approach used to discover software
defects. It is more sophisticated and more appropriate for a comprehensive code review
than lexical analysis.

Data-flow analysis can be described as a process that gathers details that concern the
definition and dependencies of data within a program without executing it (Moonen, 1997;
Fosdick & Osterweil, 1976). In addition, data-flow analysis algorithms can document all
sequences of specific types of events which might occur in a program execution. The key
insight of this approach is a Control-Flow Graph (CFG). Based on the program’s CFG, this
method examines how data moves throughout a program by representing all its possible
execution paths (Chess & West, 2007; Cahoon & McKinley, 2001). By traversing the CFG of
a program, data-flow analysis can determine where values are generated and where they
are used. Hence this approach can be used to describe safety properties that are based on
the flow of information (Abi-Antoun, Wang & Torr, 2007).

As an example: it is very likely that the CFG of a program with an SQL injection defect,
will include a data-flow path from an input function to a vulnerable operation. For instance,
in the following code fragment, user input reaches a method that interacts with a database
without any prior validation:

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 7/40

https://peerj.com
http://www.dwheeler.com/flawfinder/
http://www.security-database.com/toolswatch/RATS-v2-3-Rough-Auditing-Tool-for.html
http://www.security-database.com/toolswatch/RATS-v2-3-Rough-Auditing-Tool-for.html
http://dx.doi.org/10.7717/peerj-cs.136

uName = r e q u e s t . g e t P a r ame t e r (" username ") ;
S t r i n g query = nu l l ;
i f (uName != nu l l) {

query = " SELECT ∗ "+
"FROM t a b l e WHERE uname = ’ "+uName+" ’ " ;
r s = s tmt . e x e cu t eQue ry (query) ;

} e l s e {
. . .

}

As a result, the danger of an SQL injection attack is prominent. As it is already clear
from the aforementioned example, data-flow analysis is tailored to localize code injection
vulnerabilities since it can be applied to associate the unchecked input with the execution of
the query and issue a notification. This is why there are numerous adaptations that detect
SQL injection defects, cross-site scripting vulnerabilities, buffer overflows and others. In
addition, most of the creators of such frameworks, claim that with minor changes, their
prototypes can be equally applied to also detect other kinds of such defects.

Contrary to lexical analysis, to counter such anomalies, a data-flow analysis mechanism
needs more than a vulnerability library that connects coding constructs with software
defects. Furthermore, a rule-pack containing specific control flow rules and ad-hoc checkers
that run upon the CFG are required. The most common rules used in this method, are the
source, the pass-through and the sink rules (Chess & West, 2007). A source rule denotes the
starting point of a possible hazard while a sink rule depicts the coding construct where the
hazard takes place. In the aforementioned example, a source rule will apply for the first
line where input can come from a malicious user. The sink rule on the other hand will
refer to the fifth line where attacked-controlled data can reach the database. The pass rule
indicates the code that exists between the above two and carries the possibly corrupted
data. For the most part, these rules are maintained in external files that use a specific format
to describe them.

Livshits & Lam (2005) based their work in the functionality presented above to detect
possible SQL and JavaScript injection defects in Java applications. Nagy & Mancoridis
(2009) have proposed a number of checkers that locate buffer overflow and format
string defects. The idea behind their proposal is to mark all the user-input-related
parts of the source code. These checkers are implemented as plug-ins to the CodeSurfer
(http://www.grammatech.com/research/technologies/codesurfer) tool (Anderson & Zarins,
2005), a commercial tool that performs data-flow analysis on C/C++ programs. Another
two indicative tools used to detect injection anomalies are Pixy (Jovanovic, Kruegel & Kirda,
2006) and XSSdetect (https://blogs.msdn.microsoft.com/ace_team/2007/10/22/xssdetect-
public-beta-now-available/). Both of these tools detect cross-site scripting vulnerabilities
in web applications. The latter, released by Microsoft, runs as a Visual Studio plug-in and
analyzes .NET IL (Intermediate Language)which is read directly from the compiled binaries.
Pixy on the other hand, is a standalone open source tool, that examines PHP scripts. In
many cases, rules can appear directly in the code of the program in the form of annotations.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 8/40

https://peerj.com
http://www.grammatech.com/research/technologies/codesurfer
https://blogs.msdn.microsoft.com/ace_team/2007/10/22/xssdetect-public-beta-now-available/
https://blogs.msdn.microsoft.com/ace_team/2007/10/22/xssdetect-public-beta-now-available/
http://dx.doi.org/10.7717/peerj-cs.136

A tool that considers control flow graphs and uses annotations at the same time to find
buffer overflows and memory leaks is Splint (Evans & Larochelle, 2002). FindBugs (Ayewah
& Pugh, 2010; Hovemeyer & Pugh, 2007; Spacco, Hovemeyer & Pugh, 2006) is also a static
analyzer based on data-flow analysis. Dahse & Holz (2014) have proposed a refined type
of data-flow analysis to detect second-order vulnerabilities. Notably, such vulnerabilities
occur when an attack payload is first stored by the application on the web server and then
later on used in a security-critical operation.

As a more sophisticated approach than lexical analysis, data-flow analysis exhibits fewer
false positives and negatives than the former. For example, many buffer overflows are not
exploitable because the attacker cannot handle the data that overflows the buffer. By using
this method, an auditor can in fact distinguish exploitable from non-exploitable buffer
overflows. The advantage of data flow static analysis is that it can identify vulnerabilities
that could actually occur when real application paths are exercised and not just dangerous
coding constructs.

Model checking
Model checking is a formal verification approach developed based on graph theory and
finite state automata (Clarke, Emerson & Sifakis, 2009; Merz, 2001). A software model
checking framework accepts a system’s source or binary code as input and checks
automatically if it satisfies specific properties. First, the framework analyzes statically
the code to extract a high-level representation of the system, namely a model. This model
usually corresponds to a control-flow graph or a pushdown automaton (Beyer et al., 2007;
Chen & Wagner, 2002). The properties are often expressed either as assertions, as formulas
of temporal logic, or as finite state automata (Pnueli, 1977; Miller, Donaldson & Calder,
2006). By traversing every execution path of the model, the framework determines whether
certain states represent a violation of the provided properties.

There is a great number of dangerous programming practices that can be accurately
modeled with equivalent security properties. For example, the chroot system call should
be followed by a call to chdir ("/"). Otherwise, the current working directory could be
outside the isolated hierarchy and provide access to a malicious user via relative paths.
With a high-level representation of the system at hand and by using ad-hoc algorithms
(Reps, Horwitz & Sagiv, 1995), properties like the above can be easily checked. Likewise,
it is possible to state the detection of code injection defects as a reachability problem
(Tsitovich, 2008).

There are many tools based on model checking to detect software vulnerabilities.
Classic tools include SPIN (Holzmann, 1997), SMV (McMillan, 1992) and MOPS (Chen
& Wagner, 2002; Schwarz et al., 2005). These tools are representative of the approach
but they do not support the detection of CIA defects. QED is a model checking system
that accepts as input web application written in the standard Java servlet specification
(https://jcp.org/aboutJava/communityprocess/final/jsr315/) and examine them for various
code injection vulnerabilities (Martin & Lam, 2008). Also, Fehnker, Huuck & Rödiger
(2011) have proposed a model checking approach to detect binary code injection defects
in embedded systems.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 9/40

https://peerj.com
https://jcp.org/aboutJava/communityprocess/final/jsr315/
http://dx.doi.org/10.7717/peerj-cs.136

The users of a model checking tool do not need to construct a correctness proof.
Instead, they just need to enter a description of the circuit or program to be verified and
the specification to be checked. Still, writing specifications is hard and code reviewers
with experience are needed. One of the key features of model checking is that it can either
reassure developers that the system is correct or provide them with a counterexample. As a
result, together with the discover of a security issue, auditors are provided with a possible
solution. A major problem in model checking is the state explosion issue (Clarke, Emerson
& Sifakis, 2009; Merz, 2001). The number of all states of a system with many processes or
complicated data structures can be enormous.

Symbolic execution
Symbolic execution generalizes testing by using unknown symbolic variables during
evaluation (King, 1976; Cadar et al., 2011). In essence, it provides the means to analyze a
program to determine which inputs cause each part of a program to execute. This concept
can be easily adapted to detect vulnerabilities that may lead to code injection attacks.

To counter SQL injection attacks, Fu & Qian (2008) have proposed SAFELI. First,
SAFELI analyzes the code to detect code constructs used by the application, to interact with
a database. At each location that submits an SQL query, an equation is constructed to find
out the initial values that could lead to a security breach. The equation is then solved by a
hybrid string solver where the solution obtained is used to construct test cases. If a defect is
detected, an attack is replayed by the tool to developers. Ruse, Sarkar & Basu (2010) detect
SQL injection vulnerabilities in a similar manner. In addition, Rubyx (Chaudhuri & Foster,
2010) follows a similar approach to counter JavaScript injection attacks in applications
written in Ruby. S3 (Trinh, Chu & Jaffar, 2014) is a symbolic string solver that can be
used to detect vulnerabilities that may lead to SQL injection and XSS attacks. To do
so, it makes use of a symbolic representation so that membership in a set defined by a
regular expression can be expressed as a string equation. Then, there is a constraint-based
generation of instances from these expressions so that the number of instances can be
limited. Saxena et al. (2010) have proposed a framework called Kudzu, to detect JavaScript
injection attacks. To achieve this, Kudzu explores the application’s execution space by
creating test cases. Then, like SAFELI, Kudzu uses a solver which is implemented by the
authors in order to overcome the complexity of JavaScript’s string operations. Finally,
by using data-flow analysis, it identifies possible defects based on specific sink rules (see
‘Data-flow analysis’).

KLEE (Cadar, Dunbar & Engler, 2008) was the first symbolic execution engine
introduced to detect software bugs in an efficient manner. Such bugs include defects
that may lead to binary code injection attacks. In addition, MergePoint (Avgerinos et al.,
2014) is a binary-only symbolic execution system for large-scale testing of commodity
software. Notably, it is based on veritesting, an approach that employs the merging of
execution paths during static symbolic execution, to reinforce the effects of dynamic
symbolic execution.

Symbolic execution has also been used together either with genetic algorithms to
detect JavaScript injection attacks (Avancini & Ceccato, 2013) or with runtime tainting

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 10/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

(see ‘Runtime Tainting’) to detect SQL injection attacks (Corin & Manzano, 2012).
Symbolic execution shares a similar problem with model checking (see ‘Model checking’).
Symbolically executing all program paths does not scale with large programs since the
number of feasible paths grows exponentially.

Type system extensions
A type system is a collection of rules that assign a property called a type to the various
constructs of a program (Pierce, 2002). One of the most typical advantages of static type
checking is the discovery of programming errors at compile time. As a result, numerous
errors can then be detected immediately, rather than discovered later upon execution.

For the most part, type extensions aim to overcome the problems of integrating different
programming languages. For instance, the integration of SQL with the Java programming
language is typically realised with the JDBC application library (Fisher, Ellis & Bruce, 2003).
By using it, the programmer has to pass the SQL query to the database as a string. Thought
this process, the Java compiler is completely unaware of the SQL language contained
within the Java code paving the way for an SQL injection attack (recollect the example of
‘Data-flow analysis’). Type-safe programming interfaces like SQL DOM (Domain Object
Model) (McClure & Krüger, 2005) and the Safe Query Objects (Cook & Rai, 2005) were two
of the first attempts to detect SQL injection attacks via type extension. Both of the above
mechanisms act as preprocessors and translate an SQLdatabase schema into the host general
purpose language. The generated collection of objects is used as an application library for
the main application, thus ensuring type safety and syntax checking at compile-time. SQLJ
(Eisenberg & Melton, 1999) is a language extension of Java that supports SQL. It offers type
and syntax checking for both languages at compile-time. SugarJ (Erdweg, 2013) provides
a method through which languages can be extended with specific syntax, in order to
embed DSL’s. The major contribution of this framework is that can be easily applied on
many languages as host languages. Currently it supports Java, Haskell and Prolog. All the
aforementioned mechanisms wipe out the relationship between untyped Java strings and
SQL queries, but do not address legacy code. In addition, developers require to learn a new
API to use them.

WebSSARI is used to verify web applications (Xie & Aiken, 2006) written in PHP. It
is based on Denning’s lattice model which analyzes the information flow of a program
(Denning & Denning, 1977) and uses type qualifiers to associate security classes with
variables and functions that can lead to SQL injection defects. Wassermann & Su (2007)
have proposed an approach that deals with static analysis and coding practices together
(Wassermann & Su, 2004) to detect SQL injection attacks. Specifically, they analyze the
application’s code to locate queries that are considered unsafe. To achive this, they use
context free grammars and language transducers (Minamide, 2005).

Type extensions is a formal way to wipe out code injection defects, but they have a
distinct disadvantage: programmers need to learn new constructs and modify their code in
multiple places.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 11/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

Dynamic detection
Dynamic detection involves the development of methods and tools to fortify such
applications without actually removing the defects from the application’s code. A great
number of methods that belong to this category involves some kind of dynamic program
analysis (Boujarwah, Saleh & Al-Dallal, 2000). Dynamic analysis requires a running system
and involves sufficient test inputs to examine the behavior of a system.

