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The analysis of hydrological basins requires information that is often not available or 

non-existent when the study areas are far from large urban centers. In the case of Bustillos 

Lagoon in the Mexican state of Chihuahua, hydrological information is limited, and government 

agencies do not share data with interested persons and research institutions. Given this barrier, 

this research contributes to filling information gaps concerning the geometry of the Bustillos 

Lagoon, evaporation, and morphometric parameters through the use of current technology in 

remote sensors, geographic information systems, and programming techniques that are used to 

extract, transform and process information. Chapter 2 deals with a new methodology that 
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generates a 3D model of the bottom of the lagoon, which uses high-precision GPS surveys, 

bathymetry, regional digital terrain models, and satellite image time series. The analysis using 

the Kappa coefficient demonstrates that the overall performance of the 3D model is more 

significant than 0.89, which means that the model has a very high level of agreement. The 

analysis also showed that at greater depth, the agreement between the coverage of the water 

surface of the model and the images is relatively low (0.89), and this is due to the spatial 

resolution of the satellite images and strip banding errors of Landsat ETM +. On the other hand, 

on the upper level, there is an agreement close to 0.99 of the Kappa coefficients. Chapter 3 

presents a performance comparison between the Regional Evapotranspiration Estimate Model 

(REEM) and the Earth Engine Evapotranspiration Flux (EEFlux) model, which are 

evapotranspiration models based on energy balances. These models can estimate the evaporation 

of water bodies. After applying statistical analysis, REEM performed better than EEFlux in 

quantifying the evaporation of the Bustillos Lagoon. Chapter 4 proposes an iterative algorithm to 

calculate morphometric variables (volume-area-height) using 3D models of water bodies. The 

implementation of the algorithm in the Python programming language showed that it is not 

necessary to develop complex equations that interrelate the morphometric variables, which by 

their nature, lead to more considerable uncertainty from the data source for their construction. 

This research document highlights the importance of cumulative multi-faceted knowledge to 

support and respond to regional water issues. 

 

 

Keywords: 3D model, topobathymetry, remote sensing, evaporation, iterative algorithm, 

lagoon geomorphometry
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Chapter 1 
 

Introduction 

The base of the economy of the Cuauhtemoc region in the Mexican state of Chihuahua is 

based on the apples, forage, and dairy products. In the early 20th century, one of the concerns of 

the Mexican government was the sparse population in the northwest, which was isolated after the 

Mexican Revolution in 1910, so the government implemented an immigration program to attract 

foreigners interested in agriculture. In March 1922, the Canadian Mennonite exodus began to 

populate the Cuauhtemoc region under the protection of Mexican government that offered: no 

conscription, no oath to the country, and no restrictions to exercise their religious principles. 

They would be allowed to create their schools with their teachers, and they would have an 

independent economic regime.  When this community arrived at Cuauhtemoc, they had to 

change the agriculture techniques to be able to plant; therefore, they studied the soils to choose 

which kind of crop they would apply. At that time, alfalfa, apple orchards, barley, beans, corn, 

cotton, oats, wheat, and other fruit trees were planted on the soil with more humidity;  the land 

with saline soils was utilized for grazing.  

Currently, most of the land with the best soil to plant, is owned by private, and ejidos 

own some of the reminder. The big private owners are Mennonites, and they have many financial 

resources to buy irrigation technology. On the other hand, many farmers are Mennonites and 

mestizos that have not yet modernized their cultivation techniques (75% of irrigation areas). 

These farmers still use flood irrigation since they arrived in the region; also, this type of 

irrigation is used to cover areas as long as 4,500 feet, causing loss of water by the hydrologic 
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wedge effect. These traditional irrigation methods, combined with the type of crops and intensive 

agricultural productivity employed in this region, have had a high impact on the static water table 

of the aquifer.  By 2000, the National Water Commission (CONAGUA) had forecasted that the 

water table would decrease by 15 - 20 meters (50 - 65 feet) by 2030 if the current conditions of 

recharge and extraction remain (Ibañez Hernandez, 2010). However, another study made by 

CONAGUA in 2004 indicated that the aquifer depletion was 2.4 meters per year. The first effect 

on the city was scheduled water shortages in the entire city, especially in lands at higher 

elevation. In order to cover the water demand, two public wells were extended 60 meters depth 

(197 feet) in 2014. 

Studies in recent years have demonstrated the rapid depletion of the Cuauhtemoc aquifer 

due to various factors that come together in this water resource: the massive amount of extracted 

water, the low aquifer recharge rates, several droughts, and the irrigation techniques. The 

extractions of water in the Cuauhtemoc basin are heterogeneous according to land use. Excessive 

use of water is associated with large agricultural areas distributed throughout the basin, and in 

some other areas, the aquifer level is likely stable. These variations are due to the different 

velocities of groundwater flows and physical soil conditions (Díaz Caravantes, Bravo Peña, 

Alatorre Cejudo, & Sánchez Flores, 2014). According to the groundwater balance of 

Cuauhtemoc basin published in the Official Journal of the Federation (DOF, 2015), the 

groundwater inflow is 51 Mm3, vertical recharge precipitation is 41.5 Mm3, water return from 

irrigation is 22.7 Mm3, and extraction is 311.2 Mm3. The official document indicates a yearly 

deficit of 196 Mm3 of water across the basin. 
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Moreover, technical data of the study area is almost non-existent, the government are 

opaque in how they generate the water information, and the information that exists is 

inconsistent. For instance, Ortiz and Amado (2001) cite a document from the National Water 

Commission in 1989 where the Bustillos Lagoon has an area of 200 km2, but Landsat 8 image 

(Nov 03, 2015) showed that the area of the waterbody is 117 km2. Amado et al. (2016) cited a 

portal web of CONAGUA where the basin of Bustillos Lagoon is 4,072 km2, but actually, the 

area is 3,259 km2. In some other official documents, government official only describe the 

physiography of the lagoon location (INEGI, 2003).  

Given this challenging panorama, the analysis of water balance in a region involves a 

complex interaction of natural and anthropogenic processes that affect the quality of groundwater 

and long-term availability. That is why in the next three chapters of this research, three factors 

that assist in planning and forecasting the future state of the regional aquifer are addressed: the 

storage capacity of the Bustillos Lagoon, the evaporation occurring in the Bustillos Lagoon, and 

techniques to estimate quickly and efficiently the geomorphological variables (volume, area, and 

depth) of this water body.  

Research location 

The enclosed basin of Bustillos Lagoon is in the municipality of Cuauhtemoc and 

situated in the central-west region of the state of  Chihuahua in the transition zone between the 

plateau and the mountains, with an area extent of 3,259 km2, as depicted in Figure 1. It is at 28º 

24' 18'' north, 106º 52' 00''  west, and an altitude of 2,063 meters above sea level. Cuauhtemoc 

municipality is bounded by the municipalities of Namiquipa to the north, Riva Palacio to the 
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east, Cusihuiriachi and Gran Morelos to the south, and Bachiniva and Guerrero to the west 

(Figure 1)(INEGI 2014). The climate is warm semi-dry since it is in a transition zone between 

the semi-humid climate of the mountains and the desert of Chihuahua (García 1964). The 

geology is composed of extrusive igneous rock: rhyolite-tuff acid (29.3%), basalt (16.6%), 

andesite (0.1%), and volcanoclastic. The plains are composed of conglomerate (40.8%) and 

sandstone-cluster (0.3%). The average annual temperature is between 12° C and 20° C. The 

average annual rainfall varies between 300 and 500 mm per year (INEGI 2010). 

 

Figure 1. Location of Cuauhtemoc Basin and Bustillos Lagoon (Source: Rojas Villalobos with 

data retrieved from Google Maps and National Institute of Statistics and Informatics – INEGI, 

2016). 
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Chapter 2  

 Topobathymetric 3D model reconstruction of shallow water bodies through remote 

sensing, GPS, and bathymetry 

 

Article submitted: January 6, 2018. Accepted: November 11, 2018. Journal: Tecnociencia 

Chihuahua. 

http://tecnociencia.uach.mx/numeros/v12n1/data/Topobathymetric_3D_model_reconstruction_L

aguna_de_Bustillos.pdf 

Abstract 

Since there are no mathematical models that can calculate the Laguna de Bustillos’ water 

storage levels, water balance requires this data to understand the connectivity between this water 

body and the Cuauhtemoc aquifer. This article presents a new three-dimensional reconstruction 

technique based on a time series of multispectral remote sensing images, bathymetry, a 

topographic survey with high precision GPS, and regional contours. With the images of Landsat 

ETM+/OLI and Sentinel 2A from 2012 to 2013, 2016, and 2017, the contours of the water 

surface were extracted using the MNDWI and were associated with an elevation received from 

GPS. An Autonomous Surface Vehicle was also used to obtain the bathymetry of the lake. A 

topographic survey was carried out using GPS in populated areas, and the contour lines extracted 

from the INEGI Continuous Elevations Model 3.0. A DEM was constructed using ArcGIS 

10.5.1, and surfaces and volumes were calculated at different elevations and compared with 16 

Landsat TM/ETM+/OLI multispectral images from 1999 to 2018. The results showed that the 

mean of the average intersection area between the test images and the area extracted from the 3D 

http://tecnociencia.uach.mx/numeros/v12n1/data/Topobathymetric_3D_model_reconstruction_Laguna_de_Bustillos.pdf
http://tecnociencia.uach.mx/numeros/v12n1/data/Topobathymetric_3D_model_reconstruction_Laguna_de_Bustillos.pdf
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model is above 90.9% according to the confidence interval, kappa overall accuracy 95.2–99.7%, 

and a coefficient 89.9–99.3%. This model proved to be very accurate on a regional scale when 

the water level exceeded 1971.32 meters above mean sea level and useful to evaluate and 

administer water resources.  

Introduction 

The Laguna de Bustillos is in a region that has a high demand for groundwater for the 

agricultural industry, making the Cuauhtemoc aquifer the largest over-exploited aquifer in 

northwest Mexico (Comisión Nacional del Agua, 2016). It is necessary to provide updated data 

to the water balance of the basin to improve water management in the region. Because there are 

no known mathematical models that calculate water storage, it is imperative to develop a new 

technique or method that allows us to estimate the water volume contained in water bodies. The 

calculation of water storage of shallow water bodies requires the construction of 3D models of 

the terrain including the surrounding areas. Integrating techniques based on sound, spectral 

analysis of satellite imagery, and GPS allow researchers to increase the accuracy of the existing 

3D models and expand them from the reservoir representation to a topobathymetric integrated 

model. 

