Speculum perspicuum uranicum, or, A glasse wherein you may behold the revolution of the year of our Lord Jesus Christ MDCLIII being the first after bissextile, or leap-year ... : calculated for the meridian of London ... / by Tho. Jackson, mathematician. Jackson, Tho. (Thomas) 1653 Approx. 136 KB of XML-encoded text transcribed from 21 1-bit group-IV TIFF page images. Text Creation Partnership, Ann Arbor, MI ; Oxford (UK) : 2007-01 (EEBO-TCP Phase 1). A24327 Wing A1832 ESTC R28995 10789422 ocm 10789422 45908 This keyboarded and encoded edition of the work described above is co-owned by the institutions providing financial support to the Early English Books Online Text Creation Partnership. This Phase I text is available for reuse, according to the terms of Creative Commons 0 1.0 Universal . The text can be copied, modified, distributed and performed, even for commercial purposes, all without asking permission. Early English books online. (EEBO-TCP ; phase 1, no. A24327) Transcribed from: (Early English Books Online ; image set 45908) Images scanned from microfilm: (Early English books, 1641-1700 ; 1413:36) Speculum perspicuum uranicum, or, A glasse wherein you may behold the revolution of the year of our Lord Jesus Christ MDCLIII being the first after bissextile, or leap-year ... : calculated for the meridian of London ... / by Tho. Jackson, mathematician. Jackson, Tho. (Thomas) [38] p. Printed by E. Cotes for the Company of Stationers, London : 1653. Reproduction of original in the Bodleian Library. Created by converting TCP files to TEI P5 using tcp2tei.xsl, TEI @ Oxford. Re-processed by University of Nebraska-Lincoln and Northwestern, with changes to facilitate morpho-syntactic tagging. Gap elements of known extent have been transformed into placeholder characters or elements to simplify the filling in of gaps by user contributors. EEBO-TCP is a partnership between the Universities of Michigan and Oxford and the publisher ProQuest to create accurately transcribed and encoded texts based on the image sets published by ProQuest via their Early English Books Online (EEBO) database (http://eebo.chadwyck.com). The general aim of EEBO-TCP is to encode one copy (usually the first edition) of every monographic English-language title published between 1473 and 1700 available in EEBO. EEBO-TCP aimed to produce large quantities of textual data within the usual project restraints of time and funding, and therefore chose to create diplomatic transcriptions (as opposed to critical editions) with light-touch, mainly structural encoding based on the Text Encoding Initiative (http://www.tei-c.org). The EEBO-TCP project was divided into two phases. The 25,363 texts created during Phase 1 of the project have been released into the public domain as of 1 January 2015. Anyone can now take and use these texts for their own purposes, but we respectfully request that due credit and attribution is given to their original source. Users should be aware of the process of creating the TCP texts, and therefore of any assumptions that can be made about the data. Text selection was based on the New Cambridge Bibliography of English Literature (NCBEL). If an author (or for an anonymous work, the title) appears in NCBEL, then their works are eligible for inclusion. Selection was intended to range over a wide variety of subject areas, to reflect the true nature of the print record of the period. In general, first editions of a works in English were prioritized, although there are a number of works in other languages, notably Latin and Welsh, included and sometimes a second or later edition of a work was chosen if there was a compelling reason to do so. Image sets were sent to external keying companies for transcription and basic encoding. Quality assurance was then carried out by editorial teams in Oxford and Michigan. 5% (or 5 pages, whichever is the greater) of each text was proofread for accuracy and those which did not meet QA standards were returned to the keyers to be redone. After proofreading, the encoding was enhanced and/or corrected and characters marked as illegible were corrected where possible up to a limit of 100 instances per text. Any remaining illegibles were encoded as s. Understanding these processes should make clear that, while the overall quality of TCP data is very good, some errors will remain and some readable characters will be marked as illegible. Users should bear in mind that in all likelihood such instances will never have been looked at by a TCP editor. The texts were encoded and linked to page images in accordance with level 4 of the TEI in Libraries guidelines. Copies of the texts have been issued variously as SGML (TCP schema; ASCII text with mnemonic sdata character entities); displayable XML (TCP schema; characters represented either as UTF-8 Unicode or text strings within braces); or lossless XML (TEI P5, characters represented either as UTF-8 Unicode or TEI g elements). Keying and markup guidelines are available at the Text Creation Partnership web site . eng Almanacs, English. Ephemerides. Astrology -- Early works to 1800. 2005-11 TCP Assigned for keying and markup 2006-03 SPi Global Keyed and coded from ProQuest page images 2006-04 Andrew Kuster Sampled and proofread 2006-04 Andrew Kuster Text and markup reviewed and edited 2006-09 pfs Batch review (QC) and XML conversion Speculum Perspicuum Vranicum : OR A GLASSE Wherein you may behold The Revolution of the YEAR of our LORD CHRIST , M.DX LIII . Being the first after Bissextile or Leap-year . SHEWING All the notable Aspects of the PLANETS with the MOON , and among themselves . With the true place of the Sun & Moon , In Signes , Degrees and Minutes , For every DAY in the YEAR : And true place of the other Planets every Fift day . Unto which are added some Astrological Predictions gathered from the Quarterly REVOLUTIONS of this year , 1653 ▪ Calculated for the Meridian of LONDON Differs from the Meridian of Litterworth 4 Minutes : Whose Pole-artick is elevated above the Horizon 51 degrees 32 minutes North latitude . By THO. JACKSON Mathemat . London , Printed by E. Cotes , for the Company of STATIONERS , 1653. Vulgar notes according to the Julian account used here in England for this year 1653. The Golden Number   1 The Dominical Letter   B The Circle of the Sun   10 The Roman Indiction   6 The Number of Direction   20 The Epact   11 Shrove Sunday February 20 Septuagesima Febr. 6 Sexagesima Febr. 13 Quinquagesima Febr. 20 Quadragesima Febr. 27 Easter day Aprill . 10 Rogation Sunday May 15 Ascension day May 19 Whitsunday May 29 Trinity Sunday Jun. 5 Advent Sunday Novemb. 27 〈◊〉 Term beginneth the 24 day of January , and endeth the 12 day of February . Easter Term beginneth the 27 of Aprill , and endeth the 23 day of May. Trinity Term beginneth the 5 of June , and endeth the 29 day . Michaelmas Term beginneth the 24 day of October , and endeth the 28 day of November . The names and Characters of the 12 Signs of the Zodiack , with a description of what part , or member of the body each Sign governeth . ♈ Aries , Head and Face . ♉ Taurus , Neck and throat . ♊ Gemini , Armes & Shoul . ♋ Cancer , Brest & Stomach . ♌ Leo , Heart and Back . ♍ Virgo , Bowels and Belly . ♎ Libra , Reins and Loines . ♏ Scorpio , Secret Members . ♐ Sagittarius , Thighs . ♑ Capricornus , Knees . ♒ Aquarius , Legs . ♓ Pisces , Feet . Names and Characters of the 7 Planets , with the Head and Tail of the Dragon . ♄ Saturne . ♃ Jupiter . ♂ Mars . ☉ Sol. ♀ Venus . ☿ Mercury . ☽ Luna . ☊ Dragons Head. ☋ Dragons Tail. A Table of the Aspects .   