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Simple or complicated agent-based 

models? A complicated issue 
 

Abstract 

Agent-based models (ABMs) are increasingly recognized as valuable tools in modelling human-

environmental systems, but challenges and critics remain. One pressing challenge in the era of “Big 

Data” and given the flexibility of representation afforded by ABMs, is identifying the appropriate 

level of complicatedness in model structure for representing and investigating complex real-world 

systems. In this paper, we differentiate the concepts of complexity (model behaviour) and 

complicatedness (model structure), and illustrate the non-linear relationship between them. We 

then systematically evaluate the trade-offs between simple (often theoretical) models and 

complicated (often empirically-grounded) models. We propose using pattern-oriented modelling, 

stepwise approaches, and modular design to guide modellers in reaching an appropriate level of 

model complicatedness. While ABMs should be constructed as simple as possible but as complicated 

as necessary to address the predefined research questions, we also warn modellers of the pitfalls and 

risks of building “mid-level” models mixing stylized and empirical components. 

 

Keywords: empirically grounded models; pattern-oriented modelling; stepwise approach; 

complexity; model complicatedness  
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1 Introduction  

Agent-based models (ABMs) have become a well-established approach for studying complex human-

environmental systems, such as land-use systems, by explicitly modelling decision-making and 

dynamic interactions of individuated actors (An, 2012; Filatova et al., 2013; Matthews et al., 2007; 

O’Sullivan et al., 2015; Parker et al., 2003). ABMs allow modellers to explicitly incorporate feedbacks 

between human and environmental systems and to investigate emergent patterns at the macro level 

in time and space due to interactions at lower levels of organization (Batty, 2007). As a result, ABMs 

continue to gain popularity among modellers.  

Part of the success of ABMs stems from their ability to produce emergent system dynamics from 

often surprisingly simple rules specified at the individual level. The most popular and highly-cited 

agent based models are rather simple, mainly because they aim at delivering important insights on 

possible explanations for general patterns (Parker et al., 2003). A famous example is the segregation 

model by Schelling (1969), based on a simple rule specifying where and under what condition 

individuals relocate. The model shows how highly segregated patterns of societal groups can result 

from surprisingly weak aversion of individuals (i.e., relatively high tolerance to another group). Most 

early ABMs were stylized models to represent general dynamics in, for example, economic systems 

(Albin and Foley, 1992; Marks, 1992), social systems (Epstein and Axtell, 1996; Schelling, 1969, 1971) 

and ecological systems (Grimm, 1999; Reynolds, 1987). Often simple theoretical assumptions were 

made to model agents, partially due to incomplete knowledge of individuals’ interactions or 

underlying decision mechanisms, but also because of limited data availability at the individual level. 

According to Parker et al. (2003), such simple models fall into the category of so-called “Picasso”-

models—stylized models with a high level of abstraction used to test general principles and ideally 

yielding generalizable results. 

The simplicity of rules and a lack of empirical support mean simple ABMs are often labelled “toy” 

models, perceived to be suitable only for “proof-of-concept” purposes (Crooks et al., 2008; Janssen 

and Ostrom, 2006). In contrast, so-called ”photograph” models (Parker et al. 2003) depend on 

empirical data to provide high levels of detail (Balbi et al., 2013). Such models have gained great 

popularity with increasing numbers of ABMs of land use/land cover change designed and 

implemented for particular case studies (e.g., O’Sullivan et al. (2012); Piorr et al. (2009)). These 

empirical ABMs tend to be more complicated and usually demand large amounts of data, defining 

detailed functions rather than using heuristic rules. The success of empirical ABMs proves that ABMs 

are not only for “proof-of-concept”, but can also be useful in addressing real-world problems. The 

emergence of empirical ABMs is partially driven by an increasing demand of stakeholders and 

decision-makers to provide support for understanding the potential implications of decisions in 
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complex situations (Smajgl et al., 2011). Moreover, increasing availability of individual-level data (e.g. 

Poppy et al., 2014; Richards et al., 2014) and greater computing power has accommodated and 

fuelled the trend.  

As a result, we observe an ongoing trend of ABMs becoming more complicated (Janssen and Ostrom, 

2006; Rounsevell et al., 2012). The development towards more complicated ABMs however comes 

with several challenges: complicated ABMs are more difficult to initialize and parametrize (Smajgl et 

al., 2011); they are constantly criticized for lack of transparency and difficulty in evaluation (Müller et 

al., 2014); and they lead to difficulties in analysing and making sense of multidimensional output data 

(Lee et al., 2015). In light of this situation modellers are scrambling to develop standards for 

description like ODD and ODD+D (Grimm et al., 2006; Grimm et al., 2010; Müller et al., 2013) and 

deploy various tools to analyse output data (Lee et al., 2015). Meanwhile, scientific researchers are 

increasingly pondering the fundamental questions (O’Sullivan et al., 2015), such as: Is the model 

under development too simple or too complicated? How to define and quantify the level of 

complicatedness? What are the criteria for choosing simple vs. complicated models? What are the 

trade-offs between the two? Is there an appropriate or optimal level of complicatedness? If so, how 

to build an ABM with an appropriate level of complicatedness? 

These questions, while relevant for any type of model, are particularly interesting and pressing for 

ABMs for several reasons. First, the agent-based modelling framework enables a considerable 

amount of flexibility (Bonabeau, 2002). Even simple ABMs are often more complicated compared to 

other well-established computational modelling approaches, such as system dynamics models. This is 

mainly due to the number and heterogeneity of entities represented the complexity of their 

individual behaviours and mutual interactions (Manson et al., 2012; O’Sullivan et al., 2012). In other 

words, developing ABMs entails a much larger number of model construction decisions than in other 

approaches, and modellers are thus more prone to building over-complicated models. Second, ABMs 

of complex coupled human-environmental systems need to represent various processes and data 

from both socio-economic and biophysical domains (Parker et al., 2008). Such models can easily 

reach a high level of complicatedness. Third, ABMs themselves are complex systems and the level of 

the complexity of a model can increase exponentially with the increasing details in model 

specifications. Ironically, ABMs are often criticized for simultaneously being too simple (regarding the 

rules and specifications) and too “complex” (mainly with respect to the model behaviours) (Conte 

and Paolucci, 2014). The acceptance of ABMs by a broader range of researchers and stakeholders has 

therefore been hindered, and some have cautioned that careful thought should be given to when 

ABM should be employed (O’Sullivan et al., 2012). 
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Furthermore, with the rapid improvements in data availability and computing power, modellers are 

increasingly building more and more complicated ABMs despite a general preference for “simple and 

nice” models. Modellers however rarely justify the level of complicatedness when building their 

ABMs, partially because of the lack of practical guidelines. There is an urgent need to clarify and 

discuss these issues (O’Sullivan et al., 2015; Wilensky and Rand, 2015). This paper aims to 

systematically elaborate on the still unresolved and frequently discussed issues of the appropriate 

level of complicatedness in model structure, focussing on ABMs of human-environmental systems. 

