key: cord-035380-qfvskz9n authors: Nasajpour, Mohammad; Pouriyeh, Seyedamin; Parizi, Reza M.; Dorodchi, Mohsen; Valero, Maria; Arabnia, Hamid R. title: Internet of Things for Current COVID-19 and Future Pandemics: an Exploratory Study date: 2020-11-12 journal: J Healthc Inform Res DOI: 10.1007/s41666-020-00080-6 sha: doc_id: 35380 cord_uid: qfvskz9n In recent years, the Internet of Things (IoT) has gained convincing research ground as a new research topic in a wide variety of academic and industrial disciplines, especially in healthcare. The IoT revolution is reshaping modern healthcare systems by incorporating technological, economic, and social prospects. It is evolving healthcare systems from conventional to more personalized healthcare systems through which patients can be diagnosed, treated, and monitored more easily. The current global challenge of the pandemic caused by the novel severe respiratory syndrome coronavirus 2 presents the greatest global public health crisis since the pandemic influenza outbreak of 1918. At the time this paper was written, the number of diagnosed COVID-19 cases around the world had reached more than 31 million. Since the pandemic started, there has been a rapid effort in different research communities to exploit a wide variety of technologies to combat this worldwide threat, and IoT technology is one of the pioneers in this area. In the context of COVID-19, IoT-enabled/linked devices/applications are utilized to lower the possible spread of COVID-19 to others by early diagnosis, monitoring patients, and practicing defined protocols after patient recovery. This paper surveys the role of IoT-based technologies in COVID-19 and reviews the state-of-the-art architectures, platforms, applications, and industrial IoT-based solutions combating COVID-19 in three main phases, including early diagnosis, quarantine time, and after recovery. and crowd monitoring devices, to track people to ensure the appropriate distance is maintained. In short, IoT technology during the COVID-19 pandemic has proven its usefulness in assisting patients, healthcare providers, and authorities. In this section, we briefly explain the various IoT devices and applications including wearables, drones, robots, IoT buttons, and smartphone applications that are mainly utilized in the forefront of combating COVID-19. Table 1 lists the specifications of these technologies regarding this pandemic. Wearable technologies can be defined as the combination of electronics with anything that is able to be worn [26] . The definition presented by Juniper Research [27] describes them as app-enabled computing technologies that receive and process input while they are either worn or stick to the body such as bands, glasses, and watches. These smart wearables were designed for different purposes in various domains such as healthcare, fitness, lifestyle, and so on [27] [28] [29] . Although the privacy of data is still a significant issue for expanding these devices, it is predicted that healthcare providers will spend $20 billion annually until 2023 on wearable IoT devices to monitor more patients [30] . IoT wearable devices cover a wide range of different smart wearable tools such as Smart Themormeters [31, 32] , Smart Helmets [33] , Smart Glasses [34] , IoT-Q-Band [35] , EasyBand [36] , and Proximity Trace [37] . Table 2 shows all wearable devices regarding their classification with examples. Drones are simply aircraft that are flown without any or very little human operation by remote monitoring [38] . In 1849, during a war between Italy and Austria, the first drone, which was a balloon equipped with bombs, was used [39] . The drone is also known as an unmanned aerial vehicle (UAV) that works with the help of sensors, GPS, and communication services. The implementation of IoT within drones, known as the Internet of Drone Things (IoDT), makes it possible for drones to do a variety of tasks such as searching, monitoring, and delivering [40, 41] . Smart drones can be operated by a smartphone and a controller with a minimum of time and energy, which makes them efficient in different fields such as agriculture, the military, and healthcare. Different types of IoT-based drones, including thermal imaging drone [42] , disinfectant drone [43] , medical drone [44] , surveillance drone [45] , announcement drone [46] , and multipurpose drone [47] are used in the healthcare domain and, in particular, in the fight against COVID-19, will be discussed in this paper. An illustration of these types of drones, along with their examples, can be found in Table 3 . According to the Merriam Webster dictionary [48] , a robot is defined as "a machine that resembles a living creature in being capable of moving independently." As an advancement during the emergence of networked robots within the cloud, the Internet of Robot Things was implemented where they can do many different tasks to make life easier [49] . Regarding the current pandemic, robots can be categorized as Autonomous robots [50] , Telerobots [51] , Collaborative robots [52] , and Social robots [53] . Table 4 covers the fundamental aspects of these robots with examples. This type of IoT device is a small, programmable button connected to the cloud through wireless communication [54] . Based on its written code on the cloud, this device can perform different repetitive tasks by pressing only one button. For example, one type of IoT button enables patients to complain if any hospital restrooms need cleaning by pressing a button only [55, 56] . Table 5 illustrates two implementations of these buttons during COVID-19 phases. Smartphone applications are application software designed to do limited tasks within a mobile device such as a smartphone [57, 58] . Since there are 3.5 billion active smartphones in 2020, these IoT-based smartphone applications could be very efficient in various domains such as healthcare, retail, and agriculture [59] [60] [61] [62] . Many smartphone applications have been developed for the healthcare domain, and some of them have been used in response to COVID-19, as illustrated in Table 6 The key to combating COVID-19 is to diagnose it early to prevent spreading the virus widely. This will substantially help healthcare providers to arrange better treatment plans, save more lives, and reduce