s. d.   ☌ Conjunction 0 0 Novilunium . SS Semisextile 1 0   ⚹ Sextile 2 0 Corniculata . Q Quintile 2 12   □ Quartile 3 0 Semiplena . Td Tridecile 3 18   △ Trine 4 0 Gibbosa . Bq Biquintile 4 24   ☍ Opposition 6 0 Plenilunium . A brief description of the particular things contained in this Almanack examplary . IN this Almanack , the twelve moneths are contained in 12 pages , each page is divided into 8 Columnes . In the First is placed the dayes of the moneth . The second , the dayes of the week . The third containeth the fixed and movable spheares : the beginnings and endings of the Termes : the Aspects of the Planets with the Moon , and mutually with themselves and the Moon in her Apogaeon Perigaeon . The fourth , sheweth the place of the Moon in signs , degrees , and minutes . The fifth , sheweth the place of the Sun in signs , degrees , and minutes . The sixth , sheweth the places of the Planets every fift day at noon . The seventh , sheweth the time of Sun rising every day in the moneth . The eighth , sheweth the time of Sun setting every day in the moneth . Example . The 19 day of Jan. being Wednesday , Saturne is in Biquintile of Venus , or an aspect of distance 4 signs , 24 degrees : on the 15 day Jupiter is Semisextile to Venus , in the 9 day the Moon is in her Apogaeon , and the 31 of Jan. Saturne is in Conjunction with the Moon ; the Moons place is 2 degr . 18. min. in Leo : place of the Sun is 22 degr . 23 min. in Aquarius : Saturn is that day 8 degrees 28 min. in Leo. How to find the true place of any of the Planets for any day that be intermediated by taking the difference betwixt the two dayes before and after the time assigned . Example . I would know the true place of Jupiter the 6 day of Jan. I find Jupiter on the 2 day to be 24 day 14 min. of ♑ and on the 7 day I find him in 25 day 24 m. of ♑ direct , the difference is 1 day 10 min. to find his true place on the 6 day , then say by the rule of 3. if 4 daies motion give 70 min. what shall 3 daies motion give , multiply and divide , and you shall finde 52 min. 30 sec . the which adde to 24 d. 14 min. and it will be 25 d. 6 min. 30 sec . the true place of Jupiter on the 6 day of Jan. The like may be said for any other time , and for any other Planet . Behold the work , January hath xxxj . dayes . Full Moon 3 day 17. min. past 5 afternoon . Sun rising Sun setting Last quarter 11 day 25. min. past 7 afternoon . New Moon 19 day 7 min. past 6 before noon . First quarter 25 day 12 min. past 11 at night . MD WD Mutuall aspect . ☽ place ☉ pla . Planet places H.M. H.M. 1 a New year ♊ 24 33 21 52 ♄ 10 52 ♌ 8 2 3 57 2 B   ♋ 8 2 22 54 ♃ 24 14 ♑ 8 0 4 0 3 c ☌ ♃ ☉ 21 16 23 55 ♂ 2 57 ♏ 7 57 4 3 4 d ☽ with ♄ ♌ 4 14 24 56 ♀ 12 44 ♐ 7 56 4 4 5 e Simeon 16 55 25 58 ☿ 14 46 ♒ 7 55 4 5 6 f Twelfth day 29 17 26 59 ♄ 10 48 ♌ 7 54 4 6 7 g □ ♀ ☽ ♍ 11 25 28 0 ♃ 25 24 ♑ 7 53 4 7 8 a ☽ ☋ 23 21 29 1 ♂ 5 36 ♏ 7 52 4 8 9 B ☽ Apogeon ♎ 5 10 ♒ 2 ♀ 19 55 ♐ 7 51 4 9 10 c ☉ in ♒ 16 52 1 3 ☿ 17 56 ♒ 7 50 4 10 11 d □ ♄ ☽ 28 43 2 4 ♄ 10 6 ♌ 7 49 4 11 12 e □ ☿ ☽ ♏ 10 39 3 6 ♃ 26 35 ♑ 7 47 4 13 13 f Hillarie 22 46 4 7 ♂ 8 10 ♏ 7 46 4 14 14 g △ ♄ ☽ ♐ 5 16 8 8 ♀ 25 15 ♐ 7 45 4 15 15 a SS ♃ ♀ 18 7 6 9 ☿ 17 13 ♒ 7 44 4 16 16 B ⚹ ♂ ☽ ♑ 1 23 7 10 ♄ 9 41 ♌ 7 42 4 18 17 c ☽ with ♃ 15 4 8 11 ♃ 27 45 ♑ 7 41 4 19 18 d ☍ ♄ ☉ 29 6 9 12 ♂ 10 39 ♏ 7 39 4 21 19 e Bq ♄ ♀ ♒ 13 32 10 13 ♀ 1 15 ♑ 7 38 4 22 20 f △ ♂ ☽ 28 4 11 14 ☿ 12 26 ♒ 7 36 4 24 21 g   ♓ 12 46 12 14 ♄ 9 17 ♌ 7 34 4 26 22 a ☽ perigri . 27 20 13 15 ♃ 28 55 ♑ 7 32 4 28 23 B   ♈ 11 50 14 16 ♂ 13 3 ♏ 7 31 4 29 24 c Term begin . 26 12 15 17 ♀ 7 17 ♑ 7 30 4 30 25 d ☍ ♂ ☽ ♉ 10 18 16 18 ☿ 6 28 ♒ 7 28 4 32 26 e △ ♃ ☽ 24 8 17 18 ♄ 8 52 ♌ 7 26 4 34 27 f ⚹ ♄ ☽ ♊ 7 46 18 19 ♃ 0 6 ♒ 7 25 4 35 28 g   21 12 19 20 ♂ 15 24 ♏ 7 23 4 37 29 a △ ♃ ☽ ♋ 4 28 20 21 ♀ 13 21 ♑ 7 21 4 39 30   17 29 21 22 ☿ 2 57 ♒ 7 20 4 40 31 e ☌ ♄ ☽ ♌ 2 18 22 23 ♄ 8 28 ♌ 7 10 4 42 February hath xxviij . dayes . Full Moon 2 day at 10 a clock before noon . Sun rising Sun setting Last quarter 10 day 2 a clock after noon . New Moon 12 day 8 min. past 5 after noon . First quarter 23 day 44 min. past 2 after noon . MD WD Mutuall aspect . ☽ place ☉ pla Planet places M.M H.M. 1 d ⚹ ♂ ♀ ♌ 12 57 23 23 ♄ 8 24 ☊ 7 17 4 43 2 e Candlemas 25 22 24 24 ♃ 1 27 ♒ 7 16 4 44 3 f   ♍ 7 32 25 24 ♂ 18 6 ♏ 7 14 4 46 4 g ☽ ☋ 19 36 26 25 ♀ 20 38 ♑ 7 13 4 47 5 a   ♎ 1 30 27 25 ☿ 3 8 ♒ 7 11 4 49 6 B Septuages . 13 20 28 26 ♄ 8 2 ♌ 7 10 4 50 7 c □ ♃ ☽ 25 17 29 26 ♃ 2 35 ♒ 7 8 4 52 8 d □ ♄ ☽ ♏ 6 56 ♓ 27 ♂ 20 13 ♏ 7 6 4 54 9 e ☌ ♂ ☽ 18 53 1 27 ♀ 26 42 ♑ 7 4 4 56 10 f ⚹ ♃ ☽ ♐ 1 4 2 27 ☿ 5 55 ♒ 7 2 4 58 11 g SS ♃ ☉ 13 27 3 28 ♄ 7 40 ♌ 6 59 5 1 12 a ●erm ends 26 14 4 28 ♃ 3 41 ♒ 6 58 5 2 13 B Sexagesima ♑ 9 27 5 28 ♂ 22 14 ♏ 6 56 5 4 14 c Valentine 23 6 6 29 ♀ 2 48 ♒ 6 55 5 5 15 d ☌ ♃ ♀ ♒ 7 12 7 29 ☿ 10 22 ♒ 6 54 5 6 16 e □ ♂ ☽ 21 42 8 29 ♄ 7 19 ♌ 6 53 5 7 17 f ☍ ♄ ♀ ♓ 6 29 9 29 ♃ 4 42 ♒ 6 51 5 9 18 g ☽ ☊ 21 28 10 29 ♂ 24 7 ♏ 6 49 5 11 19 a △ ♄ ☽ ♈ 6 26 11 30 ♀ 8 54 ♒ 6 46 5 14 20 B ●ro●elund . 21 22 12 30 ☿ 15 56 ♒ 6 44 5 16 21 c □ ♄ ☽ ♉ 6 5 13 30 ♄ 7 2 ♌ 6 42 5 18 22 d ☍ ♂ ☽ 20 28 14 29 ♃ 5 50 ♒ 6 40 5 20 23 e △ ♀ ☽ ♊ 4 30 15 29 ♂ 25 52 ♏ 6 38 5 22 24 f Matthias 18 12 16 29 ♀ 15 0 ♒ 6 35 5 25 25 g   ♋ 1 32 17 29 ☿ 22 15 ♒ 6 32 5 28 26 a ☍ ♄ ♃ 14 32 18 29 ♄ 6 46 ♌ 6 30 5 30 27 B Quadrages . 27 16 19 29 ♃ 6 52 ♒ 6 27 5 33 28 c ☍ ♀ ☽ ♌ 9 48 20 29 ♂ 27 31 ♏ 6 24 5 36 March hath xxxj . dayes Full Moon 4 day 4 a clock in morning . Sun rising Sun setting Last quarter 12 day 48 min. past 6 in morning . New Moon 19 day 36 min. past 2 in morning . First quarter 25 day 49 min. past 7 after noon . MD WD Mutuall aspect . ☽ place ☉ pla . Planet places H. M H.M. 1 d David ♌ 22 7 21 28 ♄ 6 37 ♌ 6 22 5 38 2 e Chad ♍ 5 12 22 28 ♃ 7 27 ♒ 6 20 5 40 3 f ☉ eclipsed ♍ 17 32 23 28 ♂ 28 25 ♏ 6 10 5 41 4 g ⚹ ♄ ☽ 28 10 24 28 ♀ 24 47 ♒ 6 16 5 44 5 a ☽ apegeo ♎ 10 1 25 27 ☿ 3 42 ♓ 6 14 5 46 6 B △ ♀ ☽ 21 50 26 27 ♄ 6 25 ♌ 6 12 5 48 7 c □ ♃ ☽ ♏ 3 42 27 26 ♃ 8 27 ♒ 6 9 5 51 8 d □ ♂ ♀ 15 36 28 26 ♂ 29 45 ♏ 6 7 5 53 9 e ⚹ ♃ ☽ 27 36 29 25 ♀ 0 54 ♓ 6 5 5 55 10 f □ ☿ ☽ ♐ 9 47 ♈ 25 ☿ 11 32 ♓ 6 3 5 57 11 g ⚹ ♀ ☽ 22 13 1 24 ♄ 6 14 ♌ 6 0 6 0 12 a ⚹ ☿ ☽ ♑ 4 57 2 23 ♃ 9 22 ♒ 5 58 6 2 13 B Gregorie 18 1 3 23 ♂ 0 52 ♐ 5 57 6 3 14 c Td ♂ ☿ ♒ 1 32 4 22 ♀ 7 1 ♓ 5 56 6 4 15 d △ ☉ ♄ 15 29 5 21 ☿ 20 0 ♓ 5 54 6 6 16 e ☌ ♀ ☽ 29 52 6 20 ♄ 6 8 ♌ 5 52 6 8 17 f ☽ ☊ ♓ 14 38 7 20 ♃ 10 17 ♒ 5 50 6 10 18 g ☽ perigri . 29 40 8 19 ♂ 1 47 ♐ 5 48 6 12 19 a ☉ ad ⚹ ♃ ♈ 14 50 9 18 ♀ 13 9 ♓ 5 46 6 14 20 B ⚹ ☉ ♃ ♉ 0 0 10 17 ☿ 29 1 ♓ 5 44 6 16 21 c △ ♂ ☿ 15 1 11 16 ♄ 6 2 ♌ 5 42 6 1● 22 d ☍ ♂ ☽ 29 43 12 15 ♃ 11 9 ♒ 5 40 6 20 23 e △ ♄ ☿ ♊ 14 1 13 14 ♂ 2 29 ♐ 5 39 6 21 24 f □ ☿ ☽ 27 50 14 13 ♀ 19 16 ♓ 5 37 6 23 25 g   ♋ 11 17 15 12 ☿ 8 38 ♈ 5 36 6 24 26 a ☌ ♄ ☉ 24 15 16 11 ♄ 6 1 ♌ 5 3● 6 26 27 B ☍ ♃ ☽ ♌ 6 53 17 10 ♃ 11 57 ♒ 5 3● 6 28 28 c   19 12 18 9 ♂ 2 47 ♐ 5 30 6 3● 29 d Td ♄ ☽ ♍ 1 20 19 8 ♀ 25 23 ♓ 5 28 6 3● 30 e   13 17 20 7 ☿ 18 55 ♈ 5 26 6 34 31 f ☌ ☉ ☿ 25 8 21 6 ♄ 6 1 ♌ 5 24 6 3● Aprill hath xxx . dayes . Full Moon 2 day 20 min. past 9 after noon . Sun rising Sun setting Last quarter 10 day 37 min. past 6 after noon . New Moon 17 day 48 min. past 10 before noon . First quarter 24 day 53 min. past 8 before noon . MD WD Mutuall aspect ☽ place ☉ pla . Planet places H M H.M. 1 g ☽ apogeo ♎ 6 58 22 2 ♄ 6 1 ♌ 5 19 6 41 2 a □ ♄ ☽ 18 47 23 1 ♃ 12 52 ♒ 5 18 6 42 3 B Palm sunda● ♏ 39 24 0 ♂ 2 52 ♐ 5 16 6 44 4   Ambro. 