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Gene extinction and allelic origins in complex genealogies

B y E l i z a b e t h  A. T h o m p s o n

Statistical L a b o r a t o r y ,Department of Pure Mathematics and Mathematical Statistics,
16 Mill Lane, Cambridge CB2 1 U.K.

With the increasing emphasis on data analysis in mathematical genetics, 
problems of parametrizing genealogical structure become of practical 
importance. A complete specification of the genetic effects of genealogical 
structure is provided by the probabilities of genetically distinct states of 
gene identity by descent. Although this provides a direct parametrization 
for the joint distribution of traits on a set of related individuals, it is an 
unwieldy tool in the analysis of large and complex genealogies. Prob
abilities of joint descent of founder genes and likely ancestries of alleles 
provide alternative characterizations of relationship and have direct 
application in practical problems. Jo in t extinction probabilities of founder 
genes can also be derived as ancestral likelihoods: evolutionarily, the most 
significant characteristic of a genealogical structure must be its effect on 
the survival and extinction of genes.

1. P o p u l a t i o n  s t r u c t u r e

Genetic variability is the basis of evolution, and much of the evolution of higher 
organisms, and especially of man, may have taken place within small isolated 
groups of individuals, within which short-term history may have had long-term 
consequences. An analysis of the structure of such groups is an im portant part of 
an understanding of the role of detailed genealogical history in the determination 
of current genetic distributions. Over the last few years the emphasis in m athe
matical genetics has moved from analyses of genetic models of evolutionary 
processes towards methods for the analysis of data, and thus towards more detailed 
descriptions of small-scale phenomena. In  a small population or population sample, 
it is the genealogical structure which provides the essential link between observable 
characteristics of individuals and genetic models for the determination of such 
observations.

I shall restrict discussion of population structure to the context of a single 
Mendelian autosomal locus. That is, for the particular characteristic of interest, 
the type of an individual is determined by the types of the two genes th a t he carries, 
one of which he received from his father and the other from his m other; to each 
of his offspring he will pass on a randomly chosen one of these two genes. A gene 
in an individual will refer to one of these two homologous genes, and a trait will 
be an observable characteristic of individuals determined by the unordered pair 
of types of these two genes. Of course, evolutionary processes involve very much 
more than the segregation of discrete Mendelian autosomal genes: but, whatever 
the ramifications of DNA sequences and complex multi-locus systems, it remains 
the fact th a t much of the normal variation observed within populations is of
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242 Elizabeth A. Thompson

F igure i . Genealogy used for the purposes of example throughout this paper. Males are denoted 
by squares and females by circles. Oblique strokes denote current and current carrier 
individuals (see table 1).

T able 1. Specification of the example genealogy of figure 1

individual mother father sex comment
i 0 0 1 founder
2 0 0 2 founder
3 0 0 1 founder
4 2 1 2 —

5 4 3 2 —
6 0 0 1 founder
7 0 0 2 founder
8 2 1 1 —

9 7 6 2 —

10 7 6 2 —
11 2 1 1 —

12 9 8 1 —

13 9 8 1 current
14 10 11 2 current carrier
15 10 11 1 current carrier
16 14 13 1 current carrier
17 0 0 1 founder
18 5 17 2 current
19 18 12 2 current

variants without marked selective effects, not closely linked to other markers, and 
segregating according to Mendel’s first law. Such traits are involved in many of 
the open questions of data analysis.

In principle, a genealogy is a graph with some special characteristics. Everyone 
has precisely two parents, and a specification of the parents of all individuals past
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and present is the genealogy (see figure 1 and table 1). In practice, only the parents 
of some limited set of individuals can be specified. Genealogical relationships are 
thus defined relative to some set of individuals with unspecified parents; the 
founders of the genealogy. These may be actual immigrants to an isolated 
population or they may be designated founders in a purely artificial sense. 
Although this specification of offspring-mother-father triplets is the genealogy, it 
is of little use as it stands. A useful parametrization of structure must relate to 
relevant genetic events, such as the survival or ancestry of certain genes, and 
methods of parametrization must provide methods of data analysis. As an example 
I shall use the small genealogy of figure 1, which shows useful complex features, 
but is still easily analysed. Six individuals are assumed to constitute the current 
population; three of them are supposed to carry a certain type of gene of interest 
(table 1).