After examining the definition and quantification of model complicatedness, we discuss the trade-

offs, problems and risks of complicated and simple models, and instigate a discussion on the 

appropriate level of complicatedness in ABMs. Finally, we offer some recommendations on best 

modelling practices in this regard. 

2 Definition and quantification of model complicatedness  

To avoid confusion and to form the basis for further discussion in the remainder of the paper, we 

first provide some clarification on terms and concepts and discuss the measurement of 

complicatedness.  

2.1 Clarification of terminologies: complicatedness vs. complexity 

The terms “complicated” and “complex” and the terms “complicatedness” and “complexity” are 

frequently used interchangeably in common usage. However, they have different  connotations and  

are not synonyms in scientific and management contexts (Tang and Salminen, 2001). Complexity has 

even different meanings in different scientific fields, such as information theory, network theory, and 

software engineering. In the context of complex systems theory, complexity means the emergence 

and unpredictable behaviours exhibited by complex systems featured by many locally and often non-

linearly interacting components. Model complexity can be either interpreted as structural complexity 

(as in Kolmogorov complexity (Kolmogorov, 1998)) or behavioural complexity (Casti, 1994). This can 

be confusing.  

From the etymological perspective, “complicated” and “complex” share the same prefix “com”, 

which means together in its Proto-indo-european (PIE) root. But “complicated” comes from the Latin 

verb “plicare” which means fold (noun, as in ten folds) and implies many; “complex” has the Latin 

root, “plectere”, which means braiding, linking, weave, interlace, and intertwine. Thus, complex has 

the implication of interaction and intertwining besides the meaning of “many parts” shared with 

complicated.  

By describing a model as complicated, we mean the model structure contains large numbers of 

variables or agents and, more importantly, detailed representation of processes and interactions via 
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logical rules and/or quantitative relationships (i.e. equations). Complicatedness accordingly refers to 

model entities and structures from the model construction perspective and is unrelated to cognitive 

and model behaviour aspects (Chwif et al., 2000). When referring to model structure, we advocate 

the usage of “complicated model” instead of “complex model”, as we do in the remainder of the 

paper. 

In contrast, the terms complex and complexity largely refer to the model behaviour at the system 

level. Unlike complicatedness, complexity is not imposed by modellers but rather arises from 

interactions at the individual-level to produce simulated system-level behaviour that is emergent and 

possibly non-linear. Thus, the behaviour of an ABM is itself often complex and difficult to be 

described analytically. Thus, whereas the complicatedness of an ABM is a property of the model 

structure, the complexity of an ABM is a property of the model behaviour. 

 

Fig. 1. Model complicatedness vs. Model complexity: (a) complexity increases exponentially with model 

complicatedness; (b) complexity increases at a lower ratio with model complicatedness; (c) complexity may 

decrease after certain threshold of model complicatedness 

All ABMs should be complex in a sense that they should capture the key dynamics of real-world 

complex systems and therefore also show complex behaviour (Balbi and Giupponi, 2010). However, 
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from the model structure perspective ABMs can be simple or complicated. Of course, although the 

concepts “complicated” and “complex” differ, they are related (as shown in Fig. 1). For ABMs, simple 

models can still produce enormous complex behaviours as demonstrated in the classic “Game of 

Life” model (Conway, 1970), Schelling’s segregation model (Schelling, 1971), and CybErosion 

landform-evolution model (Wainwright, 2008). But the complexity of model behaviour may decrease 

after model complicatedness crosses a certain threshold. Reasons for such a negative relationship 

are possibly that the effect of too many entities cancels each other out, or that complex behaviour is 

blurred by many additive effects. In such cases, model behaviours tend to be less dynamic or even 

converge to equilibriums or regular patterns. Another reason is that complicated model specification 

may lead to chaotic or largely stochastic model behaviours. Both the ordered and chaotic patterns 

correspond to low level of complexity according to the concept of “edge of chaos” in the theory of 

complexity (Lewin, 1999). This seems counterintuitive relationship was confirmed by Hua and Pelikan 

(2012). After exploring several variations of the classic “Game of Life” model, they found the classic 

model, despite being simpler, surprisingly exhibits more diverse structure and more dynamic 

behaviours than some more complicated model variations. More in-depth researches however are 

needed to further investigate the relationship between the model complicatedness and complexity. 

The conceptual relationship illustrated in Fig. 1 is merely a hypothesis to be debated and tested.  

2.2 Quantification of complicatedness 

2.2.1 Factors influencing model complicatedness 

The degree of complicatedness of an ABM depends on how detailed the model structure represents 

the modelled system and is determined by many factors. The sheer number and types of the entities 

(and their attributes), processes, and interactions all contribute to the complicatedness of an ABM. 

To summarize, we list the potential influencing factors based on the characterization of different 

model components specific to ABMs, largely following the ODD protocol (Grimm et al., 2010): 

 Agents’ representation: Agents are the major entities of any ABM. The complicatedness of 

ABMs largely hinges on how many types of agents are present and how many attributes 

agents have. Simple agent-based land-use models (Millington et al., 2008; Müller et al., 2011; 

Parker and Meretsky, 2004; Wainwright, 2008) may have one type of agent (i.e., the land 

users/managers) described by relatively few state variables. Complicated models may have 

various types of agents (such as small-holders, state farms, cooperatives, policy makers, etc.), 

and even agent-groups, with heterogeneous characteristics (e.g., (Parker and Filatova, 2008), 

(Liu et al., 2006)). The number of state variables, which describe the properties of agents, 

might also be an instructive factor contributing to the complicatedness of the ABM (e.g., the 
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detailed socioeconomic attributes of farms modelled in AgriPoliS (Happe et al., 2006) and 

MP-MAS (Schreinemachers and Berger, 2011)). 