12 35 24 59 ♀ 2 44 ♈ 5 14 6 46 5 d ☌ ♂ ☽ 24 37 25 57 ☿ 1 32 ♉ 5 12 6 48 6 e △ ♄ ♀ ♐ 6 47 26 55 ♄ 6 6 ♌ 5 10 6 50 7 f □ ♄ ☿ 19 7 27 53 ♃ 13 34 ♒ 5 7 6 53 8 g △ ☿ ☽ ♑ 1 37 28 51 ♂ 2 24 ♐ 5 4 6 56 9 a   14 21 29 50 ♀ 8 52 ♈ 5 2 6 58 10 B Easter day 27 23 ♉ 48 ☿ 11 48 ♉ 5 0 7 0 11 c ♃ □ ad ☿ ♒ 10 44 1 46 ♄ 6 12 ♌ 4 58 7 2 12 d Julius 24 29 2 45 ♃ 14 15 ♒ 4 57 7 3 13 e ⚹ ☿ ☽ ☊ ♓ 8 37 3 43 ♂ 1 57 ♐ 4 55 7 5 14 f ☽ perigri . 23 10 4 42 ♀ 14 59 ♈ 4 53 7 7 15 g ☌ ♀ ☽ ♈ 8 1 5 39 ☿ 21 18 ♉ 4 52 7 8 16 a Td ♄ ♀ 23 6 6 37 ♄ 6 22 ♌ 4 5 7 10 17 B □ ♃ ☽ ♉ 8 17 7 35 ♃ 14 50 ♒ 4 48 7 12 18 c ☌ ☿ ☽ 23 22 8 33 ♂ 1 0 ♐ 4 46 7 14 19 d ⚹ ♀ ☽ ♊ 8 13 9 31 ♀ 21 6 ♈ 4 44 7 16 20 e ☍ ♂ ☿ 22 40 10 29 ☿ 29 40 ♉ 4 4● 7 18 21 f Bq ♂ ♀ ♋ 6 41 11 27 ♄ 6 33 ♌ 4 40 7 20 22 g Td ♃ ☿ 20 11 12 25 ♃ 15 22 ♒ 4 39 7 21 23 a George ♌ 3 14 13 23 ♂ 29 50 ♏ 4 37 7 23 24 B Q ♃ ♀ 15 52 14 21 ♀ 27 13 ♈ 4 35 7 25 25 c ●ar● E●a● 28 9 15 19 ☿ 6 25 ♊ 4 3 7 27 26 d ☽ ☋ ♍ 10 11 16 17 ♄ 6 48 ♌ 4 31 7 29 27 e ●erm begins 22 3 17 15 ♃ 15 50 ♒ 4 29 7 31 28 f ☽ apogeo ♎ 3 49 18 13 ♂ 28 20 ♏ 4 27 7 33 29 g △ ♃ ☽ 15 36 19 10 ♀ 3 20 ♉ 4 25 7 35 30 ● ☍ ♀ ☽ 27 28 20 8 ☿ 11 17 ♊ 4 23 7 37 May hath xxxj . dayes . Full Moon 2 day 12 min. past 1 after noon . Sun rising Sun setting Last quarter 10 day 11 min. past 3 before noon . New Moon 16 day 38 min. past 6 after noon . First quarter 23 day 12 a clock at night . MD WD Mutual aspe ☽ place ☉ pla . Planet places H.M. H.M. 1 B Phil. & Ia ♏ 9 24 21 6 ♄ 7 4 ♌ 4 21 7 39 2 c □ ♄ ♀ 21 29 22 4 ♃ 16 14 ♒ 4 20 7 40 3 d ☍ ☿ ☽ ♐ 3 44 23 1 ♂ 26 39 ♏ 4 19 7 41 4 e □ ♃ ☽ 16 7 23 59 ♀ 9 27 ♉ 4 18 7 42 5 f ☍ ♂ ☉ 28 41 24 57 ☿ 14 20 ♊ 4 17 7 43 6 g △ ♀ ☽ ♑ 11 24 25 54 ♄ 7 24 ♌ 4 16 7 44 7 a ⚹ ♂ ☽ 24 19 26 52 ♃ 16 33 ♒ 4 14 7 46 8 B SS ♀ ☿ ♒ 7 26 27 49 ♂ 24 54 ♏ 4 13 7 47 9 ● □ ♃ ♀ 20 46 28 46 ♀ 15 33 ♉ 4 11 7 49 10 d ⚹ ♀ ☽ ♓ 4 23 29 44 ☿ 15 15 ♊ 4 10 7 50 11 e ☽ ☊ 18 17 ♊ 42 ♄ 7 44 ♌ 4 9 7 51 12 f ⚹ ♀ ☽ ♈ 2 30 1 39 ♃ 16 48 ♒ 4 7 7 53 13 g ☽ perigri . 17 4 2 37 ♂ 23 9 ♏ 4 6 7 54 14 a ☍ ♂ ♀ ♉ 1 51 3 34 ♀ 21 40 ♉ 4 5 7 55 15 B Rogation ● . 16 44 4 31 ☿ 14 15 ♊ 4 4 7 56 16 c ☌ ☿ ☽ ♊ 1 40 5 29 ♄ 8 8 ♌ 4 2 7 58 17 d Q ♄ ♀ 16 14 6 26 ♃ 16 58 ♒ 4 0 8 0 18 e   ♋ 0 50 7 23 ♂ 21 28 ♏ 3 59 8 1 19 f Ascension 14 54 8 21 ♀ 27 48 ♉ 3 58 8 2 20 g ☌ ♄ ☽ 28 29 9 18 ☿ 11 54 ♊ 3 57 8 3 21 a ☍ ♃ ☽ ♌ 11 35 10 16 ♄ 8 33 ♌ 3 55 8 5 22 ● □ ♀ ☽ 24 15 11 13 ♃ 17 4 ♒ 3 54 8 6 23 c Term ends ♍ 6 34 12 10 ♂ 19 56 ♏ 3 52 8 8 24 d Td ♃ ♀ 18 35 13 7 ♀ 3 55 ♊ 3 51 8 9 25 e ⚹ ♄ ☿ ♎ 0 26 14 4 ☿ 9 14 ♊ 3 50 8 10 26 f Augustine 12 12 15 2 ♄ 8 59 ♌ 3 50 8 10 27 g ☽ apogeo 23 57 16 59 ♃ 17 6 ♒ 3 50 8 10 28 a ⚹ ♄ ♀ ♏ 5 49 17 56 ♂ 18 43 ♏ 3 40 8 10 29 B W●●t ●und . 17 50 18 53 ♀ 10 3 ♊ 3 50 8 10 30 c Wigam ♐ 0 5 19 51 ☿ 7 11 ♊ 3 49 8 11 31 d patron 12 29 20 48 ♄ 9 28 ♌ 3 49 8 11 June hath xxx . dayes . Full Moon 1 day 58. min. past 2 before noon . Sun rising Sun setting Last quarter 8 day 34 min. past 9 before noon . New Moon 15 day 57 min. past 2 in morning . First quarter 22 day at 5 a clock after noon . Full Moon 30 day at 5 a clock after noon . MD WD Mutual aspe ☽ place ☉ pla . Planet places H.M. H.M. 1 e   ♐ 25 9 20 45 ♄ 9 34 ♌ 3 49 8 11 2 f ⚹ ♂ ☽ ♑ 8 2 21 42 ♃ 17 0 ♒ 3 49 8 11 3 g Erasmus 21 5 22 39 ♂ 17 39 ♏ 3 49 8 11 4 a   ♒ 4 19 23 36 ♀ 17 22 ♊ 3 49 8 11 5 B Trinit . sud . 17 4● 24 33 ☿ 6 44 ♊ 3 48 8 12 6 c   ♓ 1 12 25 30 ♄ 10 5 ♌ 3 48 8 12 7 d ☽ ☊ 14 53 26 27 ♃ 16 51 ♒ 3 48 8 12 8 e ☽ perigri . 18 43 27 25 ♂ 17 1 ♏ 3 48 8 12 9 f Bq ♂ ♀ ♈ 12 46 28 22 ♀ 23 31 ♊ 3 47 8 13 10 g Term beg . 27 0 29 19 ☿ 8 33 ♊ 3 47 8 13 11 a ☍ ♂ ☽ ♉ 11 25 ♋ 16 10 37 ♌ 3 47 8 13 12 B ⚹ ♄ ☿ 25 54 1 13 ♃ 16 38 ♒ 3 47 8 13 13 c △ ♄ ☽ ♊ 10 26 2 10 ♂ 16 56 ♏ 3 47 8 13 14 d ☌ ♀ ☽ 24 52 3 7 ♀ 0 53 ♋ 3 47 8 13 15 e △ ♂ ☽ ♋ 9 4 4 4 ☿ 13 15 ♊ 3 47 8 13 16 f   22 58 5 1 ♄ 11 10 ♌ 3 48 8 12 17 g ☍ ♃ ☽ ♌ 6 27 5 58 ♃ 16 19 ♒ 3 48 8 12 18 a △ ♃ ☿ 19 32 6 55 ♂ 17 5 ♏ 3 48 8 12 19 B ⚹ ☿ ☽ ♍ 2 13 7 52 ♀ 5 48 ♋ 3 49 8 11 20 c ☽ ☋ 14 33 8 50 ☿ 17 49 ♊ 3 49 8 11 21 d Bq ♃ ☉ 26 35 9 47 ♄ 11 51 ♌ 3 49 8 11 22 e □ ♀ ☽ ♎ 8 28 10 44 ♃ 15 50 ♒ 3 49 8 11 23 f ☽ apogeo 20 13 11 41 ♂ 17 44 ♏ 3 50 8 10 24 g   ♏ 2 0 12 38 ♀ 13 10 ♋ 3 50 8 10 25 a ☌ ♂ ☽ 13 53 3 35 ♀ 26 33 ♊ 3 50 8 10 26   ☌ ☉ ♀ 25 56 14 32 ♄ 12 19 ♌ 3 51 8 9 27 c △ ♄ ☽ ♐ 8 14 15 29 ♃ 15 29 ♒ 3 51 8 9 28 d ☍ ☿ ☽ 20 48 16 26 ♂ 18 25 ♏ 3 52 8 8 29 e   ♑ 3 42 17 23 ♀ 18 5 ♋ 3 53 8 7 30 f △ ☉ ♂ 16 52 18 2● ☿ 3 34 ♊ 3 54 8 6 July hath . xxxj . dayes . Last quarter 7 day 34 min. past 2 after noon . Sun rising 〈◊〉 ●ising New Moon 14 day 44 min. past 12 at noon . First quart . 22 day 36 min. past 10 before noon . ●ull moon 30 day 10 min. past 1 before . MD WD Mutual aspe . ☽ place ☉ pla Planet places H. M H.M. 1 g ☍ ♄ ☽ ♒ 0 17 19 18 ♄ 12 54 ♌ 3 55 8 5 2 a Bq ♃ ☿ 13 55 20 15 ♃ 14 59 ♒ 3 57 8 3 3 B △ ☿ ☽ 27 42 21 12 ♂ 19 27 ♏ 3 58 8 2 4 c ☽ ☊ ♓ 11 36 22 9 ♀ 24 15 ♋ 3 59 8 1 5 d SS ♄ ☿ 25 33 23 6 ☿ 13 18 ♋ 4 0 8 0 6 e □ ♀ ☽ ♈ 9 34 24 3 ♈ 13 31 ♌ 4 2 7 58 7 f ☽ perigri . 23 37 25 ● ♃ 14 26 ♒ 4 3 7 57 8 g △ ♂ ☿ ♉ 7 42 25 58 ♂ 20 50 ♏ 4 5 7 55 9 a ⚹ ♀ ☽ 21 47 26 55 ♀ 0 23 ♌ 4 6 7 54 10 B ☍ ♄ ♃ ♊ 5 53 27 52 ☿ 23 40 ♋ 4 7 7 53 11 c   19 57 28 49 ♄ 14 8 ♌ 4 9 7 51 12 d Td ☌ ♀ ♋ 3 56 29 47 ♃ 13 50 ♒ 4 11 7 49 13 e ☌ ☉ ☿ 17 44 0 44 ♂ 22 29 ♏ 4 12 7 48 14 f ☍ ♃ ☽ ♌ 1 18 1 41 ♀ 6 33 ♌ 4 13 7 47 15 g Td ♂ ☿ 14 33 2 38 ☿ 4 13 ♌ 4 14 7 46 16 a   27 29 3 36 ♄ 14 47 ♌ 4 16 7 44 17 B ☽ ☋ ♍ 10 6 4 33 ♃ 13 14 ♒ 4 18 7 42 18 c ⚹ ♂ 22 23 5 30 ♂ 24 19 ♏ 4 20 7 40 19 d ☍ ♃ ♀ ♎ 4 28 6 27 ♀ 12 42 ♌ 4 21 7 39 20 e ☌ ♄ ☿ 16 21 7 25 ☿ 14 29 ♌ 4 22 7 38 21   ☌ ♄ ♀ 28 10 8 22 ♄ 15 25 ♌ 4 23 7 37 22 g □ ♃ ☽ ♏ 9 57 9 20 ♃ 12 34 ♒ 4 25 7 35 23 a ☌ ♂ ☽ 21 50 10 17 ♂ 26 20 ♏ 4 26 7 34 24   △ ♄ ☽ ♐ 3 53 11 14 ♀ 18 52 ♌ 4 27 7 33 25 c ☍ ☉ ♃ 16 13 12 12 ☿ 24 12 ♌ 4 29 7 31 26 d   28 51 13 9 ♄ 16 3 ♌ 4 30 7 30 27 e □ ♂ ☿ ♑ 11 52 14 7 ♃ 11 56 ♒ 4 3● 7 28 28 f ⚹ ♂ ☽ 25 52 15 4 ♂ 28 33 ♏ 4 34 7 26 29 g ☌ ♃ ☽ ♒ 8 52 16 2 ♀ 25 3 ♌ 4 35 7 25 30 a ☍ ☿ ☽ 22 52 17 0 ☿ 3 3 ♍ 4 37 7 23 31 B   ♓ 7 5 17 57 ♄ 16 41 ♌ 4 38 7 2● August hath xxxj . dayes . Last quarter 5 day 36 min. past 7 after noon . Sun rising Sun setting New Moon 13 day 6 min. past 1 before noon . First quarter 21 day 50 min. past 3 before noon . Full Moon 28 day 48 min. past 10 before noon . MD WD Mutual ▪ aspe . ☽ place ☉ pla Planet places H. M H.M. 1 c Lammas ♓ 21 25 18 55 ♄ 16 49 ♌ 4 39 7 21 2 d ☽ perigri . ♈ 5 30 19 52 ♃ 11 11 ♒ 4 40 7 20 3 e △ ♀ ☽ 20 50 20 50 ♂ 1 25 ♐ 4 42 7 18 4 f Aristarchus ♉ 4 29 21 48 ♀ 2 27 ♍ 4 43 7 17 5 g Oswald 18 37 22 45 ☿ 12 54 ♍ 4 45 7 15 6 a △ ♃ ☽ ♊ 2 38 23 43 ♄ 17 28 ♌ 4 46 7 14 7 B ⚹ ♄ ☽ 16 28 24 41 ♃ 10 33 ♒ 4 48 7 12 8 c SS ♄ ☿ ♋ 0 10 25 39 ♂ 4 0 ♐ 4 50 7 10 9 d ⚹ ☿ ☽ 13 42 26 37 ♀ 8 37 ♍ 4 52 7 8 10 e △ ♂ ☽ 27 2 27 34 ☿ 20 26 ♍ 4 54 7 6 11 f ♂ ☌ ad ☽ ♌ 10 11 28 32 ♄ 18 6 ♌ 4 56 7 4 12 g ☉ eclipsed 23 6 29 30 ♃ 9 59 ♒ 4 59 7 1 13 a ☽ ☊ ♍ 5 46 ♍ 28 ♂ 6 41 ♐ 5 1 6 59 14 B Bq ♃ ♀ 18 13 1 26 ♀ 14 48 ♍ 5 2 6 58 15 c △ ♃ ☽ ♎ 0 26 2 24 ☿ 27 22 ♍ 5 5 6 55 16 d ⚹ ♄ ☽ 12 27 3 22 ♄ 18 44 ♌ 5 6 6 54 17 e ☽ apogeo 24 22 4 20 ♃ 9 24 ♒ 5 8 6 52 18 f □ ♃ ☽ ♏ 6 12 5 18 ♂ 9 29 ♐ 5 10 6 50 19 g ⚹ ♀ ☽ 18 2 6 16 ♀ 20 58 ♍ 5 12 6 48 20 a ☌ ♂ ☽ 29 56 7 14 ☿ 3 36 ♍ 5 1● 6 46 21 B □ ♄ ☽ ♐ 11 58 8 12 ♄ 19 21 ♌ 5 16 6 44 22 c □ ♀ ☽ 24 15 9 10 ♃ 