2. G e n e  i d e n t i t y  b y  d e s c e n t

Specified genes in a set of individuals are said to be identical by descent if all are 
received by repeated segregation from a single gene in some common ancestor. In 
this paper, identity of genes will refer always to identity by descent rather than 
of type. The genes of n specified individuals may be considered as an ordered set 
of n unordered pairs of genes. The 2 ngenes fall into disjoint subsets, the genes 
within any subset being identical. However, many of the partitions of the 2 genes 
are genetically equivalent, due to the fact th a t the two genes within an individual 
act as an unordered pair in the determination of traits. By defining equivalence 
relations between partitions obtained from each other from interchanging the two 
genes of some subset of individuals, one obtains equivalence classes th a t are 
genetically distinct states of gene identity (Thompson 1974). The number of 
equivalence classes increases rapidly with n, although not as quickly as the number 
of partitions. For n =  6 there are 4213597 partitions in 198091 genetically distinct 
gene identity states.

For convenience of example and reference, consider here two summary statistics 
of the probabilities of gene identity states. The kinship coefficient, \}r, between two 
(not necessarily distinct) individuals Bx and is the probability th a t a gene 
randomly chosen from B1 is identical to a gene independently selected from 
The inbreeding coefficient of an individual is the kinship coefficient between his 
parents, or the probability th a t he is autozygous\ tha t is, th a t he carries two 
identical genes. If  the two parents of an individual share no ancestors (relative to 
the specified genealogy), the individual has zero probability of autozygosity. 
Between two such individuals there are only three possible states of gene iden tity : 
the individuals have i genes in common with probability kt, 0 , 1 , 2 
(k0 + k1 + k2 =  1). Their kinship coefficient is

B2) = \ k2(Bx, B2) + \  k1(B1, B2), (1)

for when the individuals have 1(2) gene(s) in common there is probability \  (|) tha t 
the gene chosen from each will be identical to each other. More generally, ^  is a 
linear combination of gene identity state probabilities.

Gene extinction and allelic origins 243
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The genealogy of individuals determines a probability of each of the possible 
states. The converse is not tru e ; state probabilities do not uniquely determine a 
genealogy. For example, uncle, half-sib and grandparent all have the same state 
probabilities (table 2). However, the genealogical relationship affects the joint 
probability distribution of observable genetic traits only through the state 
probabilities.

P(data | genealogy) =  X P(data | state) P(state|genealogy). (2)
states

Further, any probability statem ent about types of future joint descendants of the 
individuals is dependent on the ancestral genealogy only through these current

Table 2. P robabilities of gene  identity  states betw een  a pair  of

NON-INBRED RELATIVES

Elizabeth A. Thompson

kt = P(i genes in common)
&2 K K kinship, \]r

parent-offspring 0 l 0 1
4

full-sib 1
4

1
2

1
4

1
4

uncle, half-sib, grandparent 0 1
2

1
2

18
double-first-cousin X16 _6_

16
JL16 18

quadruple-half-first cousin X
32

M
32

17
32

18

Table 3. P robabilities of states of gene identity  by  descent for 
INDIVIDUALS 16 AND 19 OF FIGURE 1

210 x
probability

all four genes identical 1
both autozygous, with distinct genes 3
only 16 autozygous; 1 gene shared with 19 34
only 16 autozygous; 0 genes shared with 19 90
only 19 autozygous; 1 gene shared with 16 10
only 19 autozygous; 0 genes shared with 16 18
neither autozygous; 2 common genes 10
neither autozygous; 1 common gene (kx) 336
neither autozygous; 0 common genes 522

total 1024

state probabilities. In  this precise sense, the genetic consequences of genealogical 
relationship are summarized by the state probabilities th a t the genealogy 
determines.

Although directly related to tra it distributions, the set of gene identity state 
probabilities has two major disadvantages as a parametrization of a genealogy. 
Not only is there a large number of possible states, but the set of states of positive
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probability is not easily recognizable from the genealogy. Even between two 
individuals, each of whom may be autozygous, there are in general 9 states, and, 
for example, these all have positive probability for the two individuals 16 and 19 
of figure 1 (see table 3). On the other hand, only 1794 of the 198091 states between 
six individuals have non-zero probability for the six current individuals of 
figure 1. This can only be determined essentially by counting, and a set of 1794 
probabilities is in any case an unwieldy specification of their joint relationship.