Runtime tainting
Runtime tainting is based on data-flow analysis (see ‘Data-flow analysis’). In practice,
it enforces security policies by marking untrusted (‘‘tainted’’) data and tracing its flow
through the program. Runtime tainting may be viewed as an approximation of the
verification of non-interference (Von Oheimb, 2004) or the more general concept of secure
information flow. Since information flow in a system cannot be verified by examining
a single execution trace of the system, the results of taint analysis will necessarily reflect
approximate information regarding the information flow characteristics of the system to
which it is applied.

Runtime tainting is a feature in some programming languages, such as Perl (http:
//search.cpan.org/~rhandom/Taint-Runtime-0.03/lib/Taint/Runtime.pm) and Ruby. The
following Perl code is vulnerable to SQL injection since it does not check the value of the
$foo variable, which is instantiated by user input:

! / u s r / b i n / p e r l
my $name = $cg i−>param (" foo ") ;
. . .
$dbh−>Ta i n t I n = 1 ;
$dbh−>e x e c u t e (" SELECT ∗

FROM u s e r s
WHERE name = ’ $ foo ’ ; ") ;

If taint mode is turned on, Perl would refuse to run the command and exit with an error
message, because a tainted variable is being used in a query.

SigFree (Wang et al., 2010) is a mechanism that follows this method to counter buffer
overflow attacks by detecting the presence of malicious binary code. This is based on the
fact that such attacks typically contain executable code while legitimate requests never
contain executable code. However, this is not always the case and therefore the mechanism
suffers from false alarms. LIFT (Qin et al., 2006) also counters binary code injection attacks
in a similar manner. The system by Haldar, Chandra & Franz (2005) provides runtime
tainting for applications written in Java, while the work by Xu, Bhatkar & Sekar (2006)
covers applications written in C. SecuriFly (Martin, Livshits & Lam, 2005) is a similar
mechanism based on PQL (http://pql.sourceforge.net/) (Program Query Language), which
is a language for expressing patterns of events on objects.

A dynamic checking compiler called WASC (Nanda, Lam & Chiueh, 2007) includes
runtime tainting to prevent JavaScript injection attacks. To counter similar attacks, PHP
Aspis (Papagiannis, Migliavacca & Pietzuch, 2011) applies partial taint tracking at the

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 12/40

https://peerj.com
http://search.cpan.org/~rhandom/Taint-Runtime-0.03/lib/Taint/Runtime.pm
http://search.cpan.org/~rhandom/Taint-Runtime-0.03/lib/Taint/Runtime.pm
http://pql.sourceforge.net/
http://dx.doi.org/10.7717/peerj-cs.136

language level to augment values with taint meta-data in order to track their origin. Vogt
et al. (2007), use runtime tainting to prevent JavaScript injection attacks. This is done by
inspecting the information flow within the browser. When critical information is about
to be sent to a third party, the web user decides if this should be allowed or not. Stock et
al. (2014) have proposed a method that operates on the client-side too. This method uses
a taint-enhanced JavaScript engine that tracks the flow of data controlled by the attacker.
To detect an attack, the method uses HTML and JavaScript parsers that can identify
the generation of malicious code coming from tainted data. Runtime tainting has been
partially or fully used in other similar approaches (Nadji, Saxena & Song, 2009; Sekar, 2009;
Nguyen-Tuong et al., 2006). Notably, such approaches may require numerous changes to
the compiler or the runtime system.

In positive data flow tracking, tagged data is considered to be legitimate. Information
Flow Control (IFC) mechanisms employ positive taint tracking to prevent JavaScript-
driven XSS attacks on the browser. Representative implementations such as JSFlow
(Hedin et al., 2014), COWL (Stefan et al., 2014) and the framework by Bauer et al. (2015)
allow programmers to express information flow policies by extending the type system of
JavaScript. Then, the policies are checked at runtime by the JavaScript interpreter through
dynamic checks.

Instruction set randomization
Another approach that has been previously proposed as a generic methodology to
counter code injection attacks is Instruction Set Randomization (ISR) (Keromytis, 2009;
Kc, Keromytis & Prevelakis, 2003). The concept behind ISR is to create an execution
environment that is unique to the running process. This environment is created by
using a randomization algorithm. Hence, an attack against this system will fail as the
attacker cannot guess the key of this algorithm. The main issue with this approach is that
it uses a cryptographic key in order to match the execution environment. As a result,
security depends on the fact that malicious users cannot discover the secret key. Note
that, randomization algorithms are also employed in another popular technique that
has been extensively used to prevent binary code injection attacks, address space layout
randomization (ASLR) (Shacham et al., 2004). To do so, ASLR randomly arranges the
address space positions of critical data areas of a process such as the base of the executable
and the positions of the stack and heap.

SQLrand (Boyd & Keromytis, 2004) is based on ISR to detect SQL injections in the
following manner: initially, it allows developers to create queries using randomized
instructions instead of standard SQL keywords. The modified SQL statements are either
reconstructed at runtime using the same key that is inaccessible to the attacker, or the user
input is tagged with delimiters that allow an augmented SQL grammar to detect the attack.
Even if SQLrand imposes a low computational overhead, it imposes an infrastructure
overhead since it requires the integration of a proxy.

In the case of JavaScript, consider a XOR function that encodes all JavaScript source of
a web page on the server-side and then, on the client-side, the web browser decodes the
source by applying the same function again. Implementations of this approach include:

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 13/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

Noncespaces (Gundy & Chen, 2009) and xJS (Athanasopoulos et al., 2010). SMask (Johns
& Beyerlein, 2007) identifies malicious code by automatically separating user input from
legitimate code by using JavaScript and HTML keyword masking (in a way similar to
SQLrand Boyd & Keromytis, 2004). Even if ISR is theoretically a sound approach for
countering code injection, these implementations have flaws. For example, Noncespaces
does not protect from persistent data injection. XJS does not have such problems and
covers a wide variety of JavaScript injection attacks.

Policy enforcement
Policy enforcement is mainly associated with database security (Thuraisingham & Ford,
1995; Null & Wong, 1992; Chlipala, 2010; Son, Chaney & Thomlinson, 1998) and operating
system strict access controls (Winsor, 2000; Hicks et al., 2010). In such contexts, policies
expressed in specific languages (Anderson, 2005), usually limit information dissemination
to authorized entities only. Currently, policy enforcement is one of the most common
approaches to detect JavaScript injection attacks. In this approach, web developers define
security policies on the server-side. Then, these policies are enforced either in the user’s
browser or on a server-side proxy that intercepts all HTML responses.

All modern browsers include a JavaScript (JS) engine to support the execution of
JavaScript. Most JS engines employ restrictions like the same origin policy (Takesue, 2008)
and a sandbox mechanism (Dhawan & Ganapathy, 2009). In particular, scripts run in
a sandbox where they can only perform web-related actions and not general-purpose
programming tasks (e.g., creating files) (Dhawan & Ganapathy, 2009). Also, scripts are
constrained by the same origin policy. This policy permits scripts running on pages
originating from the same site to access each other’s methods and properties with no
specific restrictions, but prevents access to most methods and properties across pages
on different sites (Takesue, 2008). Still, such schemes cannot stop malicious users from
injecting scripts into the user’s browser. Consider a legitimate web page that does not
validate the input posted by its users. By exploiting this vulnerability, an attacker can post
data that will inject JavaScript into a dynamically generated page. Thus the attacker can
trick a legitimate user into downloading a well-hidden script from this host in order to
steal the user’s cookies. This injected script is confined by a sandboxing mechanism and
conforms to the same origin policy, but it still violates the security of the browser (De Groef
et al., 2012; Saiedian & Broyle, 2011).

Implementations of this approach include mechanisms such as BrowserShield (Reis et
al., 2006) and CoreScript (Yu et al., 2007). Both mechanisms intercept JavaScript code on
a page as it executes and rewrite it in order to check if it is subject to server-provided,
vulnerability descriptions. Such implementations impose a significant overhead due to
the JavaScript rewriting. DSI (Nadji, Saxena & Song, 2006), MET (Erlingsson, Livshits &
Xie, 2007), and BEEP (Jim, Swamy & Hicks, 2007) require source modifications by the web
developers in order to introduce their policies. Specifically, in MET the security policies are
specified as JavaScript functions and they are included at the top of every web page while
in BEEP web developers need to write security hooks for every embedded script of the
application. Blueprint (Louw & Venkatakrishnan, 2009) is a policy enforcement framework

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 14/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

that uses parsed trees to detect JavaScript injection attacks. However, to use it developers
need to learn and use a new API in order to correctly escape dynamic content.

Google Caja (http://code.google.com/p/google-caja/) is another policy enforcement
approach provided by Google. It is based on the object-capability security model (McGraw,
2006) and it aims to control what embedded third party code can do with user data.
A security layer called ‘‘Content Security Policy’’ (CSP) (Stamm, Sterne & Markham,
2010) was first introduced into Firefox to detect various types of attacks, including cross-
site scripting https://developer.mozilla.org/en/Introducing_Content_Security_Policy.
Currently, it is supported by almost all the available browsers. To eliminate such attacks,
web site administrators must specify which domains the browser should treat as valid
sources of script and which not. Then, the browser will only execute scripts that exist in
source files from white-listed domains. Notably, AutoCSP (Fazzini, Saxena & Orso, 2015)
and deDacota (Doupé et al., 2013) are two schemes that are based on CSP.

Apart from JavaScript injection attacks, policy enforcement has been also used to detect
binary code injection attacks. Specifically, Kiriansky, Bruening & Amarasinghe (2002) have
proposed program shepherding which monitors control flow transfers in order to restrict
execution privileges based on code origins and ensure that program sandboxing will not
be breached. In a similar manner, Control-flow Integrity (CFI) (Abadi et al., 2005), follows
a predetermined flow graph that serves as a specification of control transfers allowed in
the program. Then, at runtime, specific checks enforce this specification. Adaptations of
CFI include Control-Pointer Integrity (CPI) (Kuznetsov et al., 2014) and Cryptographically
Enforced Control Flow Integrity (CCFI) (Mashtizadeh et al., 2015). The former ensures the
integrity of all pointers in a program (e.g., function pointers) and as a result prevents
different attacks. The latter employs Message Authentication Codes (MACs) to protect
elements such as return addresses and function pointers. In general, CFI implementations
track control edges separately, without taking into account the context of preceding edges.
Context-sensitive CFI (Van der Veen et al., 2015) provides enhanced security by considering
the backward and forward edges of the graph too. Notably, there is a number of attempts
to overcome CFI. For instance,Göktas et al. (2014) have indicated that CFI can be bypassed
by using return oriented programming (ROP) (Buchanan et al., 2008). Through ROP,
attackers can gain control of the call stack to hijack program control flow. To do so, they
execute specific machine instruction sequences that are already presented in machine’s
memory.

Whitelisting
Whitelisting approaches are based on the features of Denning’s original intrusion detection
framework (Denning, 1987). In the code injection context, a whitelisting mechanism
registers all valid benign code statements during a learning phase. This can be done
in various ways according to the implementation. Then, only those will be accepted,
approved or recognized during production.

JavaScript injection whitelisting approaches generate and store valid JavaScript code in
various forms, and detect attacks as outliers from the set of valid code statements. SWAP
(Wurzinger et al., 2009) registers all the benign scripts that exist in the original application

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 15/40

https://peerj.com
http://code.google.com/p/google-caja/
https://developer.mozilla.org/en/Introducing_Content_Security_Policy
http://dx.doi.org/10.7717/peerj-cs.136

and stores an identifier for every benign script. Then, a JavaScript detection component
placed in a proxy searches for malicious scripts in the server’s responses. If no malicious
scripts are detected, the proxy forwards the response to the client-side. Note that, this
approach is inflexible since it does not support dynamic scripts. Similar limitations exist
in XSS-GUARD (Bisht & Venkatakrishnan, 2008), which maps benign scripts to HTTP
responses. To support dynamic scripts during the creation of the legitimate identifiers
the authors of XSSDS (Johns, Engelmann & Posegga, 2008) substitute string-tokens with
specified identifiers.

In the case of DSL-driven injection attacks the various countermeasures follow a similar
pattern. DIDAFIT (Lee, Low &Wong, 2002) detects SQL injection attacks by registering
all benign database transactions. Subsequent improvements by Valeur, Mutz & Vigna
(2005) tagged each benign transaction with the corresponding web application. To do
so, they have extended their anomaly detection framework called libAnomaly (http:
//seclab.cs.ucsb.edu/academic/projects/projects/libanomaly/). Furthermore, AMNESIA
(Halfond & Orso, 2005b; Halfond & Orso, 2006) is a tool that detects SQL injection attacks
by associating a query model with the location of every query in the web application. Then
in production mode, monitors the execution of the application to examine when queries
diverge from the expected model.