8 55 ♒ 5 18 6 42 23 d △ ☉ ☽ ♑ 6 49 10 9 ♂ 12 22 ♐ 5 20 6 40 24 e Barthol . d. 19 49 11 7 ♀ 27 9 ♍ 5 22 6 38 25 f   ♒ 3 12 12 5 ☿ 9 4 ♎ 5 24 6 36 26 g ☍ ♄ ☽ 17 6 13 3 ♄ 19 57 ♌ 5 26 6 34 27 a Bq ♃ ☉ ♓ 1 10 14 2 ♃ 8 28 ♒ 5 28 6 32 28 B ☽ eclipsed 15 41 15 0 ♂ 15 22 ♐ 5 30 6 30 29 c ⚹ ♀ ☽ ♈ 0 25 15 59 ♀ 3 20 ♎ 5 31 6 29 30 d □ ♃ ☽ 15 16 16 57 ☿ 13 30 ♎ 5 32 6 28 31 e ☽ apogeo ♉ 0 4 7 56 ♄ 20 34 ♌ 5 34 6 26 September hath xxx . dayes . Last quarter 4 day 6 min. past 2 before noon . Sun rising Sun setting New Moon 11 day 10 min. past 4 after noon . First quarter 19 day 6 min. past 8 after noon . Full Moon 26 day at 8 a clock in the afternoon . MD WD Mutual aspe . ☽ place ☉ pla . Planet place . H.M. H.M. 1 f Giles ♉ 14 45 18 54 ♄ 21 41 ♌ 5 36 6 24 2 g Anthony 29 6 19 53 ♃ 8 1 ♒ 5 38 6 22 3 a SS ☉ ♄ ♊ 13 18 20 51 ♂ 19 7 ♐ 5 40 6 20 4 B   27 7 21 50 ♀ 10 44 ♎ 5 43 6 17 5 c □ ♀ ☽ ♋ 10 38 22 48 ☿ 16 44 ♎ 5 45 6 15 6 d △ ♄ ♂ 23 55 23 47 ♄ 21 16 ♌ 5 47 6 13 7 e ☍ ♃ ☽ ♌ 6 55 24 46 ♃ 7 44 ♒ 5 49 6 11 8 f ☌ ♄ ☽ 19 37 25 45 ♂ 22 18 ♐ 5 50 6 10 9 g ☽ ☋ ♏ 2 10 26 43 ♀ 16 55 ♎ 5 52 6 8 10 a △ ♂ ☽ 14 31 27 42 ☿ 16 53 ♎ 5 54 6 6 11 B Td ♃ ♀ 26 45 28 41 ♄ 21 50 ♌ 5 56 6 4 12 c ☌ ☿ ☽ ♎ 8 49 29 40 ♃ 7 31 ♒ 5 58 6 2 13 d ⚹ ♄ ♀ 20 48 ♎ 39 ♂ 25 32 ♐ 6 0 6 0 14 e ☽ apogeo ♏ 2 4● 1 38 ♀ 23 5 ♎ 6 2 5 58 15 f □ ♄ ☽ 14 33 2 37 ☿ 14 12 ♎ 6 4 5 56 16 g ⚹ ♃ ☽ 26 26 3 36 ♄ 22 22 ♌ 6 6 5 54 17 a ⚹ ☿ ☽ ♐ 8 22 4 35 ♃ 7 24 ♒ 6 8 5 52 18 B ☌ ♂ ☽ 20 24 5 34 ♂ 28 53 ♐ 6 10 5 50 19   △ ☉ ♃ ♑ 2 42 6 33 ♀ 29 16 ♎ 6 12 5 48 20 d ☌ ☉ ☿ 15 11 7 32 ☿ 8 49 ♎ 6 14 5 46 21 e △ ♃ ☿ 28 4 8 31 ♄ 22 53 ♌ 6 16 5 44 22 f ☍ ♄ ☽ ♒ 11 20 9 31 ♃ 7 10 ♒ 6 18 5 42 23 g SS ♀ ☿ 25 5 10 30 ♂ 2 17 ♑ 6 20 5 40 24 ● ☽ ☊ ♓ 9 15 11 29 ♀ 5 27 ♏ 6 22 5 38 25 B □ ♃ ♀ 23 55 12 29 ☿ 3 36 ♎ 6 24 5 36 26 ● △ ♄ ☽ ♈ 8 46 13 28 ♄ 23 23 ♌ 6 26 5 34 27 d □ ♃ ☽ 23 53 14 28 ♃ 7 21 ♒ 6 28 5 32 28 e ☽ perigeo ♉ 9 2 15 27 ♂ 5 42 ♑ 6 30 5 30 29 ● Michaesin . 24 5 16 27 ♀ 11 37 ♏ 6 32 5 28 30 ● SS ♃ ♂ ♊ 8 56 17 26 ☿ 1 46 ♎ 6 34 5 26 October hath xxxj dayes . Last quarter 3 day 20 min. past 11 at noon . Sun rising Sun setting New Moon 11 day 36 min. past 9 beforenoon . First quarter 19 day 7 min. past 10 before noon . Full Moon 26 day 24 min. past 5 before noon . MD WD Mutual aspe . ☽ place ☉ pla . Planet places H.M. H.M. 1 a ⚹ ♄ ☽ ♊ 23 16 18 26 ♄ 23 52 ♌ 6 36 5 24 2 B Td ☉ ♃ ♋ 7 11 19 26 ♃ 7 28 ♒ 6 38 5 22 3 c   20 46 20 25 ♂ 9 11 ♑ 6 40 5 20 4 d ☍ ♃ ☽ ♌ 3 34 21 25 ♀ 17 47 ♏ 6 42 5 18 5 e ☌ ♄ ☽ 16 43 22 25 ☿ 4 29 ♎ 6 44 5 17 6 f ☋ 29 13 23 24 ♄ 24 18 ♌ 6 46 5 14 7 g △ ♂ ☽ ♍ 11 30 24 24 ♃ 7 40 ♒ 6 48 5 12 8 a △ ♃ ☿ 29 39 25 24 ♂ 12 42 ♑ 6 50 5 10 9 B □ ♄ ♀ ♎ 5 39 26 24 ♀ 23 57 ♏ 6 52 5 8 10 c ⚹ ♄ ☽ 17 36 27 24 ☿ 10 6 ♎ 6 54 5 6 11 d ☽ apogeo 29 29 28 24 ♄ 24 43 ♌ 6 56 5 4 12 e ⚹ ♂ ☽ ♏ 11 23 29 24 ♃ 7 58 ♒ 6 58 5 2 13 f ☌ ♀ ☽ 23 17 ♏ 24 ♂ 16 16 ♑ 7 0 5 0 14 g ⚹ ♃ ☽ ♐ 5 14 1 24 ♀ 0 6 ♐ 7 2 4 58 15 a △ ♂ ☿ 17 15 2 24 ☿ 17 29 ♎ 7 4 4 56 16 B Td ♃ ☿ 29 22 3 24 ♄ 25 6 ♌ 7 6 4 54 17 c Bq ♄ ♂ ♑ 11 39 4 24 ♃ 8 20 ♒ 7 8 4 52 18 d Lune E●a 24 10 5 24 ♂ 19 52 ♑ 7 10 4 50 19 e SS ☉ ♂ ♒ 6 57 6 24 ♀ 5 16 ♐ 7 12 4 48 20 f ⚹ ♄ ♀ 20 6 7 24 ☿ 25 31 ♎ 7 14 4 46 21 g ☽ ☋ ♓ 3 40 8 25 ♄ 25 26 ♌ 7 16 4 44 22 a ⚹ ♂ ☽ 17 40 9 25 ♃ 8 42 ♒ 7 18 4 42 23 B △ ♀ ☽ ♈ 2 7 10 25 ♂ 23 31 ♑ 7 20 4 40 24 c Term beg 16 58 11 26 ♀ 12 24 ♐ 7 22 4 38 25 d ☽ perigri . ♉ 2 7 12 26 ☿ 3 42 ♏ 7 25 4 35 26 e □ ♄ ☽ 17 22 13 26 ♄ 25 45 ♌ 7 26 4 34 27 f ☍ ♀ ☽ ♊ 2 37 14 27 ♃ 9 15 ♒ 7 27 4 33 28 g Sim. & Iu ▪ 17 37 15 27 ♂ 27 9 ♑ 7 28 4 32 29 a △ ☿ ☽ ♋ 2 14 16 28 ♀ 18 33 ♐ 7 30 4 30 30 B △ ☉ ☽ 16 25 17 28 ♀ 11 47 ♏ 7 32 4 28 31 a ☍ ♃ ☽ ♌ 0 6 18 29 ♄ 26 2 ♌ 7 34 4 26 November hath xxx . dayes . Last quarter first day 30 min. past 12 at night . Sun rising Sun setting New Moon 10 day 11 min. past 4 before noon . First quarter 17 day 36 min. past 11 after noon . Full Moon 25 day 24 min. past 1 before noon . MD WD Mutual aspe . ☽ place ☉ pla . Planet places H.M. H.M. 1 d Al saints ♌ 13 19 19 30 ♄ 26 3 ♌ 7 35 4 25 2 e ☌ ♄ ☽ 26 5 20 30 ♃ 9 57 ♒ 7 36 4 24 3 f ☽ ☊ ♍ 8 32 21 31 ♂ 1 34 ♒ 7 38 4 22 4 g □ ♀ ☽ 20 45 22 32 ♀ 25 54 ♐ 7 39 4 21 5 a ●o●der p. ♎ 2 41 23 33 ☿ 21 25 ♏ 7 40 4 20 6 B   14 36 24 33 ♄ 26 16 ♌ 7 42 4 18 7 c ⚹ ♄ ☽ 26 27 25 34 ♃ 10 36 ♒ 7 44 4 16 8 d ☽ apogeo ♏ 8 18 26 35 ♂ 5 17 ♒ 7 45 4 15 9 e ☌ ☿ ☽ 20 13 27 36 ♀ 2 2 ♑ 7 46 4 14 10 f ⚹ ♃ ☽ ♐ 2 1● 28 37 ☿ 29 21 ♏ 7 48 4 12 11 g   14 16 29 37 ♄ 26 25 ♌ 7 49 4 11 12 a △ ♄ ☽ 26 2● ♐ 38 ♃ 11 18 ♒ 7 50 4 10 13 B ☽ ☊ ♑ 8 45 1 39 ♂ 9 1 ♒ 7 51 4 8 14 c   21 11 2 40 ♀ 8 9 ♑ 7 53 4 7 15 d ☌ ♂ ☽ ♒ 3 48 3 4● ☿ 7 11 ♐ 7 55 4 5 16 f ☍ ♄ ☽ 16 37 4 42 ♄ 26 33 ♌ 7 56 4 4 17 ● SS ♃ ♀ 29 43 5 4● ♃ 12 ●4 ♒ 7 57 4 3 18 g ⚹ ♃ ☿ ♓ 13 7 6 4● ♂ 12 45 ♒ 7 58 4 2 19 a Td ♄ ☿ 26 55 7 45 ♀ 14 15 ♑ 7 59 4 1 20 B □ ♀ ☽ ♈ 11 7 8 46 ☿ 15 0 ♐ 8 0 4 0 21 c SS ♀ ☿ 25 42 9 47 ♄ 26 38 ♌ 8 1 3 59 22 d ☽ perigri . ♉ 10 50 10 48 ♃ 12 53 ♒ 8 2 3 5● 23 e Clement 25 50 11 49 ♂ 16 30 ♒ 8 3 3 57 24 f Bq ♄ ♀ ♊ 10 31 12 50 ♀ 20 20 ♑ 8 4 3 56 25 g Katharine 25 50 ●3 51 ☿ 22 46 ♐ 8 5 3 55 26 a ☍ ♀ ☽ ♋ 10 31 14 53 ♄ 26 39 ♌ 8 6 3 54 27 B Advent sun . 24 47 15 54 ♃ 13 44 ♒ 8 6 3 54 28 c Term end . ♌ 8 35 16 55 ♂ 20 16 ♒ 8 7 3 53 29 d ☌ ♄ ☽ 21 54 17 56 ♀ 26 24 ♑ 8 8 3 52 30 e Andrew ● ▪ ♍ 4 46 18 57 ☿ 0 34 ♑ 8 9 3 51 December hath xxxj . dayes . Last quarter first day 50 min. past 5 after noon . Sun rising Sun setting New Moon 9 day 30 min. past 10 after noon . First quarter 17 day 22 min. past 10 before noon . Full Moon 22 day 51 min. past 2 before noon . Last quarter 31 day 52 min. past 5 after noon . 1 f   ♍ 17 14 19 59 ♄ 26 37 ♌ 8 10 3 50 2 g △ ♀ ☽ 29 26 21 0 ♃ 14 39 ♒ 8 11 3 49 3 a △ ♃ ☽ ♎ 11 24 22 1 ♂ 24 3 ♒ 8 11 3 48 4 B □ ♀ ☽ 23 15 23 2 ♀ 2 27 ♒ 8 11 3 49 5 c ☽ apogeo ♏ 5 3 24 3 ♀ 8 18 ♑ 8 12 3 48 6 d ● ♄ ♂ 16 54 25 5 ♄ 26 34 ♌ 8 12 3 48 7 e △ ☉ ♄ 28 51 26 6 ♃ 15 38 ♒ 8 12 3 48 8 f ⚹ ♃ ☽ ♐ 10 55 27 7 ♂ 27 49 ♒ 8 13 3 47 9 g △ ♄ ☽ 23 10 28 8 ♀ 8 28 ♒ 8 13 3 47 10 a SS ♃ ☿ ♑ 5 34 29 10 ♀ 15 50 ♑ 8 13 3 47 11 B   18 3 29 11 ♄ 26 27 ♌ 8 13 3 47 12 c ☌ ♀ ☽ ♒ 0 49 1 12 ♃ 16 38 ♒ 8 13 3 47 13 d Bq ♄ ☿ 13 42 2 14 ♂ 1 35 ♓ 8 13 3 47 14 e ☌ ♂ ☽ 26 45 3 15 ♀ 14 26 ♒ 8 13 3 47 15 f ⚹ ☿ ☽ ♓ 10 0 4 16 ☿ 22 50 ♑ 8 13 3 47 16 g ☽ ☊ ●3 29 5 17 ♄ 26 17 ♌ 8 13 3 47 17 ● ⚹ ♃ ☽ ♈ 7 10 6 19 ♃ 17 39 ♒ 8 1● 3 48 18 B □ ☿ ☽ 21 9 7 20 ♂ 5 21 ♓ 8 12 3 48 19 ● ⚹ ♂ ☽ ♉ 5 25 8 21 ♀ 20 22 ♒ 8 1● 3 48 20 d ☽ perigri 19 57 9 23 ☿ 28 35 ♑ 8 1● 3 49 21 e Thomas A ▪ ♊ 4 38 10 24 ♄ 26 6 ♌ 8 10 3 50 22 f △ ♀ ☽ 19 24 11 25 ♓ 18 44 ♒ 8 9 3 51 23 g ☍ ♄ ♀ ♋ 4 7 12 27 ♂ 9 8 ♓ 8 8 3 52 24 a ☍ ♀ ☽ 18 35 13 28 ♀ 26 18 ♒ 8 6 3 54 25 B Christmas ♌ 2 47 14 29 ☿ 1 51 ♒ 8 5 3 55 26 ● Stephen 16 33 15 30 ♄ 25 51 ♌ 8 ● 3 55 27 d Iohn Eva. 29 55 16 31 ♃ 19 48 ♒ 8 4 3 56 28 e Innocents ♍ 12 50 17 33 ♂ 12 54 ♓ 8 4 3 56 29 f △ ☿ ☽ 25 23 18 34 ♀ 2 8 ♓ 8 3 3 57 30 g Bq ☉ ♄ ♎ 7 36 19 ●5 ☿ 0 57 ♒ 8 3 3 57 31 a Silvester 19 38 20 37 ♄ 25 35 ♌ 8 2 3 58 IACKSON . 1653. A Prognostication gathered from the Suns Ingresses , together with Astronomicall Solar propositions wherein is 28. operations Illustrated by examples . VVhereunto is annexed the manner hovv to calculate an Eclipse of Sun or Moon for any place assigned for any time past , present , or to come . And finished vvith the Proportionall bodies of the Spheres one to another , and the distance of the Planets among themselves and with the firmament . By THOMAS JACKSON , Mathematician . Printed at London by W. Wilson for the Company of Stationers . 