 Interactions: Local and potentially complex interactions of agents with the environment is a 

defining feature of ABMs. The model may allow varying types of interactions among 

individuals (e.g., direct or indirect, unidirectional vs bidirectional, linear or non-linear, with or 

without feedback), which influences the overall complicatedness of ABMs.  

 Decision rules: Decision rules of agents can vary from simple heuristics to optimization 

methods or detailed psychological models. Simple decision-making and behavioural rules can 

be represented with, for example, “if-then” rules or some simple mathematic equations. 

Complicated rules, on the other hand, may use sophisticated approaches such as Linear 

Programming (AgriPoliS (Happe et al., 2006); MP-MAS (Berger and Schreinemachers, 2006)), 

Decision Trees (LUDAS (Deadman et al., 2004)), multivariate regression (Schwarz and Ernst, 

2009; Villamor et al., 2014) and Bayesian networks (IAMO-LUC (Sun and Müller, 2013)). 

 Environment: The complicatedness of the environment is defined by its spatio-temporal 

resolution and the degree of detail at which the environment is characterized (e.g., land use 

types, structures, environmental processes). In many cases, a simple and artificial torus space 

is used as the spatial environment even in empirical studies without much justification. On 

the other hand, GIS layers are frequently used to provide a more realistic geographic settings 

for empirical ABMs (Crooks and Castle, 2012).  

 Scheduling: The scheduling of a model defines the order of processes (Grimm et al., 2006). In 

the context of ABMs, modellers need to consider two update modes: synchronous vs. 

asynchronous. In the synchronous mode, all agents update their states simultaneously—their 

state changes are not seen by other agents until the next clock tick. Therefore, the order in 

which agents take actions does not matter. In asynchronous mode, conversely, agents 

update their states one by one; their updated state are immediately seen by other agents 

and may influence actions of other agents (Wilensky and Rand, 2015). In this case, the order 

of agents taking actions matters a lot to the model behaviour; models can produce rather 

different emergent patterns due to the introduction of delay factors (Caron-Lormier et al., 

2008); more importantly, in this mode modellers also need to further specify whether agents 

act sequentially  or  in parallel.  While asynchronous update seems more realistic, it is more 

complicated to specify and debug. .  

It is worth noting that the above factor list is far from exhaustive—many more factors, such as the 

initialization process, agent behaviours besides decision-making, and formation of the sub-models, 

can all contribute to the complicatedness of ABMs. As ABMs are essentially one type of models or  
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modelling frameworks, it is difficult to consider all potential factors; the list above contains only the 

most prominent ones.    

2.2.2 Measurements of model complicatedness 

Although various ways of characterising model complicatedness exist, to our knowledge there are no 

well-accepted approaches, metrics or indices to quantify the complicatedness of an ABM. In 

algorithmic information theory model complicatedness can be approximated with the descriptive 

complexity or Kolmogorov complexity (Kolmogorov, 1998), which is basically a measurement of the 

resources needed to specify the model. In the case of ABMs, we propose to approximate the model 

complicatedness roughly by the length (e.g., number of lines or characters) of model code. Despite 

being quite rudimentary, researchers often use this natural, intuitive, and heuristic method. For 

example, when exploring an ABM in NetLogo®, one of the most popular ABM software platforms, 

researchers can browse through the model code to quickly estimate how complicated the model 

could be. Of course, this measurement is influenced by other factors, such as software choice or 

programming languages and quality/style of the coding. It works best when comparing models in the 

same platform or programming language. A standardized pseudo code should then be used to allow 

comparison of models implemented in different languages. 

Another similar approach is to use model “size”, which accounts for model dimensionality, 

consecutiveness, and number of interacting processes, as an approximate measurement of the 

complicatedness of models (Boschetti, 2008). In the case of ABMs, the model size can be a function 

of the total number of agents, the number of agent types, the number of attributes of agents, the 

interactions among agents and between agents and environment, the number of sub-models 

describing agent behaviours, and so on. Even simpler, Nelles (2013) suggested that complicatedness 

of models is mainly related to number of parameters. Larger number of parameters implies a more 

complicated model. Clearly, if a model can be specifically formulated, for example, as a mathematic 

equation, the number of the parameters can be easily counted. As for ABMs, it is not that apparent 

given the heterogeneity and flexibility of ABMs. Here we propose the following general function: 

𝑀𝐶 = 𝑓(𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) =  𝑓(𝑔𝑣 + ∑ 𝑠𝑣𝑖
𝑛
𝑖=1 + ∑ 𝑒𝑣𝑗

𝑚
𝑗=1 )                                     (1) 

where MC is the degree of model complicatedness; n_parameters is the total number of parameters 

whose values are allowed to varying between model executions; gv is the number of model-level 

variables; svi is the number of state or attribute variables of an agent type i; n is the total number of 

all agent types; evj is the number of the parameters of a sub-model j; and m is the total number of 

sub-models, which includes all agent behaviour models and other sub-models.  
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In this approach, parameters are considered equally: variable types and range of parameters are not 

accounted for; the formation of equations, linear or non-linear, is also ignored. Consequently, this 

approach, albeit more sophisticated than the above approach, also has limitations.  

There are many other approaches worth exploring. For example, a potential approach is to represent 

models with an ontology graph (i.e., a graph showing all model entities as nodes and their 

relationships as edges) as described in Zhang et al. (2010), and then use the connectivity density, 

measured by the ratio of edges and nodes, as a proxy for complicatedness. However, few ABMs have 

accompanying ontologies, which limits the usefulness of this approach. 

All these approaches have both advantages and limitations. The heterogeneity of ABMs makes the 

quantification of complicatedness and comparison of the degree of complicatedness among different 

ABMs extremely difficult. This is a great challenge as well as a pressing research area for the ABM 

modelling community. The proposed measurements here only scratch the surface of this topic, but it 

is beyond the scope of this paper to develop a consistent and comprehensive metric.   