Topobathymetry is a geospatial concept that integrates bathymetric and topographic data 

from different spatial scales, time, and sensors. The terrain model is applied to monitor coastal 

erosion, sea level rise, flood impact reduction programs, and coral barrier studies (Gesch et al., 

2016). Digital terrain models, topography, bathymetry, and the use of water body contours are 

essential sources for integrating this model. Some research tried to get 3D models, but only one 
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or two data sources were used in comparison with those applied in this research. The delimitation 

of water bodies is an indirect way of getting contour lines through differentiating the spectral 

response between the green band (G) and the bands near infra-red (NIR) or the infra-red short-

wave band (SWIR). The Normalized Difference Water Index (NDWI) (McFeeters, 1996) and the 

Modification of Normalized Difference Water Index (MNDWI) (Xu, 2006) have been used to 

monitor (Lu et al., 2013) changes in the extent of the lakes (Ma et al., 2007), and the location of 

water bodies (Rana and Neeru, 2017). Sonar is a technique that uses sound waves to calculate 

water depth (Knott and Hersey, 1957) and has advantages such as high accuracy (± 0.1 m), low 

cost, and the device can be mounted on any boat. Several types of research have used sound for 

mapping water bodies (McPherson et al., 2011; Popielarczyk and Templin, 2014; Giordano et 

al., 2015). Leon and Cohen (2012) modeled the volume of Lake Eyre in Australia using 

bathymetry and remote sensing. The authors used surveys realized in 1974 and 1976 with the 

precision of ± 0.3 m in the vertical component and up to ± 500 m in the horizontal component, 

which proved to be a very limited and inaccurate method.  

Water storage has two components: groundwater and surface water (lakes, ponds, or 

reservoirs) (Brooks et al., 2012). Some variations in water storage in the reservoirs are due to an 

underground hydraulic connection between aquifers and water bodies (Isiorho et al., 1996; 

Winter, 1999). These variations in the volume of water can be so drastic that large reservoirs dry 

up in a short time like Laguna de Bustillos had in years 2002 to 2006 and 2013 (NASA, 2017). 

Although there is a geohydrological study that supports recharge deficit in the aquifer, there is no 

information about the storage capacity of Laguna de Bustillos. The lack of information 
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encourages the main objective of this research to generate a new technique to generate a 3D 

topobathymetric model that contributes to the generation of updated data, which allows the 

deduction of variables, such as underground infiltration from the catchment area of Laguna de 

Bustillos. Despite these models of volumetric estimation of water bodies, the combination of 

more than two different topobathymetric measurement techniques had not been explored. This 

document proposes a unpublish new method integrating three methodologies to generate a more 

robust and accurate three-dimensional model. 

Materials and methods 

This study was conducted between 2016 and the first semester of 2018 in the Spatial 

Applications and Research Center at the New Mexico State University. The study area of Laguna 

de Bustillos is in the quadrant between the coordinates 28°38'51''N – 28°28'27''N and 

106°57'3''W – 106°38'50''W in the municipality of Cuauhtemoc, in the state of Chihuahua 

(Figure 2). 
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Figure 2. The study area of Laguna de Bustillos, Chihuahua. Source: Rojas Villalobos with data 

retrieved from LandsatLook Viewer (USGS, 2017a). 

This region’s climate is warm and semi-arid since it is in a transition zone between the 

semi-humid climate of the mountains and the Chihuahua desert (Kottek et al., 2006). The 

average annual temperature ranges from 6.9 to 21°C, with an average annual rainfall of about 

528 mm per year (Servicio Meteorológico Nacional, 2017). 

The authors designed a new four-stage method to develop a 3-D topobathymetric model 

for the purpose of determining water storage: i) extract contour lines through a time series of 

remote sensing; ii) determine bathymetry; iii) perform a topographic survey (GPS-RTK); and iv) 
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extract contours from the regional terrain digital model. Also, it was included a regression 

analysis in determining the two equations that provide the volume and surface area using water 

height. The flowchart below (Figure 3) shows the modeling process. 

 
Figure 3. Schematic of the workflow to generate the 3D model. Source: Rojas Villalobos with 

data retrieved from LandsatLook Viewer (USGS, 2017a). 

 

Bathymetry 

The New Mexico Water Resources Research Institute (WRRI) funded a project to build 

an Autonomous Surface Vehicle (ASV) to generate bathymetric data for shallow water bodies. A 

PVC center frame was attached to a two-hulled catamaran boat, propelled by two motors, and 

equipped with a GPS on the top to receive signals via satellite to provide the direction and 

location. An Ardupilot® system automated the catamaran navigation through an Arduino® 

MEGA 2560 board to receive the GPS signal while the sonar data bus decoded and recorded the 
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information on an SD card. Subsequently, the recorded points were downloaded to a computer 

for processing. The transducer was a Garmin® Intelliducer Thru-Hull NMEA-0183, which does 

not require the previous calibration and can measure from 60 cm to 200 m with a 0.1 m accuracy 

(Rojas-Villalobos, 2016). 

To construct a 3D model of the region including the bottom of the lake, the bathymetry 

data (depth) was transformed into topographic data (height). Figure 4 shows the schematic of the 

surveying process to transform to the correct topographic points. 

 
Figure 4. Components to calculate the height of the lake bottom above sea level. Source: Rojas 

Villalobos. 

 

The following equation ( 1 ) was developed to calculate the altitude above sea level for 

each bathymetric point: 
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 ( 1 ) 

Here, ABP is the height of the bathymetric point, ASNM is the altitude above sea level of 

the reference level, PS is the depth of the sonar, and PR is the recorded depth. The bathymetry 

consisted of 5 trajectories, and the data were adjusted through the above equation using the 

reference levels of the survey days. A GPS-RTK was used to establish the fixed reference point 

corresponding to the height of the lake contour and was linked to the bathymetry obtained that 

day. 

Contour extraction from remote sensors 

Since the spatial resolution of remote sensing is the most important factor for delineating 

the contours of water bodies, Landsat ETM +, Landsat OLI (Operational Land and Imager), and 

Sentinel 2A (Table 1) were chosen to build the MNDWI. 

Table 1. Collection of remote sensing data used in this article. 

Sensor Acquisition date Bands (µm) 
Spatial 

resolution (m) 

Landsat ETM+ 

(USGS, 2017a) 

19 May 2012; 4 June 2012; 

20 June 2012; 14 January 2013; 

6 February 2013; 22 February 
2013 

2 (Green 0.52-0.60) 

5 (SWIR-1 1.55-1.75) 

8 (Panchromatic) 

30 

30 

15 

Landsat OLI 

(USGS, 2017a) 

2 August 2013; 14 June 2016, 

29 August 2017; 5 September 
2017 

3 (Green 0.533-0.590) 

6 (SWIR1 1.566-1.651) 

8 (Panchromatic 0.503-
0.676) 

30 

30 

15 

Sentinel 2A 

(ESA, 2017) 

20 March 2017; 8 June 2017 

6 August 2017 

3 (Green 0.542-0.577) 

11 (SWIR1 1.568-1.658) 

10 

20 
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These images are available for free on the LandsatLook Viewer websites of the United 

States Geological Survey (USGS, 2017a) and the Copernicus Open Access Hub of the European 

Space Agency (ESA, 2017). Seven images were selected with the lowest possible cloudiness 

over the study area during the time the lake had gradually dried (March 2012 – August 2013). 

Also, six recent images were downloaded to establish the maximum lagoon extent and baseline 

curves for the bathymetry data (June 2016 – September 2017). Using the Semiautomatic 

Classification extension (Congedo, 2013) in QGIS®, atmospheric correction was applied to the 

images using the method of Subtraction of Dark Objects 1 (Chavez, 1996). Then, a fusion of 

images was performed with the panchromatic band (ETM + and OLI) using the Brovey 

transformation (Johnson et al., 2012) to increase the spatial resolution to 15 m before the 

MNDWI construction. 

The Normalized Difference Water Index (NDWI) was created to identify Landsat water 

bodies. The high relative reflectance of green (G) in the electromagnetic spectrum contrasts with 

the high absorption of the NIR in clear water (McFeeters, 1996). Excessive suspended matter in 

the water increases reflectance measurements in the NIR band (Ruddick et al., 2006), thus 

dramatically reducing the difference between the G-NIR bands, which makes it difficult to 

distinguish between water and non-water surfaces. Therefore, the NDWI method is not fit for 

Laguna de Bustillos due to the turbidity of water. The MNDWI suppresses this problem by 

replacing the NIR band with an infrared shortwave band (SWIR) because the water absorbs 

energy and the reflectance is low. The equation that determines the MNDWI (Xu, 2006) is: 
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( 2 ) 

Where G is the green band of the electromagnetic spectrum and SWIR is the short-wave 

band of the infrared spectrum. The possible MNDWI values are from -1 to 1. 

In ArcGIS®, the raster calculator was used to apply the MNDWI equation to Landsat and 

Sentinel images. According to the MNDWI method, positive values represent water and negative 

values the surface without water. Therefore, the resulting raster was reclassified by assigning 1 to 

those values greater than 0 and 0 to values less than or equal to 0. From the reclassified images, 

the contours were extracted and examined through visual interpretation. This procedure ensures 

that the extracted contours correspond to the edge of the lake using false infrared color 

composite images and avoids errors due to the influence of the vegetation. 

A failure of the SLC (Scan Line Corrector) introduced strips with missing data in the 

Landsat ETM+ images captured on May 31st, 2003 (USGS, 2017b). Due to this error in the 

sensor, only segments were vectorized corresponding to the edge of the water surface. 

An orthometric height was assigned to the contours using the closest ABP to the contour line 

(<0.5 meters). When there were no bathymetry points near the line, points were selected in a 

buffer of 1 to 2 m on each side of each contour. The contour took the mean height following the 

Classic Central Limit Theorem (Erdös and Rényi, 1959; Dowdy et al., 2011). According to this 

theorem, when the sample size increases, the average sample will approximate a normal 

distribution. This procedure reduces the uncertainty and variability of bathymetric data due to 



 

 

27 

 

boat sway and sonar accuracy (Krause and Menard, 1965; Eltert and Molyneux, 1972; Schmitt et 

al., 2008). 

Topography 

The GPS points were measured using two SOKKIA GRX2 GNSS devices with a 

horizontal accuracy of 5 mm and 10 mm on the vertical axis. A GPS was established as base at 

the coordinate 28°27'25.1532"N and 106°47'24.9432"O at the height of 2069.08 on the WGS 

ellipsoid of 1984. 1006 topographic points were collected and transformed to the Mexican 

Gravimetric Geoid 2010 (GGM10) to generate altitude above the mean sea level (INEGI, 2015). 