contamination and infections [77] . The first step in the early diagnosis of COVID-19 is understanding its symptoms. According to the CDC [11], as of September 2020, COVID-19 has a wide range of symptoms including fever or chills, cough, shortness of breath or difficulty breathing, fatigue, muscle or body aches, headache, the new loss of taste or smell, sore throat, congestion or runny nose, nausea or vomiting, and diarrhea. Among them, fever or high body temperature is one of the most common symptoms of COVID-19 when the measured temperature exceeds 38 • C or 100.4 • F [78]. IoT devices can make the detection process faster and more efficient by capturing data within their sensors and then analyzing the data for patients, healthcare providers, and authorities to diagnose, control, and ultimately stop this contagious disease [79] . Different IoT devices can be used to capture some of the aforementioned symptoms at an early stage, which will be discussed in the next subsections. [118] [119] [120] [121] (1) • Alerting the authorities or families Wanda QuickTouch I [122] ( 2 ) • Alerting healthcare providers in case of an emergency Sefucy II Using wearable devices is considered an efficient way to respond to the need for early diagnosis during this pandemic [80] . Developing these devices has had a remarkable impact on the early detection of diseases. For example, a wearable IoT device can confirm whether respiratory signs of a patient are normal or not. With this knowledge, the patient can notice any changes in his or her health situation and then decide to make a medical appointment before any other symptoms appear [81] . In fact, the COVID-19 pandemic might be easier to fight using appropriate wearable devices. A wide range of IoT smart thermometers has been developed to record constant measurements of body temperatures. These low-cost, accurate, easy to use devices can be worn or stick to the skin under clothing [32] . They are usually offered in different forms such as touch, patch, and radiometric [32] . The use of these devices can be extremely helpful in the early detection of suspicious cases. Also, since the use of infrared thermometers for capturing body temperature can possibly spread the virus more due to the closeness of patients and healthcare providers, using smart thermometers is highly recommended [42] . According to [82] , Kinsa's thermometers have been widely used in homes, and the producer is now able to predict the most suspicious areas (contaminated with in each state of the USA based on the recorded temperature of people [31, [83] [84] [85] . Other smart thermometers such as Tempdrop, Ran's Night, iFever, and iSense (shown in Fig. 1 ) can report body temperature at any time on a smartphone. Using these devices in people's daily lives can improve the chance of diagnosing new patients at an early stage. During the COVID-19 pandemic, using wearable smart helmets with a thermal camera has proven to be safer compared to an infrared thermometer gun due to lower human interactions [42] . In this device, when a high temperature is detected by the thermal camera on the smart helmet, the location and the image of the person's face are taken by an optical camera. Then, they are sent to the assigned mobile device with an alarm as shown in Fig. 2 , so that a health officer can distinguish the infected person, and authorities can act [33] . Additionally, Google Location History can be incorporated with the smart helmet to find the places visited by the suspected person • Access to the user's information by government (privacy concern) • Notifying people who were in close contact with the user if the user is infected [32] after detection [86] . Countries such as China, UAE, and Italy have implemented this wearable device to monitor crowds within 2 m from passers-by [87] . Interestingly, this model has shown good results. For example, KC N901 is a smart helmet produced in China that has an accuracy of 96 percent for high body temperature detection [87] . Another type of wearable device is the IoT-based smart glasses as shown in Fig. 3 . In comparison with thermometer guns, smart glasses have lesser human interactions. Optical and thermal cameras have been used in smart glasses to monitor crowds [34] , and the inbuilt face detection technology makes the tracking procedure easier after detecting suspicious cases. In fact, this allows detecting the identification of the suspicious case (person with a high temperature). Additionally, Google Location History can empower further actions with more reliability by capturing the places visited by the suspicious case [34] . Among different smart glasses, Rokid [88] , smart glasses with infrared sensors, can monitor up to 200 people. Another example of this device is the combination of Vuzix smart glasses with the Onsight Cube thermal camera (see Fig. 4 ). These devices work together to monitor crowds to detect people Journal of Healthcare Informatics Research Smart helmet captures temperatures using thermal and optical camera [33] with high temperatures and provide their information to medical centers or authorities [93] . In general, finding infected people in a crowd is important in early diagnosis and control of COVID-19 [95] . Using unmanned aerial vehicles (UAV) and, especially, IoT-based drones is another common way to speed up the process of finding contaminated people and zones during this pandemic. Drone technology can reduce human interactions and can reach hard-to-access locations [96] . The thermal imaging drone as shown in Fig. 5 was designed for capturing the temperature of people in crowds and can be used in the early diagnosis phase. This type of drone can be Vuzix smart glass [94] combined with Virtual Reality as a wearable device to identify people with high temperatures (fevers). This device not only reduces human interactions, but it also uses less time compared to thermometer gun devices [42] . One example of this device is the Pandemic Drone application developed by a Canadian company [97] for remote monitoring and detecting any cases of infection by capturing temperature, respiratory signs such as heart rate, and any sneezing or coughing [98, 99] . Using robots linked to IoT to assist early diagnosis is a remarkable use of these devices because they can help health workers by