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ABSTRACT

The Akaike Information Criterion can be a valuable tool of scientific inference.

This statistic, or any other statistical method for that matter, cannot, however, be

the whole of scientific methodology. In this paper some of the limitations of

Akaikean statistical methods are discussed. It is argued that the full import of

empirical evidence is realized only by adopting a richer ideal of empirical success

than predictive accuracy, and that the ability of a theory to turn phenomena into

accurate, agreeing measurements of causally relevant parameters contributes to

the evidential support of the theory. This is illustrated by Newton's argument from

orbital phenomena to the inverse-square law of gravitation.

Malcolm Forster and Elliott Sober (1994) have appealed to a concept of predicted fit to

defend the Akaike Information Criterion as a criterion for model selection in scientific inference.

Given assumptions about errors in the data, fit of a model to the data is not always a good
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indication of how well the model will fit future data, as a model that fits the data too closely is

likely to be tracking random errors in the data in addition to the lawlike phenomenon under

investigation.  An important contribution of their work has been its challenge to the assumption that

fit to data exhausts the empirical criteria for scientific inference. This unwarranted assumption of

naïve empiricism has contributed to unjustified scepticism about the objectivity of scientific

inference.

Akaikean and other statistical methods can be useful tools of scientific inference.  They

cannot, however, be the whole of scientific inference, for two reasons:  such methods do not

function in a self-sufficient manner and must be supplemented by other considerations in order for

them to be useful, and statistical methods by themselves do not satisfy all the goals of scientific

inference, one of which is anticipation of the results of novel experiments.  We argue that accurate

measurement of causal parameters by phenomena is an important goal of scientific inference, both

in its own right and for its contribution to prediction and its extension to novel experiments.   These

considerations undermine Sober’s appeal (this volume) to Akaikean methodology to support an

instrumentalist account of scientific inference.

1. Model selection.

A few remarks about terminology are in order   We want to consider situations in which data is

generated via some process, such as an experiment or a series of observations.  Such a process

may include errors or other elements that are to be regarded as stochastic (whether or not there is

some underlying deterministic law).  Following Linhart and Zucchini (1986), we will use the

word “model” for a probability distribution over possible data sets.  A model is therefore fully

specified and confers a definite probability on any data set.  Our terminology differs, therefore
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from that of Forster and Sober, who use the word “model” for what, in our terminology, is a

family of models; if this difference is borne in mind, then no confusion should result. We will

therefore assume that there is some probability distribution f*(X) that specifies the probability

that a body of data X will be the one that is actually obtained.  This distribution, which will be

called the “true model,” will be initially be unknown or incompletely known; it is the task of

statistical inference to gain information about it from the data.  Expectation values with respect

to the true model will be denoted by E*[ ⋅ ].  Of particular interest are families of models f(X|θ)

that depend on some vector of parameters θ.

Given a model f and a body of data X, the likelihood is defined as L = f(X); we will also

write L(θ) = f(X|θ)..  The log-likelihood l(θ) is given by l(θ) = log(L(θ)).   If there is a unique

vector of parameters that maximizes the likelihood (and ipso facto the log-likelihood), this will

be denoted by θ̂  .

A statistical model is meant to be, in some sense, an approximation to the process by

which the data is generated.   The task of selecting a model based on a body of data involves

several decisions.  First, one must decide what is to count as a good fit of our model to the

unknown or incompletely known process that generates the data.  That is, one must decide on a

discrepancy, a low value of which is to be regarded as a good match between our model and the

truth.  Second, one must choose families of models from which the model is to be selected.  One

then adopts a method designed to select from among these models one with a low discrepancy.

A naïve empiricism might regard closeness of fit of the model to the data as the goal of

model selection.  Forster and Sober (1994) have done a good job of arguing that this is

unacceptable – and moreover, unacceptable on empirical grounds.  Because of the phenomenon

of overfitting, closeness of the model to the data is not always an indication of how close the



4

model will fit future data, as a model that fits the data too closely is likely to be tracking random

errors in the data in addition to the lawlike phenomenon under investigation.  If one is interested

in predictive success, then the criterion chosen should not be based solely on the fit of the model

to the data.