Digital elevation model 

A contour was extracted at every meter from the Mexican Elevation Continuation 3.0 

(CEM 3.0) of the National Institute of Statistics and Geography (INEGI, 2016). On September 

5th, 2017, the water level of the lake was 1975.56 m above sea level (masl). For this reason, 

contour lines below 1976 m were eliminated from the regional DEM.  

Topobathymetric 3D model and volume estimation 

An MDE with a spatial resolution of 2 m was created using the four sources of elevation 

data using the Topo-to-Raster tool contained in the 3D analysis module of ArcGIS. This tool 

allows the creation of hydrologically correct lifting meshes based on the ANUDEM program 

(Hutchinson et al., 2011). Since the triangulated irregular network (TIN) generates more accurate 

volumetric calculations (Mi et al., 2007; Hanjianga et al., 2008), the DEM was converted into a 

TIN. The volume and water surface were calculated from 1970.50 m to 1978.9 masl every 1 mm 

using the ArcGIS Polygon Volume tool. 
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Statistical Evaluation 

Since there is no previous model to evaluate the lake storage, 16 areas of water coverage 

of different scenes were extracted through remote sensing (RS) when the lake was drying (real 

area) ( 

Table 2). 

Table 2. List of multispectral images used to compare 3D model contours. 

Sensor Acquisition date Water surface (km2) 

Landsat TM (USGS, 2017a) June-25-1999 

May-26-2000 

June-11-2000 

March-17-2001 

April-02-2001 

Abril-27-2001 

November-24-2002 

September-15-2003 

December-21-2006 

99,585,900 

92,322,000 

90,583,200 

77,341,500 

70,556,400 

64,676,700 

41,630,400 

64,507,500 

109,260,000 

Landsat ETM+ (USGS, 2017a) January-27-2000 

May-05-2001 

August-28-2002 

104,792,438 

61,820,100 

68,073,300 

Landsat OLI (USGS, 2017a) May-01-2014 

June-02-2014 

August-28-2014 

October-08-2014 

87,509,700 

79,517,700 

109,547,000 

118,406,700 
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The area of each scene was used to extract the corresponding contour line from the 3D 

model and generate the area. Using ArcGIS, the intersection of the two layers was the area of a 

coincidence that was statistically evaluated (Figure 5).  

 
Figure 5. Demonstration of matching areas between water surface extracted from a multispectral 

satellite image and the 3D model at the same reference level. Source: Rojas Villalobos with data 

retrieved from LandsatLook Viewer (USGS, 2017a). 

Some Landsat ETM + and OLI images were replaced with recent Sentinel 2 images 

(early 2018) to distribute the extracted contours along the height through the 3D model ( 
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Table 3). This procedure is used to evaluate the model accuracy (reality vs. model). 

Table 3. List of multispectral images used to compare areas between reality and 3D model. 

Added images are identified with *. 

Sensor Acquisition date Water surface (km2) 

Landsat TM (USGS, 2017a) June-25-1999 

May-26-2000 

June-11-2000 

March-17-2001 

April-02-2001 

99,585,900 

92,322,000 

90,583,200 

77,341,500 

70,556,400 

Landsat ETM+ (USGS, 2017a) January-27-2000 

May-05-2001 

August-28-2002 

104,792,438 

61,820,100 

68,073,300 

Sentinel 2 (ESA, 2017) May-04-2016* 

July-23-2016* 

January-14-2018* 

April-04-2018* 

109,321,000 

105,033,000 

133,912,000 

131,504,000 

Because of the surface area changes according to the elevation of the water surface, it is 

not possible to evaluate the efficiency of the model directly. For this reason, the relationship 

between the coincidence surface and the reference area of the satellite image were used. 

The maximum possible relation between both areas is 100% because the level curves obtained 

from the 3D model are directly related to the waterbody contours. The water/non-water coverage 

maps of the model and the satellite images of each year ( 

Table 3) were analyzed using the Kappa statistic (K-hat) through QGIS (QGIS, 2018) and Semi-

Automated Classification Plugin (Congedo, 2013). The Kappa coefficient and overall accuracy 
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allows us to know the degree of agreement between the 3D model and the water body surface 

(Card, 1982; Jensen, 2007; Congalton and Green, 2008; Lillesand et al., 2014) . Also, the t-

statistical distribution was applied to find the lower limit of the 95% Confidence Interval and 

estimated the range of acceptable match surface values (from  

Table 2) according to the sample mean (Dowdy et al., 2011) ( 3 ). 

 

( 3 ) 

 

Where X is the mean of the sample, α is the level of significance, ν is the degrees of 

freedom (n -1), s is the standard deviation, and n is the sample size. 

Finally, two equations were generated representing the area of the water surface and the volume 

contained in the lake according to the elevation of the water surface. 

Results and discussion 

Figure 6 shows the sources of data used for the reconstruction of the topobathymetric 

model: 13 contours from remote sensors, 29,715 bathymetry points, 1,006 GPS points, and 

INEGI contours. 
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Figure 6. Map showing bathymetry, GPS points, derived curves from multispectral RS, and 

regional contours (INEGI). Source: Rojas Villalobos with data retrieved from LandsatLook 

Viewer (USGS, 2017a). 

As a result of the reconstruction data process, Figures 7 and 8 show the 3D 

topobathymetric model and a 3D perspective of the Laguna de Bustillos. The results show that 

the deepest point of the lake is at 1970.215 masl, the maximum depth is 3.785 m when the water 

level reaches the 1974 masl, the water storage is 324.4 Mm3, and the average depth is 1.37 m. 
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Figure 7. Triangulated Irregular Network is representing the topobathymetric 3D model of 

Laguna de Bustillos. Source: Rojas Villalobos. 

 
Figure 8. 3D perspective of Laguna de Bustillos (5 times height exaggeration for better 

visualization). Source: Rojas Villalobos with data retrieved from LandsatLook Viewer (USGS, 

2017a). 
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Since the Kappa statistic shows the difference between classified values of the satellite 

image (reference data) and the surface of water body generated by the 3D model, the coincidence 

is expected to be high. Typically, Kappa values greater than 0.80 represent a strong match 

between the compared data. The result of the comparison shows an overall accuracy higher than 

95.21% and the K-hat coefficients above 0.899. Table 4 shows the increase of the values of 

overall accuracy and the Kappa coefficient when the water level is higher.   

Table 4. Kappa coefficient values and overall accuracy between imagery (reality) and simulation 

(3D model). 

Date Sensor 
Surface 
(km2) 

Elevation 
(m) 

Depth 
Average (m) 

K-hat 
Overall 

Accuracy 
(%) 

25/06/1999 Landsat TM 99.59 1971.713 0.710 0.9627 98.150 

27/01/2000 Landsat ETM+ 104.86 1972.034 0.987 0.9669 98.383 

26/05/2000 Landsat TM 92.32 1971.460 0.501 0.9347 96.738 

11/06/2000 Landsat TM 90.58 1971.442 0.493 0.9316 96.582 

17/03/2001 Landsat TM 77.35 1971.284 0.409 0.9079 95.499 

02/04/2001 Landsat TM 70.56 1971.235 0.397 0.8993 95.212 

05/05/2001 Landsat ETM+ 61.82 1971.168 0.383 0.8993 95.480 

28/08/2002 Landsat ETM+ 68.07 1971.228 0.405 0.9289 96.669 

04/05/2016 Sentinel 2 109.32 1972.809 1.709 0.9939 99.710 

23/07/2016 Sentinel 2 105.03 1972.050 1.000 0.9883 99.430 

14/01/2018 Sentinel 2 133.91 1975.857 4.195 0.9787 99.171 

04/04/2018 Sentinel 2 131.55 1975.554 3.955 0.9687 98.750 
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It is observed that the values of elevation that are between 1971.168 and 1971.284 have a 

value of K-hat less than 0.9289 and are associated with water coverage less than 80 km2. When 

the water level rises above 1971.284 m, the Kappa indicator increases its value above 0.93, 

reaching levels of 0.99. Also, low K-hat values (0.8993 – 0.9289) are associated with low depth 

averages (<0.41 m) in contrast to those K-hat values above 0.96 that are in depth averages 

greater than 0.71 m. 

Conversely, with a confidence level of 95%, the mean of the percentage of matching 

areas between the satellite images and the 3D model is greater than 90.9% (Table 5). 

Table 5. Confidence Interval analysis for the percentage of the matching area between the three-

dimensional model and the sample images. 

Mean 0.934663471 Degree of freedom 15 

Standard Error 0.0145891 α 0.05 

Median 0.954318 t0.05,15 1.753 

Standard deviation 0.0583564 t0.05,15 Std. Error 0.025574712 

Simple variance 0.0034055 IC0.95: δ - t0.05,15 Std. Error 0.9090888 

Sample size 16 
 

Below the contour 1971.325 m, four of the six comparisons are below the lower limit of 

the confidence interval (Figure 9). 
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Figure 9. Graph showing the behavior of the intersection percentage between the surfaces of the 

3D model and the areas of RS images along elevation. 

The mean area intersected below the reference level is only 88.91%, while in the upper 

range, it is 97.01%. 

Two equations were generated that estimated the area of water coverage according to the 

depth of the lake. The first equation calculated the volume below the 1971.325 masl and the 

second equation calculated the remaining volume above it. Similarly, two other equations were 

generated estimating the amount of water in the lake. The determination coefficients (R2) for the 

estimated equations are greater than 0.9882; this indicates that the equations obtained are suitable 

for the topobathymetric model within the extent limits of the lake (Figure 10). 
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Figure 10. Graphs of the surface and volume equations adjusted to the 3D model. 

 

Conclusions 

Four different techniques, such as bathymetry, GPS-RTK points, and contour lines 

extracted from the remote sensors, were decisive in creating this new three-dimensional 

modeling methodology for water bodies. Its efficiency is demonstrated after the statistical 

analysis applied. According to the results obtained in the Kappa analysis and the confidence 

interval, the 3D model is a robust and precise model (Kappa>0.80).  

Three processes were important in the construction of the model: 

• The use of high precision GPS helped in fixing the reference height points of the contours 

of the most recent satellite images (2015 – 2018) with great precision and accuracy. 

• The bathymetric points linked to the current height of the water level of the lake were 

instrumental in establishing the height above sea level at the bottom of the lagoon. 

• The related height between the bathymetric points and the levels closest to the bottom of 

the lake was extracted from the satellite images (1999 – 2002). 



 

 

39 

 

Additionally, it was observed that the segments of the contours extracted from the Landsat 

ETM+ images with an error in the SLC (USGS, 2017b) influenced the relative low efficiency 

(0.8993 < Kappa <0.9079) of the model below 1971.325 masl. On the other hand, effectiveness 

in the top height ranges from 1971.5 to 1974 masl was as a result of the spatial resolution of the 

satellite images of Landsat OLI (15 m panchromatic) and Sentinel 2 (10 m) (Figure 11). 