The other disadvantage is more serious. Genealogical relationships cannot be 
characterized as probability distributions on the set of gene identity states, for not 
all distributions are attainable even in the limit. In general the true space of state 
probabilities is unknown. In the simplest case of relationships between two 
non-inbred individuals, Thompson (1976) has shown tha t

k\ ^  4&0&2. (3)

Further, given any specified dyadic-rational 1) satisfying (3) a
genealogy providing these ktcan be constructed. I t  is of interest th a t both 
restriction and construction derive from a consideration of the cross-parental 
kinship coefficients. Any dyadic-rational value in [0, 1] is attainable as a kinship 
coefficient between two individuals in some genealogical structure. Kinship co
efficients thus seem to provide a more natural parametrization of relationship. 
However, they are an insufficient summary of relationship: half-sibs, double- 
first-cousins and quadruple-half-first-cousins all have the same coefficient of 
kinship (table 2), but different &r values and hence different joint distributions of 
genetic traits.

Gene extinction and allelic origins 245

3. D e s c e n t  p r o b a b i l i t i e s

Despite their inadequacies, kinship coefficients are the one universally recognized 
summary of genealogical structure. They are also readily computed for they satisfy 
a simple recursive equation. Provided B x is not nor a direct ancestor of

t ( B x, B2) =  h m M 1, B2)}, (4)

where Mx and Fx are the parents of B x, since when a gene of Bx is randomly selected 
it is a gene of Mx (Fx) with probability |  (|). Further

xlr{Bx, B x) =  £{1 (5)

for the genes chosen ‘ with replacement ’ from Bx are the same gene with probability 
and are the two distinct genes of Bx (one from Mx and one from Fx) also with 

probability
Karigl (1981) has extended the definition of kinship coefficients to arbitrary 

numbers of genes. He defines xjr{Bx, B2. .. ) to be the probability tha t one gene 
chosen from each of the n individuals, Bx, B2.. .,Bn, (n >  1), are all identical. These 
generalized kinship coefficients satisfy generalizations of (4) and (5), and are related 
to probabilities of gene identity states by generalizations of (1). Since gene identity 
state probabilities are uniquely determined by a sufficient set of these generalized 
multiple kinships, the latter provide an equivalent parametrization of genealogical
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structure. This parametrization is less directly related to joint distributions of 
genetic traits (equation (2)), but is more closely related to the original genealogical 
specification in terms of individuals and their two parents, and to ancestry of genes.

Table 4. D escent probabilities from founder  genes to current

INDIVIDUALS

(The notation 1(2) denotes that both genes of individual 1 are included in set S, 6(1) that 1 gene 
of 6 is included, and so on. Probabilities are given as a pair, denoting i/2?.)

ancestral set, S current set

Elizabeth A. Thompson

{14,15,16,19} {14,15,16} {16,19} {16} {19}

{1(1)} 17,14 5,9 1,6 1,3 3,5
(6(1)} 3,12 5,9 3,8 1,3 1,4
{6(2)} 3,10 3,7 1,5 1,2 1,3
{6(1), 7(1)} 21,12 9,8 5,7 1,2 1,3
{6(1), 1(1)} 61,13 11,8 3,6 1,2 5,5
{6(1), 1(2)} 177,13 43,9 25,8 3,3 1,2

However, multiple kinships are rather strict in insisting on identity of all of a 
large number of genes, and rather loose in allowing identity to any ancestral gene. 
An alternative generalization is to define

d s ( B 1, B 2, . . . , B  1,

to be the probability th a t genes chosen from each of the n individuals are all 
descended from some gene in a specified set of founder genes S (not necessarily from
the same gene within this set). Provided B1 is distinct from individuals B2,__ , B n
(if any) and is not an ancestor of any of them, clearly

gs (Blt B „ . . . ,B n) =  (i) {gs (MvB„  ., B n) +  (6)

Further, if Bx =  . . .  = B r(1 <  r  ̂ n)is distinct from and not ancestral to any of
the other (n — r) individuals (not themselves necessarily distinct)

9s(Bi , B2, . . . ,  Bn) =  (!) r̂ ^{dsiBi, B r+1, . . . ,  B n)
+  (2(r-1) -  1)gs {Mx, Br+1, . . . , (7)

since the probability th a t the same gene is selected from Bx on each of r occasions 
is (|)(r_1), and if two different genes are selected they consist of a random gene from 
each of the parents Mx and Fx of Bx. (The functions are, like \Jr, symmetric in 
their arguments.) These probabilities may thus be computed readily for arbitarily 
specified founder sets S, gssatisfying simple boundary conditions where individuals 
Bt have genes specified to be in 8. Computationally, the number n is limited but 
the number of genes in 8  is not.