1653. The Moneth , Day , Hour , and Minute of the Suns Ingress , or the Suns Entrance into the four Cardinall Signes this present year 1653. THe Cardinal Signs are , Aries , Cancer , Libra , Capriorn ; being as it were the hinges on which the year bangeth . The first Quarter is the Spring , enters with the Sign of Aries , to whose first minute the Sun cometh this year on the 10 day of March 5 min. past 2 a clock in the morning . The next Quarter is Summer , the Cardinal Sign is Cancer , the beginning of Summer is the 11 day of June , 10 min. past 5 a clock in the morning . Autumn , or Harvest , beginneth Libra the 12 day of September at 8 a clock at night . Winter taketh his beginning Capricorn the 11 day of December , half an hour past 7 in the morning . Of the Eclipses hapning this year 1653. THis year there will be four Eclipses , two of the Sun , and two of the Moon , of which there will be but one visible in our horizon , and it will happen the 4 day of March , 49 minutes past 1 in the morning , and ends 57 minutes past 5 in the morning ; so that the total duration will be 4 houres 8 minutes : The digits eclipsed is 18.43 minutes . I here omit the other three Eclipses , of which the effects will not happen in and about England ; as for our Eclipse the 4 of March before mentioned , the effects will happen in June ensuing ; on which time is the height of the effects of that Eclipse hapned on the 29 day of March 1652. And for which time to portend the contingencies , or more plainly to foretell what accidents may happen to sublunary bodies , I must have recourse to the Solar Eclipse happened March 29 day 1652 , for that Eclipse will oversway , predominate , and have dominion over this Lunar Eclipse , so the portendation● ; there will be much arrogancie about the Eastern parts from London , pestilent feavers , the death of great men , men of power , much rapine , theft , plundring , house burnings , death of cattle , &c. A short discoverie of this present year 1653 , gathered from the position of the Heavens at the Suns ingress of the four Cardinal Signs . NOt using ▪ novilunium postventionale vel perventionale in vernum aestivum & autumni hibernium , but the vernall Ingress of the Sun with the other ingressions of the Cardinal Signs . Haly saith , Major tamen potentia , &c. The greatest power in signification of the accidents of the year is over given unto the Lord of the Ascende●● , &c. For confirmation of my judgement herein , in this Revolution is , as , viz. astrological chart ☉ in ♈ Martii 9 die . 14. hora. 5. min. die ♄ hora ♂ ☽ △ ad ☉ △ ad ♄ ☽ ⚹ ad ♃ ☌ ad ♂ ☽ □ ad ♀ ♂ △ ad ☉ Jupiter is Lord of the ascendent posited in the second house , the cusp of the ascendent is possessed with common sign the Lord thereof in a fixed sign , and in a succedent house , and he being a weighty Planet these testimonies do signifie that this Suns vernal Ingress that predictions may be portended throughout the Revolution Furthermore consider , that the next Quarter the Sun enters ♋ the 11 of June 5 a clock , and 10 minutes past noon , then is Jupiter Lord of the Ascendent as he is in this Quarter ; and in Autumn he hath his triplicity in the Ascendent ; and when the Sun enters the Winter Quarter Jupiter is Lord of the Ascendent ; to which I conclude , Jupiter is Almutan of the year , & makes Venus Cosignificator . Si ascendit Sagitarius , solicitabitur circae aedificationes : I say , Sagitarius being the Sign ascending , signifies men will much delight to build , &c. Jupiter Lord of the Ascendent signifies , as , viz. Si Jupiter ascendentis Dominus eum intueatur felici radio , bonam fortunam , sanitatem , gaudium , & lucra , hominibus inprimis religiosis & honoratis , & extruentur Ecclesiae & oratoria , appetuntque homines studia sapientiae & legum . That is to say , If Jupiter be Lord of the Ascendent ( as now he is ) he denotes much prosperity and happiness , good fortune , health , soundness , good state of wit and memory , many glad tidings and riches , men and women subject to humanity , religion , for reputation and honour , to magnifie our Redeemer in many private assemblies , men much desire to read , and study after wisdom . The Lord of the Ascendent being posited in the second house signifies , as viz. Felix promittit , lucra multa , vitam speciosam : Here is promise of much riches and happiness , and to live a godly life . Venus being in the second house signifies , Fertilitatem & uberem proventum frugura , item affluentem & liberalem vitem . Yet I see more happiness portended by the Moon her application to the two fortunes ▪ to wit the Lord of the Ascendent ▪ and his Lady , which is Venus by name ▪ for the Moon is in conjunction with Jupiter on March 15 day at 2 a clock in the morning , Venus with the Moon on the 17 day at 5 in the morning ; so that the first Planet the Moon applyes to , after the Suns vernal ingress , is Jupiter the Lord of the Ascendent , next Venus , then Mercury ; see what Origanus saith in such a matter ; In anni & quarturum revolutionibus , aut thematibus lunationum , si luna sive firma , &c. potens , sit in angulo , vel succedente domo dignitatibus , sive debilis & cadens extra dignitates , applicuerit benefico alicui planeti Jovi vel Veneri , significabitur status populi fortunatus , quo lucra eidem accrescent , & abundabunt necessariae ; vigebitque , si applicuerit Jovi , justitia , pax , libertas ; si Veneri erit hilaritas , gaudium , frequentia connubiorum : In the Revolutions of the year , and of the quarterly Ingresses , or in the Theams of the several Lunations , if the Moon , whether she be strong and potent in an Angle or succedent house , and in her own dignities , or if she be in weak and cadent without her dignities , and shall apply to any benevolent Planet , viz. Jupiter or Venus , it signifieth the state and condition of the people to be fortunate , whereby they shall get wealth , and have abundance of all necessaries ; and if this application be to Jupiter , justice , peace , and liberty , shall flourish ; If to Venus , there shall be mirth , joy , and many mariages ; these are significations of double joys , but the Eclipse of the Sun happening in the year 1652. 29 day of March will single the joys . Jupiter with Venus doth signifie , Agunt quidem juxta naturam fortioris in themate , in genere vero serenitatem afferunt ; in aqueis vero locis mites & lenes pluvias , & hoc certius si lunae testimonium radio vel ☌ accesserit . A Table of the altitude of the Sun in the beginning of each Sign at all houres of the day , calculated for 51 degrees , 30 minutes North latitude . Bef . noon Aft. noon ♋ ♊ ♌ ♉ ♍ ♈ ♎ ♓ ♏ ♒ ♐ ♑ d. m. d. m. d. m. d. m. d. m. d. m. d m. 12 62.00 58.20 50.0 38.30 27.6 18.20 15.10 11 1 59.44 56.30 48.12 36.56 25.42 17.10 13.58 10 2 53.45 50.45 43.20 32.38 21.53 13 40 10.30 9 3 45.30 43.10 36.10 26.8 15.59 8.18 5.20 8 4 36.40 34.12 27.30 18.8 8.35 1.17   7 5 27.16 25 00 18.20 9.21 0 6     6 6 18.10 15.46 9.5         5 7 9.36 7.4           4 8 1.39             You may behold in this Table , that when the Suns place is in the first point of Cancer , his Meridian height will be 62 degrees , in Gemini is 58 deg . 28 min. in Leo is the same degrees and minutes . Suppose that when the Sun is in the first point of Aries or Libra , and you find the height of the Sun taken by the quadrant to be 38 deg . 