 

 

Figure 11. RS time series contours. The dark contour delimits the outer areas with greater 3D 

model performance and the internal area with less accuracy. Source: Rojas Villalobos with data 

retrieved from LandsatLook Viewer (USGS, 2017a). 
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Although this 3D hydrological model is very robust to be used in the administration of 

water in the basin, special care must be taken in forecasting floods in rural-urban areas. The 

model simulates much of the flooded areas of Mennonite farmers, but the 3D model should not 

be used to prevent flood risks due to the topographic complexity with dams and ditches. 

In future work, researchers should continue the bathymetric survey with greater data 

density using a sonar with increased accuracy to further the model’s efficiency. The acquisition 

of more bathymetric data will allow replacing contours extracted from the oldest images such as 

Landsat ET and ETM +. Additionally, the photogrammetric triangulation could be of great 

benefit in urban and agricultural zones to delineate more accurate topography. This development 

is the first step to estimate the volume of water in the Laguna de Bustillos as this work produces 

estimates that approximate the actual values and such research is relevant to water management 

in the region. 
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Chapter 3  

Comparison of evaporation estimates from REEM and EEFlux models in a shallow water body. 

Case: Bustillos Lagoon, Chihuahua, Mexico. 

 

Article submitted: November 19, 2019. Status: In review. Journal: Tecnología y Ciencias 

del Agua (IMTA). 

Abstract 

Water body evaporation (E) within endorheic basins in semiarid areas is a critical factor 

for the determination of the water balance. Unfortunately, the Bustillos Lagoon has dried up 

completely six times during this century, and there are no records of the evaporation rate. 

Furthermore, accurate E measurements can provide valuable information for the sustainable 

management of water resources for protecting wild habitat in the face of climate change 

scenarios. Evaporation can be estimated, however, through methods as efficient as Penman using 

variables from agroclimatic stations, such as wind velocity, net radiation, relative humidity, and 

air temperature, which have a spatiotemporal variability. Within the evaporation models based 

on remote sensors (RS) is the surface energy balance model (SEB), which has been applied to 

different methodologies and extends the measurements of evapotranspiration (ET) at a regional 

level. SEB-based methodologies use physical principles with minimal weather data requirements 

to estimate ET. Hence, this article compares two methodologies that estimate evaporation using 

RS: The Regional Evapotranspiration Estimate Model (REEM) and the  Earth Engine 

Evapotranspiration Flux (EEFlux). The comparison of ET measurements obtained from REEM 

and EEFlux for seven Landsat OLI scenes in the agriculture cycle of April to September applied 
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against to the simplified Penman equation showed that the REEM performed better (d=94%) 

than the EEFlux (d=68%) for the indicated period. Although the comparison of REEM and 

EEFlux shows accurate E measurements (REEM), gridded weather data (EEFlux) need to be 

improved by increasing the scale using local information. 

Introduction 

The Bustillos Lagoon is the largest water body (~100 km2) in the Cuauhtemoc Valley (in 

Chihuahua, Mexico), which is in an endorheic basin (3,302 km2).The climate is semiarid, and 

agriculture is intensive. High competition for water resources among stakeholders (Díaz 

Caravantes, Bravo Peña, Alatorre Cejudo, & Sánchez Flores, 2014) has exerted high pressure on 

the aquifer. According to Mexican authorities, this phenomenon has caused the aquifer to be 

overexploited (Diario Oficial de la Federación, 2015). For this reason, farmers have made dams 

and ditches to divert and retain a small part of the tributary flows before they reach the Bustillos 

Lagoon. These practices, however, limit the source of water that supplies it. The Bustillos 

Lagoon, like any water body, is essential for its thermoregulatory climate function in the region 

as it absorbs heat fluxes and releases moisture (Rooney & Bornemann, 2013; Subin, Murphy, Li, 

Bonfils, & Riley, 2012). In addition, it is ecologically important as a resting place for migratory 

waterbirds (Mireles & Mellink, 2017). Aquatic systems in semiarid areas are susceptible to 

drastic variations in water levels, which affects the aquatic life (Amado-Álvarez, Pérez Cutillas, 

Ramírez Valle, & Alarcón Cabañero, 2016) that feeds waterbirds. If water resources are not 

correctly managed, regional sustainability will be jeopardized, causing the desiccation of water 

bodies such as the Aral Sea between Kazakhstan and Uzbekistan (Gross, 2017), Lake Chad in 
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the borders of Niger, Nigeria, Cameroon and Chad (Okpara, Stringer, Dougill, & Bila, 2015) and 

Lake Urmia in Iran (AghaKouchak et al., 2015). These water bodies are drying up  because of 

the diversion of tributary rivers to agricultural fields, droughts, and upstream competition for 

water.  Evaporation data of the lagoon are required to establish administrative water resource 

policies to avoid catastrophic scenarios and to conserve the water balance in the Cuauhtemoc 

Basin  

Evapotranspiration (ET) is a process that combines the evaporation of water surfaces, the 

evaporation of soil moisture, and the transpiration of vegetation (Erickson et al., 2008). 

Evaporation is part of ET, which is governed by aerodynamic and energy equations (Penman, 

1948). Under this approach, it is possible to estimate the evaporation of a water body through the 

calculation of ET using remote sensing techniques. The most effective (and costly) techniques 

for measuring evapotranspiration are lysimeters or eddy covariance flux stations (Hirschi, 

Michel, Lehner, & Seneviratne, 2017), which do not exist in the study area. Because of this 

situation, it is necessary to explore emerging alternative methodologies for measuring ET. 

Rohwer (1931) developed evaporation coefficients (Kpan) for the evaporation pan method (U.S. 

Class A pan) for each month of the year. The problem with this approach is that the method used 

lakes in the state of Colorado as research sites. These sites contained clear water, and the 

physical aspects of the metal pan container affected evaporation measurements (Fu, Charles, & 

Yu, 2009; Rayner, 2007). In addition, a pan coefficient is a function of depth and surface area of 

the lake that  is being estimated. The Bustillos Lagoon has particular characteristics that make it 

different from other lagoons and lakes. For example, in addition to being a shallow lagoon, 
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turbidity is high, caused by the content of suspended material (Álvarez, Cutillas, Valle, & 

Cabañero, 2016; Amado-Alvarez et al., 2019). Radiation flux from the sun penetrates deeply into 

the water column in clear water conditions, absorbing energy (Smith & Tyler, 1967). Under 

conditions of turbidity and low depth (<3 m) (Rojas-Villalobos, Alatorre-Cejudo, Stringman, 

Samani, & Brown, 2018), solar radiation is scattered by suspended particles on the surface layer. 

Therefore, the water temperature is increased, resulting in more evaporation (Kirk, 1985). Under 

these conditions, it is not possible to apply pan evaporation coefficients,  since the physical 

characteristics change in each lake or lagoon. 

The methods for calculating evaporation can be classified into those based on: daytime 

air temperature range such as that of Papadakis (Papadakis, 1965); air temperature and day 

length such as Hamon (Hamon, 1960), and Blaney-Criddle (Blaney & Criddle, 1957); solar 

radiation and air temperature such as Jensen-Haise (Jensen & Haise, 1963), Makkink (Makkink, 

1957), and Stephens-Stewart (Stephens & Stewart, 1963); heat flux and water vapor flux 

(combination) such as Priestley-Taylor (Priestley & Taylor, 1972), De Bruin-Keijman (De Bruin 

& Keijman, 1979),  Penman (Penman, 1948), Brutsaert-Stricker (Brutsaert & Stricker, 1979), 

and De Bruin (De Bruin, 1978). Although these methods can offer good evaporation 

approximations, estimates are local at the point of the reference weather station.  

Given this limitation, remote sensing (RS) techniques expand measurements to the 

regional scale in a cost-effective way. There are different satellite-based methods established on 

physical relationships and theoretical foundations. Zhang, Kimball, & Running (2016) classified 

ET retrieval methods in eight groups: i) Penman-Monteith (PM) (Cleugh, Leuning, Mu, & 
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Running, 2007; Li et al., 2017); ii) Priestley-Taylor (PT) (Martínez Pérez, García-Galiano, 

Martin-Gorriz, & Baille, 2017); iii) water-carbon linkage (WCL)(Fisher et al., 2018); iv) water 

balance (WB) (Reitz, Senay, & Sanford, 2017); v) maximum entropy production (MEP)(H. 

Wang, Tetzlaff, & Soulsby, 2017); vi) surface energy balance (SEB)(Senkondo, Munishi, 

Tumbo, Nobert, & Lyon, 2019); vii) Ts-VI space (TVI) (Zhu, Jia, & Lv, 2019); and viii) 

empirical and other methods (EO).  

Each physical-theoretical basis reported by these groups has advantages and restrictions. 

For instance, PM models have a robust physical base, but on the other hand, the forcing of 

meteorological variables induces and propagates uncertainty in the evaporation estimate. The 

simplified PM model is the theoretical basis of PT as a primary governing equation by adding 

semiempirical equations. The estimations of the water-carbon linkage method use the advantages 

of carbon processes, which increases uncertainty in carbon fluxes caused by forcing 

climatological data. The theory of nonequilibrium thermodynamics is the basis of the MEP 

model, which requires few enforced climatological variables but requires continuous surface 

temperature measurements. The SEB models require minimum local weather data and RS, but 

they are susceptible to temperature deviations and need clear-sky conditions. TVI models have 

low-temperature sensitivity but require clear-sky conditions, and they oversimplify TVI space 

relationships. A weak theoretical base of empirical models does not make them a robust option 

for application in water management policies.  

Within the SEB classification, there are two methodologies with a strong physical-

theoretical bases: the regional evapotranspiration estimate model (REEM) (Hewitt, Fernald, & 



 

 

49 

 

Samani, 2018; Kıvrak, Bawazir, Samani, Steele, & Sönmez, 2019; A. Samani & Bawazir, 2015; 

Z. Samani, Bawazir, Bleiweiss, et al., 2007; Z. Samani, Skaggs, & Bleiweiss, 2005) and the 

Earth Engine Evapotranspiration Flux (EEFlux) (Allen et al., 2015; Ayyad, Al Zayed, Ha, & 

Ribbe, 2019), which is a version of mapping evapotranspiration at high resolution with 

internalized calibration (METRIC) (Allen, Tasumi, & Trezza, 2007; Allen, Tasumi, Trezza, et 

al., 2007). REEM and METRIC use the same physical basis of Surface Energy Balance 

Algorithms for Land (SEBAL) (Bastiaanssen, Menenti, Feddes, & Holtslag, 1998; Bastiaanssen, 

Pelgrum, et al., 1998) but with some differences in sensible heat flux (H) estimation and net 

radiation (Rn).  