The Akaike Information Criterion is designed to yield a model with a low value of the

Kullback-Leibler discrepancy:

∆KL(θ) = E*[log(f*(X))/f(X|θ))] = E*[log f*(X)] – E*[log f(X|θ)],

 or, what is the same thing, to yield a model with high expected log-likelihood,

l*(θ) = E*[l(θ)],

where the expectation value is taken with respect to a repetition of the same experiment – that is,

the same process whereby the original data was generated.  Forster and Sober refer to the

expected log-likelihood as “predictive accuracy.”   If log-likelihood is regarded as a measure of

the accuracy of prediction, then there is some justification for this terminology.   As Forster

points out in his contribution to this session, the expected log-likelihood must be taken with

respect to a repetition of the same experiment.   A high value of l*(θ) does not guarantee that the

model will work well if the data-gathering process is changed to include a wider range of data.

To use Forster’s terminology: it is the goal of the Akaike procedure to maximize interpolative

accuracy, not extrapolative accuracy.  A high value of interpolative accuracy does not guarantee

that the model will continue to do well under novel circumstances.

As a simple example, consider the following.  Let our data consist of 100 independently

identically distributed pairs of numbers (xi, yi), where the xi’s are chosen according to a uniform

distribution on the interval [–1, 1], and the yi’s are normally distributed, with variance 1, about

g*(xi), where g* is the gaussian function
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Take as the kth family of models linear combinations of the first k elements of the series of

functions {1, sin(πx), cos(πx), sin(2πx), cos(2πx), . . .}.  It turns out that k = 5 tends to give a

good fit, whereas for higher values of k overfitting sets in.  Figure 1 shows a typical data set,

together with the best-fit curve using 5 basis functions to that data, and the extrapolation of that

best-fit curve beyond the interval [-1,1].   It should emphasized that we are not here engaged in

mere grue-mongering, but rather wish to make the point that a method designed to reward

interpolative predictive accuracy—that is, expected fit upon repetition of the same data-

generating process—won’t tend to be sensitive to matters that are irrelevant to interpolative

predictive accuracy.
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igure 1.

The term “interpolative predictive accuracy” is potentially misleading.  What the

kaikean methodology strives to maximize is expected log-likelihood upon a repetition of the

ame experiment.  Success at this task – the task for which the method was designed – need not
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extrapolate to novel situations, whether the new data points are found between or beyond the

original data points.  To illustrate this, consider the task of finding a relation between planetary

distances and periods.  The actual values are given in Table 1.

Planet Period (Julian years) Distance ( A.U.)

  Mercury 0.2408 0.3871
♀  Venus 0.6152 0.7233
♁  Earth 0.99998 1
♂  Mars 1.881 1.524
�  Jupiter 11.86 5.203
�  Saturn 29.42 9.555

Table 1.

Figure 2.
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easurements of the positions and periods of the planets.  In this case, the

igher predictive accuracy, because it comes closer to the actual values.
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Clearly though, it will be less reliable when it comes to predicting results at intermediate

distances.

The Akaike procedure is applicable to cases in which we have several families Fk of

models to choose from.1   Let the family Fk be parameterized by the vector θk.  The Akaike

methodology begins by selecting from each family k the maximum likelihood model )ˆ|( kk Xf θ .

One is now faced with a choice of which of these maximum likelihood models to select.