SQLGuard (Buehrer, Weide & Sivilotti, 2005) is another mechanism that detects SQL
injection attacks based on parse tree validation. In particular, the mechanism compares
the parse tree of the query before the inclusion of user input with the one resulting after
the inclusion of user input. If the trees diverge, the application is probably under attack.
Diglossia (Son, McKinley & Shmatikov, 2013) also uses parse trees to detect code injection
attacks. The main idea behind Diglossia is based on the theory introduced by Ray and
Ligatti in reference (Ray & Ligatti, 2012). Apart from SQL injection attacks, it can also
be used to detect another emerging type of attacks: NoSQL (Chodorow & Dirolf, 2010)
injection attacks (see also ‘Emerging Challenges’). SDriver (Mitropoulos & Spinellis, 2009;
Mitropoulos, Karakoidas & Spinellis, 2009; Mitropoulos et al., 2011) is a mechanism that
prevents SQL and XPath injection attacks against web applications by using location-
specific signatures. The signatures are generated during a learning phase, and are based
on elements that can depend either on the query or on its execution environment (for
example the stack trace). Then, during production, the mechanism checks all queries for
compliance and can block queries containing injected elements. By associating a stack trace
with the origin of a query, the mechanism can correlate SQL statements with their call
sites. This increases the specificity of the stored signatures and avoids false alarms. nSign
(Mitropoulos et al., 2016) and SICILIAN (Soni, Budianto & Saxena, 2015) follow the same
approach as SDriver to prevent XSS attacks on the client-side. To do so, nSign includes
script origins and the type of a script as environment elements, and JavaScript keywords
and their number of appearance as elements coming from the code that is about to be
executed. SICILIAN on the other side, includes more elements from the script (class names,
variavle names and more) and less from the environment.

Laranjeiro et al. (Laranjeiro, Vieira & Madeira, 2009; Antunes et al., 2009; Laranjeiro,
Vieira & Madeira, 2010) have proposed a similar mechanism to detect both SQL and

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 16/40

https://peerj.com
http://seclab.cs.ucsb.edu/academic/projects/projects/libanomaly/
http://seclab.cs.ucsb.edu/academic/projects/projects/libanomaly/
http://dx.doi.org/10.7717/peerj-cs.136

1Also known in statistics as type I and type
Ii errors (Peck & Devore, 2010).

Xpath injection attacks in Web services. When it is not possible to run a complete learning
phase, a set of heuristics is used by the mechanism to accept or discard doubtful cases.
Finally, Mattos, Santin & Malucelli (2013) developed an signature-based attack detection
engine that utilizes ontologies to counter XML and Xpath injection attacks. By using
ontologies to model data provides explicit and formal semantic relationships between data
and possible attacks.

ANALYSIS AND DISCUSSION
We have analyzed the mechanisms described earlier based on the requirements mentioned
in ‘Introduction and Covered Area’. Tables 1 and 2 illustrate the comparison summaries
of the static and dynamic countermeasures.

Flexibility
Flexibility indicates if an approach can be adjusted in order to detect different attacks
categories. Typically, all approaches, except for lexical analysis have been used to detect
various code defects. As we described earlier, lexical analysis is a simplistic approach that
cannot be used to identify source code-driven injection attacks. Even if a corresponding
tool existed, the false alarms would be far too many. This is because source code-driven
injection attacks are language independent (see ‘Introduction and Covered Area’) and
lexical analysis can only search for specific keywords or sequences of keywords. As a result,
it is only used to detect code constructs that can lead to binary code injection attacks.

In all other cases, the approaches are flexible and they can be used to deal with different
kinds of attacks. For instance, policy enforcement is a method that seems to be tailored
to prevent JavaScript injection attacks since it involves the interaction of two entities: the
client’s browser and the server-side application (policies are set to the browser and are
enforced on the client-side). Notably, it can be also successfully employed to detect binary
code injection via CFI mechanisms.

Effectiveness tests
The effectiveness of security mechanisms can be judged by the existence of incorrect
data,1 namely: false positives (FP) and false negatives (FN). Specifically, a FP is a result
that indicates that an attack is taking place, when it has not. A FN occurs when an attack
actually takes place, and the mechanism fails to detect it. In Tables 1 and 2, we show if
the researchers have performed any tests to evaluate the effectiveness of their proposed
mechanisms in terms of FPs and FNs. If this is the case we put a tick mark (4). If no
tests were performed we put an X mark (7). We see that there are many cases where no
such tests were performed: 4 out of 17 in the case of static analysis and 12 our of 41 in
the case of dynamic detection. A reasonable argument for the latter case, would be that
defenses like JSFlow (Hedin et al., 2014), COWL (Stefan et al., 2014) do not need to be
fully validated through testing, because they provide systematic arguments as to why their
design is secure. In order for this to stand though, their implementation should closely
follow its specification, which may not be the case in practical terms.

Going one step further, we observed that there were cases such as XSS-GUARD (Bisht &
Venkatakrishnan, 2008) and the system by Valeur, Mutz & Vigna (2005), where researchers

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 17/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

Table 1 Static Analysis: Comparison summary of tools designed to detect vulnerabilities that can lead to a code injection attack.

Approach Flexibilitya Mechanism Requirements Attack vector

Effectiveness
testsb

Implementation
independencec

Computational
overheadd

ITS4 (Viega et al., 2002; Viega et
al., 2000)

4 7(C) ¬ binary code

PScan (Heffley & Meunier, 2004) 4 7(C) ¬ binary code
Flawfinder (Wilander & Kamkar,
2002)

4 7(C) ¬ binary code

RATS (Chess & McGraw, 2004) 4 4 ¬ binary code

Lexical analysis 7

BOON (Wagner et al., 2000) 4 7(C) ¬ binary code
CodeSurfer (Anderson & Zarins,
2005; Nagy & Mancoridis, 2009)

4 4 ¬ binary code

Splint (Evans & Larochelle, 2002) 4 7(C) ¬ binary code
Livshits & Lam (2005) 4 7(Java) ¬ SQL, JavaScript
FindBugs (Ayewah & Pugh, 2010;
Hovemeyer & Pugh, 2007; Spacco,
Hovemeyer & Pugh, 2006)

4 7(Java) ¬ SQL, JavaScript

Pixy (Jovanovic, Kruegel & Kirda,
2006)

4 4 ¬ SQL, JavaScript

XSSdetect 4 4 ¬ JavaScript

Data-Flow Analysis 4

Dahse & Holz (2014) 4 4 ¬ SQL, JavaScript
QED (Martin & Lam, 2008) 4 7(Java) ¬ SQL, JavaScript

Model Checking 4
Fehnker, Huuck & Rödiger (2011) 4 7(C) ¬ binary code
SAFELI (Fu & Qian, 2008) 4 4 ¬ SQL
KLEE (Cadar, Dunbar &
Engler, 2008)

4 7(C) ¬ binary code

Kudzu [139] 4 4 ¬ JavaScript
Rubyx (Chaudhuri &
Foster, 2010)

4 7(Ruby) ¬ JavaScript

MergePoint (Avgerinos et al.,
2014)

7 7(C) ¬ binary code

Symbolic Execu-
tion

4

S3 (Trinh, Chu & Jaffar, 2014) 4 4 ¬ SQL, JavaScript
SQL DOM (McClure & Krüger,
2005)

7 4 20% SQL

Safe Query Objects (Cook & Rai,
2005)

7 7(Java) ? SQL

SQLJ (Eisenberg & Melton, 1999) 4 7(Java) ? SQL
SugarJ (Erdweg, 2013; Erdweg et
al., 2011)

7 4 ? SQL, XML

Wassermann & Su (2007) 4 4 7 SQL

Type system
extensions

4

WebSSARI (Xie & Aiken, 2006) 4 7(PHP) 98.4% SQL

Notes.
aFlexibility indicates if the approach can be adjusted in order to detect different categories.
bEffectiveness Tests. This column shows if the researchers performed any tests regarding the effectiveness of their mechanism in terms of false positive and negative results.
cImplementation Independence indicates if the static analysis mechanism is tailored to a specific programming language.
dComputational Overhead. This column shows the runtime overhead that the mechanism may add to the application. In the context of static analysis this can be measured in the
case of the type system extension approach. Note that the different results does not necessarily indicate that one mechanism is more effective than the other. This is because most
of them were evaluated under different assumptions and settings.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 18/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

Table 2 Dynamic Detection: Comparison summary of mechanisms developed to counter code injection attacks.

Approach Flexibilitya Mechanism Requirements Attack vector

Effectiveness
testsb

Implementation
independencec

Computational
overheadd

SigFree (Wang et al., 2010) 4 7(C) 10% binary code
LIFT (Qin et al., 2006) 4 4 6.2% binary code
Haldar, Chandra & Franz (2005) 7 7(Java) 7 SQL
SecuriFly (Martin, Livshits &
Lam, 2005)

4 7(Java) 9–125% SQL, JavaScript

Xu, Bhatkar & Sekar (2006) 4 4 76% SQL, JavaScript
WASC (Nanda, Lam & Chiueh,
2007)

4 4 30% JavaScript

PHPAspis (Papagiannis, Migli-
avacca & Pietzuch, 2011)

4 7(PHP) 2.2× SQL, JavaScript,
PHP

Stock et al. (2014) 4 4 JavaScript
Vogt et al. (2007) 4 4 ? JavaScript
JSFlow (Hedin et al., 2014) ? 4 2× JavaScript
COWL (Stefan et al., 2014) 7 4 16% SQL, JavaScript

Runtime tainting 4

Bauer et al. (2015) ? 4 55% JavaScript
SQLrand (Boyd & Keromytis,
2004)

7 4 6.5ms SQL

SMask (Johns & Beyerlein, 2007) 4 4 ? SQL, JavaScript
Noncespaces (Gundy & Chen,
2009)

4 4 10.3% JavaScriptISR 4

xJS (Athanasopoulos et al., 2010) 4 4 1.6–40ms JavaScript
DSI (Nadji, Saxena & Song,
2006)

4 4 1.85% JavaScript

BrowserShield (Reis et al., 2006) 4 4 8% JavaScript
Blueprint (Louw & Venkatakrish-
nan, 2009)

4 4 13.6% JavaScript

CoreScript (Yu et al., 2007) 7 4 ? JavaScript
MET (Erlingsson, Livshits & Xie,
2007)

7 4 ? JavaScript

BEEP (Jim, Swamy & Hicks,
2007)

4 4 14.4% JavaScript

CSP (Stamm, Sterne &
Markham, 2010)

7 4 ? JavaScript

Google Caja 7 4 ? JavaScript
Kiriansky, Bruening & Amaras-
inghe, (2002)

? 7 ∼1% binary code

CFI (Abadi et al., 2005; Van der
Veen et al., 2015)

7 7(C) 0.09–26.78% binary code

CPI (Kuznetsov et al., 2014) 4 7(C) 2.9–8.4% binary code

Policy enforcement 4

CCFI (Mashtizadeh et al., 2015) 4 7(C) 3–18% binary code
(continued on next page)

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 19/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

Table 2 (continued)

Approach Flexibilitya Mechanism Requirements Attack vector

Effectiveness
testsb

Implementation
independencec

Computational
overheadd

AMNESIA (Halfond & Orso,
2005b; Halfond & Orso, 2006;
Halfond & Orso, 2005a)

4 4 ? SQL

DIDAFIT (Lee, Low &Wong,
2002)

4 4 ? SQL

(Valeur, Mutz & Vigna (2005) 4 4 1ms SQL
SQLGuard (Buehrer, Weide &
Sivilotti, 2005)

7 4 3% SQL

Diglossia (Son, McKinley &
Shmatikov, 2013)

4 4 13% SQL, NoSQL

SDriver (Mitropoulos & Spinellis,
2009;Mitropoulos, Karakoidas &
Spinellis, 2009;Mitropoulos et al.,
2011)

4 4 39% SQL, Xpath

nSign (Mitropoulos et al., 2016) 4 4 11.1% JavaScript
SICILIAN (Soni, Budianto &
Saxena, 2015)

4 4 7.02% JavaScript

Laranjeiro et al. (Laranjeiro,
Vieira & Madeira, 2009; Antunes
et al., 2009; Laranjeiro, Vieira &
Madeira, 2010)

4 4 7 SQL, Xpath

Mattos, Santin & Malucelli
(2013)

4 4 ? XML, Xpath

SWAP (Wurzinger et al., 2009) 4 4 ∼180% JavaScript
XSSDS (Johns, Engelmann &
Posegga, 2008)

4 4 ? JavaScript

Whitelisting 4

XSS-GUARD (Bisht &
Venkatakrishnan, 2008)

4 4 5–24% JavaScript

Notes.
aFlexibility indicates if the approach can be adjusted in order to detect different categories.
bEffectiveness Tests. This column shows if the researchers performed any tests regarding the effectiveness of their mechanism in terms of false positive and negative results.
cImplementation Independence shows if the mechanism depends either on the characteristics of the programming language that was used to develop it or on the implementation
details of the protecting entity.

dComputational Overhead. This column shows the runtime overhead that the mechanism may add to the application. Note that the different results do not necessarily indicate
that one mechanism is more effective than the other. This is because most of them were evaluated under different assumptions and settings.

performed tests to measure false alarms but they did not look for false negatives. Notably,
we observed that there are mechanisms that even if they seem effective, their testing might
be really poor contrary to other schemes that may have false alarms, but have been tested
thoroughly. For example, Blueprint appears to be an effective solution to detect JavaScript
injection attacks, but the corresponding publication includes only two test cases. On the
other hand, Dsi appears to have false positives and negatives, but it was evaluated on a set
of 5,328 vulnerable web sites.