EEFlux is an integration of the METRIC model in the Google Earth Engine platform, 

which uses Landsat satellite images, NLDAS and CFSv2 gridded weather data (the United States 

and rest of the world, respectively) for calibrating the METRIC model (Allen, Tasumi, & Trezza, 

2007; Allen, Tasumi, Trezza, et al., 2007; Irmak et al., 2012). Also, remote sensors can estimate 

the evaporation of water bodies through the relationship with the reference evapotranspiration of 

agroclimatological stations and thus have the basis for establishing policies about consumptive 

water use. Because of the particular semiarid climatic conditions of the Cuauhtemoc Valley, as 

well as the turbidity and shallowness of the Bustillos Lagoon, the objective of this paper is to 

examine the effectiveness and performance of two evapotranspiration models based on remote 

sensors (REEM and EEFlux) against the simplified Penman (S-Penman) equation (Valiantzas, 

2006)(derived from the Penman equation) to estimate the E of this water body. 
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Background 

Reference evapotranspiration model 

A well-known proven method for estimating evaporation from a free water surface is the 

Penman (Penman, 1948) equation, which is widely used around the world (Bozorgi, Bozorg-

Haddad, Sima, & Loáiciga, 2018; Cabrera, Anache, Youlton, & Wendland, 2016; B. Wang, Ma, 

Ma, Su, & Dong, 2019). This research used a simplified version of the Penman (S-Penman) 

equation, which uses standard climatological records, such as solar radiation, air temperature, 

relative humidity, and wind speed at a 2-m height above the ground surface (Valiantzas, 2006), 

as noted below: 

 
(1) 

 

where E is the evaporation (mm d-1), α is albedo (0.08 for water), Rs is the solar radiation data 

estimated from measured daytime hours (MJ m-2 d-1), T is the mean air temperature (ºC), Ra is 

the extraterrestrial solar radiation (MJ m-2 d-1), RH is the mean relative humidity (%), au is equal 

to 1 when the wind function is used from the original Penman equation(1948), and u is the 

average wind velocity (m s-1). 

Brief description of remote sensing models 

The surface energy balance equation (Bastiaanssen, Menenti, et al., 1998; Bastiaanssen, 

Pelgrum, et al., 1998) is the foundation of ET models based on remote sensors such as REEM 

(Samani et al., 2007; Samani, Bawazir, Bleiweiss, Skaggs, & Schmugge, 2006) and EEFlux 

(Allen et al., 2015; Allen, Tasumi, & Trezza, 2007), which determines the latent heat flux that 
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represents the residual of the surface equation of energy used in the process of 

evapotranspiration. The equation can be expressed as 

 (2) 

 

where LE is the latent heat flux of vaporization, Rn is the net radiation at the surface, G is the 

soil heat flux, and H is the sensible heat flux into the air. For REEM, the units of the surface 

energy balance equation are in MJ m-2 day-1), while EEFlux uses Wm-2. The different 

components of the equation can be solved separately through energy flux models. Below are the 

fundamental descriptions of the REEM, METRIC, and EEFlux models and their main features. 

REEM  

Samani and other researchers developed a methodology to calculate Rn (Z. Samani, 

Bawazir, Skaggs, et al., 2007; Z. Samani, Bawazir, Bleiweiss, et al., 2007): 

 
(3) 

 

where Rn is the daily net radiation (MJ m-2 day-1), Rni is the instantaneous clear sky net radiation 

(W m-2), Rs the daily shortwave solar radiation (MJ m-2 day-1), Rsi the instantaneous shortwave 

solar radiation (W m-2), Ta is the mean daily temperature (°K), and Ti is the instantaneous air 

temperature (°K). The instantaneous net radiation is the difference between incoming and 

outgoing fluxes and is estimated (Bastiaanssen, 1995) as 
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 (4) 

where Rni is the instantaneous net radiation (W m-2), α the surface albedo (nondimensional), Rsi 

is the instantaneous incoming shortwave radiation (W m-2), RL↓ is the instantaneous incoming 

longwave radiation (W m-2), RL↑ is the instantaneous outgoing longwave radiation (W m-2), and 

ε0 is the surface emissivity (nondimensional). The detailed process to obtain Rni is outlined by 

Samani et al. (2007b). 

The instantaneous soil heat flux (Gi) was calculated at the time when the satellite 

overpassed the study site using a normalized difference vegetation index (NDVI) (Z. Samani, 

Sammis, Skaggs, Alkhatiri, & Deras, 2005) by the next equation:  

 
(5) 

 

The aerodynamic equation (Bastiaanssen, 1995) and the Monin–Obukhov similarity 

theory (Monin & Obukhov, 1954) were combined to estimate instantaneous sensible heat flux. 

The aerodynamic equation is expressed as 

 
(6) 

 

where ρa is the air density (kg m-3), Cp is the specific heat of air (1,004 J (kg -1 K-1)), T0 is the 

aerodynamic surface temperature (°K), Ta is the air temperature (°K), rah is the aerodynamic 

surface resistance, and dT is the air temperature gradient calculated through a Bastiaanssen 

(2005) equation. Moreover, dT needs a and b constants for a calibration, for which they were 
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empirically computed by selecting two pixels called “hot and cold pixels” taken from the image. 

These pixels represent extreme conditions: one of aridity (latent heat flux close to zero for dry 

soil) and the other of humidity (sensible heat flux close to zero for well-irrigated crop), 

respectively. The Hi equation was used to calculate dT. The cold pixel took the sensible heat 

value. Because there is no ET on dry bare soil, instantaneous latent heat was set to zero, and Rni 

and Gi could be calculated. The hot pixel was estimated as the Hi value by calculating the 

residual of the energy balance: 

 (7) 

The ground surface wind speed data (2 m) was extrapolated to 200 m, and an iterative 

stability correction model based on the Monin–Obukhov similarity theory was used to estimate 

the aerodynamic resistance (rah) (Allen, Tasumi, & Trezza, 2007; Bastiaanssen, 1995) for each 

pixel. 

The Hi and dT were calculated for each pixel after calibration constants were estimated. 

The Gi and Rni were calculated at the time of  the satellite overpass for the study area. The 

detailed process for obtaining the ET is outlined by Samani et al. (2006, 2007a, 2007b). 

METRIC 

The net radiation (Rn) is the balance of all outgoing radiant fluxes and all incoming 

radiant fluxes, including solar radiation and radiation in the thermal band. METRIC uses the 

same Rn equation as the REEM:  

 (8) 
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where the net radiation is in W m-2, RS is the incoming solar radiation (W m-2), α is the albedo of 

surface (nondimensional), RL↓ is the incoming longwave radiation (W m-2), RL↑ is the outgoing 

longwave radiation (W m-2), and ε0 is the thermal emissivity of  the surface (nondimensional).  

METRIC uses the same algorithms to compute Rn as the  REEM. The process to 

determine Rn is detailed by Allen et al. (2007a, 2007b). 

In METRIC, G is estimated by the following equations defined by Tasumi et al. (2003), 

which depend on the net radiation and the leaf area index (LAI) vegetation: 

 
(9) 

 
(10) 

 

where Ts is the temperature on the near surface (°K). 

In addition, “cold” and “hot” pixels are used in METRIC, which employs the same 

algorithm to calculate H in Eq. 5 but with differences in pixel selection. Because surface wetness 

has higher values than other surrounding vegetation crops, the cold pixel assumes 1.05 times 

ETref, which is calculated from the standardized ASCE Penman-Monteith equation (ASCE–

EWRI, 2005). As in REEM, the hot pixel is anchored to a dry agricultural surface free of 

vegetation, which assumes that latent heat flux is equal to 0. A detailed process can be found in 

Allen et al. (2007a, 2007b). 
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EEFlux 

The algorithms used in METRIC were adapted to the EEFlux using JavaScript and 

Python APIs to compute the ET automatically. While METRIC uses a weather station to 

calibrate the model at the runtime, the EEFlux uses gridded weather data sets from external 

sources to estimate at-surface reflectance, autocalibration, and the daily soil-water evaporation 

process. These sources are the NLDAS (with a 12-km grid size), the GridMET, and Daymet data 

sets for the United States. Furthermore, CFSv2 (with a 10-km grid size) provides gridded 

weather data for the rest of the world. Irmak et al. (2012) and Allen et al. (2015) outlined the 

implementation of the METRIC equations in EEFlux. 

Material and methods 

The processes that integrate the methodology for comparing the performance of REEM 

and EEFlux with the S-Penman are noted below in Figure 12:  
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Figure 12. Schematic flow chart of the process of comparing the REEM and EEFlux models to 

obtain E estimations of water bodies by comparing the S-Penman equation. Source: Rojas 

Villalobos. 

 

Study area 

This study was conducted during the agricultural cycle from April 2017 to September 

2017 in the Cuauhtemoc Valley. The Bustillos Lagoon is a shallow  endorheic freshwater body 

in the municipality of Cuauhtemoc, in the Mexican state of Chihuahua. The lagoon is in latitude 

28°33’59.36” N and longitude 106°46’7.33” W. The lagoon has an approximately oval shape, of 

which the major axis is 17 km, and the minor is 8 kilometers with an average depth of 1.7 m. In 

addition, the area can fluctuate to around 100 km2 (Figure 13)(Rojas-Villalobos et al., 2018). 

Currently (August 2019), the surface of Bustillos Lake is 116.7 km2; moreover, it stores 312.7 
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hm3 and has an average depth of 2.68 m. The turbidity of the lagoon water is closely related to 

the shallow depth and high concentrations of sediment carried by the tributaries. Additionally, 

surface water erosion in the region is mainly due to extensive agriculture, sparse riparian 

vegetation, and the deforestation of the slopes of the mountain ranges that delimit the basin 

(Álvarez et al., 2016; Amado-Alvarez et al., 2019). 

 

Figure 13. Location of the Bustillos Lagoon and the agro-meteorological station. Source: Rojas 

Villalobos with data retrieved from INEGI (2019). 
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Agro-meteorological data 

An agroclimatic station, ADCON™, located 4.5 kilometers west of the Bustillos Lagoon 

at 28°34'11.5"N, 106°54'29.4"W and 2004 m.a.s.l provided hourly meteorological data that 

REEM required to calculate the ET for each date from downloaded Landsat 8 OLI satellite 

images. In addition, the agroclimatic station provided data for computing E by using the 

standardized S-Penman equation (Valiantzas, 2006) through TR1 Combi sensors for temperature 

and relative humidity, as well as pyranometers (SP Lite and CMP3), and wind speed. 