3 Systematic evaluation of simple and complicated ABMs 

Simple and complicated models have different merits and weaknesses; building models at various 

levels of model complicatedness invariably involve trade-offs between generality, precision, and 

realism (Almaraz, 2014). The comparison of simple versus complicated ABMs reflects the general 

debate about the appropriate level of model detail needed to describe a specific system adequately. 

This debate is on-going in the scientific community (Brooks and Tobias, 1996; Evans et al., 2013; 

Jakeman et al., 2006; Janssen and Ostrom, 2006). 

3.1 General trade-offs between simple and complicated models 

Human-environmental systems, such as land-use systems, are intrinsically complex. An increasing 

number of empirically-oriented agent-based models have been developed to better understand such 

complex systems. However, representing social interactions and environmental processes in 

excessive detail runs counter to the aim of understanding common trends in land change. The 

essence of modelling is to produce a simple representation of the real world so that it aids 

understanding (Carpenter, 2003). When an ABM is too complicated, however, the complexity of the 

model may approach that of the real world and the model itself thus becomes too difficult to 

understand and explore. This limits the usefulness of the model for improving system understanding. 

As a result, we lose the meaning of modelling (Couclelis, 2002; Peck, 2004).  

Another potential risk for complicated ABMs is the problem of overfitting, which means that models 

are over specified and/or calibrated to a specific observation; models also explain random errors or 
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noises besides the actual underlying processes. As a result, models tend to perform extremely well 

on the training data, but fail miserably in other situations. Complicated ABMs, which have many 

parameters, tend to suffer from this problem and have therefore been criticized (Rand and Rust, 

2011). Some complicated agent-based land-use change models, for example, may be able to 

reproduce historical land-use patterns in the study areas, but this alone cannot confirm the validity 

of the model. Simple models, in this regard, are less prone to the overfitting problem.  

There are many more potential problems associated with complicated models and many scientists 

and modellers are critical towards complicated models.  

On the other hand, simple models that follow the traditional principle of parsimony are not 

necessarily sufficient for understanding a complex system, as for instance in the case of land-use 

systems (Batty, 2007; O’Sullivan et al., 2015; O’Sullivan et al., 2012; Sohl and Claggett, 2013). Many 

detailed yet essential processes that influence land-use change processes, such as social networks 

(Manson et al., 2016) and land tenure rules, are difficult to represent in simulation models through 

simple structures. The social structures in which individuals are embedded vary widely across land 

use systems, are heavily context-dependent, and are not easily generalized (Rindfuss et al., 2004). 

Certainly, over-simplifying the context in which land-use decision-making is embedded can lead to 

incomplete and/or incorrect understanding of the forces that shape land-use choices (Magliocca et 

al., 2014). In addition, sticking to simple ABMs may also lead to a problem of under-exploiting the 

possibilities of ABMs (Conte and Paolucci, 2014). 

In summary, ABMs of complex land use systems must strike a balance between generality and 

realism, and it necessitates trade-offs in model design.  

3.2 Point-by-point evaluation of simple and complicated models  

To facilitate discussion on the appropriate level of complicatedness of ABMs, we systematically 

compare simple and complicated ABMs from various perspectives summarized in three groups: (1) 

the purpose of the model; (2) the perspective of modellers, and (3) the perspective of model users. 

Some of these perspectives are independent from one another while others are closely related (e.g., 

prediction is, to a certain degree, a basis for decision making).  

First, the purpose of the model is central and therefore guides the decision about the development 

of a simple or a more complicated ABM. Like any model, there are many possible alternative 

purposes for ABMs. Prediction, for example, is often commonly expected from users of simulation 

research, but multiple other reasons to model exist (Epstein, 2008; McBurney, 2012). Here we 

selected the most relevant purposes as follows:  
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 Prediction: Prediction implies quantitative forecasting under case-specific scenarios. This, 

however, often requires a highly-detailed representation of systems and their critical 

processes. Leaving out influential factors may distort predictive accuracy. Thus, predictive 

models may need to be complicated to achieve the required level of certainty. On the other 

hand, simple models, representing key processes, can be also used for predictive purposes, 

but rather qualitatively and not case-specific (Boero and Squazzoni, 2005). For example, 

Schelling’s segregation model illustrates that highly segregated communities can result from 

relatively tolerant individual residents. But to predict the change of spatial patterns of a 

specific city will demand more detailed model specification.  

 Theory building: Theory building aims to explain observations with new hypothesises or 

existing theories and to create, confirm or challenge existing theories (Epstein, 2008). ABMs 

can support theory building by combing inductive and deductive approaches in a so-called 

“third way of doing science” (Axelrod, 2006). To facilitate theory building with regard to 

complex systems, modelling usually involves generalization and simplification. Simple models 

elaborate on general questions ((Pace, 2003) – for ecosystem models) and are therefore 

more suitable to enhance theories that should possess general validity.  

 Decision-making: ABMs may inform decision-makers by analysing policy scenarios and their 

consequences. Complicated models are suitable to support decision-making as they can be 

targeted at specific problems and developed for relevant stakeholders (Rounsevell et al., 

2012). However, complicated models can be difficult to communicate, while simple models 

can be more favourable in cases where illustrative messages and narratives, as well as 

general rules about simple causal relationships, are more convincing to practitioners.  

 Case-specific analysis: This is understood as the development of case-specific models using 

empirical data for a particular site, usually with the aim of quantitative prediction and 

scenario analysis. Simple models have difficulties representing site-specific characteristics of 

land systems with empirical data; more complicated ABMs are necessary and more suitable 

for such case-specific analysis than simple models (Peck, 2004).  

 Illuminate core dynamics: To understand the dynamics of a system and reveal its critical 

underlying processes, simple models are often thought to be more suited. However, simple 

models may fail to deliver robust explanations under certain circumstances, at times raising 

the need for more complicated data-driven models to increase our understanding of system 

processes and the causalities between them.  