processing patients' treatments and lowering work stress levels [107] . Without the interaction of humans, the autonomous robot can help fight in all COVID-19 phases. In the first phase, it can help the process of diagnosis by collecting throat swabs samples from patients with the advantage of preventing medical staff at risk (close contact with patients) [50] . Figure 6 depicts how this process works. An example of this device, the Intelligent Care Robot, has been developed through a partnership between two companies, Vayyar Imaging [108] and Meditemi [109] . This device detects symptoms of COVID-19 in 10 seconds Autonomous swab test robots [111] by using touchless quick scanning of a person within a distance of 1 m to capture respiratory signs and temperature [110] . An IoT Button, in general, is a programmable device that can be used for repetitive tasks. During this pandemic, IoT buttons can play an important role in alerting the authorities or family of a patient about any contaminated area or any emergency. For example, an IoT button produced by Visionstate [118] , called Wanda QuickTouch (Fig. 7) , was deployed as a cleaning alert system in hospitals. They are designed for alerting authorities in case of any concerns related to essential sanitation or public safety. Smartphone applications enabled with IoT using information such as Global Positioning System (GPS) and Geographic Information System (GIS) for tracking purposes have been widely used during the COVID-19 pandemic in order to increase the chance of detecting infected people [60] . Implementing smartphone applications using the Internet of Medical Things (IoMT) will assist patients by providing them proper treatments while they are home. Additionally, it enables healthcare workers and authorities to monitor patients and the spread of disease more easily. People can upload their health information to the cloud adopted by IoT and get health advice from hospitals online. Using this platform, patients can be cured at home without expanding the contamination. It costs less than having a physical appointment at hospitals and allows the governments to take better action to manage the pandemic in the future [123] . Since the start of the pandemic, some smartphone applications have been developed for COVID-19 diagnosis and monitoring. These will be discussed in the coming sections. COVID-19 Intelligent Diagnosis and Treatment Assistant Program (nCapp) was developed in China using Internet of Medical Things on a cloud platform. This cellphone application is an automated diagnosis system with eight functions that can be selected by the user. nCapp can automatically generate a diagnosis report based on requested data and questionnaires submitted by patients. Diagnosis is categorized into three cases: confirmed, suspected, or suspicious. For the confirmed cases, there are four conditions, including "mild, moderate, severe, and critical," which are determined by a physician. Special treatments for these conditions and other types of cases are defined as well. Other positive points of this program include updating its own database in order to improve its diagnosis, making consultation possible for all health workers, making sure all patients are safe in the long term, and finally, having all these abilities publicly available. In general, by using nCapp, the diagnosis can be done faster and the spread of disease can be controlled more easily [63] . The high demand for a system that can identify infected people has led to the implementation of MobileDetect, app [64] . MobileDetect which is compatible with a wide variety of smartphones, is designed to detect and control the spread of COVID-19. Using this application, users can easily take the test at home utilizing a nasal swab. The results of the test will show up on the smartphone application within 10-30 min determining the user's health situation regarding COVID-19. Then, the user can send the results with any additional information needed to his or her physician or healthcare professional for further action. This smartphone testing kit authorized by the Food and Drug Administration (FDA) under emergency access can be helpful during the first phase of a pandemic by lowering the spread of the virus [64, 124] . Besides all the implementations for early case detection, another approach is having a database of captured daily health reports. The reports include contact with others, symptoms, and locations. The Stop Corona application [65] provides predictive heatmaps based on the disease spots. This application collects information from its users about their daily health status and generate reports and heatmaps based on that. The generated reports will be accessible only to health authorities. Consequently, once a user shows a new symptom and announces it, the case will appear on the new report, and ultimately authorities will be able to take proper action and detect the contaminated area more quickly due to the reported new symptoms. After the process of detection, it is necessary to isolate and then monitor the patients either in a hospital or at home. The quarantine does not only apply to confirmed cases but also can be considered for suspected patients and even different areas or cities or countries [12] . This is done to prevent possible transmission from suspected cases (asymptomatic cases) or areas to others. Using IoT devices in this phase could help mitigate serious challenges such as spreading the virus by monitoring patients efficiently and controlling their respiratory signs, heart rate, blood pressure, and so on [125] [126] [127] . Quarantine time for confirmed or suspected cases is vital because there is a chance of spreading the virus to other people by those cases [22] . IoT wearable bands have shown promising results to prevent patients from leaving quarantine areas. Using wearable bands is a cost-effective solution for tracking cases. This device is connected to a patience's, smartphone application through Bluetooth during the quarantine period, and healthcare authorities can usually monitor all cases every 2 minutes using a web interface. Additionally, if a patient does not have the band on his or her arm or leg, or maybe leaves the quarantine area, an alert will be sent to notify the authorities, and they have permission