Landsat 8 OLI selection 

Seven Landsat 8 OLI images (Table 6), from two different Paths were chosen for 

continuity in the temporal and geographical space between the beginning (April) and the end 

(September) of the agricultural cycle in the Cuauhtemoc Basin. Additionally, the images met no 

cloud criteria (clear-sky) in the study area. For this reason, the intersection strip between Path 32 

and Path 33 was used to estimate the ET.  

Table 6.  Landsat 8 OLI imagery used to estimate ETa through REEM and EEFlux. Source: 

USGS (2019). 

Date DOY 
Overpass time 

(local time) 
Scene 

07-04-2017 97 10:33:49 LC80320402017097LGN00 

23-04-2017 113 10:33:40 LC80320402017113LGN00 

30-04-2017 120 10:39:46 LC80330402017120LGN00 

09-05-2017 129 10:33:40 LC80320402017129LGN00 

16-05-2017 136 10:39:56 LC80330402017136LGN00 

17-06-2017 168 10:40:12 LC80330402017168LGN00 

14-09-2017 257 10:34:24 LC80320402017257LGN00 
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REEM and EEFlux raster 

The satellite images were radiometrically calibrated and atmospherically corrected using 

the ENVI® software through the Fast Line-of-sight Atmospheric Analysis of Hypercubes 

(FLAASH™) tool. Once the satellite images were processed for obtaining the ETa through the 

REEM, the ETa layers of the EEFlux model were downloaded from the web portal (http://eeflux-

level1.appspot.com/). 

Lagoon delineation 

The sampling was carried out through a lagoon polygon that was created using the 

Modified Normalized Difference Water index (MNDWI), which discretizes the water surface 

from the rest of the image (Xu, 2006). The outline of the polygon of the lagoon was adjusted by 

50 meters to reduce water detection errors on the shore caused by expanding and contracting 

throughout the agricultural cycle.  

Statistical evaluation 

Statistical comparison was performed using the relationship between the observed values 

(Oi)(S-PENMAN) and the estimated or predicted values (Pi) (REEM and EEFlux). A set of 

statistical indicators were applied to evaluate the performance of each model. A linear regression 

analysis (y=ax+b) was applied to obtain the (a) slopes and (b) intercept variables; moreover, a 

residual analysis was performed to see if there were atypical values that affect the models. 

According to Chai and Draxler (2014), it is a good practice to include mean absolute error 

(MAE) and root mean square error (RMSE), because they are indicators that integrate the main 

differences between observed and estimated values. The variance (Sd2) was calculated to know 
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how much difference there was between observed and predicted values. The mean bias error 

(MBE) was included to find if there was a systematic error. The consistent error between the 

distance of linear regression and the 1:1 line is known as systematic RMSE (RMSEs). 

Unsystematic RMSE (RMSEu) is when the error is randomized, caused by an unknown source. 

When an unsystematic RMSE has low values, and the systematic RMSE value is close to RMSE, 

the model can be considered valid (Willmott et al., 1985). The efficiency model (EF) was 

applied by using the predicted and observed measured variations (Greenwood, Neeteson, & 

Draycott, 1985; Nash & Sutcliffe, 1970). Finally, an agreement index (d) (Willmott, 1981, 1982; 

Willmott & Wicks, 1980) was estimated for comparing between hydrological models. 

 
Lower is better 

 
Lower is better 

 
closer to 0, better 

 
closer to 0, better 

 

 

 

 

 
 closer to 1, better 
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 closer to 1, better 

where Oi +is the observed value (S-Penman) in the record i, Pi is the predicted value from the 

REEM and EEFlux models in area i, N is the number of observations (7), and n is the number of 

season days (256). Furthermore, P'i and O'i were obtained as 

 

Results 

The plotted results of E (S-Penman), mean E from the REEM and the EEFlux for the 

Bustillos Lagoon are shown in Figure 14.  

 

Figure 14. Evaporation values of  S-Penman, REEM, and EEFlux during the 2017 agricultural 

season for the Bustillos Lagoon. Source: Rojas Villalobos with data retrieved from UNIFRUT 

(2019), USGS LandsatLook Viewer (2019), and EEFlux (2019). 
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According to Table 7, the EEFlux had significant variations at the beginning of the 

season on April 7 and April 23 (24.2% and -51.8%, respectively),as well as at the end of the 

cycle on June 17 and September 14 (-36.7% and -74.2%), while the REEM had sensitive 

variations on September 14 (13.6%). In the case of the REEM, the percentage variations 

represented a difference of less than 0.7 mm of evaporation except for May 9 and June 17, which 

were 0.98 and 1.11 mm, respectively.  The EEFlux presented variations greater than 3.1 mm of 

evaporation for 3 of the seven days. For April 7, April 30, May 9 and May 16, the variations for 

the models tested were between 1.15 and 1.57 mm of the reference model. 

Table 7. Comparative table of errors between the reference evaporation and the models based on 

remote sensors (REEM and EEFlux). Source: Rojas Villalobos. 

 

Date DOY 

E Reference 

(mm) 

REEM EEFlux 

mm Error (%) mm Error (%) 

Apr-07-2017 96 6.3 6.6 4.0 7.9 24.2 

Apr-23-2017 112 6.0 6.2 2.4 2.9 -51.8 

Apr-30-2017 118 6.8 6.7 -1.5 5.6 -16.9 

May-09-2017 128 8.4 7.4 -11.6 7.0 -16.5 

May-16-2017 135 9.4 8.8 -6.6 7.8 -16.6 

Jun-17-2017 167 9.0 7.9 -12.3 5.7 -36.7 

Sep-14-2017 256 4.8 5.5 13.6 1.2 -74.2 

Average    -1.7  -26.9 
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Although the coefficient of determination (R2) was relatively high (0.953) to indicate that 

the REEM model produces evaporation values close to observed ones, , the slope (a = 0.6374) of 

the regression line does not ensure continuous linearity of predictions with the reference line. 

The intercept coefficient (b=2.3779) indicates overestimation of modelled data over observed 

values. The slope of  the EEFlux (a=1.057) regression line closely matches the 1:1 reference of 

the observed data (S-Penman). Furthermore, the interception coefficient is negative (b = -

2.2123), and R2 is low (0.5105), which suggests an underestimation and high variance of the 

values predicted by the model. Both models concentrate on underestimation and overestimation 

values (EEFlux and REEM, respectively) in the range of 4.9 to 6.2 mm of daily evaporation. 

Figure 15 shows that the variance of the EEFlux model is not constant: while predicted 

evaporation values were low, the residual values were atypically high. In the residual analysis, 

evaporation is related to time. In other words, in April and September, the net radiation and 

temperatures were low, and as a result, there was less evaporation than that determined between 

May and August. When comparing the residuals between the two ET models, the REEM errors 

concentrate on the strip of ± 0.55 mm, which is quite acceptable, while more than 50% of the 

EEFlux residuals approximately exceed the range of ±1.37 mm and ±3.5 mm. 
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Figure 15. Comparative graphic of residuals predicted E on RS map models versus observed E 

(S-Penman). Source: Rojas Villalobos. 

The regression and residual analysis did not provide enough information to measure and 

compare the performance of the models studied. A more in-depth analysis was required for 

determining substantial differences between the comparison of the data of the predictive models 

with the reference ones. 

Table 8 shows the ranked analytical results for comparing the performance of ET models. 

For statistical indexes in complex evaluation systems, a weighting coefficient separately  

calculated is required.  

 



 

 

65 

 

Table 8. Summary of the ranked results of the comparative statistical indicators applied to the 

REEM and EEFlux versus S-Penman. Source: Rojas Villalobos. 

Index REEM (rank) EEFlux (rank) 

MAE     (mm d-1) 0.55 (1) 2.23 (2) 

RMSE   (mm d-1) -0.66 (1) 2.43 (2) 

Sd
2          (mm d-1) 0.44 (1) 3.14 (2) 

MBE     (mm d-1) -0.25 (1) -1.79 (2) 

RMSEu   (mm d-1) 0.60 (1) 4.26 (2) 

RMSEs   (mm d-1) 0.41 (1) 2.14 (2) 

EF 0.82(1) -1.36 (2) 

R2 0.95 (1) 0.51 (2) 

d 0.94 (1) 0.68 (2) 

a (intercept) 1.75 (2) 1.62 (1) 

b (slope) 0.79 (2) 1.07 (1) 

 

The RMSE has been criticized for being inappropriate and misinterpreted in 

environmental and climate analyses (Willmott & Matsuura, 2005), but the results of the RMSE 

and MAE enrich the interpretation of the evaluated models (Chai & Draxler, 2014). In this study, 

the MAE and RMSE indicators agreed that the REEM presented a lower average error (MAE = 

0.55 and RMSE = -0.66 both in mm d-1) among the data. Sd2 confirms the high variability that 

the EEFlux had (3.14 mm) in predicting the daily ETa in comparison to the REEM (0.44 mm). 

The bias indicator (MBE) agreed with the initial linear regression analysis as it showed a slight 

underestimation of the values calculated by REEM (-0.25 mm) in comparison with the higher 

underestimation of the values predicted by the EEFlux (-1.79 mm). 

The RMSEu results suggested that noise from an unknown source promoted a poor 

performance of the EEFlux model (4.26 mm). In contrast, the same index showed a lower 

influence of unknown variables in the REEM model (0.60 mm). According to the EF index, 

values close to 1 correspond to a model that predicts values close to the observed data. If the 
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index is less than 0, the mean observed data is a better predictor than the values estimated from 

the ET model (Nash & Sutcliffe, 1970; Pushpalatha, Perrin, Moine, & Andréassian, 2012). 

Therefore, according to the above, REEM (EF=0.82) had a higher performance than EEFlux 

(EF= -1.36). The statistical indicator of agreement "d" indicates the tendency of the previous 

indexes by suggesting that the REEM (0.94) is a better predictor of ETa than the EEFlux (0.68). 

The total E for the three models in the agricultural reference season was compared using daily 

estimations. In the case of the REEM and EEFlux, a linear interpolation technique was used to 

calculate the E between the dates of the seven available satellite images. The meteorological 

records of the aforementioned agroclimatic station were used for the computation of the daily E-

reference through the S-Penman equation (Figure 16).  The variability (SEE) was 3.2- and 3.4-

mm day-1 for REEM and EEFlux, respectively. The total E for S-Penman was 968 mm, and 1137 

mm for REEM, with 752 mm for EEFlux, which is equivalent to 115.29, 135.35, and 752 hm3 of 

water, respectively. 
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Figure 16. Seasonal evaporation comparison of RS models versus S-Penman data from April 4, 

2017 to September 14, 2017. Source: Rojas Villalobos. 