An interesting observation involves the mechanisms that detect JavaScript injection
attacks. Unfortunately, most countermeasures, even if the corresponding publications
state that they are accurate, are actually vulnerable to attacks that involve non-HTML
elements (except for Athanasopoulos et al., 2010). For instance, there are browsers that

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 20/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

treat PostScript files as HTML. A malicious user can embed a script within a PostScript
file, upload it as a valid document and then use it to trigger the attack (Barth, Caballero
& Song, 2009) (also see the Appendix). Since most mechanisms require the presence of a
Document Object Model Dom tree to detect an attack, in this case they will fail.

Notably, there are cases where the effectiveness of some mechanisms have been
questioned. For example, Sovarel, Evans & Paul (2005) have examined the effectiveness of
ISR and showed that an attacker may be able to circumvent the approach by determining
the randomization key. Furthermore, their results indicate that doing ISR in a way that
provides a certain degree of security against a motivated malicious user is not as easy as
previously thought. In the same manner, Zitser, Lippmann & Leek (2004) and Wilander &
Kamkar (2002), have extensively tested and questioned some of the aforementioned tools
that detect binary code injection attacks.

Implementation independence
In the case of static analysis mechanisms, implementation independence indicates if a
mechanism is developed based upon a specific programming language. For instance, all
lexical analysis tools except for Rats, only analyze applicationswritten in theCprogramming
language. Still, Rats, which can be used on other languages, does not find code injection
vulnerabilities in any other language except for C. In the same manner, SQLJ can only be
used by Java developers. In every case, we list the corresponding language.

In the dynamic detection context, implementation independence shows if the
mechanism depends either on the characteristics of the programming language that
was used to develop it or on the implementation details of the protecting entity. For
instance, PHP Aspis can detect various forms of CIAs that target applications written in
PHP only. In the same manner, CFI mechanisms can only protect programs written in C.

Computational overhead
The user’s experience is affected if a mechanism suffers from runtime overhead. Take
for example a mechanism from the dynamic detection category. If this mechanism adds
significant overhead to the applications functionality, the application’s owner would
consider it useless. In the static analysis context, this can be measured in the case of the type
system extension approach since their use affects the application overall. In the table we list
the overhead for every mechanism as stated in the original publication. If the publication
mentions that the mechanism suffers from a runtime overheard but does not explicitly
state the occurring overhead we use the X mark (7). If the authors did not measure the
overhead we use a question mark (?). Note though that each number is an indication
that has been computed under different assumptions and settings and it cannot be used
to compare mechanisms directly (especially the ones coming from different categories).
However, in cases like nSign and SICILIAN, this could be meaningful because both are
mechanisms that wrap up the JavaScript engine of a browser. Hence, both overheads are
imposed on the execution time of the engine.

Note that the overhead is displayed in different manners (e.g., percentages, absolute
numbers and more). In every case this indicates the cost due to the use of each mechanism.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 21/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

For example, it may be due to some form of run-time checks. Furthermore, depending on
the approach, the cost may be incurred on different places: it may affect a server (e.g., CPU
usage, response latency and more), it may affect the client, or both.

A note on usability
The value of a security mechanism as a practical tool depends on how easy it is to deploy
it in a production setting. In the static analysis context, a mechanism should require
minimum effort from the security auditor. Observe that lexical analysis and data-flow
analysis mechanisms are easy to use since the only thing that is needed to perform their
analysis is the source code. Note though that, based on simple assumptions and without
considering context in any way lexical analysis could report every possible dangerous
function call as a problem, no matter how carefully it is used in the program. Hence,
auditors must be experienced programmers in order to interpret the results of lexical
analysis tools and they must regard them as as an aid in the code review process and not as
a firm solution to find software vulnerabilities (Cowan, 2003; Zitser, Group & Leek, 2004).
In addition, model checking and type system extensions require too much effort from
the side of the auditor, either to write specifications, modify source code or learn new
constructs (see ‘Model checking’ and ‘Type system extensions’).

In the case of dynamic detection, usability involves the deployment of the mechanism.
To determine the effort required to use the mechanism, we examined the mechanism’s
description, its deployment, and its implementation details. One of our basic criteria was if
developers are required to modify their code and if they do, to what extent. As an example,
consider the mechanisms coming from the policy enforcement category. In most cases
programmers should modify multiple software components to enable a mechanism. Note
also that mechanisms such as MET and BEEP require modifications both on the server
and the client-side. Thus, it would not be easy for them to be adopted by browser vendors.
In the same manner SQLrand imposes a major infrastructure overhead because it requires
the integration of a proxy for the RDBMS to detect SQL injection attacks. In addition, the
whitelisting mechanisms that detect DSL-driven injection attacks, require multiple source
code modifications. In particular, to use AMNESIA, developers should modify every code
fragment that involves the execution of a query. Nevertheless, there are tools like Sdriver,
which minimize such modifications down to one line of code.

EMERGING CHALLENGES
There are several challenges which indicate that code injection attacks will continue to be
an issue in the field of cyber security.

First, attackers seem to find new ways to introduce malicious code into programs
by using a variety of techniques. For instance, an attack called PHP Object Injection
(POI) (Dahse, Krein & Holz, 2014) does not directly involve the injection of code, but
still achieves arbitrary code execution in the context of a PHP application through the
injection of specially crafted objects (for example as part of cookies). When deserialized
by the application, these objects result in arbitrary code execution. In a similar way, XCS
(Cross-channel scripting) (Bojinov, Bursztein & Boneh, 2009; Bojinov, Bursztein & Boneh,

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 22/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

2010) attacks are a prominent XSS variation. In an XCS attack, an attacker utilizes a
non-web channel to inject code. For example, there are several NAS (Network-Attached
Storage) devices which allow unauthorized users to upload files via the SMB protocol
(Server Message Block). A malicious user could upload a file with a filename that contains
a well-crafted script. When a legitimate user connects over a web channel to the device to
browse its contents, the device will send through an HTTP response the list of all filenames,
ncluding the malicious one which is going to be interpreted as a valid script by the browser.

Architectures that include modern technologies such as MongoDB (http://www.
mongodb.org/) could be vulnerable to complex attacks that may involve more than
one subcategories as Son, McKinley & Shmatikov (2013) have pointed out. In particular, a
JavaScript injection attack could be performed to change an SQL-like MongoDB query that
is built dynamically based onuser input. Specifically, when using JavaScript, developers have
to make sure that any variables that cross the PHP-to-JavaScript boundary are passed in the
scope field of the MongoCode class, (http://www.php.net/manual/en/class.mongocode.php)
that is not interpolated into the JavaScript string. This can come up when using the
MongoDB::execute() method and clauses like $where and group-by. For example,
suppose that JavaScript is used to greet a user in the database logs:

<?php
$username = $_POST [’ username ’] ;
$db−>e x e c u t e (" p r i n t (’ He l lo , $username ! ’) ; ") ;
?>

If attackers pass ’); db.users.drop(); print(’ as a username, they could actually
delete the entire database.

Recent work indicates that code injection can also be used as an attack vector to exploit
mobile applications (Bao et al., 2017; Jin et al., 2014). This is not surprising because even
though there are slightly different components that interact in the context of mobile
applications, programming vulnerabilities thay may lead to code injection can still show
up. Specifically, as Jin et al. (2014) point out, vulnerable HTML5-basedmobile applications
can be vulnerable to XSS variations. Such attacks could involve different channels to send
malicous scripts to the user’s browser including 2D barcodes and Wi-Fi access points.

CONCLUSIONS
Code injection attacks can be divided into two classes: those that target binary executable
code and those that target the source code of domain specific and dynamic languages.
Approaches that defend against source code injection attacks can be grouped into two
major categories: static analysis mechanisms that detect code injection vulnerabilities, and
dynamic detection approaches that prevent code injection attacks the moment they take
place. Tools coming from the static analysis category are mainly used during application
development, while dynamic detection mechanisms are employed during production.

We examined the defenses based on their flexibility, implementation independence,
computational overhead, and effectiveness tests.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 23/40

https://peerj.com
http://www.mongodb.org/
http://www.mongodb.org/
http://www.php.net/manual/en/class.mongocode.php
http://dx.doi.org/10.7717/peerj-cs.136

We observed that researchers do not extensively test their mechanisms in terms of
effectiveness. A reasonable explanation for this would be that some defenses do not need
to be fully validated through testing, because researchers provide formal arguments as
to why they are secure. However, this is true only if implementations closely follow the
specification, which may not be the case in practical terms. Notably, there are cases where
the effectiveness of some mechanisms has been questioned (Sovarel, Evans & Paul, 2005;
Zitser, Lippmann & Leek, 2004; Wilander & Kamkar, 2002).

Moreover, we saw that computational overheads are mostly computed and reported
under different assumptions and settings, hence they cannot be used to compare
mechanisms directly. Overheads also depend on context: in interactive applications
latency is important, whereas in a batch setting the important measure is throughput or
the corresponding slowdown. By taking account the above it would be fair to compare the
SICILIAN to nSign in terms of computational overhead, because they both wrap up the
JavaScript engine of a browser to defend against XSS attacks. Nevertheless, it would be
spurious to compare both of them to a mechanism that acts as a proxy on the server side
to defend against the same threat (e.g., BrowserShield).

We also found that most approaches are flexible, meaning that they can be used to
counter different forms of code injection. For example, ISR and whitelisting have been
applied to counter all kinds of code injection attacks. This is not the case though with
lexical analysis, which is used only to detect binary code injection vulnerabilities.

Approaches can be interdependent and they can borrow heavily from others. Consider
for instance runtime tainting and data-flow analysis. Both examine the flow of data but
in different ways: the former does so dynamically and the latter statically. For this reason
though, methods can also share the same disadvantages. For example, the state explosion
issue appears in both model checking and symbolic execution.

Currently, most defenses target a small number of attacks, but this will probably change
in the future. Specifically, a large amount of work has been done to prevent either SQL
and JavaScript-driven injection attacks. This makes sense, because these attacks are very
common and can have a large impact. Less effort has been put to develop approaches
that can defend against XPath or XML injection attacks. As a result, there are few
corresponding defenses. Similarly, there is only one documented mechanism designed
to detect PHP injection attacks, PHP Aspis, and only one that prevents NoSQL injection
attacks, Diglossia.

Attacks and defenses are likely to evolve in the coming years. The driver will be new
threats, such as the PHP Object Injection (POI) (Dahse, Krein & Holz, 2014) attack, and
Cross-Channel Scripting (XCS), both discussed in ‘Emerging Challenges’ Apart from
the above, attackers seem to continuously find new ways to introduce malicious code
to applications by using a variety of languages and techniques as we observed earlier
(see ‘Code Injection Attacks’ and ‘Emerging Challenges’. Besides, there are several recent
attempts to perform code injection onmobile applications (Bao et al., 2017; Jin et al., 2014)
which will potentially lead to the development of context-aware defenses. We hope that
our categorization, our analysis, and the findings of our research, will aid researchers and

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 24/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

practitioners to further study the code injection problem and develop more robust and
effective defenses.

ACKNOWLEDGEMENTS
We want to thank the reviewers for providing us with valuable suggestions and insightful
comments.

APPENDIX. JAVASCRIPT INJECTION ATTACKS
A JavaScript injection vulnerability is manifested when a web application accepts and
redisplays data of uncertain origin without appropriate validation and filtering. Such
content can compromise the security of these applications and the privacy of their
corresponding users. Many web sites allow registered users to post data which are stored
on the server-side (i.e., a third-party comment on a blog page). If attackers hide a script in
such data, they could manipulate the browser of another user. For example consider the
following code snippet:

< s c r i p t t ype=" t e x t / j a v a s c r i p t ">
document . l o c a t i o n = ’ h t t p : / / ho s t . example / c g i−
b in / c o o k i e s t e a l i n g . c g i ? ’+ document . c ook i e
< / s c r i p t>

If amalicious user could post data containing the above script, web users visiting the page
that contains this data could have their cookies stolen. Through this script the attacker calls
an external Common Gateway Interface (CGI) script and passes all the cookies associated
with the current document to it as an argument via the document.cookie property.

A common but rough way to stop malicious behaviors like this is server-side code
filtering (i.e., the server strips out the word ‘‘javascript’’ from any external source) (Jim,
Swamy & Hicks, 2007). Still, there are many ways to bypass such defense mechanisms.
For example, one could escape special characters to bypass simple filtering operations, or
take advantage of issues in the implementation of Cascading Style Sheets (Css) rendering
engines of browsers like Microsoft Internet Explorer (versions prior to 7).