to call the patient for clarification of the situation. Figure 8 shows a wearable band, called IoT-Q-Band, workflow process. This approach has been deployed in Hong Kong, where authorities use an electronic wristband linked with a smartphone application in order to track new arrivals at the airports for 14 days [69, 128, 129] . Similarly, authorities in the United States have implemented another type of this model using electronic ankle bracelets (ankle monitors) in order to isolate people who refuse to stay in quarantine [130, 131] . Using drones plays an important role during a quarantine to decrease the number of COVID-19 cases by lowering the interaction of healthcare workers with patients and contaminated areas. For example, drones in this phase can assist healthcare workers and patients by disinfecting areas or delivering medical treatments to patients [132] . Keeping areas sanitized and disinfected during a quarantine is very important, and this can be achieved by using a particular type of drone, called a disinfectant drone [101] (see Fig. 9 ). These drones can reduce the contamination of the virus and prevent healthcare workers from getting infected. DJI company produced this drone with the ability to disinfect 100 meters in 1 hour. This type of drone has also been used in Spain for disinfecting purposes [100] . Medical drones have shown their efficiency at the early stage of COVID-19 where they transfer the COVID-19 test kits, samples, or medical supplies between labs and medical centers to eliminate human interactions. Additionally, this type of drones usually reduces hospital visits and increases access to medical care by delivering medical treatments to patients or another medical center rapidly. For example, using [96] medical drones in China and Ghana has increased the speed of diagnosis by cutting delivery time [102, 133] . Another type of delivery drone during COVID-19, produced by Delivery Drone Canada Inc., can move COVID-related goods, including test kits and swab tests [104] . This type of drone can be also used for other purposes such as postal and grocery services while COVID-19 confirmed cases are isolated in their homes during a quarantine [103, 134] . Figure 10 illustrates this type of drone. During a quarantine, robots play an important role in keeping medical staff away from isolated patients [135] . For example, robots can be used in different ways, such as capturing respiratory signs and assisting patients with their treatments or food. Telerobots are usually operated remotely by a human and can provide different services such as remote diagnosis, remote surgeries, and remote treatments for the patients with no human interaction during the process [136] . For example, a nurse can measure patients' temperatures without having interactions with them by using these robots. Another example is the DaVinci surgical robot, which is operated by a surgeon while the patient is in the safe isolation of plastic sheeting. This helps to prevent infections by performing surgeries remotely [51, 115] . Figure 11 shows the actual daVinci telerobot. Collaborative robots, known as Cobots (Fig. 12) , are recommended robots if there is a need for an operation performed by humans. They are not as beneficial as telerobots for this pandemic, but during a quarantine, this type of robot can lower healthcare workers' fatigue as well as track their interactions with patients [51] . For instance, Asimov Robotics in India is designed for a quarantine to help patients in isolated areas with tasks such as preparing food and providing medication and also preventing healthcare workers from being in that area [52, 116] . Another example of this robot during this phase is the eXtreme Disinfection robot (XDBOT) (shown in Fig. 13 ) which is implemented by Nanyang Technological University in Singapore. This robot can disinfect hard to access areas, such as under a bed, and can be wirelessly operated on a mobile platform to avoid any close contact between humans and contaminated areas [52, 138] . Journal of Healthcare Informatics Research Human-operated collaborative robots [139] Autonomous robots have been widely used during quarantines. They work with fewer or no human interactions and can be utilized in different scenarios in order to sterilize contaminated areas in hospitals, carry patients' treatments, and check their respiratory signs. These will result in decreasing the risk of infection for the healthcare workers while the patients are isolated in their rooms [51, 112] . For example, the disinfection robot created by Xenex [113] is capable of cleaning and disinfecting areas of viruses and bacteria. Figure 14 illustrates how the Xenex robot breaks down the virus using UV lights. Another example is UVD robots developed by a Danish company that are used for disinfecting hospitals with their strong UV light, which destroys the DNA of the virus [114]. According to the CDC [141] , isolating and quarantining patients can potentially cause mental health problems. To prevent this, social robots are designed to communicate with patients during that time. The functionality of these robots in this pandemic is to help reduce mental fatigue and strain during a quarantine and period of physical distancing [51] . One example of these robots is Paro [53] , which can help patients during their isolation as a stress-relief device, as shown in Fig. 15 . The use of the IoT button in response to the COVID-19 pandemic can help to track patients during a quarantine. The Sefucy IoT button [122] was originally designed Fig. 15 Paro social robot can prevent mental effects of quarantine [53] for tracking lost or missing children, but with the outbreak of COVID-19, this IoT device has been used for emergency notifications during a quarantine. If the health condition of a confirmed case isolated at home gets worse, by pressing the button, a healthcare provider will be alerted, or family members will be notified in case of an emergency. The most critical part of a quarantine is keeping track of patients while they are isolated. Tracking patients using smartphones during a quarantine is another widely used approach to mitigate and control the spread of the COVID-19 virus. In Russia, a mandatory surveillance application called Social Monitoring [66] has been developed by