 Education: ABMs have been widely used for educational purposes such as teaching students 

and informing real-world practitioners. By running the model, consequences of decisions 

may be explored without any significant risks. At first sight, simple models appear more 
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appropriate for educational purposes, considering the advantage of quick and easy model 

communication and transparency of model behaviour. However, this may change with the 

target group. Experts in the respective field might want to learn about the complex interplay 

of policy options, environmental scenarios, or behavioural assumptions, raising the need for 

more complicated models. 

Second, another dimension in the discussion is the perspective of modellers, related to the 

specification, implementation, and analysis of a simulation model. More complicated simulation 

models are in general more challenging because they are difficult to comprehend and handle 

compared to simple models. 

 Conceptualization and implementation: This comprises the development of the conceptual 

model design, data collection, and implementation as a computer program. Simple models 

usually demand less data which may facilitate their fast implementation. However, the 

simplification of processes must be well thought through which can be time-consuming. High 

diversity of entities and processes of complicated models demands more development time 

and resources. Furthermore, many complicated ABM are data-driven (O'Sullivan, 2008) and 

the data collection and parameterization needed often slows model implementation.  

 Calibration, verification, and validation: After model implementation, model parameters 

may need to be adjusted to produce desirable patterns or values. This is the process of 

model calibration. Verification is the check for correctness of this implementation (that the 

model is built as intended), while validation checks the plausibility of model results (North 

and Macal, 2007). Simple models, with less parameters and simpler process representation, 

tend to be easier to calibrate and verify. In contrast, complicated models, with large 

parameter spaces and multiple interlinked sub-models and processes, can pose a daunting 

challenge for modellers to find sensible parameter values and ensure the model is 

implemented as designed. At the same time, complicated models are more prone to 

overfitting during the calibration process (as discussed above). With regard to validation, 

simple models are usually compared to existing theories or stylized patterns. The process is 

technically less challenging, but whether simple models really capture the key underlying 

processes is often difficult to tell. For complicated models, validation is a test of how a model 

reflects reality based on independently observed values and patterns. Considering the 

quantity of high-dimensional output data produced by complicated models, validation can be 

an arduous task.  

 Transferability: Transferability includes whether the model can be applied to and has valid 

results across comparable contexts. The advantage of simple models regarding transferability 
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of the representation and derived results has been discussed previously (Parker et al., 2003; 

Rounsevell et al., 2012). This advantage is due to the fact that the questions addressed with 

the model are rather general, and thus the resulting patterns can be observed in different 

systems more generally. Evans et al. (2013), however, argue that only structurally realistic 

models (Grimm et al., 2004) can be flexible enough to describe characteristics of different 

study systems. In contrast, a simple model that fits one situation might not be able to 

account for differences in another situation and is therefore not transferable.  

Finally, the perspective of model users is an important consideration for developing simple or 

complicated models. We identify two important constituents in simulation research: stakeholders 

and the scientific community. For successful simulation research, constituents need to trust the 

validity of the model and understand the results.  

 Transparency: Transparency fosters the understanding of underlying processes and enables 

the interpretation of model results. Simple ABMs with less parameters, simpler rules and 

structures tend to be more transparent than complicated models. As a result, the model 

behaviour can be easily understood by peers and stakeholders. In turn, complicated models 

are often criticized as being “black boxes” (Topping et al., 2003) of the internal mechanics of 

which are unseen and therefore unknown.  

 Communication: The communication of the model to other modellers and stakeholders is a 

major challenge of ABMs, because they may have diverse decision rules and methods that 

describe agents, and can be applied in a wide range of research domains (An, 2012; 

Bonabeau, 2002; Grimm et al., 2006; Müller et al., 2014). Complicated ABMs featuring 

various types of entities and processes tend to be more challenging to communicate and 

document than simple ABMs. Thus, assessment of complicated models is difficult, for 

example, during the peer-review publication process. Simple stylized (or “toy” models) are 

regarded as suitable to foster interdisciplinary communication, because joint model 

development forces participants from different disciplines to define concepts and make 

explicit their assumptions about relevant processes (Schlüter et al., 2013).  

 Trust/acceptance of stakeholders: In order for stakeholders to build confidence in a model 

and its results, understanding model structure is a precondition. Otherwise, a practical 

impact of model findings is unlikely. On the one hand, stakeholders need to understand the 

model sufficiently (e.g., through transparent model design; see above), which demands 

simple models (Sohl and Claggett, 2013; Voinov and Bousquet, 2010). On the other hand, 

more complicated models ironically result from the request of stakeholders with various 

background and interests, such as questions like “Have you considered …?”. 
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4 The appropriate level of complicatedness and implications for 

modelling  

4.1 The principles of model building 

As outlined above, ABMs can be structured to represent their target systems at a variety of levels of 

detail and complicatedness. What, then, is the “appropriate” level of complicatedness for ABMs? 

Minimal complicatedness of models is often advocated (as shown in Fig. 2 (A)). The principle of 

parsimony has been proposed in a variety of ways. These include Occam’s razor, where the simpler 

model is usually the preferred model if both simple and complicated models produce plausible 

explanations, and Einstein’s razor, which argues a model should be as simple as possible but not 

simpler (O’Sullivan et al., 2015). A vibrant example of this attitude is illustrated by the KISS principle 

(i.e., “keep it simple, stupid”) promoted by Axelrod (1997). 

On the other hand, Edmonds and Moss (2004) challenge the KISS principle with a “Keep it Descriptive 

Stupid” (KIDS) approach. They argue that the model should be constructed complicated and detailed 

enough to model the richness of target systems; they also concede that mixtures of the KISS and KIDS 

approaches will be likely more appropriate. Similarly, O’Sullivan et al. (2015) have argued for a mid-

level of complicatedness as the optimal or appropriate level. Grimm et al. (2005) used the term 

“Medawar zone” (originally appeared  in Loehle (1990)), the intermediate range of complicatedness, 

to illustrate that the optimal level of complicatedness for ABMs falls somewhere in the middle (as 

shown in Fig. 2 (B)). 