30 min. and you would desire to know what a clock it is at that time , look in the foregoing Table under the Signs Aries and Libra , and you will find in the column under the title before and after noon to be 12. then you may conclude it is high noon . Had it been that the Sun was but 36 deg . 56 min. high that day , then you may conclude to be a 11 of the clock , if it be in the aforenoon ; if it be in the afternoon it is 1 a clock . Suppose you had observed the Sun to be 26 degrees , and 8 min. high in the same day , then it is 9 of the clock , if your observation be in the morning , but if it be in the afternoon , then it is 3 a clock , and so with the rest . At any time when the Sun is far remote from the first point of any Sign , take the proportional part , and the like for your altitude taken , when it will not concur with the altitude in the Table , so you will find the Suns altitude above the horizon at any time . A Table of the Azimuth of the Sun in the beginning of each Sign for all houres of the day , for the latitude of 51 deg . 13 min. Bef no. Afr. no. 11 1 10 2 9 3 8 4 7 5 6 6 5 7 4 8 Signes . d. m. d. m. d. m. d. m. d. m. d. m. d. m. d. m. ♋ 61.41 38.00 22.00 8.5.0 3. n. 20 14.40 25.30 37 . 0● ♌ ♊ 63.52 41.30 24.45 10.5.4 1.00 12.12 23.25   ♍ ♉ 67.10 47.30 31.2 17.00 4.3 6.52 18.12   ♎ ♈ 70.00 53.25 37.56 24.5 11.22       ♏ ♓ 72.30 58.00 43.40 30.25         ♐ ♒ 74.20 60.55 47.49 35.00         ♑ 75.2 62.1 49.3           When the Sun is in the first point in Cancer a● 9 a clock before noon , or 3 a clock in the after noon , it is required the Suns Azimuth , which is 22 degr . 00 min. in the same houres in Leo and Gemini it is 24 deg . 45. min. as in like manner with the rest . A Table of the Suns declination for every degree of the Ecliptique . degrees . ♎ ♈ ♏ ♉ ♐ ♊ degrees . d. m d. m. d. m. 1 0.24 12.00 20.26 29 2 0.48 12.13 20.39 28 3 1.2 12.33 20.49 27 4 1.35 12.54 21.1 26 5 2.10 13.13 21.12 25 6 2.23 13.34 21.23 24 7 2.47 13.54 21.43 23 8 3.11 14.13 21.52 22 9 3.35 14.33 22.2 21 10 3.58 14.52 22.10 20 11 4.23 15.11 22.18 19 12 4.45 15.29 22.26 18 13 5.9 15.48 22.34 17 14 5.32 16.6 22.40 16 15 6.4 16.23 22.47 15 16 6.19 16.41 22.53 14 17 6.42 16.58 22.59 13 18 7.5 17.15 23.4 12 19 7. ●8 17.32 23.9 11 20 7. ●0 17.48 23.13 10 21 8.13 18.4 23.17 9 22 8.35 18.19 23.20 8 23 9.10 18.35 23.33 7 24 9.21 18.50 23.25 6 25 9.42 19.5 23.28 5 26 10.4 19.19 23.29 4 27 10.26 19.33 23.30 3 28 10.48 19.47 23.30 2 29 11.9 20.00 23 31 1 30 11.31 20.13 23.31 0 degrees . d. m. d. m. d. m. degrees . ♓ ♍ ♒ ♌ ♑ ♋ The use of this Table . This Table consisteth of 5 Columns , the first and last contain the degrees of the Signes that are placed in the head or foot thereof , that if you find the sign that the Sun is in at the head or foot of the Table , and the degrees in the first or last Column thereof , then at the intersection you will have the Suns declination . Example . Let the Suns place be 20 degrees in Taurus or Scorpio , to find the Suns declination , you must find Taurus or Scorpio in the head of the Table , and 20 degrees on the first Column , then guide your eye from ♉ til you come against 20 degr . there you shall finde 17 degr . and 48 m. the Suns declination when he is 20 deg . in ♉ or ♏ . Note if you find the Sign in the foot of the Table , you must find the degrees in the last Column . This Table is of much excellency for the calculating of divers propositions Astronomical ; for it being one of the three terms given in most Solar propositions , as viz. Let the declination of the Sun , elevation of the Pole , and Suns almicanter be given , by which you shall finde viz. The Suns meridian height . The Suns place in the ecliptique . The length of the day and night . The hour of East and West . The Azimuth of 6 a clock . The Suns Azimuth . The right Ascension . The oblique Ascension . The oblique Descension The Ascensional difference . The Amplitude . The Semidiurnal arch . Example with Illustrations . Let there be given the Suns declination 20 degrees , and 14 m. then the suns place wil be the first point of Gemini . Let there be given the elevation of the Pole 51 degrees 32 min. Let there be given the Suns Almicanter 49 deg . which will stand as viz. North Declination 20 deg 14 min. given . North Elevation 51 deg . 51 min given . North Almicanter 49 deg 00 min. given . The first operation to find the Suns amplitude say , As the complment of the elevation of Pole 38 deg . 28 m. 9.79383 To the Suns declination 20 d. 14 m. 9.53888 So is the Radius 50 d. 10.00000 To the amplitude 33 d. 47 m. 9.74505 The second operation to find the ascensional difference say , As Radius 90 d. 10.00000 to the amplitude 33 d. 47 9.74511 so is the elevation of the Pole 51 d. 32 m. 9.89383 25 d. 48 m. to the ascensional difference upon a great circle 9.63885 Then substract the declination from 90 and the remainder will be 69 d. 46 m. then say If 69 d. 46 m. upon a great circle 9 97233 will become 90 d. upon a little circle 10.00000 what will 25 d. 48 m. upon a great circle 9.63871 it will give the ascensional difference 27 d. 38 m. a little circle 966668 this 27 d. 38 m. converted into time will be 1 hour 50 min. so long time the Sun hath been above the horizon before 6 a clok . The fourth operation is to find the Suns almic●nter at 6 a clock , say As Radius 90 d. 10.00000 to the Suns declination 20 d. 14 m. 953888 so is the elevation of the Pole 51 d. 32 m. 989374 to the almicanter at 6 a clock 15 d. 43 m. 943262 The fift operation is to find when the Sun will be East and West , say then , As the elevation of the Pole 51 d. 32 m. 9.89374 to the suns declination 20 d 14 m. 9.53888 so is the complement of the elevation of Pole 9.79383 to the distance of the suns way from 6 a clock to East in a great circle 15. d. 56 m. 9.43897 then substract the declination from Radius , and the remainder will be 69 d. 46 m. then say , As 69 d. 46 m. upon a great circle 9.97233 will give 90 d. upon a little circle 10.00000 what will 15 d. 56 m. upon a great circle 943857 it will give 17 d. 1 m. upon a little circle 946624 this 17 d. 1 m. being converted into time will be 1 hour 8 m. so long time will the sun be after 6 a clock before he come to be ful East , and at night hee will be ful West 1 hour 8 m before 6 a clock The seventh operation is to find the difference of the Almicant●r given 49 d. and almicanter found at 6 a clock . which difference is found by the natural signs , as viz. The sign of the almicanter given 49 d. 754790 The sign of the almicanter of 6 a clock 15.43 . 270880 The difference of the almicanters 28.56 . 483829 The eighth operation is to find how far the sun hath swerved from 6 a clock , whereby to know the hour of the day , say then As the difference of the almicanters 28 d. 56 m. 9.86374 to the complement of the elevation of the Pole 38 d. 28 m. 9.79383 so is the Radius 90 d. 10.00000 to the distance the sun swerved from 6 a clock upon a great circle 50 d. 55 m. 898991 then substract the suns declination from radius , then say in the ninth operation If 69 d. 46 m. upon a great circle 997233 wil become 90 d. upon a little circle 10 00000 what wil 50 d. 55 m. great circle become ? 