Consider the case where an attacker manages to hide the following listing in the Css of
a web page:

<div id=code s t y l e=" background : u r l (’ j a v a
s c r i p t : e v a l (document . a l l . code . foo) ’) "
foo=" a l e r t (’ x s s ’) ">< / div>

The attacker utilizes the eval function and a newline character (‘‘java–newline–script’’)
to bypass the security checks and manoeuvre browser to execute the code contained in
the foo variable. This is done by using the document.all array that contains all of the
elements within a document.

Attacks like the above take advantage of the fact that eval executes the code passed to
it in the same environment as the function’s caller. Malicious users can also use eval to

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 25/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

assemble innocuous-looking parts into harmful strings that the protecting mechanisms
of a web page would normally consider dangerous and remove (Richards et al., 2011).
Furthermore, a JavaScript injection attack does not necessarily have to involve HTML
elements. A malicious user can embed a script within a PostScript file, upload it as a valid
document and then use it to trigger the attack (Barth, Caballero & Song, 2009).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded under Action 2 of the Athens University of Economics and Business
Research Center Program for Excellence and Extroversion of the academic year 2016/2017
(EP-2606-01: The ‘‘Meta-Life’’ of JavaScript). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Athens University of Economics and Business Research Center Program: EP-2606-01.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Dimitris Mitropoulos analyzed the data, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.
• Diomidis Spinellis wrote the paper, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The research in this article did not generate, collect or analyse any raw data or code.

REFERENCES
Abadi M, BudiuM, Erlingsson U, Ligatti J. 2005. Control-flow Integrity. In: Jaeger T,

ed. Proceedings of the 12th ACM conference on computer and communications security,
CCS’05. New York: ACM, 340–353.

Abelson H, Sussman GJ. 1996. Structure and interpretation of computer programs.
Second Edition. Cambridge: MIT Press.

Abi-AntounM,Wang D, Torr P. 2007. Checking threat modeling data flow diagrams
for implementation conformance and security. In: Stirewalt K, ed. Proceedings of the
22nd IEEE/ACM international conference on automated software engineering, ASE’07.
New York: ACM, 393–396.

Aho AV, LamMS, Sethi R, Ullman JD. 2006. Compilers: principles, techniques, and tools.
Second Edition. Harlow, Essex: Addison-Wesley Longman Publishing Co., Inc.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 26/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.136

Anderson A. 2005. A comparison of two privacy policy languages: EPAL and XACML.
Technical report. Sun Microsystems, Inc., Mountain View, CA, USA.

Anderson P, Zarins M. 2005. The codesurfer software understanding platform. In: Cordy
JR, Gall H, Maletic JI, eds. Proceedings of the 13th international workshop on program
comprehension, IWPC’05. Washington, D.C.: IEEE Computer Society, 147–148.

Anderson RJ. 2001. Security engineering: a guide to building dependable distributed
systems. First Edition. New York: John Wiley & Sons, Inc.

Antunes N, Laranjeiro N, Vieira M, Madeira H. 2009. Effective detection of SQL/XPath
injection vulnerabilities in web services. In: Sarkar S, Vin HM, Zhao JL, eds.
Proceedings of the 2009 IEEE international conference on services computing, SCC’09.
Washington, D.C.: IEEE Computer Society, 260–267.

Athanasopoulos E, Pappas V, Krithinakis A, Ligouras S, Markatos EP, Karagiannis T.
2010. xJs: practical XSS prevention for web application development. In: Ousterhout
J, ed. Proceedings of the 2010 USENIX conference on Web application development,
WebApps’10. Berkeley: USENIX Association, 13–13.

Avancini A, CeccatoM. 2013. Comparison and integration of genetic algorithms
and dynamic symbolic execution for security testing of cross-site scripting
vulnerabilities. Information and Software Technology 55(12):2209–2222
DOI 10.1016/j.infsof.2013.08.001.

Avgerinos T, Rebert A, Cha SK, Brumley D. 2014. Enhancing symbolic execution
with veritesting. In: Jalote P, ed. Proceedings of the 36th international conference on
software engineering, ICSE 2014. New York: ACM, 1083–1094.

Ayewah N, PughW. 2010. The Google FindBugs fixit. In: Tonella P, ed. Proceedings of
the 19th international symposium on Software testing and analysis, ISSTA’10. New
York: ACM, 241–252.

Baca D, Carlsson B, Lundberg L. 2008. Evaluating the cost reduction of static code
analysis for software security. In: Erlingsson Ú, Pistoia M, eds. Proceedings of the
third ACM SIGPLAN workshop on Programming languages and analysis for security,
PLAS’08. New York: ACM, 79–88.

BaoW, YaoW, ZongM,Wang D. 2017. Cross-site Scripting attacks on android hybrid
applications. In: Proceedings of the 2017 international conference on cryptography,
security and privacy, ICCSP’17. New York: ACM, 56–61.

Barth A, Caballero J, Song D. 2009. Secure content sniffing for web browsers, or how
to stop papers from reviewing themselves. In: Sterritt R, ed. Proceedings of the 30th
IEEE symposium on security and privacy. Washington, D.C.: IEEE Computer Society,
360–371.

Bauer L, Cai S, Jia L, Timothy P, Michael S, Yuan T. 2015. Run-time monitoring and
formal analysis of information flows in Chromium. In: Tsudik G, Perrig A, eds.
Network and distributed system security (NDSS)’15, 8–11 February 2015, San Diego,
CA, USA. Reston: Internet Society.

Beyer D, Henzinger TA, Jhala R, Majumdar R. 2007. The software model checker blast:
applications to software engineering. International Journal on Software Tools for
Technology Transfer 9(5):505–525 DOI 10.1007/s10009-007-0044-z.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 27/40

https://peerj.com
http://dx.doi.org/10.1016/j.infsof.2013.08.001
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.7717/peerj-cs.136

Bisht P, Venkatakrishnan VN. 2008. XSS-GUARD: precise dynamic prevention of
cross-site scripting attacks. In: Zamboni D, ed. Proceedings of the 5th international
conference on detection of intrusions and malware, and vulnerability assessment,
DIMVA’08. Berlin: Springer-Verlag, 23–43.

Bojinov H, Bursztein E, Boneh D. 2009. XCS: cross channel scripting and its impact
on web applications. In: Al-Shaer E, ed. Proceedings of the 16th ACM conference on
computer and communications security. New York: ACM, 420–431.

Bojinov H, Bursztein E, Boneh D. 2010. The emergence of cross channel scripting.
Communications of the ACM 53(8):105–113 DOI 10.1145/1787234.1787257.

Boujarwah AS, Saleh K, Al-Dallal J. 2000. Testing Java programs using dynamic data
flow analysis. In: Carroll J, Daminani E, Haddad H, Oppenheim D, eds. Proceedings
of the 2000 ACM symposium on applied computing—volume 2, SAC’00. New York:
ACM, 725–727.

Boyd S, Keromytis A. 2004. SQLrand: preventing SQL injection attacks. In: Jakobsson
M, Yung M, Zhou J, eds. Proceedings of the 2nd applied cryptography and network
security conference, ACNS’04. Springer-Verlag, 292–304.

Bratus S, Locasto ME, Patterson LSML, Shubina A. 2011. Exploit programming:
from buffer overflows to ‘‘Weird Machines’’ and theory of computation. j-LOGIN
36(6):13–21.

BrownM, Paller A. 2008. Secure software development: why the development world
awoke to the challenge. Information Security Technical Report 13(1):40–43
DOI 10.1016/j.istr.2008.03.001.

Buchanan E, Roemer R, ShachamH, Savage S. 2008.When good instructions go bad:
generalizing return-oriented programming to RISC. In: Ning P, ed. Proceedings of
the 15th ACM conference on computer and communications security, CCS’08. New
York: ACM, 27–38.

Buehrer G,Weide BW, Sivilotti PAG. 2005. Using parse tree validation to prevent SQL
injection attacks. In: Di Nitto E, Murphy AL, eds. Proceedings of the 5th international
workshop on software engineering and middleware, SEM’05. New York: ACM,
106–113.

Cadar C, Dunbar D, Engler D. 2008. KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Draves R, Van Renesse
R, eds. Proceedings of the 8th USENIX conference on operating systems design and
implementation, OSDI’08. Berkeley: USENIX Association, 209–224.

Cadar C, Godefroid P, Khurshid S, Păsăreanu CS, Sen K, Tillmann N, VisserW.
2011. Symbolic execution for software testing in practice: preliminary assessment.
In: Taylor RN, ed. Proceedings of the 33rd international conference on software
engineering, ICSE’11. New York: ACM, 1066–1071.

Cahoon B, McKinley KS. 2001. Data flow analysis for software prefetching linked data
structures in java. In: Valero M, ed. Proceedings of the 2001 international conference
on parallel architectures and compilation techniques, PACT’01. Washington, D.C.:
IEEE Computer Society, 280–291.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 28/40

https://peerj.com
http://dx.doi.org/10.1145/1787234.1787257
http://dx.doi.org/10.1016/j.istr.2008.03.001
http://dx.doi.org/10.7717/peerj-cs.136

Cannings R, Dwivedi H, Lackey Z. 2007.Hacking exposed web 2.0: web 2.0 security secrets
and solutions. New York: McGraw-Hill Osborne Media.

CERT. 2002. CERT vulnerability note VU282403 Online. Available at http://www.kb.cert.
org/ vuls/ id/282403 (accessed on 7 January 2007).

Chaudhuri A, Foster JS. 2010. Symbolic security analysis of ruby-on-rails web
applications. In: Al-Shaer E, ed. Proceedings of the 17th ACM conference on
computer and communications security, CCS’10. New York: ACM, 585–594
DOI 10.1145/1866307.1866373.

Chen H,Wagner D. 2002.MOPS: an infrastructure for examining security prop-
erties of software. In: Atluri V, ed. Proceedings of the 9th ACM conference on
computer and communications security, CCS’02. New York: ACM, 235–244
DOI 10.1145/586110.586142.

Chen K,Wagner D. 2007. Large-scale analysis of format string vulnerabilities in
debian linux. In: Hicks M, ed. Proceedings of the 2007 workshop on program-
ming languages and analysis for security, PLAS’07. New York: ACM, 75–84
DOI 10.1145/1255329.1255344.

Chess B, McGraw G. 2004. Static analysis for security. IEEE Security and Privacy
2(6):76–79 DOI 10.1109/MSP.2004.111.

Chess B,West J. 2007. Secure programming with static analysis. Upper Saddle River:
Addison-Wesley Professional.

Chlipala A. 2010. Static checking of dynamically-varying security policies in database-
backed applications. In: Arpaci-Dusseau R, Chen B, eds. Proceedings of the 9th
USENIX conference on operating systems design and implementation, OSDI’10.
Berkeley: USENIX Association, 1.

Chodorow K, Dirolf M. 2010.MongoDB: the definitive guide. Sebastopol: O’Reilly Media.
Clarke EM, Emerson EA, Sifakis J. 2009.Model checking: algorithmic verification and

debugging. Communications of the ACM 52(11):74–84
DOI 10.1145/1592761.1592781.

CookWR, Rai S. 2005. Safe query objects: statically typed objects as remotely executable
queries. In: Roman G-C, ed. Proceedings of the 27th international conference on soft-
ware engineering, ICSE’05. New York: ACM, 97–106 DOI 10.1109/ICSE.2005.1553552.

Corin R, Manzano FA. 2012. Taint analysis of security code in the KLEE symbolic
execution engine. In: Chim TW, Yuen TH, eds. Proceedings of the 14th international
conference on information and communications security, ICICS’12. Berlin: Springer-
Verlag, 264–275 DOI 10.1007/978-3-642-34129-8_23.

Cowan C. 2003. Software security for open-source systems. IEEE Security and Privacy
1(1):38–45 DOI 10.1109/MSECP.2003.1176994.

Cowan C, Pu C, Maier D, Hintony H,Walpole J, Bakke P, Beattie S, Grier A,Wagle P,
Zhang Q. 1998. StackGuard: automatic adaptive detection and prevention of buffer-
overflow attacks. In: Proceedings of the 7th USENIX security symposium. Berkeley:
USENIX Association, 5–5.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 29/40

https://peerj.com
http://www.kb.cert.org/vuls/id/282403
http://www.kb.cert.org/vuls/id/282403
http://dx.doi.org/10.1145/1866307.1866373
http://dx.doi.org/10.1145/586110.586142
http://dx.doi.org/10.1145/1255329.1255344
http://dx.doi.org/10.1109/MSP.2004.111
http://dx.doi.org/10.1145/1592761.1592781
http://dx.doi.org/10.1109/ICSE.2005.1553552
http://dx.doi.org/10.1007/978-3-642-34129-8_23
http://dx.doi.org/10.1109/MSECP.2003.1176994
http://dx.doi.org/10.7717/peerj-cs.136

Dahse J, Holz T. 2014. Static detection of second-order vulnerabilities in web applica-
tions. In: Fu K, ed. Proceedings of the 23rd USENIX security symposium. Berkeley:
USENIX Association, 989–1003.