Associated with each family Fk is the quantity

)]ˆ(*[*)(* klEkl θ=

that measures the average  performance of this family under the procedure of generating data

and then picking the maximum-likelihood vector of parameters.  If we knew l*(k) for each

family, then it would behoove us to use a family that has a high value for this quantity, on the

grounds that this yields a high expectation value for the predictive accuracy of the maximum-

likelihood model.2  The epistemic situation in which one confronts a typical model-selection

problem is typically one in which we don’t know l*(k).    This is where Akaike’s theorem comes

in.  This theorem states that, under certain regularity conditions,

)dim()]ˆ([*)]ˆ(*[*)(* kkk FlElEkl −== θθ ,

where dim(Fk) is the dimension of the parameter space of the family Fk.  That is:  the quantities

)dim()ˆ( kk Fl −θ  and )ˆ(* kl θ  vary around the same mean, or, in other words, )dim()ˆ( kk Fl −θ  is

an unbiased estimator of )ˆ(* kl θ . For the curve-fitting case, in which linear combinations of a

certain set of functions are to be fit to the data, then this relation holds if the errors are normally

distributed about their true values.  In general it applies to any case in which the maximum-
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likelihood parameters are normally distributed about the optimal values of the parameters – a

condition that is approached asymptotically for a wide variety of model selection tasks.

The quantity )dim()ˆ( kk Fl −θ  is calculable from the data, and, in the cases to which

Akaike’s theorem applies, is an unbiased estimator of )ˆ(* kl θ .  Akaikean methodology

recommends that we choose the maximum-likelihood model from the family for which

)dim()ˆ( kk Fl −θ  has the largest value among all the families considered, or, equivalently, that we

choose the family for which

)dim(2)ˆ(2)( kk FlkAIC +−= θ

has the least value.

One reason that this methodology cannot be all there is to scientific inference should be

fairly clear:  the method leaves it open what families of models to use.  Success can depend on a

judicious choice of families.  Suppose, then, we have made a judicious choice of families of

models to fit to the data, aided by background knowledge, and have applied the Akaike

procedure.  What are we entitled to infer about the selected model?

One is tempted to conclude that the predictive accuracy of the selected model,  )(* θ
)

l , is

probably close to )dim()ˆ( kFl −θ .  This temptation is encouraged by the terminology that refers

to one as an “estimator” of the other.  One might even suppose that the Akaike method

presupposes the cogency of this conclusion.  After all, )(* θ
)

l  is the quantity we wish to

maximize, and we attempt to do it be choosing the largest value of )dim()ˆ( kFl −θ .  Such a

conclusion, however, requires an additional premise, namely, that these quantities have relatively

small dispersions about their means.  Only if this condition is satisfied do we have a right to

conclude that the two quantities are probably close.
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This is not a condition that is satisfied in all situations to which the AIC is applied.   It

can happen—and this may even be the typical case—that the variance of  AIC(k) is large

compared to the differences in the mean values of AIC(k) for different values of k.  That this

does not invalidate the Akaike method stems from the decision-theoretic rationale of the method.

If methods are to be judged by their expected performance, then the Akaike method need not

provide a reliable answer to the question of how close the selected model is to the truth ( a

question that, without further ado, it does not answer), if it can be shown to have better expected

performance than other proposed methods.

The  success of the Akaikean methodology, when it succeeds, is cashed out in terms of

the expected value of the  interpolative predictive accuracy of the selected model, which may or

may not carry over to new situations.

2 Measuring Causal Parameters

Is this all that we can expect to gain from empirical data?  That it is not can be illustrated by

returning to Kepler�s laws and considering the use to which Newton put them.   Newton was able to

show [Principia Bk. 1, Prop. 1 and 2] that Kepler’s area law is equivalent to the proposition that the

acceleration of each planet is directed toward the sun.  Moreover, any deviation from the area law

would carry information about the direction of the planet’s acceleration B a change in the rate at

which the radius vector from the sun sweeps out area indicates a component of acceleration

perpendicular to the radius vector.  An increase in the areal rate indicates that the net acceleration of

the planet is not directed at the sun but somewhat ahead of it; a decrease in the areal rate indicates

an acceleration that deviates from the central in the opposite direction.



10

The accelerations of the planets, therefore, are directed towards the sun, or very nearly so.

By Newton’s second law, this entails that the force on each planet is directed toward the sun, or very

nearly so.  This suggests that we look for a law-like dependence of the magnitude of acceleration on

distance from the sun.