988999 which is 55 d. 49 m. a little circle 991766 this 55 d. 49 m. being converted into time wil be 3 houres 43 m. which being added to 6 a clock , it wil be 9.43 ▪ that is to say , 9 a clock 43 m. after when the suns almic●● . was 49. deg . The tenth operation is to find the Suns almicanter when he is East or West , say As the elevation of the Pole 51 d. 32 m. to the Suns amplitude 33 d. 47 m. so is the complement of the elevation 38 d. 28 m. to the suns almicanter at Last or West 26 d. 13 m. which take from the almicanter given 49 d. by the natural signs , as viz. The almicanter of 49 d. 00 m. 75470 The almicanter of 26 d. 13 m. 441766 The remainder is 18.14 . 312943 Which is the almicanter made since the sun came from East . The twelfth operation is to find the suns azimuth , say As the complement of the elevation of the Pole 38 d. 28 m. is to the almicanter since the sun came from East 18 d. 14 m. so is the elevation of the Pole 51 d. 32 m , to the suns azimuth upon a great circle 23 d. 11 m. then substract 49 the almicanter given from radius , the remainder will be 41 degrees . In the thirteen●h operation say , If 41 d. upon a great circle 9.81694 will become 90 d. upon a little circle 10.00000 what wil 23 d. 11 m. upon a great circle 9.59513 it wil be the suns azimuth 36 d. 52 m. 9.77819 The fourteenth operation to find the suns place , as viz. As the suns greatest declination 23 d 31 m. 960099 to the declination in the point of the ecliptique 20 d. 1 m. 953880 so is radius 90 d. 10.000000 to the suns place 60 d ▪ or ♊ 993789 The fifteenth operation , finde the Suns right ascension , as viz. As Radius 90 d. 10.00000 to the tangent of the suns place 60 d. 10.23856 so the cosign of the suns greatest declination 23 d. 31 m. 9.96234 to the tangent of the suns right ascension 57 d. 48 m. 10.20090 To find the suns oblique ascension being he is in the Northern signs , substract the ascensional difference 27 d. 38 m. which is found in the second operation from the suns right ascension 57 d. 48 m. and the remainder is 30 d. 10 m. which is the suns oblique ascension . If the sun be in Southern signs adde . To find the suns oblique descension the sun being in the Northern signs adde the ascensional difference to the right ascension , and it will give 85 d. 26 m. the suns oblique descension . If the suns declination had been South you must then substract . To find the sun rising and setting , the length of the day and night . To know the sun rising look in the second operation , where is the ascensional difference converted into time , which is 1 hour 50 m. that take from 6 a clock which will be the remainder 4.10 . that is to say , at 4 a clock ten min. after the sun will rise , which double will be 8 h. 20 m. the length of the night . To find the sun setting adde 1 h. 50 m. to 6 a clock , and it will be 7 a clock 50 m. after ; which being doubled , is 15 h. 40 m. the length of the day . The Illustrated operations stands thus . The suns declination North 20 d. 14 m. given . d. m. The elevation of the Pole is 51 d. 32 m. given . d. m. The suns almicanter is 49 d. 00 m. given . d. m. The suns meridian height is 58.42 The suns place in Gemini 00.00 The suns amplitude is 33.47 The suns ascensional difference is 27.38 The same converted into time is hour 1.50 The suns almicanter at 6 a clock is 15.43 The difference of the almicanter is 28.56 The suns almicanter when he is East and West 26.13 The difference of the almicanter given 49 is 18 14 The suns azimuth at 6 a clock 12.56 The suns azimuth easterly 36.52 The degrees the sun swerved from 6 to East 17.01 The same converted into time is hour 1.08 The degrees the sun swerved from 6 to the time of observation is 55.49 The same converted into time is houres 3.43 The sun rising is at houres 4.10 The sun sets at houres 7.50 The length of the day is houres 15.40 The length of the night is houres 8.20 The sun at East houres 7.8 The sun at the point of East at houres 7.8 The hour of the day is 9 a clock 43 min. after houres 9.43 The suns right ascension is 51.48 The suns ascensional difference is 27.38 The suns oblique ascension is 30.10 The suns oblique descension is 85.26 The suns semidiurnal arch is 117.38 The suns diurnal arch is 235.16 How to calculate the Eclipse both Solar and Lunar for any place assigned , for any time past , present , or to come . IT is required to know if the Moon will be Eclipsed in February 1663 : and if she be , the quantity and duration . Place assigned . Calculated for the Town of Litterworth in Leicestershire , whose Latitude is 52 deg . 36 min. and the Meridian differs from London 4 minutes . To know if the Moon will be Eclipsed that moneth and year , first I find the opposition of the Sun and Moon that time as thus . The middle motion of ☽ Time given . s . d. m. se s . d. m se . 1601 9.19.58.34 0.7.33.29 60 0 . 00.26.5● 1.10.41.12 2 11.29.31.20 8.18.46.5 February 01.00.33.18 1.18.28 6 The middle motion of ☉ 10.20.30.08 11.25.28.52 Mid. motion of ☽ substr . 11. ●5 . 28.52   Distance of ☽ from ☉ 10 . 25.0●.16   Semicircle substract . 6.   Dist . of ☽ from ☍ of ☉ 4.25.1.16   This distance reduced into time , will be the true opposition of the Sun and Moon according to there middle motion , as , viz. The distance of the Moon from opposition of the Sun is So that the mean opposition of the Sun and Moon in that year and moneth will happen 11 day , 21 houres , 26 min. 13 seconds p.m. To find the true opposition of the Sun and Moon , I calculate to the time of the mean opposition the true place of the Sun and Moon , as , viz.   ☉ longit . ☉ Apogaeo ☽ longit . ☽ Apogaeo Time given s . d. m. se . s . d. m. se . s . d. m. se . s . d. m. se . 1601 9●●9 . 58.34 3.5.43.28 0.7.33.29 7.19.00.30 60 00.00.26.56 1.1.38 1.10.41.12 9.11.34.42 2 11.29.31.20 2.4 8.18.46.5 2.21 19.49 February 1.00.33.18 5 1.18.28.6 0.03.27.13 dayes 11 00. ●0 . 50.32 2 4.24.56.25 1.13.32 houres 21 51.45   0.11.31.46 5.51 minutes 26 1.4   14.16 7 seconds 13     7 1 Middle motion of ☉ ●1 . 02.13.29 3.6.47.17 5. ●2 . 11.26 7.25.41.45 Apogaeon substract . 3.6.47.17   7.25.41.45   The Anomilie of ☉ 7.25.26.12   9.06.29 4● The Anomile of ☽ The mid . motion of ☉ 11.2.13.29     The Equation added 1.42.39       The Suns place 11.3.56.05       The Moons place 5.7.6.26       The difference of Sun and Moons places I divide by the hourly motion of the Moon from the Sun , and remainder will be the intervall of time , that is to say , the time between the mean and true opposition of the Sun and Moon 6 hours , 27 min. 13 sec . and in regard the Moons place exceeds the Suns place in opposition , I substract the interval of time from the mean opposition ▪ as , viz. The mean opposition in Anno 1663 in Febr. is 11 dayes , 2 houres , 30 min. 13 seconds , out of which substract the interval of time 6 houres , 27 min. 13 sec . and remainder is , 11 dayes , 15 houres , 3 minutes , 00 sec . with which corrected time I compute and examine the Sun and Moons places for the true opposition , as , viz.   Longit. of ☉ s . d. m. h Longit. of ☽ s . d. m. h.   Mid. motion of ☉ 11.1.57.14 4.28.41.3 Mid. mo . of ☽ Apheliō of ☉ subst . 3.6.57.17 7 26.30.58 Aph. of ☽ sub . Anomile of ☉ 7 . 2459.5● 9.2.2.10 Anomile of ☽ Aequation of ☉ ad . 0.01.41.47 0 04.57.58 Aequ . of ☽ ad . Anom of ☉ coaeq . 7.25.49.42 9.4.29 50 An. of ☽ coaeq . True place of ☉ ♓ 03.39.01 ♍ 3.39.1 Tru place of ☽ I conclude , in the aforesaid year , moneth , day , hour , minute , The Sun and Moon will be in opposition ; for the Suns true place will be Pisces , 3 deg . 