the government to track patients who are diagnosed with COVID-19 and must be isolated in their homes. Using this approach, authorities can track patients after the application is installed on the patients' smartphones. Patients are required to ask for a QR (Quick Response) code every time they want to leave home or quarantine areas. This code represents their identification to the authorities, which allows them to monitor patients [128, 142, 143] . This application was developed in Poland integrated with Geo-location and facial recognition technology to track patients who have been told to stay at home for 14 days. Patients can refuse to install this application, but in return, they will get unexpected visits from authorities. Using the application, patients will be asked to send selfies randomly everyday [67, 144, 145] . Civitas is a Canadian smartphone application that has been proposed to lower COVID-19's impact. Using the user's identification code, this application communicates with the authorities to request a permit that allows the user to leave the house. Civitas can assist suspected cases who need to go outside to buy essential goods in a timely manner. Furthermore, it provides a secure channel that enables physicians to contact patients to monitor their health status [68, 146] . StayHomeSafe application is considered as a combination of smartphone applications and wearable devices [69] . It has been implemented in Hong Kong where new arrivals at airports are given a wristband that can be paired with a smartphone to set the quarantine location with the advantage of geofencing technology used by the application [128] . The restrictions put in place in response to the COVID-19 pandemic have had a devastating effect on many businesses, marketplaces, and economics. After months of locked down societies and harsh restrictions, nations are gradually and carefully opening again. This is the phase during which everyone needs to experience with extra caution. Social distancing and restrictions on physical services need to be implemented in a way to make sure the virus will not spread again [152] . In this section, we highlight the role of IoT technology in combating the COVID-19 pandemic after lockdown. Since employers are gradually bringing workers back to the work, students are returning to schools, and the economy is bouncing back during reopening, there should be some protection techniques in order to keep everyone safe from this virus. Contact tracing and social distancing are two key points to be considered for safely reopening. Wearables are the devices that can be utilized to trace users' close contacts with other people and alert them if social distancing is not maintained [153] . As countries gradually reopen workplaces and marketplaces after the lockdown, EasyBand [36] is one of the most effective IoT devices to make sure people are practicing social distancing. This wearable device, which is integrated with the Internet of Medical Things (IoMT), senses and captures data from other devices. EasyBand works within a specific radius and shows potential risk by its LED lights if people are very close to each other. For instance, if someone wearing an Easyband gets within 4 meters of another person, the band will start beeping to alert both and remind them to keep the appropriate distance from each other. This device has shown better results compared to smartphone apps, and it can be used without any mobile devices. Additionally, it is a cost-effective device that gives people a greater sense of safety and peace of mind. Figure 16 represents the workflow of this wearable. A similar example for this device is Pact wristband [89] (see Fig. 17 ), which alerts the distance between people using a vibrator and buzzer. As industrial workers are coming back to work after the lockdown, there is an essential need for practicing social distancing between them while they work together. Proximity Trace [37] helps industrial workers maintain social distancing in practical ways. This device, which can be attached to a hard hat or body, alerts workers when they get close to each other with a loud sound. Using this device, workers will be able to concentrate on their work without worrying about contamination from the virus. Figure 18 shows how this trace can stick to the industrial workers' hard hat. Also, Journal of Healthcare Informatics Research EasyBand process of tracking with its designed rules [36] Instant Trace, shown in Fig. 19 , worn as a badge, has the same functionality that helps employees to maintain social distancing and trace an infected employee's contacts [92]. As the pandemic enters the After Recovery phase, many drones have been used in response to the reopening, which helps businesses continue working in a safe manner. Increasing social awareness by monitoring crowds and broadcasting information is the main purpose of implementing these devices during this phase [154] . The Surveillance drone was designed and developed as an effective way to monitor crowds in case of people's failure to do social distancing. MicroMultiCopter, [46] made in China, and Cyient [105] from India are two types of this drone (Fig. 20) . The MicroMultiCopter drone has also been equipped with speakers to announce important information from the authorities, which will be discussed in the next type of drone within this phase. This type of drone is mainly designed for broadcasting in areas with low accessibility to the Internet. For example, authorities in Spain and other European countries used this type of drone to announce the practice of social distancing and other guidelines with loudspeakers [100, 106] . Kuwait is another country that used this drone to broadcast "go home" messages to people in crowds [134] (see Fig. 21 ). A multipurpose drone, called Corona Combat [47] , has been implemented in China with the combination of all other types of drones that can cover all of the proposed goals aforementioned in the three phases at once. This drone can be deployed in any COVID-19 phase. Figure 22 shows this drone with all the characteristics from other drones. As schools are opening, businesses are recovering, cars are back on the roads, and people are returning to their daily commutes, the COVID-19 pandemic is transitioning to the next phase, which is after