Newton showed that, if the planetary orbits are ellipses with the sun at a focus, the

acceleration of the planet toward the sun at the moment that its distance from the sun is equal to the

semi-major axis of the ellipse is given by

a = 4πR/T 2,

where T is the period of the planet’s orbit and R is the semi-major axis of its orbit.3  The dependence

of the periods of the planets on their distances from the sun, therefore, carries information about the

dependence of the planetary accelerations on distance from the sun.  If one suspects that such

dependence will be given by a power law, then this is motivation for seriously considering a power

law for the dependence of period on distance.   Given the above relation between elliptical and

concentric circular orbits, Newton’s Corollary 7 of Proposition 4, Book I,

12

1
−

∝⇔∝ γ
γ

R
aRT .

can be applied to infer the inverse-square power law for centripetal acceleration from the harmonic

law for the planetary orbits (see Harper 1999).  Kepler’s harmonic law, according to which T ∝ R3/2,

therefore, dictates that the acceleration of the planets toward the sun be an inverse square law.

Moreover, if the harmonic law is only approximately correct, then the dependence of acceleration

on distance is approximately an inverse square law.

An independent measure of the dependence of acceleration on distance from the sun is given

by the absence of precession.   Newton showed (Principia Bk. 1, Cor. 1 Prop 45) that the orbit of a
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body is a ellipse with acceleration towards a focus, precessing at a rate of p degrees per revolution,

if and only if the centripetal force acting on the body is given by the power law

f ∝ Rγ, where γ = 3
360

360
2

−





+ p .

At a lecture given by Harper on Newton's argument, Howard Stein asked how the evidence

Harper had cited from Newton for the inverse-square law for gravitation toward the sun – the

absence of significant orbital precession for each orbit and Kepler's harmonic law for the system of

those six orbits – gave evidence against a hypothesis for variation of force with distance that agreed

with the inverse-square in the distances explored by each orbit and in the inverse square relation

among the forces at those six small distance ranges, but differed wildly from the inverse-square

power law in the large ranges of distance not explored by the motions of those planets.

Figure 3 shows  the approximate ranges of distances explored by each planet computed from

the mean distances and eccentricities assigned to their orbits today.4
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igure 3.  The distances explored by the planetary orbits.

 hypothesis corresponding to Stein's challenge might be given, for example, by one of the bizarre

urves discussed above that result from using polynomials to fit to the data Kepler used to find the

armonic law. As we have seen above, and as Forster points out in his paper, the proof of Akaike's

heorem shows that the Akaike criterion of predicted fit applies to future repetitions of the same

xperiment, but does not apply to extensions (or interpolations)5 to ranges of independent variables

ot covered in the data set. For any given body of data about the periods and mean distances of the

lanetary orbits, however large, we can construct an alternative hypothesis that will mimic the

armonic law in the distances explored by the six planets but will do arbitrarily complex things in

he distances not so explored. The Akaike criterion is not designed to meet challenges such as

tein's and it cannot be applied to do so, because it is helpless to reject such hypotheses.

Stein has argued that Newton's discussion of centripetal force and its three measures--

otive, accelerative, and absolute make it clear that what Newton counts as centripetal forces are

hat we would call acceleration fields (see Stein 1970, 265-266 and 1991, 211-213).  The motive

easure of a centripetal force on a body is its mass times its centripetal acceleration. The

ccelerative measure is the acceleration produced and is referred to distances from the center. That

here should be an accelerative measure--that at each place around the center there is a quantity that

s measured by the equal accelerations that would be produced on unsupported bodies at that

˜
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distance--is what makes a centripetal force count as an acceleration field. The absolute measure of

such a centripetal acceleration field is its strength. The harmonic law ratio for a system of orbits

about a common center requires that the orbits exhibit centripetal accelerations corresponding to a

single inverse square centripetal acceleration field.  The ratio of the absolute measures of two such

centripetal acceleration fields is the common ratio of the accelerations they would produce at any

equal distances from their respective centers.

The following comments indicate the important role Stein sees for the concept of an

acceleration field in Newton's argument for the inverse-square law.