Dahse J, Krein N, Holz T. 2014. Code reuse attacks in PHP: automated POP chain
generation. In: Ahn G-J, ed. Proceedings of the 21st ACM conference on computer and
communications security. 42–53 DOI 10.1145/2660267.2660363.

Das SK, Kant K, Zhang N. 2012.Handbook on securing cyber-physical critical infrastruc-
ture. First Edition. San Francisco: Morgan Kaufmann Publishers Inc.

De GroefW, Devriese D, Nikiforakis N, Piessens F. 2012. FlowFox: a web browser with
flexible and precise information flow control. In: Yu T, ed. Proceedings of the 2012
ACM conference on computer and communications security, CCS’12. New York: ACM,
748–759 DOI 10.1145/2382196.2382275.

Denning DE, Denning PJ. 1977. Certification of programs for secure information flow.
Communications of the ACM 20(7):504–513 DOI 10.1145/359636.359712.

Denning DER. 1987. An intrusion detection model. IEEE Transactions on Software
Engineering 13(2):222–232 DOI 10.1109/TSE.1987.232894.

DhawanM, Ganapathy V. 2009. Analyzing information flow in JavaScript-based
browser extensions. In: Proceedings of the 2009 annual computer security applications
conference, ACSAC’09. Washington, D.C.: IEEE Computer Society, 382–391
DOI 10.1109/ACSAC.2009.43.

Doupé A, CuiW, Jakubowski MH, PeinadoM, Kruegel C, Vigna G. 2013. deDacota:
toward preventing server-side XSS via automatic code and data separation. In:
Proceedings of the 2013 ACM conference on computer and communications security,
CCS’13. New York: ACM, 1205–1216.

Dybvig RK. 2009. The Scheme programming language. Fourth Edition. Cambridge: MIT
Press.

Egele M,Wurzinger P, Kruegel C, Kirda E. 2009. Defending Browsers against drive-by
downloads: mitigating heap-spraying code injection attacks. In: Flegel U, Bruschi
D, eds. Proceedings of the 6th international conference on detection of intrusions and
malware, and vulnerability assessment, DIMVA’09. Berlin: Springer-Verlag, 88–106
DOI 10.1007/978-3-642-02918-9_6.

Eisenberg A, Melton J. 1999. SQLJ Part 1: SQL routines using the Java programming lan-
guage. Newsletter, ACM SIGMOD Record 28(4):58–63 DOI 10.1145/344816.344864.

Erdweg S. 2013. Extensible languages for flexible and principled domain abstraction.
PhD thesis, Philipps-Universitat Marburg.

Erdweg S, Kats LCL, Rendel T, Kästner C, Ostermann K, Visser E. 2011. Library-
based model-driven software development with SugarJ. In: Proceedings of the
ACM international conference companion on object oriented programming systems
languages and applications companion, SPLASH’11. New York: ACM, 17–18
DOI 10.1145/2048147.2048156.

Erlingsson Ú, Livshits B, Xie Y. 2007. End-to-end web application security. In: Hunt
G, ed. Proceedings of the 11th USENIX workshop on hot topics in operating systems.
Berkeley: USENIX Association, 18:1–18:6.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 30/40

https://peerj.com
http://dx.doi.org/10.1145/2660267.2660363
http://dx.doi.org/10.1145/2382196.2382275
http://dx.doi.org/10.1145/359636.359712
http://dx.doi.org/10.1109/TSE.1987.232894
http://dx.doi.org/10.1109/ACSAC.2009.43
http://dx.doi.org/10.1007/978-3-642-02918-9_6
http://dx.doi.org/10.1145/344816.344864
http://dx.doi.org/10.1145/2048147.2048156
http://dx.doi.org/10.7717/peerj-cs.136

Evans D, Larochelle D. 2002. Improving security using extensible lightweight static
analysis. IEEE Software 19(1):42–51 DOI 10.1109/52.976940.

FaganME. 1999. Design and code inspections to reduce errors in program development.
IBM Systems Journal 38(2–3):258–287 DOI 10.1147/sj.382.0258.

Fazzini M, Saxena P, Orso A. 2015. AutoCSP: automatically retrofitting CSP to web
applications. In: Bertolino A, ed. Proceedings of the 37th international conference on
software engineering, ICSE’15. New York: ACM.

Fehnker A, Huuck R, RödigerW. 2011.Model checking dataflow for malicious input. In:
Proceedings of the workshop on embedded systems security, WESS’11. New York: ACM,
4:1–4:10.

Fisher M, Ellis J, Bruce J. 2003. JDBC API tutorial and reference. Third Edition. Boston:
Addison Wesley.

Fosdick LD, Osterweil LJ. 1976. Data flow analysis in software reliability. ACM Comput-
ing Surveys 8(3):305–330 DOI 10.1145/356674.356676.

Francillon A, Castelluccia C. 2008. Code injection attacks on harvard-architecture
devices. In: Ning P, ed. Proceedings of the 15th ACM conference on computer and com-
munications security, CCS’08. New York: ACM, 15–26 DOI 10.1145/1455770.1455775.

Fu X, Qian K. 2008. SAFELI: SQL injection scanner using symbolic execution. In: Pro-
ceedings of the 2008 workshop on testing, analysis, and verification of web services and
applications, TAV-WEB’08. New York: ACM, 34–39 DOI 10.1145/1390832.1390838.

Göktas E, Athanasopoulos E, Bos H, Portokalidis G. 2014. Out of control: overcoming
control-flow integrity. In: Proceedings of the 2014 IEEE symposium on security and pri-
vacy. Washington, D.C.: IEEE Computer Society, 575–589 DOI 10.1109/SP.2014.43.

Gregoire J, Buyens K,Win BD, Scandariato R, JoosenW. 2007. On the secure software
development process: CLASP and SDL Compared. In: Proceedings of the third inter-
national workshop on software engineering for secure systems, SESS’07. Washington,
D.C.: IEEE Computer Society, 1 DOI 10.1016/j.infsof.2008.01.010.

GundyMV, Chen H. 2009. Noncespaces: using randomization to enforce information
flow tracking and thwart cross-site scripting attacks. In: Proceedings of the 16th
annual network and distributed system security symposium (NDSS). San Diego.

Haldar V, Chandra D, FranzM. 2005. Dynamic taint propagation for Java. In: Pro-
ceedings of the 21st annual computer security applications conference, ACSAC’05.
Washington, D.C.: IEEE Computer Society, 303–311 DOI 10.1109/CSAC.2005.21.

HalfondWG, Viegas J, Orso A. 2006. A classification of SQL-injection attacks and
countermeasures. In: Proceedings of the international symposium on secure software
engineering.

HalfondW. GJ, Orso A. 2005a. AMNESIA: analysis and monitoring for neutralizing
SQL-injection attacks. In: Proceedings of the 20th IEEE/ACM international conference
on automated software engineering, ASE’05. New York: ACM, 174–183.

HalfondWGJ, Orso A. 2005b. Combining static analysis and runtime moni-
toring to counter SQL-injection attacks. In: Proceedings of the third interna-
tional workshop on dynamic analysis, WODA’05. New York: ACM Press, 1–7
DOI 10.1145/1083246.1083250.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 31/40

https://peerj.com
http://dx.doi.org/10.1109/52.976940
http://dx.doi.org/10.1147/sj.382.0258
http://dx.doi.org/10.1145/356674.356676
http://dx.doi.org/10.1145/1455770.1455775
http://dx.doi.org/10.1145/1390832.1390838
http://dx.doi.org/10.1109/SP.2014.43
http://dx.doi.org/10.1016/j.infsof.2008.01.010
http://dx.doi.org/10.1109/CSAC.2005.21
http://dx.doi.org/10.1145/1083246.1083250
http://dx.doi.org/10.7717/peerj-cs.136

HalfondW. GJ, Orso A. 2006. Preventing SQL injection attacks using AMNESIA.
In: Osterweil LJ, ed. Proceedings of the 28th international conference on software
engineering, ICSE’06. New York: ACM, 795–798 DOI 10.1145/1134285.1134416.

Hedin D, Birgisson A, Bello L, Sabelfeld A. 2014. JSFlow: tracking information flow
in JavaScript and Its APIs. In: Cho Y, Shin SY, eds. Proceedings of the 29th annual
ACM symposium on applied computing, SAC’14. New York: ACM, 1663–1671
DOI 10.1145/2554850.2554909.

Heffley J, Meunier P. 2004. Can source code auditing software identify common
vulnerabilities and be used to evaluate software security? In: Proceedings of the 37th
annual Hawaii international conference on system sciences, HICSS’04. Washington,
D.C.: IEEE Computer Society DOI 10.1109/HICSS.2004.1265654.

Hicks B, Rueda S, Clair st.L, Jaeger T, McDaniel P. 2010. A logical specification and
analysis for SELinux MLS Policy. ACM Transactions on Information and System
Security 13(3):26:1–26:31 DOI 10.1145/1805874.1805982.

Holzmann GJ. 1997. The model checker SPIN. IEEE Transactions of Software Engineering
23(5):279–295 DOI 10.1109/32.588521.

Hovemeyer D, PughW. 2007. Finding more null pointer bugs, but not too many. In:
Proceedings of the 7th ACM workshop on program analysis for software tools and
engineering, PASTE’07. New York: ACM, 9–14 DOI 10.1145/1251535.1251537.

HowardM, LeBlanc D. 2003.Writing secure code. Second Edition. Redmond: Microsoft
Press.

Jim T, Swamy N, Hicks M. 2007. Defeating script injection attacks with browser-enforced
embedded policies. In: Williamson C, Zurko ME, eds. Proceedings of the 16th
international conference on World Wide Web, WWW’07. New York: ACM, 601–610
DOI 10.1145/1242572.1242654.

Jin X, Hu X, Ying K, DuW, Yin H, Peri GN. 2014. Code injection attacks on HTML5-
based mobile apps: characterization, detection and mitigation. In: Ahn G-J, ed.
Proceedings of the 2014 ACM conference on computer and communications security,
CCS’14. New York: ACM, 66–77 DOI 10.1145/2660267.2660275.

JohnsM, Beyerlein C. 2007. SMask: preventing injection attacks in web applications by
approximating automatic data/code separation. In: Cho Y, Wainwright RL, Haddad
HM, eds. Proceedings of the 2007 ACM symposium on applied computing, SAC’07.
New York: ACM, 284–291 DOI 10.1145/1244002.1244071.

JohnsM, Engelmann B, Posegga J. 2008. XSSDS: server-side detection of cross-site
scripting attacks. In: Proceedings of the 2008 annual computer security applications
conference, ACSAC’08. Washington, D.C.: IEEE Computer Society, 335–344
DOI 10.1109/ACSAC.2008.36.

Johnson RT. 2006. Verifying security properties using type-qualifier inference. PhD
thesis, Berkeley, CA, USA. AAI3253911.

Jovanovic N, Kruegel C, Kirda E. 2006. Pixy: a static analysis tool for detecting web
application vulnerabilities (Short Paper). In: Proceedings of the 2006 IEEE symposium
on security and privacy. Washington, D.C.: IEEE Computer Society, 258–263
DOI 10.1109/SP.2006.29.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 32/40

https://peerj.com
http://dx.doi.org/10.1145/1134285.1134416
http://dx.doi.org/10.1145/2554850.2554909
http://dx.doi.org/10.1109/HICSS.2004.1265654
http://dx.doi.org/10.1145/1805874.1805982
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1145/1251535.1251537
http://dx.doi.org/10.1145/1242572.1242654
http://dx.doi.org/10.1145/2660267.2660275
http://dx.doi.org/10.1145/1244002.1244071
http://dx.doi.org/10.1109/ACSAC.2008.36
http://dx.doi.org/10.1109/SP.2006.29
http://dx.doi.org/10.7717/peerj-cs.136

Kantorovitz IP. 2004. Lexical analysis tool. ACM SIGPLAN Notices 39(5):66–74
DOI 10.1145/997140.997147.

Kc GS, Keromytis AD, Prevelakis V. 2003. Countering code-injection attacks with
instruction-set randomization. In: Jajodia S, ed. CCS’03: proceedings of the 10th ACM
conference on computer and communications security. New York: ACM, 272–280
DOI 10.1145/948109.948146.

Keromytis AD. 2009. Randomized instruction sets and runtime environments
past research and future directions. IEEE Security and Privacy 7(1):18–25
DOI 10.1109/MSP.2009.15.

Keromytis AD. 2011. Buffer overflow attacks. In: Encyclopedia of cryptography and
security. Second Edition. 174–177.

King JC. 1976. Symbolic execution and program testing. Communications of the ACM
19(7):385–394 DOI 10.1145/360248.360252.

Kiriansky V, Bruening D, Amarasinghe SP. 2002. Secure execution via program
shepherding. In: Boneh D, ed. Proceedings of the 11th USENIX security symposium.
Berkeley: USENIX Association, 191–206.