Thus we can compute probabilities th a t specified current genes descend from 
various ancestral sets, and, more important, the dependence between descent from 
certain ancestors to different current individuals. Consider, for example, the 
genealogy of figure 1. The joint descent probabilities to various of the current 
individuals from various ancestral sets are given in table 4. Note tha t descent of
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a given gene can only increase the probability of descent of the same gene to a 
relative, and only decrease the probability of descent of other genes. Joint descent 
to 16 and 19 from the couple (6, 7) has probability whereas the product of the 
separate probabilities is only On the other hand descent to 16 and 19 from (1,2) 
makes descent to 14 and 15 from (6, 7) less probable. In this small genealogy 
with only four generations interactions are small, but on a large and complex 
genealogy Thompson (1983) has shown joint descent probabilities more than 100 
times the product of separate values.

Gene extinction and allelic origins 247

4. Inferring ancestral types of genes

The descent probabilities of the previous section have direct practical application 
in inferring the ancestral origins of certain alleles (that is, genes of a certain type) 
in the current population. We shall denote the particular allele of interest by 
and a gene of any other type by a2. Suppose we have some number of individuals 
(Bx, Bn) known to carry ax, and consider a set S of hypothesized ancestral
copies of this allele. Then gs {Bx, B2, . .. ,Bis the probability th a t a randomly 
chosen gene in each of these current individuals derives from the ancestral set S, 
and comparing these probabilities for alternative sets 8  provides relative likelihoods 
of these sets as the ancestral allelic ax copies.

There are two major oversimplifications here. First, descent only to individuals 
carrying the ax allelle is considered. Any information on its non-descent to other 
individuals is not included. In figure 1 descent to the assumed carriers (14, 15 and 
16) is symmetric between couples (1, 2) and (6, 7) (see table 4) but the fact th a t 
18 and 19 are not carriers must make (6, 7) the more likely founder carriers. 
Further, analysis of descent only to carriers must bias the analysis towards the 
conclusion of more ancestral copies. Hypotheses involving different numbers of 
original copies are not comparable. Secondly, not only are data on current 
non-carriers disregarded, but also information on types of ancestors. For example, 
individuals carrying two copies of the ax allele may have decreased survival 
probabilities: often, traits of interest in large and complex genealogies are of this 
recessive type. Ancestors then have some reduced (perhaps even zero) probability 
of having carried two such alleles. In  a complex genealogy over many generations 
inclusion of this fact can alter inferences.

Against these disadvantages there are two advantages. Although for simplicity 
the genes of S were above specified as being genes of founders, in fact, provided 
S does not involve individuals who are ancestors of each other, they may be any 
ancestral genes. Hence descent of a particular allele may be traced down the 
genealogy, by hypothesizing ancestral sets S a t different generations. The second 
advantage is the ease of com putation: many alternative hypotheses may be very 
rapidly assessed. These advantages are apparent in a re-analysis of the data of 
Kidd et al. (1980) on the ancestry of propionic acidaemia in a Mennonite-Amish 
genealogy. The two disadvantages also apply, but not with strong force, since 
individuals with two copies of the allele can be without clinical symptoms, and 
few individuals among the ancestors have a 'priori high probability of carrying two 
genes identical by descent. Thompson (1983) shows th a t patterns of joint descent,
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jointly between current carrier parents of affected individuals and jointly between 
alternative founder carriers, are im portant in a quantitative assessment of the 
possible hypotheses.

If  the above is an oversimplified approximation, what is the full solution? 
Suppose that, for a given combination of types of original founder genes, one could 
compute the probability of the data  observed on current individuals of all types, 
under a given genetic model, perhaps involving information about varying

Table 5. P art of the ancestral likelihood for the pedigree  of figure 1
UNDER THE DATA OF TABLE 1

(Carriers are known to carry one ax gene, the other current individuals none. Founders 3 and 
17 are here taken as the most likely combination a2a2, and the marginal likelihood for the other 
two founder couples is tabulated, the full function being given by symmetry between the two 
members of each couple. Figures in brackets give the likelihood when no ancestor can have 
carried two a1 genes. The numbers each divided by 215 give the exact probability of data under 
the ancestral combination.)