 

Fig. 2. Two classic modelling principles (figure (B) is modified from Grimm et al. (2005)). Shaded 

zones represent preferred complicatedness levels.  
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Conceptually, both the minimal simplicity and mid-level approaches, albeit seemingly contradicting 

one another, make great sense. There is no consensus on the appropriate level of complicatedness in 

the ABMs community. Correspondingly, there is no observed trend in movement towards simple or 

medium complicatedness models. Instead, increasing numbers of complicated empirically-grounded 

models have emerged to examine, for example, land-use change and environmental management 

(Janssen and Ostrom, 2006; Smajgl and Barreteau, 2014). At the same time, most newly developed 

ABMs, in particular in computational social science as characterised by articles in the Journal of 

Artificial Societies and Social Simulation (JASSS), are still on the simple end of the model spectrum 

(Conte and Paolucci, 2014). 

We believe the conflicting view can be explained by the heterogeneity of ABMs—essentially, there 

are two types of ABMs, simple abstract models and empirically-grounded complicated models 

locating on both end of the model spectrum, with very different model purposes. To discuss the 

appropriate level of complicatedness, without clarifying the model types, and more precisely, model 

purposes, makes little sense and may result in false conclusions being drawn. Ultimately, the 

appropriate level of model complicatedness hinges on the model’s intended purpose and the 

inherent nature of the system to be modelled. Depending on the specific research questions and how 

the model will be used, modellers can decide on whether a more complicated realistic model or a 

simple “fast-and frugal” model should be used (Carpenter, 2003; Van Nes and Scheffer, 2005).  

Simple abstract models are generally intended for theory-building and explaining emergent patterns. 

They are often used to explore collective implications of individual-level decisions (e.g. Schelling 

(1969) for residential segregation; Brown and Robinson (2006) for urban land-use change)) to enrich 

our process-level understanding of a given system. In general, this type of model should follow the 

principle of parsimony and be constructed as simple as possible. Clear representation of important 

processes and interactions is a higher priority than the veracity of its outcomes. 
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On the other hand, empirically-grounded ABMs are generally more oriented towards prediction and 

often need to address specific questions posed by policy-makers at particular sites. This type of ABM 

needs to represent the detailed geographical settings and the processes therein, and are often data-

intensive and driven by the site-specific research questions (e.g., agent-based land use models in 

Yucatán, Mexico by Manson (2006), Queensland, Australia by Valbuena et al. (2010), and Northern 

Ecuadorian Amazon Mena et al. (2011)). Consequently, these models cannot be too simple and must 

be sufficiently detailed and calibrated to the target land systems. Yet, modellers also need to be 

cautious not to build overly-complicated models, otherwise undue time and effort may be expended 

in data collection, model construction, testing (including comprehensive robustness and sensitivity 

analysis), and validation. Rather, modellers should try to build models which are as complicated as 

necessary to answer the specific research question---models in the “medawar zone”. 

Fig. 3. The harmonization of principle of parsimony and “Medawar zone” in ABMs. The red line (left 

part of the curve) represents the utility for abstract models; the blue line (right part of the curve) 

represents the utility for empirical models. 

 

We hence believe the two principles of minimum complicatedness and the “medawar zone” can both 

be applied in searching for the appropriate level of complicatedness, since they are relevant for a 

specific model type respectively. While the mid-level principle is more relevant for empirical ABMs 
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which need to be complicated to some degree, the principle of parsimony – whichever flavour – 

should be always followed (as we illustrate in Fig. 3).  

Parsimony in model design and explanation of modelled phenomenon is desired for two reasons. 

First, land use systems are characterized by a multitude of interacting system components spanning 

multiple spatial and temporal scales, and thus our understanding of such systems is limited. The data 

required to parameterize the large number of free parameters associated with process-based models 

of complex systems is often unavailable or incomplete (Parker and Filatova, 2008). As Oreskes and 

Belitz (2001) argue, such a situation "opens the door to systematic error and bias" (p. 27). Thus, one 

objective of and justification for model parsimony is the minimization of the number of uncertain 

parameters and potential errors embedded in a model's design. Second, models must be constructed 

as parsimoniously as possible so that relationships between model inputs and outputs can be 

understood (Grimm et al., 2005; Parker and Filatova, 2008). After all, one of the main purposes of 

models is to elucidate important relationships and organizational structure of real systems that are 

often obscured by complexity (Greenberger et al., 1976). Simplifications must be made to represent 

real system process, or the model may be too complicated to interpret and useless for addressing the 

research question (Grimm et al., 2005; Parker et al., 2003). 

4.2 Practical issues influencing levels of complicatedness 

The range of detail possible in ABMs means that all "levels of complicatedness" can seem a priori 

justifiable, and the question of whether any single level of representational detail for all models is 

“right” is ultimately moot. Agent-based modellers must use their prior knowledge of the system and 

their aims as a guide to the construction of their model, as there are no universal rules for defining 

the appropriate scope. While taking into account the general principles of model construction 

discussed above, there are practical considerations for establishing what the appropriate level of 

complicatedness is for any particular model:  

 Research questions: The required degree of agent heterogeneity and their interactions, and 

hence the level of complicatedness of an ABM, should be dictated by the purpose of the 

model and given research questions. Ultimately, the appropriate level of representational 

detail of agents and their interactions is important for revealing or reproducing patterns of 

interest in the real world target system. For example, Valbuena et al. (2010) were interested 

in understanding how variation between types of farmer decision-making in response to 

global or regional processes influenced patterns of landscape structure and land use. This 

model may be assigned to the complicated end of the spectrum. In contrast, Millington 

(2012) set out to investigate how patterns of farmer decision-making might change as a 

result of cultural change due to constraints on agents’ behaviour and their interactions. This 
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model, at the simple end of the model spectrum, represented different and fewer agent 

attributes and was less reliant on empirical data than that of Valbuena et al. (2010) . Both 

choices on the level of model complicatedness, however, are appropriate given the differing 

modelling objectives. Whereas the complicated model aimed to examine policy impacts of 

agents’ decision-making and consequences for land use change, the simple model was built 

to develop theory on how agent land use decision-making is related to behavioural change. 

Although both models represent similar real-world actors, the questions that motivated their 

use influenced their level of complicatedness.   