lockdown or after recovery. In this phase, Fig. 21 Announcement drone [96] Journal of Healthcare Informatics Research All facilities at once, multipurpose drone [96] everybody needs to know the importance of social distancing everywhere to mitigate the spread of the virus. In response to this phase of COVID-19, autonomous robots can be used to control social distancing. For instance, Spot [156] , a four-legged robot designed in Singapore to be similar to a dog, reminds people to practice social distancing in public places. While this robot can be controlled remotely, it is also capable of transferring data to a web interface for further monitoring. [157] . Figure 23 is the Spot robot for monitoring the practice of social distancing. The use of IoT in healthcare is now expanding, and the major benefits are costeffectiveness, efficient monitoring, appropriate treatment, fewer mistakes, and exceptional diagnoses [159, 160] . Some smartphone applications have been developed specifically in response to the pandemic's challenges associated with reopening, which will be covered in this section. Aarogya Setu [147, 148] is a contact tracing application for people to use on their smartphones to increase awareness of and fight against this virus. Aarogya Setu is designed for better communication between health service providers and people. In the application, the user will be asked if he or she has any symptoms of COVID-19 or has recently traveled internationally. Analyzing the input data from the users along with their tracking information, Aarogya Setu is able to notify the user if he or she has had contact with someone who is already or later becomes a confirmed case. Singapore launched an application called TraceTogether [71] to capture data using an encrypted ID from people who were in close contact with each other. The captured data will not be used until a close contact identification is established [149, 161] . This data includes the duration of the visit, and the social distance will be stored for 21 days for contact tracing purposes in the future. This contact tracing application was developed in Israel. Hamagen uses GPS technology to find out if the user has been in close contact with a person who tested positive for COVID-19. In this application, for the sake of privacy, personal data will not leave the smartphone until the user agree [72] . Coalition [73] uses IoT technology and the blockchain [162] [163] [164] [165] platform to provide a secure contact tracing approach. In this app, users are assigned with random IDs so that with the detection of any new cases, the users who were in close contact with those cases will be notified. BeAware Bahrain is a contact tracing application implemented in Bahrain that alerts people when they are approaching contaminated areas with a detected COVID-19 case or if they were in close contact with a confirmed case. Also, this application monitors the location of self-isolated cases for 14 days and allows users to leave quarantine areas for testing appointments, which means this app is also applicable for the second phase of this pandemic [74, 150] . This application monitors and captures any close proximity between its users. If one of the users' test is positive for COVID-19, eRouska will notify others regarding probable infection so they can take action regarding their health situation [75]. As of April 2020, the world had about 3.8 billion users on social media [166] . This number of users creates a great opportunity to implement telemedicine healthcare support using social media applications during this pandemic. One of the most popular applications is Whatsapp. This application provides the chance for patients to consult remotely with their physicians using virtual meetings, which will lead to decreasing hospital visits by patients. Using this method is applicable to all phases during the COVID-19 pandemic [167] . COVID-19 is considered both a global health crisis and an international economic threat. The restrictions put in place in response to the COVID-19 pandemic has had a devastating effect on many businesses, marketplaces, economics, society, and our lives. The full health, social, and economic consequences of this pandemic and its restrictions will take time to be fully recognized and quantified; however, there are many ongoing efforts in the research and industrial communities to utilize different technologies to detect, treat, and trace the virus to mitigate its impacts. Internet of Things (IoT) technology has shown promising results in early detection, quarantine time, and after recovery from COVID-19; however, as we learn more about the virus and its behavior, we should adjust and improve our approaches in different phases. For example, it would be interesting to integrate Artificial Intelligence (AI) and IoT technology in order to use AI power to minimize interactions between healthcare workers and patients in all phases. Another example is using touchless technology with the help of other inputs (such as gesture and voice) that could efficiently lower the spread of the disease and end the pandemic sooner [168] . Further research needs to be done on convincing confirmed cases of COVID-19 to remain in quarantine to mitigate the spread of the virus. Moreover, how can IoT devices help isolated patients efficiently in their daily lives. After lockdown, as businesses and marketplaces are opening gradually, how can IoT devices be incorporated in businesses to cover both safety and efficiency. Answers to those questions will attract considerable attention in both research and industrial disciplines and open new research avenues in this area. One of the main concerns about using IoT devices in different phases of this pandemic is the privacy issue when patients are asked to share their information. Definitely, this is a big concern for every patient, so defining secure channels for communications or utilizing different encryption techniques before sharing private information would be possible research areas. Having IoT-enabled Smart Cities can be extremely helpful in combating the current and any future pandemic through collaboration between medical centers, cities, etc. [169] . Along with aforementioned IoT applications, Allam et al. [170] emphasize the importance of the concept of Smart