That the accelerations of the planets severally and collectively, are inversely as the squares
of their distances from the sun is not the conclusion of Newton's induction; that is his
deductive inference from the laws established by Kepler. Newton's inductive conclusion is
that the accelerations toward the sun are everywhere--i.e. even where there are no planets--
determined by the position relative to the sun; namely, directed toward that body, and in
magnitude inversely proportional to the square of the distance from it. And although the
inductive argument is very straightforward--certainly not dependent upon any tortuous
constructs--that argument cannot be made, because its conclusion cannot even be sensibly
formulated, without the notion of a field. From a mathematical point of view, the idea of an
acceleration attached to each point in space is the idea of a function on space, hence a field;
from the physical and methodological point of view, the idea of an acceleration
characterizing a point where there happens to be no body makes no sense at all, unless one
accepts the notion of a disposition or tendency; subject to probing, but not necessarily
probed. (Stein 1970, 267-268)

This comment was preceded by the following comment about the extent to which Newton’s

induction is convincing.

The induction is very convincing. The fact that the acceleration is the field intensity is
critical, for the evidence comes entirely from six bodies, each exploring the field in a fixed
and severely restricted range; the inductive basis would therefore be rather weak if we were
not, by good luck, able to relate directly to one another purely kinematical--and, thus,
ascertainable--parameters of the several bodies motions. This lucky fact is not the work of
Newton's definitions, but of nature. Newton's merit was to know how to use what he was
lucky enough to find. (Stein 1970,267)
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The kinematical relation was the centripetal direction and inverse-square relation of the

accelerations of these six planets. What Newton was lucky enough to find was the dynamical

significance of Kepler's orbital laws.  It is this dynamical significance that transforms the exponent

in Kepler’s harmonic law into a measure of a causally relevant parameter, namely, the exponent in

the power law for a centripetal acceleration field directed towards the sun.

For any given distance from the center of the sun, the inverse-square adjusted centripetal

accelerations exhibited by the planets count as agreeing measurements of the acceleration towards

the sun that the sun-centered inverse-square acceleration field would produce on bodies at that

distance.  The estimate of the centripetal acceleration at distance d yielded by a given a planetary

orbit is given by

(4π2R/T 2)(R/d)2,

where R is the semi-major axis of the orbit, and T is its period.  For example, consider d = 7 A.U.

The estimates of the acceleration at this distance yielded by the data (see Table 1) for each of the 6

planets is given in Table 3.

Planet Mercury Venus Earth Mars Jupiter Saturn

Measure of Centripetal
Acceleration at 7 A.U.

0.8060 0.8055 0.8057 0.8060 0.8069 0.8120

Table 3.

It is the conviction that one is estimating this causally relevant parameter that warrants the

extrapolation to distances other than those explored by the data.  By way of contrast, the coefficients

appearing in our polynomial fit are merely curve-fitting parameters, without the sort of dynamical

significance that would lead one to expect that the fitted polynomials should continue to give the

right results in regions beyond the data.
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The alternative hypotheses suggested by Stein's challenge give up Newton's agreeing

measurements of parameters of an inverse-square acceleration field without providing either a

correspondingly rich realization of agreeing accurate measurements of proposed rival causal

parameters or providing phenomena which would conflict with motion in accord with Newton's

measurements.

Comets explore considerably more distances from the sun than the six small ranges explored

by the primary planets known to Newton. In 1759 a particularly striking later vindication of

extending the inverse-square law for an acceleration field toward the sun to distances not explored

by planetary orbits was provided by Clairaut's celebrated success in predicting the return of Halley's

comet.  As early as 1705 Halley had proposed elements for this retrograde orbit with a perihelion

distance of about .58 AU and a period of on average about 75.5 years, corresponding to a semi-

major axis of about 17.86 AU and an eccentricity of about .97. 6

Figure 4..  Halley’s comet sweeps out a greater range of distances than those explored by

planetary orbits.

˜
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We want to claim that, in contrast to what would have been the case if legitimate scientific

inference were limited to what could be justified by the Akaike criterion for predicted fit alone, it

did not take empirical evidence sufficient for phenomena such as this comet orbit to be able to

dismiss alternative hypotheses corresponding to Stein's challenge.