39 min. 1 sec . and the Moons true place will be Virgo 13 deg . 39 min. 1 sec . To find if the Moon will be eclipsed or not . If at any time the mean ful Moon her place be distant from either of her nodes less than 15 degrees 12 minutes , either according , or contrary to the Succession of the Signs , that full Moon will suffer an eclipse . Example , at the time of the middle of the full Moon before mentioned , in Febr. 1663. the 11 day 21 hour , 30 min. 13 sec . the middle place of the Moon is 5 s ▪ 7 d. 6 m. 26 se . and her node ascending is 5.1.26.22 . So that between the Moons place and her node , is but 5 deg . 40 min. 4 sec . So I conclude that ful Moon wil be eclipsed . The apparent time to be found . I substract the Aequation of civil dayes 11 houres , 11 min. from the true opposition , the residue will be the apparent time 14 houres , 52 min. The horizontal parallex of the ☉ 2 m. 21 se . The horizontal parallex of the ☽ 57.53 . The hourly motion of the ☉ 2.31 The hourly motion of the ☽ 33.15 The semidiameter of the ☉ 16.38 The semidiameter of the ☽ 16.11 The appatent semidiameter of the Earths shadow is 43.36 The hourly motion of the ☉ from the ☽ 30 44 To find how many digits the Moon will be eclipsed . The semidiameter of the Moon 16.11 And semidiameter of the Earths shadow 43.39 Both added together is 59.47 From which take the ☽ latitude 34.56 And the remainder wil be 24.51 the parts deficient . Then I make my proportional terms , as , viz. If the Moons diameter 32 min. 22 se . will give 12 dig ▪ What will the parts deficient give 24 min. 51 se . and the work will be thus ☽ Diameter 1942 se . 3288249 Digits 720 m. 2859332 Parts deficient 1491 3173477   Agregate 6030809     2742560 Digits eclipsed is 9 13 / 60 So I conclude in Anno 1663 , Feb. 11 day . 14 houres ▪ 52 min. the quantity of the Moon will be eclipsed 9 digits , and 13 / 60 parts of a digit . To find the minutes and time of incidence , and the half ●●rriance or continuance of the Moon in the earths shaddow , as viz. The sum of the semidiameters of the Moon and earths shaddow being reduced into sec . 3587 m. The latitude of the Moon 2093 Agregate 5680 difference 1494 Or thus . The aggregate 5680 3754348 The difference 1494 3174390 Sum 6928738 Minutes of incidence 48 m. 33 se . half Sum 3464369 Having found 48 m. 33 se . the minutes of incidence and half tarriance together . Now find only the minutes of half tarriance , as viz. The difference of the semidiameter of the Moon and earths shaddow is 1645 se . The Moons latitude is 2093 The same being added together the sum is 3738 The sum 3738 3.572639 The difference 448 2.651278 The aggregate 6223917 The sem a●gregate 3131558 Which gives 1294 se . or 21 min. 34 se . the min. of the Moon● hal tarriance . To find the time of incidence and half tarriance together . I divide the minutes of incidence and half tarriance together 48 m. 33 se● by the hourly motion of the Moon , for the Sun 30 min. and 44 sec . and the quotient giveth the time of incidence and half tarriance together to be 1 hour , 11 min. 30 sec . Then I say , that the totall duration of the foresaid eclipse will be 2 houres 12 min. To find how long time the Moon continueth in the earths shaddow . In the performance hereof I divide the minutes of the half tarriance ▪ 21 m. 34 se . by the hourly motion , and the quotient will be 31 min. 45 sec . the time of her half continuance in the shaddow . If you would know the latitude of the Moon at the begining and end of the eclipse . You must take the minutes of incidence and half tarriance together , and adde thereto the middle motion of the Sun agreeing to the time of incidence and half tarriance , the sum whereof take from the true motion of the Moons latitude at the time of the middle of the eclipse , and the remainder will be her latitude at the beginning of the eclipse . Then do but adde the same to the true motion of her latitude at the time of the middle of the eclipse , and the aggregate will be the true latitude at the end of the eclipse . This done , you may describe the eclipse in a figure in plano . The proportion of the bodies of the Sphears one to another The Sun is ▪ 9 times greater than Saturn The Sun is 14 times greater than Jupiter . The Sun is 2535 times greater than Mars . The Sun is 1270 times greater than Venus . The Sun is 3705 times greater than Mercury . The Sun is 1000 times greater than the Moon . The Sun is 196 times greater than the Earth . Saturn is ½ times greater than Jupiter . Saturn is 286 times greater than Mars . Saturn is 152 times greater than Venus . Saturn is 418 times greater than Mercury . Saturn is 1122 times greater than the Moon . Saturn is 12 times greater than the Earth . Jupiter is 182 times greater than Mars . Jupiter is 84 times greater than Venus . Jupiter is 266 times grater than Mercury . Jupiter is 714 times greater than the Moon . Jupiter is 14 times greater than the Earth . Mars is 1½ times greater than Mercury . Venus is 2 times greater than Mars . Venus is 3 times greater than Mercury . Moon is 13 times greater than Mars . Moon is 6 times greater than Venus . Moon is 19 times greater than Mercury . The distance of the Planets amongst themselves , and with the Firmament . The Earth is distant frō the Firmamēt 49150720 miles . Saturn is distant from the Firmament 127864480 miles . Jupiter is distant from the Firm. 35425120 miles . Mars is distant from the Firmament 47490640 miles . The Sun is distant from the Firm. 44720000 miles . The Moon is distant from the Firm. 48958080 miles . Saturn is distant from Jupiter 23138640 miles . Saturn is distant from Mars 29361440 miles . Saturn is distant from the Sun 3193352 miles . Saturn is distant from the Moon 36171600 miles . Jupiter is distant from Mars 7722800 miles . Jupiter is distant from the Sun 9294880 miles . Jupiter is distant from the Moon 13532960 miles . Mars is distant from the Sun 1572080 miles . Mars is distant from the Moon 6310160 miles . The Sun is distant from the Moon . 4238080 miles . Courteous Reader , IN London in Southwark , in Winchester-yard , over against St. Mary Over-●hees Church-door is taught by me , Arithmetick in whole Numbers and Fractions , &c. The Principles of Geometry with practice and demonstration , and survaying of Lands , to measure any superficial or solid content , to take the height , depth , length , or breadth of things which being environed with water cannot be approached unto . The doctrine of Triangles , both Plane and Sphericall , with the use of the Signs , Tangents , Secants , and Logarithms ; a description , demonstration , and use of Instruments , as also the Quadrat , Quadrant , Plane-scale , Secter , Theodolite , Plane-table , Cross-staff , horizontal Sphear , with the two Globes both Terrestial and Celestial . Teaching Navigation , with making use of sundry Instruments in fitting the Art of plain Sayling , and Mercators projection , and to calculate the course and distance of any two places in the World howsoever situated , by Trigonometrical calculations . Teach Astronomy , the working of any Proposition-soever , to find or calculate the true time of the Conjunctions and Oppositions of any Planets , for any time , past , present , or to come ; or any Proposition or Question that is prescribed in this Almanack . Yours , till I cease to be my own , THO. JACKSON . FINIS .