Kong D, Zheng Q, Chen C, Shuai J, ZhuM. 2007. ISA: a source code static vulnerability
detection system based on data fusion. In: Li J, Lee W-C, Silvestri F, eds. Proceedings
of the 2nd international conference on scalable information systems, InfoScale’07.
Brussels, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 55:1–55:7.

Kuznetsov V, Szekeres L, Payer M, Candea G, Sekar R, Song D. 2014. Code-pointer
integrity. In: Flinn J, Levy H, eds. Proceedings of the 11th USENIX conference on op-
erating systems design and implementation, OSDI’14. Berkeley: USENIX Association,
147–163.

Laranjeiro N, Vieira M, Madeira H. 2009. Protecting database centric web services
against SQL/XPath injection attacks. In: Bhowmick SS, Küng J, Wagner R, eds.
Proceedings of the 20th international conference on database and expert systems applica-
tions, DEXA’09. Berlin: Springer-Verlag, 271–278 DOI 10.1007/978-3-642-03573-9_22.

Laranjeiro N, Vieira M, Madeira H. 2010. A Learning-based approach to secure web
services from SQL/XPath injection attacks. In: Proceedings of the 2010 IEEE 16th
Pacific rim international symposium on dependable computing, PRDC’10. Washington,
D.C.: IEEE Computer Society, 191–198 DOI 10.1109/PRDC.2010.24.

Lee SY, LowWL,Wong PY. 2002. Learning fingerprints for a database intrusion
detection system. In: Gollmann D, Karjoth G, Waidner M, eds. Proceedings of the
7th European symposium on research in computer security, ESORICS’02. London, UK:
Springer-Verlag, 264–280 DOI 10.1007/3-540-45853-0_16.

Lhee K-S, Chapin SJ. 2003. Buffer overflow and format string overflow vulnerabilities.
Software: practice and experience 33(5):423–460 DOI 10.1002/spe.515.

Livshits VB, LamMS. 2005. Finding security vulnerabilities in Java applications with
static analysis. In: Proceedings of the 14th USENIX security symposium. Berkeley:
USENIX Association, 18–18.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 33/40

https://peerj.com
http://dx.doi.org/10.1145/997140.997147
http://dx.doi.org/10.1145/948109.948146
http://dx.doi.org/10.1109/MSP.2009.15
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1007/978-3-642-03573-9_22
http://dx.doi.org/10.1109/PRDC.2010.24
http://dx.doi.org/10.1007/3-540-45853-0_16
http://dx.doi.org/10.1002/spe.515
http://dx.doi.org/10.7717/peerj-cs.136

LouwMT, Venkatakrishnan VN. 2009. Blueprint: robust prevention of cross-site
scripting attacks for existing browsers. In: Proceedings of the 2009 30th IEEE sympo-
sium on security and privacy. Washington, D.C.: IEEE Computer Society, 331–346
DOI 10.1109/SP.2009.33.

MartinM, LamMS. 2008. Automatic generation of XSS and SQL injection attacks
with goal-directed model checking. In: Van Oorschot P, ed. Proceedings of the 17th
USENIX security symposium. Berkeley: USENIX Association, 31–43.

MartinM, Livshits B, LamMS. 2005. Finding application errors and security flaws
using PQL: a program query language. In: Johnson R, ed. Proceedings of the 20th
ACM conference on object oriented programming, systems, languages, and applications,
OOPSLA’05. New York: ACM Press, 365–383 DOI 10.1145/1094811.1094840.

Mashtizadeh AJ, Bittau A, Boneh D, Mazières D. 2015. CCFI: cryptographically
enforced control flow integrity. In: Ray I, ed. Proceedings of the 22Nd ACM SIGSAC
conference on computer and communications security, CCS’15. New York: ACM,
941–951 DOI 10.1145/2810103.2813676.

Mattos T, Santin A, Malucelli A. 2013.Mitigating XML injection 0-day attacks
through strategy-based detection systems. IEEE Security and Privacy 11(4):46–53
DOI 10.1109/MSP.2012.83.

McClure RA, Krüger IH. 2005. SQL DOM: compile time checking of dynamic SQL
statements. In: Roman G-C, ed. Proceedings of the 27th international conference on
software engineering, ICSE’05. 88–96 DOI 10.1145/1062455.1062487.

McGraw G. 2006. Software security: building security in. Boston: Addison-Wesley
Professional.

McGraw G. 2008. Automated code review tools for security. IEEE Computer
41(12):108–111 DOI 10.1109/MC.2008.514.

McMillan KL. 1992. Symbolic model checking: an approach to the state explosion
problem. PhD thesis, Carnegie Mellon University.

Mellado D, Fernández-Medina E, Piattini M. 2010. Security requirements engineer-
ing framework for software product lines. Information and Software Technology
52(10):1094–1117 DOI 10.1016/j.infsof.2010.05.007.

Merz S. 2001.Model checking: a tutorial overview. In: Cassez F, Jard C, Rozoy B, Ryan
MD, eds. Proceedings of the 4th summer school on modeling and verification of parallel
processes. London: Springer-Verlag, 3–38 DOI 10.1007/3-540-45510-8_1.

Miller A, Donaldson A, Calder M. 2006. Symmetry in temporal logic model checking.
ACM Computing Surveys 38(3):432–441.

Minamide Y. 2005. Static approximation of dynamically generated web pages. In: Ellis A,
Hagino T, eds. Proceedings of the 14th international conference on World Wide Web,
WWW’05. New York: ACM, 432–441 DOI 10.1145/1060745.1060809.

Mitropoulos D, Karakoidas V, Louridas P, Spinellis D. 2011. Countering code injection
attacks: a unified approach. Information Management and Computer Security
19(3):177–194 DOI 10.1108/09685221111153555.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 34/40

https://peerj.com
http://dx.doi.org/10.1109/SP.2009.33
http://dx.doi.org/10.1145/1094811.1094840
http://dx.doi.org/10.1145/2810103.2813676
http://dx.doi.org/10.1109/MSP.2012.83
http://dx.doi.org/10.1145/1062455.1062487
http://dx.doi.org/10.1109/MC.2008.514
http://dx.doi.org/10.1016/j.infsof.2010.05.007
http://dx.doi.org/10.1007/3-540-45510-8_1
http://dx.doi.org/10.1145/1060745.1060809
http://dx.doi.org/10.1108/09685221111153555
http://dx.doi.org/10.7717/peerj-cs.136

Mitropoulos D, Karakoidas V, Spinellis D. 2009. Fortifying applications against XPath
injection attacks. In: 4th mediterranean conference on information systems, MCIS
2009. 1169–1179.

Mitropoulos D, Spinellis D. 2009. SDriver: location-specific signatures prevent SQL in-
jection attacks. Computers and Security 28:121–129 DOI 10.1016/j.cose.2008.09.005.

Mitropoulos D, Stroggylos K, Spinellis D, Keromytis AD. 2016.How to train your
browser: preventing XSS attacks using contextual script fingerprints. ACM Trans-
actions on Privacy and Security 19(1):2:1–2:31 DOI 10.1145/2939374.

Moonen L. 1997. A generic architecture for data flow analysis to support reverse
engineering. In: Proceedings of the 2nd international conference on theory and practice
of algebraic specifications, Algebraic’97. Swinton: British Computer Society, 10–10.

Nadji Y, Saxena P, Song D. 2006. Document structure integrity: a robust basis for
cross-site scripting defense. In: Proceedings of the 22nd annual computer security
applications conference, ACSAC’06. Washington, D.C.: IEEE Computer Society,
463–472.

Nadji Y, Saxena P, Song D. 2009. Document structure integrity: a robust basis for cross-
site scripting defense. In: Proceeding of the network and distributed system security
symposium (NDSS).

Nagy C, Mancoridis S. 2009. Static security analysis based on input-related software
faults. In: Proceedings of the 2009 European conference on software maintenance
and reengineering, CSMR ’09. Washington, D.C.: IEEE Computer Society, 37–46
DOI 10.1109/CSMR.2009.51.

Nanda S, Lam L-C, Chiueh T-C. 2007. Dynamic multi-process information flow
tracking for web application security. In: Proceedings of the 2007 interna-
tional conference on middleware companion, MC’07. New York: ACM, 1–19
DOI 10.1145/1377943.1377956.

Nguyen-Tuong A, Guarnieri S, Greene D, Shirley J, Evans D. 2006. Automatically
hardening web applications using precise tainting. In: Sasaki R, Qing S, Okamoto
E, Yoshiura H, eds. IFIP international information security conference. 295–308
DOI 10.1007/0-387-25660-1_20.

Null LM,Wong J. 1992. The diamond security policy for object-oriented databases. In:
Agrawal JP, Kumar J, Wallentine V, eds. Proceedings of the 1992 ACM annual confer-
ence on communications, CSC’92. New York: ACM, 49–56 DOI 10.1145/131214.131221.

Papagiannis I, Migliavacca M, Pietzuch P. 2011. PHP aspis: using partial taint tracking
to protect against injection attacks. In: Fox A, ed. Proceedings of the 2nd USENIX
conference on web application development, WebApps’11. Berkeley: USENIX Associa-
tion, 2–2.

Peck R, Devore J. 2010. Statistics: the exploration & analysis of data. Boston: Brooks/Cole,
Cengage Learning.

Pierce BC. 2002. Types and programming languages. Cambridge: MIT Press.
Pincus J, Baker B. 2004. Beyond stack smashing: recent advances in exploiting buffer

overruns. IEEE Security and Privacy 2(4):20–27 DOI 10.1109/MSP.2004.36.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 35/40

https://peerj.com
http://dx.doi.org/10.1016/j.cose.2008.09.005
http://dx.doi.org/10.1145/2939374
http://dx.doi.org/10.1109/CSMR.2009.51
http://dx.doi.org/10.1145/1377943.1377956
http://dx.doi.org/10.1007/0-387-25660-1_20
http://dx.doi.org/10.1145/131214.131221
http://dx.doi.org/10.1109/MSP.2004.36
http://dx.doi.org/10.7717/peerj-cs.136

Pnueli A. 1977. The temporal logic of programs. In: Proceedings of the 18th annual
symposium on foundations of computer science, SFCS ’77. Washington, D.C.: IEEE
Computer Society, 46–57 DOI 10.1109/SFCS.1977.32.

Qin F,Wang C, Li Z, KimH-S, Zhou Y,Wu Y. 2006. LIFT: a low-overhead practical
information flow tracking system for detecting security attacks. In: Proceedings of the
39th annual IEEE/ACM international symposium on microarchitecture, MICRO 39.
Washington, D.C.: IEEE Computer Society, 135–148 DOI 10.1109/MICRO.2006.29.

Ray D, Ligatti J. 2012. Defining code-injection attacks. In: Field J, ed. Proceedings of the
39th annual ACM symposium on principles of programming languages, POPL’12. New
York: ACM, 179–190 DOI 10.1145/2103621.2103678.

Reis C, Dunagan J, Wang HJ, Dubrovsky O, Esmeir S. 2006. BrowserShield:
vulnerability-driven filtering of dynamic HTML. In: Bershad B, Mogul J, eds.
Proceedings of the 7th symposium on operating systems design and implementation,
OSDI’06. Berkeley, CA, USA: USENIX Association, 61–74.

Reps T, Horwitz S, Sagiv M. 1995. Precise interprocedural dataflow analysis via graph
reachability. In: Cytron RK, Lee P, eds. Proceedings of the 22nd ACM sympo-
sium on principles of programming languages, POPL’95. New York: ACM, 49–61
DOI 10.1145/199448.199462.

Richards G, Hammer C, Burg B, Vitek J. 2011. The eval that men do: a large-scale study
of the use of eval in javascript applications. In: Mezini M, ed. Proceedings of the 25th
European conference on object-oriented programming, ECOOP’11. Berlin: Springer-
Verlag, 52–78 DOI 10.1007/978-3-642-22655-7_4.

Romero-Mariona J, Ziv H, Richardson DJ, Bystritsky D. 2009. Towards usable
cyber security requirements. In: Proceedings of the 5th annual workshop on cy-
ber security and information intelligence research: cyber security and information
intelligence challenges and strategies, CSIIRW’09. New York: ACM, 64:1–64:4
DOI 10.1145/1558607.1558681.

RuseM, Sarkar T, Basu S. 2010. Analysis & detection of SQL injection vulnerabilities
via automatic test case generation of programs. In: Proceedings of the 2010 10th
IEEE/IPSJ international symposium on applications and the internet, SAINT’10.
Washington, D.C.: IEEE Computer Society, 31–37 DOI 10.1109/SAINT.2010.60.

Saiedian H, Broyle D. 2011. Security vulnerabilities in the same-origin policy: implica-
tions and alternatives. Computer 44(9):29–36 DOI 10.1109/MC.2011.226.

Saxena P, Akhawe D, Hanna S, Mao F, McCamant S, Song D. 2010. A symbolic
execution framework for JavaScript. In: Proceedings of the 2010 IEEE symposium
on security and privacy. Washington, D.C.: IEEE Computer Society, 513–528
DOI 10.1109/SP.2010.38.