City networks while the world is struggling with the COVID-19 pandemic. Smart City infrastructure can help people maintain social distancing by the implementation of smart transportation systems including crowd monitoring, smart parking, and traffic re-routing [171] . As a part of smart living in the Smart City, smart home IoT-based technologies can also reduce the infection rate of COVID-19. For instance, smart home doorbells and security systems can be implemented to prevent users from touching surfaces, so there will not be any contamination of the virus from touching those surfaces [15, 172, 173] . While the world is struggling with the COVID-19 pandemic, many technologies have been implemented to fight against this disease. One of these technologies is the Internet of Things (IoT), which has been widely used in the healthcare industry. During the COVID-19 pandemic, this technology has shown very encouraging results dealing with this disease. For this paper, we conducted a survey on the recent proposed IoT devices aiming to assist healthcare workers and authorities during the COVID-19 pandemic. We reviewed the IoT-related technologies and their implementations in three phases, including "Early Diagnosis," "Quarantine Time," and "After Recovery." For each phase, we evaluated the role of IoT-enabled/linked technologies including wearables, drones, robots, IoT buttons, and smartphone applications in combating COVID-19. IoT technology can be extremely efficient for this pandemic, but it is also critical to consider the privacy of data. By implementing IoT technology properly in a secure way, more patients, with peace of mind, can participate in their treatment using IoT devices. As a result, authorities and healthcare workers can better respond to pandemics. Consequently, the impact of these types of diseases, including infections, hospitalizations, and death rate, can be significantly reduced. That 'internet of things' thing Intenet of things (IoT): definitions, challenges and recent research directions A survey on internet of things security: requirements, challenges, and solutions Internet of health things: toward intelligent vital signs monitoring in hospital wards The internet of things for health care: a comprehensive survey On the application of the internet of things in the field of medical and health care Advanced internet of things for personalised healthcare systems: a survey Scientists say the coronavirus is at least as deadly as the 1918 flu pandemic WHO (2020) Coronavirus disease CDC (2020) Quarantine if you might be sick Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Internet of things (IoT) applications to fight against COVID-19 pandemic Digital technology and COVID-19 Consistent detection of 2019 novel coronavirus in saliva Post-discharge surveillance and positive virus detection in two medical staff recovered from coronavirus disease 2019 (COVID-19) Unprecedented disruption of lives and work: health, distress and life satisfaction of working adults in China one month into the COVID-19 outbreak New technologies in predicting, preventing and controlling emerging infectious diseases The novel coronavirus originating in Wuhan, China: challenges for global health governance Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review Ab Hamid SH (2020) Defending against the novel coronavirus (COVID-19) outbreak: how can the internet of things (IoT) help to save the world Prevent the spread of COVID-19 if you are sick Can you get COVID-19 coronavirus twice? here is an update on reinfection Wearable technology Smart wearables market to generate $53bn hardware revenues by Wearable technology: if the tech fits, wear it A survey of the historical scope and current trends of wearable technology applications Healthcare spend in wearables to reach $60 billion by 2023, as monitoring devices & hearables become 'must haves' in delivering care Real-time detection of COVID-19 epicenters within the United States using a network of smart thermometers Current developments in wearable thermometers Novel COVID-19 detection and diagnosis system using IoT based smart helmet novel coronavirus disease (COVID-19): detection and diagnosis system using IoT based smart glasses IoT-Q-Band: a low cost internet of things based wearable band to detect and track absconding COVID-19 quarantine subjects Easyband: a wearable for safety-aware mobility during pandemic outbreak. IEEE Consumer Electronics Magazine 37. Contact tracing IoT solution Drones and possibilities of their using Remote piloted aerial vehicles: an anthology Drone (UAV) The internet of drone things (IoDT): future envision of smart drones Toward a novel design for coronavirus detection and diagnosis system using IoT based drone technology Design and development of a drone for spraying pesticides, fertilizers and disinfectants Medrone: on the use of a medical drone to heal a sensor network infected by a malicious epidemic An amateur drone surveillance system based on the cognitive internet of things Robots and drones are now used to fight COVID-19 Delhi civic body begins thermal screening people on balconies with drones Internet of robotic things: concept, technologies, and challenges Automated robot takes swabs for safe COVID-19 testing Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: an analysis of the state of the art and future vision Cobots v COVID: How universal robots and others are helping in the fight against coronavirus There's no cure for COVID-19 loneliness, but robots can help Internet of things buttons for real-time notifications in hospital operations: proposal for hospital implementation An internet of things buttons to measure and respond to restroom cleanliness in a hospital setting: descriptive study Mobile application (mobile app) Guideline-based approach for IoT home application development How many smartphones are in the world Smartphone: the ultimate IoT and IoE device. Smartphones from an Applied Research Perspective IoT-based mobile applications and their impact on user experience CyberPDF: smart and secure coordinate-based automated health PDF data batch extraction Chinese experts' consensus on the internet of things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19) COVID-19 smartphone testing kit Kelion L (2020) Coronavirus: Moscow rolls out patient-tracking