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Introduction

Generative machine learning is a hot topic. With the 2020 election approaching, Facebook and
Reddit have each issued their own bans on the category of machine-generated or -altered con-
tent that is commonly termed “deep fakes” (Cohen 2020; Romm, Harwell, and Stanley-Becker
2020). Calls for regulation of the broader, and very nebulous category of fake news are now part
of US political debates, too. Although well known and often discussed in newspapers and on
TV because of their dystopian implications, deep fakes are just one application of generative ma-
chine learning. There is a remarkable need for others, especially humanists and social scientists,
to become involved in discussions about the future uses of this technology, but this first requires a
broader awareness of generativemachine learning’s functioning and power. Many articles on the
subject of generative machine learning exist in specialized, highly technical literature, but there is
little that covers this topic for a broader audience while retaining important high-level informa-
tion on how the technology actually operates.

This chapter presents an overview of generative machine learning with particular focus on
generative adversarial networks (GANs). GANs are largely responsible for the revolution in
machine-generated content that has occured in the past few years and their impact on our fu-
ture extends well beyond that of producing purposefully-deceptive fakes. After covering genera-
tive learning and the working of GANs, this chapter touches on some interesting and significant
applications of GANs that are not likely to be familiar to the reader. The hope is that this will
serve as the start of a larger discussion on generative learning outside of the confines of technical
literature and sensational news stories.
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Figure 2.1: The three most-common letters following “F” in two Markov chains trained on an
English and Italian dictionary. Three examples of generated words are given for each Markov
chain that showhowtheMarkov chain captures high-level information about letter arrangements
in the different languages.

What is GenerativeMachine Learning?

Machine learning, which is a subdomain of Artificial Intelligence, is roughly divided into three
paradigms that rely on different methods of learning: supervised, unsupervised, and reinforce-
ment learning (Murphy 2012, 1–15; Burkov 2019, 1–8). These differ in the types of datasets
used for learning and the desired applications. Supervised and unsupervised machine learning
use labeled and unlabeled datasets, respectively, to assign unseen data to human-generated la-
bels or statistically-constructed groups. Both supervised and unsupervised approaches are com-
monly used for classification and regression problems, where we wish to predict categorical or
quantitative information about new data. A combined form of these two paradigms, called semi-
supervised learning, that mixes labeled and unlabeled data also exists. Reinforcement learning,
on the other hand, is a paradigm in which an agent learns how to function in a specific environ-
ment by being rewarded or penalized for its behavior. For example, reinforcement learning can
be used to train a robot to successfully navigate around obstacles in a physical space.

Generative machine learning, rather than being a specific learning paradigm, encompasses
an ever-growing variety of techniques that are capable of generating new data based on learned
patterns. The process of learning these patterns can engage both supervised and unsupervised
learning. A simple, statistical example of one type of generative learning is aMarkov chain. From
a given set of data, aMarkov chain calculates and stores the probabilities of a following state based
on a current state. For example, aMarkov chain can be trained on a list of English words to store
the probabilities of any one letter occuring after another letter. These probabilities chain together
to represent that chance of moving from the current letter state (e.g. the letter q) to a succeeding
letter state (e.g. the letter u) based on the data from which it has learned.

If another Markov chain were trained on Italian words instead of English, the probabilities
would change, and for this reason, Markov chains can capture important high level information
about datasets (Figure 2.1). They can then be sampled to generate new data by starting from
a random state and probabilistically moving to succeeding states. In figure 2.1, you can see the
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Figure 2.2: Images generated with a simple statistical model appear as noise as the model is in-
sufficient to capture the structure of the real data (Markov chains trained using wine bottles and
circles from Google’s QuickDraw dataset).

probability that the letter “F” transitions to the threemost common succeeding letters in English
and Italian. A few examples of “words” generated by two Markov chains trained on an English
and Italian dictionary are also given. The example words are generated by sampling the probabil-
ity distributions of theMarkov chain, letter by letter, so that the generated words are statistically
random, but guided by the learned probability of one letter following another. The different
probabilities of letter combinations in English and Italian result in distinctly different generated
words. This exemplifies how a generative model can capture specific aspects of a dataset to create
new data.

The letter combinations are nonsense, but they still reflect the high-level structure of Ital-
ian and English words in the way letters join together, such as the different utilization of vowels
in each language. These basic Markov chains demonstrate the essence of generative learning: a
generative approach learns a distribution over a dataset, or in other words, a mathematical rep-
resentation of a dataset, which can then be sampled to generate new data that exists within the
learned structure of that dataset. How convincing the generated data appears to a human ob-
server depends on the type and tuning of the machine learning model chosen and the data upon
which themodel has been trained. So, what happens if we build a comparableMarkov chainwith
image data1 instead of words, and then sample, pixel by pixel, from it to generate new images?
The results are just noise and the generated images reveal no hint of a wine bottle or circle to the
human eye (Figure 2.2).