 Data availability and perspectives on theory vs. application: The example above also 

highlights the importance of considering data availability and perspectives on theory vs. 

application. Valbuena et al. (2010) were primarily interested in using available data to help 

understand land use decisions in an applied sense. Data availability in the study region 

played an important role in the setup of the model structure. Millington (2012), in contrast, 

started from a theoretical question and used little data to inform model development. It is a 

challenge to parameterise models of individual decision-making at the level of individuals’ 

internal psychological qualities, and ultimately it may not be possible to appropriately 

parameterise this level of representation with empirical data. However, the purpose of the 

model for exploring theory did not make such demands.  

 Computational constraints: Beyond issues of data availability, resource considerations for 

implementation and analysis may play a (practical) role in deciding how to structure the 

model. Among these resource consideration, computational demands can pose problems for 

ABM modellers due to, for example, the large individual population and detailed 

representation of their behaviours (Bradhurst et al., 2016). For example, with the aim of 

being able to simulate land-use change over large extents (e.g., the entire European Union) 

the CRAFTY ABM framework needed to make seems unrealistic assumptions on agent 

behaviours to ensure computational efficiency was adequate for the purpose (Murray-Rust 

et al., 2014).  

These examples demonstrate how the trade-off between objectives and resource availability may 

influence the appropriate level of detail for a given model to be established. Sometimes modellers 

may need to modify their desired level of complicatedness due to other non-scientific constraints 

and factors, such as the demands of stakeholders and the limitation of time, resources and funding.   

4.3  Best modelling practices and strategies 

The principles discussed above provide a valuable theoretical basis for modellers to identify the 

appropriate level of complicatedness for constructing their models. But these principles alone do not 
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provide a practical guide for which processes and variables should or should not be included in a 

model. As stated above, the appropriate level of model complicatedness is influenced by many 

practical factors, such as data availability, computational limitations, time, and funding resources. 

However, model purposes and research questions should always dictate how much detail and how 

complicated the ABM should be constructed. Therefore, clear and specific research questions and/or 

model purposes should be defined and framed as the starting point in the model design phase. The 

research question however does not translate to a specific level of complicatedness. Prior knowledge 

and experiences of the modeller may guide the choice of some model specifics such as the spatial 

and temporal resolution, scale, and boundaries of the model. But modellers need systemic 

approaches when facing substantial numbers of options and decisions as in the case of agent-based 

land use models. Here we list some useful modelling practices and strategies to help modellers to 

reach the appropriate level of complicatedness.   

 Pattern Oriented Modelling (POM):  

The identification and reproduction of characteristic patterns of the modelled system, 

through structural validation techniques like Pattern-Oriented Modelling (POM) (Grimm et 

al., 2005), can help guide which processes and variables must be included in model design to 

answer the driving research question. These characteristic patterns, for example, can be the 

temporal S-Curve during in adoption process, or the “fish-bone” spatial pattern in Amazon 

deforestation, or spatial clustering patterns measured by Moran’s I. These patterns will also 

inform the modeller about appropriate temporal and spatial scales. Ideally, target patterns 

identified at multiple hierarchical spatial and temporal scales are pulled from the empirical 

literature, and used to optimize model structure, test different theories of agent behaviour, 

and reduce parameter uncertainty (Grimm et al., 2005; Topping et al., 2010). Grimm et al. 

(2005) argue that "the key to understanding complex systems often lies in understanding 

how processes on different scales and hierarchical levels are bound to each other" (p. 988). 

Not only does the reproduction of simultaneous spatial and temporal patterns "raise the 

empirical bar" over model outcome validation techniques based on aggregate statistics 

(Brown et al., 2005), it can also help mitigate the influence of our personal interests, biases, 

and specific scales of perception in model design (Grimm et al., 2005) – ultimately leading to 

more parsimonious and hopefully insightful models. 

 Stepwise approach: Agent-based land-use models often require socioeconomic and 

environmental components to depict complex human-environment interactions. Although 

these social, cognitive, and environmental processes may never be reliably generalized, 

simplified and encoded into a model, the effects of such processes can be tested indirectly 
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with an experimental approach. Starting with simple (prototype) models that capture 

processes that are simple and readily generalizable (e.g., environmental constraints on 

agriculture) can set a benchmark for the explanatory power of a relatively simple model. The 

simple prototype models can also allow for rapid hypothesis testing which can then be tested 

in more structurally rich models (cf. (Magliocca, 2015; Schlüter et al., 2013)). More detailed 

processes and model components can then be gradually added to the model structure such 

that the relative importance of each process can be quantified along the way. Eventually, a 

point is reached at which model performance fails to improve with additional processes and 

mechanisms (see also Buchmann et al. (2016) for the effect of various aspects being switched 

on or off on different patterns in a rather complicated ABM). Modellers can stop adding 

more details to the model.  

On the other hand, in contrast to the common wisdom of starting simple, there are situations 

where the modeller starts from a more complicated model and removes processes and 

modules towards a simpler model. This approach can be vividly demonstrated with the 

abstraction process in Pablo Picasso artist creation of “Bull” (Fig. 4), where the details of a 

bull are gradually removed while maintaining the key structure. Starting with a complicated 

model can ensure critical components are not left out of the model (Buchmann et al., 2016). 

Furthermore, constructing a complicated model can paradoxically be easier than constructing 

a well-contested simple one. Starting complicated might be easier, for example, if code for 

model modules already exists or if characteristics of the target system cannot initially be well 

reproduced by a highly simplified model.  

 

Fig. 4.  The simplification of a “Bull” by Pablo Picasso, Museum of Modern Art, New York, US 

(8 out of 11 lithographs are selected to illustrate the simplification process; images are downloaded from 

artfactory.com with written permissions; copyright: succession Picasso / VG Bild-Kunst, Bonn 2016) 
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During the stepwise process, statistical models and sensitivity analysis can be used to 

evaluate whether a factor, a process or module should be included or excluded. For example,  

Ligmann-Zielinska et al. (2014) demonstrated that simpler land-use models can be produced 

while retaining the performance of the model with the sensitivity analysis in their empirical 

research in Michigan, USA. Modellers should have in mind though that generic stepwise 

model selection based on statistical benchmarks might have some unintended results. For 

example, some well-known causal relations can be removed, which may cause a loss of 

generality and transferability of the model. The domain knowledge should be used to 

complement the rigid statistical process.  