app Selfie app' to keep track of quarantined poles Blockchain app used to track COVID-19 cases in Latin America Hong kong is using tracker wristbands to geofence people under coronavirus quarantine Israeli phone apps aim to track coronavirus, guard privacy IoT blockchain platform launches a COVID-19 contact tracing app Early detection is key to combating the spread of coronavirus 78. Definitions of symptoms for reportable illnesses How IoT sensors can help detect and control contagious diseases Evolution of wearable devices with real-time disease monitoring for personalized healthcare Wearable devices in medical internet of things: scientific research and commercially available devices Influenza-like illness levels Can smart thermometers track the spread of the coronavirus IoT offers a way to track COVID-19 via connected thermometers Using Google location history data to quantify fine-scale human mobility Police in China, Dubai, and Italy are using these surveillance helmets to scan people for COVID-19 fever as they walk past and it may be our future normal Chinese startup rokid pitches COVID-19 detection glasses in the us 89 Wearable technology in the time of COVID-19 Thermal AR glasses give screening for possible coronavirus a high-tech twist Vuzix M400 AR glasses add Onsight Cube thermal scanner for coronavirus Areas of academic research with the impact of COVID-19 A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, Blockchain, and 5G in managing its impact Pandemic drones to monitor pandemic drone' could detect virus symptoms like COVID-19 in crowds How drones are being used to combat COVID-19 Spain's military uses DJI agricultural drones to spray disinfectant in fight against COVID-19 3 ways china is using drones to fight coronavirus Zipline wants to bring medical drone delivery to u.s. to fight COVID-19 COVID-related drone delivery soars into Canadian first nation Cyient provides drone-based surveillance technology to support Telangana state police in implementing COVID-19 lockdown Drones to stop the COVID-19 epidemic Combating COVID-19-the role of robotics in managing public health and infectious diseases Intelligent care robot could detect COVID-19 symptoms in under 10 seconds Robots offer a contact-free way of getting swabbed for coronavirus Autonomous robots are helping kill coronavirus in hospitals Xenex lightstrike robot destroys SARS-CoV-2 (coronavirus) in 2 minutes China buys danish robots to fight coronavirus Keep healthcare workers safe: application of teleoperated robot in isolation ward for COVID-19 prevention and control Robots help combat COVID-19 in world, and maybe soon in india too PARO therapeutic robot Visionstate-Ships-First-IoT-Buttons-for-Rapid-Response-to-Cleaning-Alerts.html How IoT can help fight COVID-19 battle IoT set to play a growing role in COVID-19 response First IoT buttons shipped for rapid response to cleaning alerts IoT alert button finds new uses during coronavirus pandemic Combining point-of-care diagnostics and internet of medical things Mobiledetect bio BCC19 test kit Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak Smarter IoT apps developed for China's quarantine scenarios Artificial intelligence (AI) applications for COVID-19 pandemic Geofencing and background tracking -the next features in lbss Suppress and lift': Hong Kong and Singapore say they have a coronavirus strategy that works Judge OKs ankle monitors for virus scofflaws COVID-19: How corrections department officials can use electronic monitoring systems to reduce jail overcrowding and keep communities safe COVID-19: protecting health-care workers In fight against coronavirus, Ghana uses drones to speed up testing Drone technology-game changer to fight against COVID-19 Hospital ward run by robots to spare staff from catching virus Medical telerobotic systems: current status and future trends XDBOT set for COVID-19 cleaning duties in Singapore Martin health system unveils Xenex germ-zapping robot CDC (2020) Mental health and coping during COVID-19 Russians troll government COVID-19 app with 1-star ratings, harsh reviews Surrender everything moscow officials are launching an app to monitor coronavirus patients' compliance with home isolation. it requires access to geolocation, calls, and device settings Understanding face recognition Emerge and penta network support public COVID-19 response with civitas Indian government launches Aarogya Setu app to track coronavirus infections How to use Aarogya Setu app and find out if you have coronavirus symptoms United against COVID-19 Fighting against COVID-19 via privacy-first Bluetooth tracing Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings-social distancing measures Wearables enable distancing, contact tracing at work How can drones help in COVID-19 recovery and reopening COVID-19 & the potential rise of a surveillance state through the use of drones Boston dynamics' dog-like robot Spot is being used on coronavirus social distancing patrol Singapore is using a robotic dog to enforce proper social distancing during COVID-19 Boston dynamics spot robot dog reminds park visitors to maintain distance Internet of medical things (IOMT): applications, benefits and future challenges in healthcare domain Healthcare IoT: benefits, vulnerabilities and solutions Singapore introduces contact tracing app to slow coronavirus spread Blockchain applications for industry 4.0 and industrial IoT: A review An energy-efficient SDN controller architecture for IoT networks with blockchain-based security Blockchain-enabled authentication handover with efficient privacy protection in SDN-based 5g networks The future of blockchain technology in healthcare internet of things security Social media and telemedicine for oral diagnosis and counselling in the COVID-19 era Unleashing the power of disruptive and emerging technologies amid COVID 2019: a detailed review Responding to the COVID-19 pandemic -a collaboration framework for cities and solutions providers On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management Enabling and enforcing social distancing measures using smart city and its infrastructures: a COVID-19 use case Security and privacy in smart city applications: challenges and solutions 2020) I'm all in with voice in my smart home to reduce coronavirus and other illness potential