Newton offers additional measurements to back up his assumption that the inverse-square

centripetal forces directed toward the sun, Jupiter, Saturn, and earth are acceleration fields.7 These

include pendulum experiments and the equality of the acceleration of terrestrial gravity at the

surface of the earth with the inverse-square adjusted centripetal acceleration of the lunar orbit

exhibited in the moon test. These put bounds on a parameter ∆e representing differences in ratios of

inertial mass to inverse-square adjusted weight towards the earth for bodies.8 Newton's harmonic

law data for Jupiter's moons and for Saturn's moons put bounds on the corresponding parameters ∆j,

and ∆s for Jupiter and Saturn, while his harmonic law data for the orbits of the planets about the sun

put bounds on ∆h representing differences between ratios of inertial mass to inverse-square adjusted

weight of bodies toward the sun. Additional bounds on ∆h are provided by absence of polarization

with respect to the sun of the orbits of Jupiter's satellites, Saturn's satellites, and the orbit of the

moon about the earth.9 The measurements directly bounding ∆h are backed up by the phenomena

measuring bounds on ∆e , ∆j and ∆s. All these phenomena count as agreeing measurements

bounding toward zero a general parameter ∆ representing differences between ratios of inertial mass

to inverse-square adjusted weight toward solar system bodies.
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In General Relativity these phenomena cited by Newton, together with far more precise

phenomena made available from more recent Eötvös experiments and lunar laser ranging, count as

agreeing measurements bounding toward zero an even more general parameter representing

differences between inertial and passive gravitational mass.10 These efforts at testing the

Equivalence Principle as well as other research programs for developing testing frameworks for

General Relativity very much conform to the goal of measuring causal parameters that guides

Newton's inferences to inverse-square acceleration fields.11

In the later part of the 19th century Simon Newcomb based his improved model for

calculating orbital ephemerides for predicting motions of the sun moon and planets on the

development of a single consistent assignment of masses to the interacting solar system bodies.12

Newcomb's efforts were directed not just to accurate prediction of more precise phenomena but,

rather, to accurate prediction in accordance with accurate estimates of these masses--causal

parameters measured by the predicted phenomena.  Today's orbital ephemerides are calculated

according to a gravitational model that takes into account point mass interactions among the sun

moon and planets together with corrections from General Relativity, as well as additional

interactions such as the earth tide action on the moon.13 The least squares adjustment of the model

to such data as transit observations, radar ranging to planets, and lunar laser ranging is an

adjustment that results in an assignment of values to the causal parameters of the model that count

as better measured by these data.14  Both the construction of Newtonian ephemerides by Simon

Newcomb and the construction of ephemerides today, in accordance with General Relativity, are

guided by the goal of prediction backed up by accurate measurement of causal parameters.
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Brackenridge 1995, 119-122, for Newton’s proof this relation between elliptical and circular
orbits.
4 The mean distances and eccentricities are from Seidelmann ed., 1993, 704.
5 This example reinforces our contention that Forster's choice of the term "interpolative predictive
accuracy" for the sort of empirical success measured by the Akaike criterion can be misleading.
6  See Wilson pg 83 in Taton and Wilson eds. 1995.
7 See Cohen and Whitman, 806-808. For more on these as measurements see Harper 1999 or Harper
1998.
8 For any body x, let Qe(x) =(We(x)[de(x)]2)/m(x) , where We(x) is the weight of x toward the earth,
de(x) is the distance of x from the center of the earth, and m(x) is the inertial mass of x. For bodies x
and y, ∆e(x,y) = Qe(x)-Qe(y) is the difference in the ratios of their inverse-square adjusted weights
toward the earth to their inertial masses.

9 See Harper 1999, 91-93 and Harper, Valluri, Mann forthcoming for discussion and references.
10 See e.g. Will 1993.
11 See Harper 1997
12 See Newcomb (1895, preface)
13 See Seidelmann, 280 -281.
14 See Seidelmann 1993, 300ff.