 

Discussion 

Statistical results suggested a better predictive performance of the evaporation of water 

bodies of the REEM model versus the EEFlux model for the 2017 agricultural cycle. 

The residue analysis showed more considerable variability in the low ranges of E 

reference. This variability may be induced by solar radiation, air temperature, relative humidity, 

and wind because they are weather variables that have a strong influence on ET (Valipour, 

2015).  The METRIC model uses these variables to estimate H, employing the alfalfa reference 

ET by using the ASCE Penman-Monteith equation, and the model assumes that the cold pixel 

has a sensible heat flux (H) equal to zero. The REEM uses the same local variables by employing 

regression equations to calculate H and Rn. Figure 17 displays an ET and E comparison map of  

the REEM and EEFlux from agricultural fields and the Bustillos Lagoon (dated June 17, 2017). 
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Figure 17. ET (crop fields) and evaporation (lagoon) comparison maps of REEM and EEFlux 

models in the Cuauhtemoc Valley for June 17, 2017. Source: Rojas Villalobos with data 

retrieved from USGS (2019) and EEFlux (2019). 

 

The first difference between the application of METRIC within the EEFlux was that in 

EEFlux gridded weather data sets were used instead of climate data from the field. Point data 

such as from agroclimatic stations and interpolated data such as gridded data sets have 
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significant spatial differences. Although the interpolation models used to generate gridded 

weather data sets have improved, there is still a degree of uncertainty because of  the distance 

between the meteorological reference stations. For instance,  the Global Land Data Assimilation 

System (GLDAS-1), the North American Land Data Assimilation System (NLDAS-2), the 

Climate Forecast System Version 2 (CFSv2), GridMET, the Real-Time Mesoscale Analysis 

(RTMA) and the National Digital Forecast Database (NDFD) are gridded data sets with spatial 

resolution ranges between 4 to 12 km (Allen et al., 2015). Regarding gridded data, Blankenau 

(2017) found that there were biases and inconsistencies in the gridded climatic data potentially 

caused by the distances and the location of the interpolated points. The databases were built 

using weather stations located at airports, which do not represent the weather conditions of an 

agricultural area (colder and wetter). In addition, ET underestimations occurred because the 

gridded data did not integrate the effects of humidification and cooling near the surface when 

agricultural fields were irrigated.  

Since atmospheric conditions vary during the day, instantaneous weather data were 

obtained through linear regression from hourly values according to the time when the satellite 

passed over the study area. If the instantaneous data were generated from a large spatial 

resolution grid that integrates biases and errors, the uncertainty was propagated to the predicted 

data (ET) (Kauffeldt, Halldin, Rodhe, Xu, & Westerberg, 2013; Lobell, 2013; Phillips & Marks, 

1996). 

The daily evaporation variability of the RS models and the value measured in the season 

was high since the coefficient of variation was 53.6% for REEM and 55.7% for EEFlux. The 
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daily E variability between the RS models and the value measured in the season was high since 

the coefficient of variation was 53.6 % for REEM and 55.7% for EEFlux. Similarly, the REEM 

overestimated E by 17.4 % when compared to reference values, while EEFlux underestimated E 

by 22.3% for the same period. In the segment from May 16 to September 14 (135-256 DOY), 

there were significant differences in the coefficients of variation when REEM obtained 70% and 

EEFlux 46%. The differences between the predicted values and the observed values were 

particularly high because of the large gaps between the dates of the acquired satellite images. 

Conclusions 

In this study, seven Landsat 8 images were used during the agricultural cycle from April 

to September 2017, when the REEM and EEFlux evapotranspiration models were compared with 

the reference ET to estimate the daily evaporation of the Bustillos Lagoon. ET estimation 

methods by remote sensors are sensitive to variations in weather conditions. In the interpolated 

grid of climatic parameters, there are regions where there are significant differences between 

observed and interpolated data. These regions are far from the interpolation source points, and 

the physical-environmental conditions are different. Gridded data should aggregate additional 

data source points where there are significant variations of the climatic parameters. An anchor 

weather station can improve the predictions of the evaporation of a water body as observed in the 

REEM model. The location of the weather station is a determining factor in the computation of 

the ET. In this study, an agroclimatic station located 4.5 km from the Bustillos Lagoon recorded 

weather conditions where the prevailing winds (SW-NW) pass before reaching the lake, which 

establishes the physical conditions for water evaporation. The temporal resolution of the satellite 
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scenes is a determining factor for the estimation of the total E since the gap between the dates of 

the images reduce data time uncertainty in order to obtain accurate values and a better 

performance of the RS models through interpolation methods. 
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Chapter 4  

Single-input, multiple-output iterative algorithm for the calculation of volume, area, elevation, 

and shape using 3D topobathymetric models. 

 

Article submitted: November 19, 2019. Status: In review. Journal: Investigaciones 

Geográficas (UNAM). 

Abstract 

Most methods for estimating the morphometric values of water bodies use equations 

derived from hypsographic curves or digital terrain models (DTMs) that relate depth, volume 

(V), and area (A) and that model the uncertainty inherent in the complex underwater 

morphology. This research focuses directly on the use of topobathymetric models that include 

the bathymetry and topography of the surrounding area next to the water body. The projection of 

the water surface height (H) on each DTM pixel generates a water column with intrinsic 

attributes such as volume and area. The process is replicated among all cells and estimates the 

total area and volume of the water body. If the V or A is the input data, an algorithm that iterates 

height values is used to generate the new data, which is compared with the entered value that 

functions as a reference. If the difference between the reference value and the calculated value is 

less than an error threshold, the iteration stops, and the maximum and average depths are 

calculated. In addition, the raster and the shape that represent the body of water are created. The 

cross comparison of H-V-A showed that there is an error between 0.0034% and 0.000039% 

when any of the parameters are used as input data. Performance tests determined that pixel 

dimensions are directly proportional to the processing time for each iteration. The results of the 
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implementation of this algorithm were satisfactory since, for the DTM of Bustillos Lagoon, 

Chihuahua, Mexico, the simulation took less than 17 seconds in at most 22 iterations. 

Introduction 

Calculating physical characteristics of water bodies such as volume, surface area, and 

shape is a challenging process because of the complex underwater topography. The water bodies 

floor is usually irregular, with elevations and depressions that  do not follow a specific pattern 

and therefore are  difficult to model with mathematical equations. The height of the water level 

(H), volume (V), surface area (A), and the shape of the surface area are parameters that are not 

linearly interrelated. Determining these parameters, using a known value from the previously 

mentioned parameters (H, V, or A), will allow erosion modelers, hydrologists, geohydrologists, 

and ecologists, among others, to use morphological parameters in their simulations. Currently, 

geographic information systems (GIS) are able to deploy programming languages to develop 

tools that respond to complex problems. This approach generates information about the storage 

capacity in a dynamic way to support management policies dealing with flood risk zones and 

minimum water levels for maintaining ecologically healthy areas and other water resource 

issues.  

Several methodologies exist to calculate morphometric parameters, such as height, 

volume, area, maximum depth, and the average depth of water bodies. The first studies that 

relate volume-area-depth used the radius between average depth and maximum depth in addition 

to sinusoidal parameters (such as lake bottom profile) to do so (Lehman, 1975; Neumann, 1959). 

Sima and Tajrishy (2013) presented a model that relates volume-area-elevation using data from 
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remote sensors and analytical procedures such as a power model and a truncated pyramid model. 

This approach results in highly parameterized equations that relate morphometric values. 

Moreno-Amich and Garcia-Berthou (1989) used echo sounding to relate morphometric 

characteristics of depth-area measurements for developing hypsographic curves and generating a 

bathymetric map.  

Johansson et al. (2007) proposed two new mathematical models that interrelate 

morphometric values: the volume development, which is an equation based on the A-V 

relationship curve (Vd) and the hypsographic development parameter, which is the integration of 

A-depth and V-depth relation curves (Hd). These models require three inputs: V, maximum 

depth, and A. Recent methodologies that use autonomous aerial vehicles measure the height of 

the terrain through LIDAR (Laser Imaging Detection and Ranging) and surface water vehicles 

that measure the depth (bathymetry) through high-resolution echo sounding. These data sources 

are processed in GIS and generate accurate DTMs (Erena, Atenza, García-Galiano, Domínguez, 

& Bernabé, 2019). Regardless of the methodology, however, the equations that relate the 

morphometry variables inherit the uncertainty of the complexity and spatial variability of 

underwater topography (Rode et al., 2010). Chen et al. (2018) presented a method that uses 3D 

geometry of a dam with which the volume and floodplains are calculated. The algorithm uses 

precipitation and water stage values as input data. It then simulates the floods in two sections: the 

floodplain and the 3D model from which the morphological parameters are obtained. Despite 

being an efficient model, it is limited as to what  input data it will accept. Thus, none of the 
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methods shown above are capable of offering solutions where morphological values interact with 

each other to respond to the needs of hydrologists. 

To address these uncertainties, this study develops a technique that fully estimates the H-

V-A of water bodies using computational techniques through 3D models that include bathymetry 

and the surrounding terrain topography. This technique used the water column below the level of 

the water surface projected onto each pixel of the DTM; this calculation was applied to the entire 

study area to delineate the extension of the water body. The V or A was the reference variable 

deployed in an iterative algorithm until the error threshold was met. 

Study area 

The Bustillos Lagoon is in the endorheic Cuauhtémoc Basin, and the lagoon has an area 

of 3,298.15 km2. A mountain range, called Sierra Azul, surrounds it in the north-northeast; on 

the western flank are Mennonite colonies where the terrain slope is below 1%.  In addition, the 

town of  Anahuac is in the south. The Bustillos Lagoon is between the quadrant coordinates 28 ° 

38 '51' 'N - 28 ° 28' 27 '' N and 106 ° 57 '3' 'W - 106 ° 38' 50 '' W in the Cuauhtémoc municipality 

in the Mexican state of Chihuahua (Figure 18).   
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Figure 18. Study area where the algorithm was applied. The Bustillos Lagoon in Chihuahua. 

Source: Rojas Villalobos with data retrieved from INEGI (2019). 

 

Because the Cuauhtémoc Basin is between the semi-humid climate of  the Sierra Madre 

Occidental and the Chihuahuan Desert, the region's weather is warm and semi-dry (Kottek, 

Grieser, Beck, Rudolf, Rubel, 2006). The approximate elevation of the Cuauhtémoc region is 

2,100 m above sea level (m.a.s.l), and the average annual temperature ranges from 6.9 to 21 ° C, 

with an average annual rainfall of about 528 mm y-1 (Servicio Meteorológico Nacional, 2019). 

