id author title date pages extension mime words sentences flesch summary cache txt cord-261530-vmsq5hhz Rodriguez, Jorge A mechanistic population balance model to evaluate the impact of interventions on infectious disease outbreaks: Case for COVID19 2020-04-07 .txt text/plain 8356 390 45 Key findings in our results indicate that (i) universal social isolation measures appear effective in reducing total fatalities only if they are strict and the number of daily social interactions is reduced to very low numbers; (ii) selective isolation of only the elderly (at higher fatality risk) appears almost as effective in reducing total fatalities but at a much lower economic damage; (iii) an increase in the number of critical care beds could save up to eight lives per extra bed in a million population with the current parameters used; (iv) the use of protective equipment (PPE) appears effective to dramatically reduce total fatalities when implemented extensively and in a high degree; (v) infection recognition through random testing of the population, accompanied by subsequent (self) isolation of infected aware individuals, can dramatically reduce the total fatalities but only if conducted extensively to almost the entire population and sustained over time; (vi) ending isolation measures while R0 values remain above 1.0 (with a safety factor) renders the isolation measures useless and total fatality numbers return to values as if nothing was ever done; (vii) ending the isolation measures for only the population under 60 y/o at R0 values still above 1.0 increases total fatalities but only around half as much as if isolation ends for everyone; (viii) a threshold value, equivalent to that for R0, appears to exist for the daily fatality rate at which to end isolation measures, this is significant as the fatality rate is (unlike R0) very accurately known. ./cache/cord-261530-vmsq5hhz.txt ./txt/cord-261530-vmsq5hhz.txt