248 Elizabeth A. Thompson

couple (1, 2)
x jUj axax x axa2

couple (6, 7) 
x a2a2 cl̂cl2 x cl-̂cl2 axa2 x a2a2 a2a2 x a2a2

a1a1 x a1a1 0 0 0 0 0 0
axax x axa2 0 60 160 250 560 1200

X Cb2Cb2 0 192 384 480 768 1152
axa2 x axa2 0 300 480 720 (240) 1140 (475) 2016 (560)
axa2 x a2a2 0 784 896 1330 (665) 1260 (1260) 1232 (1232)
a2a2x 0 1920 1536 2688 (896) 1408 (1408) 0 (0)

viability of types of ancestors. This would then be a likelihood for th a t combination 
of founder types. In principle this can be done, using the method of Cannings 
et al. (1978), the basis of which is the following. Define a cutset of individuals to be 
a set who together divide the genealogy. For present purposes it will be sufficient 
to consider cutsets dividing a current set of individuals from a set of ancestors 
including all the founders of the genealogy; for example, individuals {12, 13, 18, 
10, 11} in figure 1. If  the types of the genes carried by such a set of individuals 
are specified, genetic events in sets of individuals on different sides of the cutset 
are statistically independent. D ata on individual 4, for example, convey no 
information about the traits of 12 and 15, and vice versa. We then consider 
probabilities of data below a given cutset, conditional on each possible combination 
of types of genes in individuals in the cutset, and work sequentially back through 
the genealogy from one cutset to the next, incorporating parent-offspring segre
gation probabilities and any other information on traits of individuals of types of 
ancestral genes. Finally we obtain the probability of all data observed on the 
genealogy given each possible (ordered) combination of founder gene types, or 
simultaneously the likelihoods of every possible founder combination.

In  table 5 is shown part of the ancestral likelihood function for the example 
genealogy. Note th a t couple (6, 7) are indeed the more likely ancestral ax carriers, 
it being most likely th a t both members of the couple are so. Note also the ordering 
of the likelihoods, which may be unexpected a priori. The different orderings
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between rows and between columns show the necessity for joint inferences on the 
two couples, even in this small example. The effect of excluding possible cqaq 
ancestors is here to reduce the likelihood of x axa2 founder couples; not 
surprisingly, since the other ancestors of the current population consist mainly of 
offspring of these couples. In a larger genealogy the decreased likelihood of any 
such ancestral couples can have varied effects on inferences about original 
founders.

In  a large complex genealogy, this approach may not be computationally 
feasible. At each stage all possible combinations of types of genes for all members 
of the current cutset must be considered. Although it is sometimes possible to work 
sequentially through large genealogies of isolated populations with cutsets of no 
more than 9 or 10 individuals, this is not always feasible and determining the 
optimal cutset sequence is in general an unsolved problem. Further, the number 
of founders may be prohibitive. In  many cases it will be necessary to consider 
jointly only some subset of the founders, under some (probabilistic) assumptions 
about the types of the remainder. One population for which this can be done is 
the small isolated population of Tristan da Cunha, where eleven early founders 
contribute 80 % of current genes. Here Thompson (1978) has shown th a t inferences 
can be made about the joint types of genes in founders living before 1827. The 
multiple complex paths of relationship increase computational difficulty, but 
provide the information required. Such inferences are limited to simple genetic 
traits. Nonetheless, the power to make inferences about the types of genes seven 
generations ago indicates that, conversely, these types can affect current tra it 
distributions. This example of the Tristan da Cunha population is considered 
further below.