 Parsimony during all stages of modelling cycle: ABM modellers need to ensure a habit of 

parsimony and carefully design and construct the models to avoid any unnecessary details 

throughout the planning, implementation, and testing phases. The control of 

complicatedness in the design and planning phases is in particular critical because resources 

and time can be saved for later stages, and the reduction of complicatedness in an 

implemented model is time-consuming and difficult. Therefore, an extensive planning phase 

is important to reduce the need for later adaptations. While it is easier said than done, there 

are useful tools to facilitate the simplification process in different phases.  

 

First, the modelling process is largely akin to software development: representing 

complicated target systems while trying to avoid unnecessary complicatedness, time-

wasting, errors, and artefacts. Thus, software engineering methods and approaches, which 

are applied and approved in many ways, may serve as useful orientation to improve the 

efficiency and validity of ABMs with potentially high complicatedness. During model design, 

for example, the use of diagrams is especially helpful to identify most relevant and critical 

parts in the model. Modellers can then think about possible adaptations and simplifications 

of the model. We advocate using UML (Unified Model Language) diagrams, which provide a 

variety of standard schemes and visual illustrations for planning and communicating 

processes, and causal loop diagrams, which help to understand the causal relationships and 

identify the critical processes.  

 

A second useful approach from software engineering is a modular design approach that 

subdivides a complicated system, in our case, ABMs, into independent sub-modules. A 

modular program structure that was planned beforehand provides some useful features, i.e., 

the use of independent submodules which can be switched on and off. Also, existing tested 

and verified sub-routines and modules from other models or well-known model-libraries can 
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be reused in different ABMs (Bell et al., 2015; Boulaire et al., 2015). Such modular 

approaches can facilitate the aforementioned stepwise approach. This search for modularity 

might also affect the level of interoperability among different models and platforms, 

currently negligible in ABM research. For a successful modularization it is important to define 

interfaces between the submodules, so that they can be integrated easily. Possibly, it might 

be beneficial to use a framework such as Repast Symphony or NetLogo with abundant coding 

samples and a model library full of simple models.  

  

5 Discussion and conclusions 

We have argued that complexity and complicatedness are different concepts in agent-based 

modelling. The model complicatedness refers to the detailedness of model structure; the model 

complexity is to describe the behaviours of an ABM. Although the capacity of capturing complex 

dynamics is a desirable attribute of all ABMs, complicatedness pertains to model construction and 

depends on the level of detail in the representation of the target system. Existing ABMs of human-

environmental systems vary between simple and complicated models (Matthews et al., 2007; 

O’Sullivan et al., 2015; O’Sullivan et al., 2012). Despite the fact that the simple structure of ABMs and 

the complex behaviours they could reproduce drove their popularity in the first place, now there is a 

clear shift towards empirically-grounded ABMs enticed by the increasing availability of data, 

computational power, and various requests from stakeholders for policy and scenario analysis. This 

increasing complicatedness of ABMs comes with potential risks and entails trade-offs. We 

systematically assessed the merits and demerits of simple and complicated, empirically-grounded 

models from various perspectives.  

We suggest that simple models are preferred for theory-building and education purposes as they 

present advantages in terms of transparency and prevention of overfitting. Complicated models 

seem inevitable given the complexity of the targeted system (e.g., land-use systems) especially when 

used for case-specific analysis. They are also more likely to be useful in terms of prediction capacity, 

scenario analysis and decision making support. On the contrary, simple models tend to be more 

accessible in terms of implementation and testing, transferability, and communication.  

We firmly believe ABMs should be constructed as simple as possible, and as complicated as 

necessary to address clearly predefined and described research questions. The POM approach can 

help modellers to decide how much detail is enough by using patterns found in the real systems to 

frame the research questions. Thus, the POM approach can likely lead to an appropriate level of 

complicatedness. In addition, unnecessary complicatedness can be avoided by carefully planning 
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model development and communication (Jonker and Treur, 2013). Although it is still challenging to 

define and reach an appropriate level of complicatedness for ABMs, we nevertheless present 

modellers with some other useful strategies and approaches, such as stepwise and modular 

approaches.  

As for the future direction of agent-based modelling of human-environmental systems, we believe 

modellers should focus on both ends of the model complicatedness spectrum where the payoff and 

usefulness of the models are higher. The “mid-level” models, which try to compromise between 

simple and complicated models by, for example, combining empirical data with stylized behavioural 

rules, may also compromise the objective of ABMs. The empirical details in such models may be 

unnecessary and even hinder the theory building purpose; on the other hand, the stylized 

components may cripple the prediction capability and then limit their applications in policy support. 

Therefore, modellers need to develop simple theory-oriented models, still with rich dynamics in 

terms of model behaviours, for understanding the key processes of land systems. Surprisingly, we 

struggled to find such simple and elegant agent-based land-use models in the latest literature 

(Magliocca et al., 2013; Magliocca and Ellis, 2013). The key challenge might be to find the interesting 

research questions and the theories to test and explore. Meanwhile, modellers should not be 

intimidated by the risks involved in developing complicated models, and empirically-grounded ABMs 

can provide useful insights for stakeholders. The capacity of ABMs should not be wasted (Conte and 

Paolucci, 2014). The increasing development of more powerful tools such as statistical methods, 

meta modelling, POM, visualization, artificial intelligence, and strict protocols like ODD can help 

modellers in dealing with the complicatedness in the model construction and output analysis (Lee et 

al., 2015). However, if complicated models stay purely site-specific and data-driven, the scientific 

contribution of such models will be limited. Modellers should aim to ground their models on solid 

theories and, more importantly, endeavour to generalize new theories from complicated simulation 

models. Although previously recognised (Perry and Bond, 2004), this remains an ongoing challenge. A 

practical aim should be the development of a common metric to measure the complicatedness of 

ABMs quantitatively so that different models can be compared. Although our discussions are focused 

on agent-based land use models, many valuable lessons have been drawn from various modelling 

fields. We are confident that the insights and guidelines provided in this article, albeit open to 

ongoing debate, are also applicable and helpful to agent-based modelling of different research 

domains, and even other simulation approaches in general.  
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