Schwarz B, Chen H,Wagner D, Lin J, TuW,Morrison G,West J. 2005.Model checking
an entire linux distribution for security violations. In: Proceedings of the 21st annual
computer security applications conference, ACSAC’05. Washington, D.C.: IEEE
Computer Society, 13–22 DOI 10.1109/CSAC.2005.39.

Seixas N, Fonseca J, Vieira M, Madeira H. 2009. Looking at web security vulnerabilities
from the programming language perspective: a field study. In: Proceedings of the

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 36/40

https://peerj.com
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/MICRO.2006.29
http://dx.doi.org/10.1145/2103621.2103678
http://dx.doi.org/10.1145/199448.199462
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1145/1558607.1558681
http://dx.doi.org/10.1109/SAINT.2010.60
http://dx.doi.org/10.1109/MC.2011.226
http://dx.doi.org/10.1109/SP.2010.38
http://dx.doi.org/10.1109/CSAC.2005.39
http://dx.doi.org/10.7717/peerj-cs.136

2009 20th international symposium on software reliability engineering, ISSRE’09.
Washington, D.C.: IEEE Computer Society, 129–135 DOI 10.1109/ISSRE.2009.30.

Sekar R. 2009. An efficient black-box technique for defeating web application attacks. In:
Proceeding of the network and distributed system security symposium (NDSS). Reston:
Internet Society.

ShachamH, PageM, Pfaff B, Goh E-J, Modadugu N, Boneh D. 2004. On the effective-
ness of address-space randomization. In: Atluri V, ed. Proceedings of the 11th ACM
conference on computer and communications security, CCS’04. New York: 298–307
DOI 10.1145/1030083.1030124.

Shahriar H, ZulkernineM. 2012.Mitigating program security vulnerabilities: approaches
and challenges. ACM Computing Surveys 44(3):11:1–11:46
DOI 10.1145/2187671.2187673.

Sivakumar K, Garg K. 2007. Constructing a ‘‘Common cross site scripting vulnerabil-
ities enumeration (CSE)’’ using CWE and CVE. In: McDaniel P, Gupta SK, eds.
Proceedings of the 3rd international conference on information systems security. Berlin:
Springer-Verlag, 277–291 DOI 10.1007/978-3-540-77086-2_25.

Son S, McKinley KS, Shmatikov V. 2013. Diglossia: detecting code injection attacks with
precision and efficiency. In: Sadeghi A-R, ed. Proceedings of the 2013 ACM conference
on computer and communications security, CCS’13. New York: ACM, 1181–1192
DOI 10.1145/2508859.2516696.

Son SH, Chaney C, Thomlinson NP. 1998. Partial security policies to support timeliness
in secure real-time databases. In: Proceedings of the IEEE symposium on security and
privacy. Charlottesville: IEEE DOI 10.1109/SECPRI.1998.674830.

Soni P, Budianto E, Saxena P. 2015. The SICILIAN defense: signature-based whitelist-
ing of web JavaScript. In: Ray I, ed. Proceedings of the 22nd ACM conference on
computer and communications security, CCS’15. New York: ACM, 1542–1557
DOI 10.1145/2810103.2813710.

Sovarel AN, Evans D, Paul N. 2005.Where’s the FEEB? the effectiveness of instruction
set randomization. In: Proceedings of the 14th USENIX security symposium. Berkeley:
USENIX Association, 10–10.

Spacco J, Hovemeyer D, PughW. 2006. Tracking defect warnings across versions.
In: Diehl S, Gall H, Hassan AE, eds. Proceedings of the 2006 international
workshop on mining software repositories, MSR’06. New York: ACM, 133–136
DOI 10.1145/1137983.1138014.

Stamm S, Sterne B, MarkhamG. 2010. Reining in the web with content security policy.
In: Rappa M, Jones P, eds. Proceedings of the 19th international conference on world
wide web, WWW’10. New York: ACM, 921–930 DOI 10.1145/1772690.1772784.

Stefan D, Yang EZ, Marchenko P, Russo A, Herman D, Karp B, Mazières D. 2014.
Protecting users by confining JavaScript with COWL. In: Proceedings of the 11th
USENIX conference on operating systems design and implementation, OSDI’14.
Berkeley: USENIX Association, 131–146.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 37/40

https://peerj.com
http://dx.doi.org/10.1109/ISSRE.2009.30
http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1145/2187671.2187673
http://dx.doi.org/10.1007/978-3-540-77086-2_25
http://dx.doi.org/10.1145/2508859.2516696
http://dx.doi.org/10.1109/SECPRI.1998.674830
http://dx.doi.org/10.1145/2810103.2813710
http://dx.doi.org/10.1145/1137983.1138014
http://dx.doi.org/10.1145/1772690.1772784
http://dx.doi.org/10.7717/peerj-cs.136

Stock B, Lekies S, Mueller T, Spiegel P, JohnsM. 2014. Precise Client-side protection
against Dom-based cross-site scripting. In: Proceedings of the 23rd USENIX security
symposium. 655–670.

Su Z,Wassermann G. 2006. The essence of command injection attacks in web ap-
plications. In: Morrisett G, ed. Conference record of the 33rd ACM symposium
on principles of programming languages, POPL’06. New York: ACM, 372–382
DOI 10.1145/1111037.1111070.

Szekeres L, Payer M,Wei T, Song D. 2013. SoK: eternal war in memory. In: Sommer
R, ed. Proceedings of the 2013 IEEE symposium on security and privacy. 48–62
DOI 10.1109/SP.2013.13.

TakesueM. 2008. A protection scheme against the attacks deployed by hiding the
violation of the same origin policy. In: Proceedings of the 2008 second international
conference on emerging security information, systems and technologies. Washington,
D.C.: IEEE Computer Society, 133–138 DOI 10.1109/SECURWARE.2008.24.

Thuraisingham B, FordW. 1995. Security constraint processing in a multilevel secure
distributed database management system. IEEE Transactions on Knowledge and Data
Engineering 7(2):274–293 DOI 10.1109/69.382297.

TrinhM-T, Chu D-H, Jaffar J. 2014. S3: a symbolic string solver for vulnerability detec-
tion in web applications. In: Ahn G-J, ed. Proceedings of the 2014 ACM conference
on computer and communications security, CCS’14. New York: ACM, 1232–1243
DOI 10.1145/2660267.2660372.

Tsitovich A. 2008. Detection of security vulnerabilities using guided model checking.
In: Garcia de la Banda M, Pontelli E, eds. Proceedings of the 24th international
conference on logic programming, ICLP’08. Berlin: Springer-Verlag, 822–823
DOI 10.1007/978-3-540-89982-2_90.

Valeur F, Mutz D, Vigna G. 2005. A Learning-based Approach to the Detection of
SQL Attacks. In: Julisch K, Kruegel C, eds. Proceedings of the second international
conference on detection of intrusions and malware, and vulnerability assessment,
DIMVA’05. Berlin: Springer-Verlag, 123–140 DOI 10.1007/11506881_8.

Van der Veen V, Andriesse D, Göktaş E, Gras B, Sambuc L, Slowinska A, Bos H,
Giuffrida C. 2015. Practical context-sensitive CFI. In: Ray I, ed. Proceedings of the
22nd ACM conference on computer and communications security, CCS’15. New York:
ACM, 927–940 DOI 10.1145/2810103.2813673.

Viega J, Bloch JT, Kohno T, McGraw G. 2002. Token-based scanning of source code
for security problems. ACM Transactions on Information and System Security
5(3):238–261 DOI 10.1145/545186.545188.

Viega J, Bloch JT, Kohno Y, McGraw G. 2000. ITS4: a static vulnerability scanner for
C and C++ code. In: Proceedings of the 16th annual computer security applications
conference, ACSAC’00. Washington, D.C.: IEEE Computer Society, 257.

Viega J, McGraw G. 2001. Building secure software: how to avoid security problems the right
way. Boston: Addison-Wesley.

Vogt P, Nentwich F, Jovanovic N, Kirda E, Kruegel C, Vigna G. 2007. Cross-site
scripting prevention with dynamic data tainting and static analysis. In: Proceeding

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 38/40

https://peerj.com
http://dx.doi.org/10.1145/1111037.1111070
http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1109/SECURWARE.2008.24
http://dx.doi.org/10.1109/69.382297
http://dx.doi.org/10.1145/2660267.2660372
http://dx.doi.org/10.1007/978-3-540-89982-2_90
http://dx.doi.org/10.1007/11506881_8
http://dx.doi.org/10.1145/2810103.2813673
http://dx.doi.org/10.1145/545186.545188
http://dx.doi.org/10.7717/peerj-cs.136

of the network and distributed system security symposium (NDSS). Reston: Internet
Society.

Von Oheimb D. 2004. Information flow control revisited: noninfluence= noninterfer-
ence +nonleakage. In: Samarati P, Ryan P, Gollmann D, Molva R, eds. Proceedings of
the 9th European symposium on research in computer security, ESORICS’04. Springer,
225–243 DOI 10.1007/978-3-540-30108-0_14.

Wagner D, Foster JS, Brewer EA, Aiken A. 2000. A first step towards automated detec-
tion of buffer overrun vulnerabilities. In: Proceeding of the network and distributed
system security symposium (NDSS). Reston: Internet Society, 3–17.

Wang H. 2010. Attacks target Web server logic and prey on XCS weaknesses: technical
persepctive. Communications of the ACM 53(8):104–104
DOI 10.1145/1787234.1787256.

Wang X, Pan C-C, Liu P, Zhu S. 2010. SigFree: a signature-free buffer overflow attack
blocker. IEEE Transactions on Dependable and Secure Computing 7(1):65–79
DOI 10.1109/TDSC.2008.30.

Wassermann G, Su Z. 2004. An analysis framework for security in web applications. In:
Taylor RN, ed. SAVCBS 2004: proceedings of the FSE workshop on specification and
verification of component-based systems SAVCBS, 70–78.

Wassermann G, Su Z. 2007. Sound and precise analysis of web applications for injection
vulnerabilities. In: Ferrante J, ed. PLDI ’07: proceedings of the 2007 ACM SIGPLAN
conference on programming language design and implementation. New York: ACM
Press, 32–41 DOI 10.1145/1273442.1250739.

Wilander J, KamkarM. 2002. A comparison of publicly available tools for static
intrusion prevention. In: Proceedings of the 7th nordic workshop on secure IT systems.
Karlstad, Sweden: Karlstad University, 68–84.

Winsor J. 2000. Solaris system administrator’s guide. Third Edition. Upper Saddle River:
Prentice Hall PTR.

Wurster G, Van Oorschot PC. 2008. The developer is the enemy. In: Bishop M, Probst
CW, eds. NSPW’08: proceedings of the 2008 workshop on new security paradigms. New
York: ACM, 89–97 DOI 10.1145/1595676.1595691.

Wurzinger P, Platzer C, Ludl C, Kirda E, Kruegel C. 2009. SWAP: mitigating XSS attacks
using a reverse proxy. Washington, D.C.: IEEE Computer Society, 33–39.

Xie Y, Aiken A. 2006. Static detection of security vulnerabilities in scripting languages.
In: Proceedings of the 15th conference on USENIX security symposium—Volume 15,
USENIX-SS’06. Berkeley: USENIX Association.

XuW, Bhatkar S, Sekar R. 2006. Taint-enhanced policy enforcement: a practical
approach to defeat a wide range of attacks. In: Security’06: proceedings of the 15th
USENIX security symposium. Berkeley: USENIX Association, 121–136.

Younan Y, JoosenW, Piessens F. 2012. Runtime countermeasures for code injection
attacks against C and C++ programs. ACM Computing Surveys 44(3):17:1–17:28
DOI 10.1145/2187671.2187679.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 39/40

https://peerj.com
http://dx.doi.org/10.1007/978-3-540-30108-0_14
http://dx.doi.org/10.1145/1787234.1787256
http://dx.doi.org/10.1109/TDSC.2008.30
http://dx.doi.org/10.1145/1273442.1250739
http://dx.doi.org/10.1145/1595676.1595691
http://dx.doi.org/10.1145/2187671.2187679
http://dx.doi.org/10.7717/peerj-cs.136

Yu D, Chander A, IslamN, Serikov I. 2007. JavaScript instrumentation for browser
security. In: Hofmann M, ed. Proceedings of the 34th ACM symposium on principles of
programming languages. New York: ACM, 237–249 DOI 10.1145/1190215.1190252.

Zitser M, Group DES, Leek T. 2004. Testing static analysis tools using exploitable
buffer overflows from open source code. SIGSOFT Software Engineering Notes
29(6):97–106 DOI 10.1145/1041685.1029911.

Zitser M, Lippmann R, Leek T. 2004. Testing static analysis tools using exploitable
buffer overflows from open source code. SIGSOFT Software Engineering Notes
29(6):97–106 DOI 10.1145/1041685.1029911.

Mitropoulos and Spinellis (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.136 40/40

https://peerj.com
http://dx.doi.org/10.1145/1190215.1190252
http://dx.doi.org/10.1145/1041685.1029911
http://dx.doi.org/10.1145/1041685.1029911
http://dx.doi.org/10.7717/peerj-cs.136