Gene extinction and allelic origins 249

5. G e n e  s u r v i v a l  a n d  g e n e  e x t i n c t i o n

This analysis of ancestry in terms of joint likelihoods on sets of founders leads 
to an alternative characterization of genealogical structure. For the essence of 
evolution in a population is gene survival: the number and variety of distinct 
surviving genes. So instead of ancestry let us consider gene survival, or equivalently 
extinction. Ju st as descent probabilities have interpretation as approximate 
ancestral likelihoods, so the complete ancestral likelihoods provide extinction 
probabilities. Consider a tra it for which there are just two alleles oq and and 
a specified combination of alleles among original founders. Then the probability 
of extinction of (at least) those founder genes labelled oq is the probability that, 
given the ancestral combination, the population now consists entirely of individuals 
with two a2 genes. But this is also the ancestral likelihood of the particular 
combination of ancestral oq and a2 genes, given this current population. Working 
backwards from a current population in which all individuals are assumed to carry 
two a2 genes, we can therefore compute simultaneously the extinction probabilities 
of all combinations of founder genes.

Again a joint analysis is important. Survival of the genes of a given founder 
over a specified genealogy decreases the survival probabilities of genes in other 
founder individuals who share descendants with the first. Particularly, therefore,
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survival decreases survival of spouse genes, and, indeed, survival of one gene in a 
founder decreases the survival probability of the other. Similarly extinction of 
some genes decreases extinction probabilities of o thers: some genes must survive 
in an extant population. The six individuals of figure 1 carry a t least three and 
at most nine distinct genes, although there are six founders to the genealogy. Not 
all four genes of either original couple can be extinct, nor both those of 17. Although 
there is little interaction between the two couples, since the population consists 
mainly of their grandchildren, survival of a gene of 3 decreases the probability of 
survival of all four genes of (1, 2) from to ŝ. Survival of both genes of 7 decreases 
the survival probability of both genes of 6 from to A- The extent to which 
survival or extinction of certain subsets of founder genes precludes survival or 
extinction of other disjoint subsets provides a measure of the structure of the 
genealogy with respect to the limited paths for descent of genes.

How many genes do survive in a small isolated population ? Questions about the 
exact numbers of genes are not precisely the same as those about the fate of (at 
least) a certain labelled set of genes. However, answers to the latter, which are 
provided by the ancestral likelihoods, can be transformed to provide the required 
probability distributions. To turn  finally to a real example again, the eleven early 
founders of the Tristan de Cunha population provided 22 potential genes, but not 
all can be present now. Thomas & Thompson (1983) have shown th a t with 
probability 0.994 between 10 and 18 genes survive, these being made up of between 
4 and 6 of the six genes in the three founder females and of between 6 and 13 of 
the sixteen genes in the eight founder males. Although interactions are generally 
small in this expanding population, survival of some founder genes does reduce 
survival probabilities for others; note th a t 6 (female genes) +  13 (male genes) >  18 
(total genes). Such analyses emphasize just how rapid the loss of variability can 
be in a small isolated population, and just how crucial certain segregations can 
be in determining the current genetic constitution.

250 Elizabeth A. Thompson
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Discussion

A. W. F. E dwards ( CaiusCollege, Cambridge University, U.K.). How does one 
prove th a t every dyadic ratio for a kinship coefficient corresponds to some 
genealogical relationship ?
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E lizabeth A. Thompson. The form of equations (4) and (5) shows th a t this must 
be so, and the fact has been known for a very long time. However, the nicest proof 
I know is a constructive demonstration given only recently by Dr G. Karigl. 
Expressing the required kinship coefficient as a binary expansion, the sequence of 
zeros and ones can be used to define an explicit sequence of outbreeding and 
backcrossing which produces the required result. Although such a genealogy is 
unlikely in human populations, this neatly proves the theoretical result.

At the meeting, Professor Felsenstein, Professor Hill, Professor Bodmer and 
Professor Kingman raised questions of complexity of genealogies, inaccuracies in 
genealogies, complex genetic models and the approximations it is then necessary 
to introduce into computations. In principle, the methods of obtaining ancestral 
likelihoods apply to arbitrarily complex genetic models on arbitrarily complex 
genealogies. In practice, there are of course computational limitations, although 
really quite complex situations can be considered. In  my paper I have covered what 
might be referred to as ‘ the theory of exact computations on genealogies ’. The next 
stage, which requires both theoretical and practical work, is a study of approximate 
computations. By how much are results altered by omitting apparently 
uninformative sections of genealogy ? How dependent are results on certain critical 
links in a genealogy, and how can we determine which they are? W hat is the 
expected gain in using linked loci to increase the power to make inferences ? How 
much is lost by having only phenotypic rather than genotypic data? Although 
some work has been done in this area, these remain im portant open questions.
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