Material and methods 

This methodology employed a personal computer with an Intel i3-8100 3.6 GHz 

processor, 48 GB RAM, and two SSD of 1 TB each. For this computational development in GIS, 

it is essential to have a DTM that includes the bathymetry of the study area for generating the 
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hydrological characteristics of the water body - the 3D topobathymetric model of the Bustillos 

Lagoon (spatial resolution of 5 meters)(Rojas-Villalobos, Alatorre-Cejudo, Stringman, Samani, 

& Brown, 2018) (Figure 19).  

 

Figure 19. DTM of  the Bustillos Lagoon. Source: Rojas Villalobos with data retrieved from 

Rojas-Villalobos et al. (2018). 

 

The software used for GIS processing was ArcMap® version 10.6 of  Environmental 

Systems Research Institute, ESRI (ArcMap, 2019). The 3D process tool called Surface Volume, 

which requires the DTM and the height of the water level as input data, performed V and A 

calculations (numerical results), and Python® version 2.7.13 was the language to encode the 

algorithm (Python Language Reference, 2019). 

The algorithm can capture one of the various input data, and as a result, it can generate 

the rest of the output data; for this reason, the algorithm is cataloged as a single-input, multiple-

output data algorithm. The algorithm uses one of the following input values: the height of the 
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water level, the storage V, or the A of the water body (Figure 20). All calculations are in the 

International System of Units. 

 

Figure 20. The schematic diagram shows single-inputs and multiple-output data for iterative 

algorithm. Source: Rojas Villalobos. 

 

The algorithm was designed using the following criteria. The algorithm is divided into 

two sections and depends on the input data: i) water height in meters above sea level (m.a.s.l) 

and ii) V (m3) or A (m2). Some of the process used in the second section refers to procedures in 

the first section. The Surface Volume tool used the height value and the DTM to calculate the V 

and A of the water body. These two results were used to obtain the maximum and average depth 

(Figure 21) 

 

Figure 21. Equations to calculate Average Depth and Maximum Depth.  
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where AD is average depth (m), V is the volume (m3), A is the surface area of the water body 

(m2), MD is maximum depth (m), H is the height of water level (m), and Hmin is the height of 

the water body floor (m), which was extracted from the properties of the raster. The Map 

Algebra tool, included in ArcMap®, was used to perform the extraction of the raster that 

represents the water surface filtering of all pixels that were less than or equal to H. A conversion 

tool then saves the raster of surface water as a polygon (vector data) in a shapefile format or 

geodatabase. 

When the second process starts, the user captures (or by default) an error threshold 

(ET)(%) that is required to stop the iteration process and the value of V or A used to compute 

output information. V or A assumes the value of reference (Ref) that is used to compare with the 

new iterated values (V or A). The threshold limit (TL) is the value that stops the iteration and is 

the product of V or A, multiplied by ET. Three initial variables were as follows: Step equal to 1 

used to increase or decrease H, H equal to 1 meter above the bottom of the lagoon, and direction 

(Dir) equal to “upward.” The iteration starts with the H and the Surface Volume tool that 

calculates new data (ND = V or A). If the absolute value of the difference between Ref and ND 

is less than TL, the algorithm proceeds to execute the procedures for calculating the output 

information such as raster image and polygon shape of the lagoon. Otherwise, H continues 

increasing and generating ND until the absolute difference between Ref and ND is less than TL 

(e.g., 50 m3 or 70 m2). If  ND surpasses Ref, H decreases at the halfway point of the previous 

step (e.g., 0.5 m.) until the absolute difference between ND and Ref is less than TL. If the TL is 

not accomplished and the ND surpasses Ref, H starts to increase with a new step (e.g., 0.25 m.). 
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This iteration stops when the absolute difference is less than TL, and the algorithm calculates 

output data. The algorithm diagram is shown in Figure 22. 

 

Figure 22. Flowchart of the iterative algorithm to compute hydrologic characteristics using 

single-input data. Source: Rojas Villalobos. 
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Results and discussion 

Table 9 shows the results of three simulations with different data input. For the second 

and third models, the data resulting from the first simulation were used as input data (V and A) 

for the cross comparison since the V-A estimates are calculated directly from the height, and it is 

not necessary to iterate data.  

Table 9. Result of  the calculations of the implementation of the algorithm in Python language. 

Study site: the Bustillos Lagoon, Chihuahua, Mexico. Error threshold = 0.01%. * Input data. 

Source: Rojas Villalobos. 

Error 

Threshold 

Area km3 

Height 

masl 

Volume 

hm3 

Area 

km2 

Average 

depth 

m 

Maximum 

depth 

m 

Iterations 

Processing 

time 

s 

0.01 1973.7* 289.1004 114.256 2.5302 3.4860 0 1.407 

0.01 1973.69 289.100* 114.255 2.5302 3.4859 17 13.668 

0.01 1973.69 289.0111 114.25* 2.5295 3.4852 14 11.466 

 

The results of the cross comparison of H-V-A showed that the differences are 0.003, 

0.0034, and 0.000039%, respectively. These values are below the established error threshold of 

0.01% and represent a height differential of less than one micrometer, which is negligible in the 

lagoon modeling scale. The DTM covers an area of 246.00 km2, which contains the entire 

lagoon and the surrounding area in a buffer greater than 1000 meters. The lagoon has a storage 

capacity of 360.52 hm3 and a surface area of 122.8 km2 before extending to the floodplains at 

1974.3 m.a.s.l. The processing time depends directly on the number of pixels of the DTM used in 

the modeling and not on the lagoon area itself. Two DTMs were modeled with different pixel 

dimensions: DTMa) 5.879 (width) x 3.925 (height) corresponding to 576.8 km2 and DTMb) 

3.198 (width) x 3.077 (height) equivalent to 246.00 km2. Each pixel maintains a spatial 

resolution of 5 meters. The number of iterations varies between 16 and 22 because of  variations 
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in the calculated volume, which does not exceed the reference volume in each of the iterations. 

These variations can decrease or increase the number of iterations and, consequently, the 

calculation time (Table 10). The dimension of the DTM is directly and linearly related to the 

processing time in each iteration. The DTMa model is 2.34 times larger than DTMb, and this 

ratio is repeated in the average runtime of 1.84 seconds per iteration for the DTMa and 0.78 

seconds per iteration for DTMb. This advantage can be exploited by hydrological modelers that 

require real-time results because they do not have to consider the simulation area but rather the 

number of pixels contained in the DTM. 

Table 10. Iterative model processing times with various storage volume input values using two 

DTMs with different pixel dimensions. Pixel spatial resolution: 5 meters. Source: Rojas 

Villalobos. 

DTM Tested Area (km3) 
Volume 

(m3) 
Iterations Processing time (s) 

Seconds per 

Iteration 

576.80 (DTMa) 100 16 29.78 1.86 

576.80 150 22 39.85 1.81 

576.80 200 18 33.46 1.85 

576.80 250 21 38.61 1.83 

576.80 300 16 29.82 1.86 

246.00 (DTMb) 100 16 12.77 0.79 

246.00 150 22 16.84 0.76 

246.00 200 18 14.24 0.79 

246.00 250 21 16.35 0.77 

246.00 300 16 12.83 0.80 

 

The advantage of the iterative model is that it uses three-dimensional models based on 

measurements such as bathymetry and topography that represent reality at a given spatial 

resolution. The accuracy of the algorithm results, as well as the raster and flood shape, depend on 

three factors: accurate data for constructing the DTM, the spatial resolution of the pixel, and the 
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selected error threshold. The complexity of underwater morphometry is shown in Figure 23. 

Four layers of the water surface are superimposed at every 25 centimeters in height in a stack to 

distinguish the nonlinearity of morphometric characteristics geographically.  

 
Figure 23. Water surface coverage map at different heights above sea level of  the Bustillos 

Lagoon. Sources: Rojas Villalobos with data from Rojas-Villalobos (2018). 

 

The value of morphometric variables as the height of the water surface rises above the 

DTM does not show a constant pattern that can define a precise correlation between them 

(Figure 24). 
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Figure 24. Comparative graph of volume, surface area, average depth, and maximum depth 

according to the height above sea level. Source: Rojas Villalobos. 

 

The inflection points of the area and the volume in the previous graph, however, are in 

1971.5 and 1972.0 m.a.s.l correspondingly. In this way, it is possible to establish equations by 

segments for each of the parameter, but not a system of equations that integrates the five 

variables as determined by the algorithm. 

Recommendations 

The iterative algorithm proved efficient in finding every one of the morphometric values of 

the Bustillos Lagoon within the proposed error threshold. The following recommendations, 

however, are listed. 

• The purpose of this document is not to evaluate the quality of DTM. To obtain accurate 

morphometric data and detailed and realistic coverage maps, however, the DTM must 

meet geographic accuracy (lowest error) in all three axes (X, Y, and Z). 
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• Use reasonable pixel dimensions of the study area. When there are more pixels, the 

processing time is greater. 

• This iterative model is not restricted to using a DTM; it is possible to replace with a 

triangulated irregular network (TIN), which is composed of triangles where the vertices 

are elevation points. 

• The algorithm can be implemented in any programming language that handles spatial 

components, such as Python-GDAL®, R® statistics, or Magik Smallworld®. 

• Despite the PC's computing capacity, the algorithm can be applied to any computer with 

minimum requirements: 4 GB RAM, HD with enough space to store the simulations 

(100-150 GB) and a fast processor (2.0 GHz +). 
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Conclusions 

 

This document combines three lines of research that are directly interrelated. The 3D 

model of the Bustillos lagoon uses known variables such as volume, area, and depth, to estimate 

the volume of evaporated water according to the evaporation rates obtained by remote sensors. 

The iteration algorithm uses as a basis the 3D model to compute volume and area that, together 

with evaporation, indirectly estimate other water balance variables such as water infiltration into 

the aquifer from the lagoon. At the end, this document integrates useful tools  and applicable 

knowledge in the real world. The databases generated for the region fill gaps of information that 

is necessary for the analysis of the water balance and the administration of water in the basin. 

The results obtained will be public for those researchers, government agencies, institutions of 

higher education, and people interested in these issues. 

When this dissertation was proposed to the doctoral committee, I was warned of how 

complex, demanding, and challenging it could be; they were not wrong. The developments and 

processes that took each of the chapters required knowledge and skills from areas as diverse as 

electronics, programming, hydrology, physics, mathematics, geography, autonomous aerial 

vehicles, geographic information systems, and remote sensing. It is crucial to establish that the 

skills mentioned above, and knowledge are the results of a cumulative learning process along 

many years of study, an intense desire to acquire knowledge, and a strong curiosity of how 

hydrologic process occur. 
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