The very simple generative statistical model we have chosen to use is incapable of capturing
the distribution of the underlying images sufficiently enough to produce realistic new images.
Other types of generative statistical models, like Naive Bayes or a higher-order Markov chain,2

1In many examples, I have used the Google QuickDrawDataset to highlight features of generative machine learning.
The dataset is freely available (?iiTb,ff;Bi?m#X+QKf;QQ;H2+`2�iBp2H�#f[mB+F/`�r@/�i�b2i) and licensed
under CC BY 4.0.

2The order of a Markov chain reflects how many preceding states are taken into account. For example, a 2nd order
Markov chain would look at the preceding two letters to calculate the probability of a succeeding letter. Rudimentary
autocomplete is a good example of Markov chains in application.

https://github.com/googlecreativelab/quickdraw-dataset
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could perhaps capture a bit more information about the training data, but they would still be
insufficient for real-world applications like this.3 Image, video, and audio are complicated; it is
hard to reduce them to their essence with basic statistical rules in the way we were able to with
the ordering of letters in English and Italian. Capturing the intricate and often-inscrutable distri-
butions that underlie real-world media, like full-sized photographs of people, is where deep (i.e.
using neural networks) generative learning shines andwhere generative adversarial networks have
revolutionized machine-generated content.

Generative Adversarial Networks

Theproblemof capturing the complexity of an image so that a computer can generate new images
leads directly to the emergence of Generative Adversarial Networks, which are a neural-network-
based model architecture within the broader sphere of generative machine learning. Although
prior deep learning approaches to generating data, particularly variational autoencoders, already
existed, it was a breakthrough in 2014 that changed the fabric and power of generative machine
learning. Like every big development, it has an origin story that has moved into legend with its
many retellings. According to the handed-down tale (Giles 2018), in 2014 doctoral student Ian
Goodfellowwas at a bar with friends when the topic of generating photos arose. His friends were
working out a method to create realistic images by using complex statistical analyses of existing
images. Goodfellow countered that it would not work; there were too many variables at play
within such data. Instead, he put forth the idea of pairing two neural networks against each other
in a type of zero-sum game where the goal was to generate believable fake images. According
to the story, he developed this idea into working code that night and his paired neural network
architecture produced results the very first time. This was the birth of Generative Adversarial
Networks or GANs. Goodfellow’s work was quickly disseminated in what is one of the most
influential papers in the recent history of machine learning (Goodfellow et al. 2014).

GANs have progressed in almost miraculous ways since 2014, but the crux of their architec-
ture remains the coupling of two neural networks. Each neural network has a specific function
in the pairing. The first network, called the generator, is tasked with generating fake examples of
somedataset. Toproduce this data it randomly samples fromann-dimensional latent space often
labeledZ . In simple terms, the generator takes random noise (really a random list of n-numbers
where n is the dimensionality of the latent space) as its input and outputs its attempt at a fake
piece of data, such as an image, clip of audio, or row of tabular information. The second neural
network, called the discriminator, takes both fake and real data as input. Its role is to correctly dis-
criminate between fake and real examples.4 The generator and discriminator networks are then
coupled together as adversaries, hence “adversarial” in the name. The output from the generator
flows into the discriminator, and information on the success or failure of the discriminator to
identify fakes (i.e. the discriminator’s loss) flows back through the network so that the genera-
tor and discriminator each knows how well it is performing compared to the other. All of this
happens automatically, without any need for human supervision. When the generator finds it is
doing poorly, it learns to produce better examples by updating its weights and biases through tra-
ditional backpropagation (see especially Langr and Bok 2019, 3–16 for amore detailed summary
of this). As backpropagation updates the generator network’s weights and biases, the generator

3This is not to imply that thesemodels do not have immense practical applications in other areas ofmachine learning.
4Its function is exactly that of any other binary classifier found in machine learning.
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Figure 2.3: At the heart of a GAN are two neural networks, the generator and the discriminator.
As the generator learns to produce fake data, the discriminator learns to separate it out. The
pairing of the two in an adversarial structure forces each to improve at its given task.

Figure 2.4: A GAN being trained on wine bottle sketches from Google’s quickdraw dataset
(?iiTb,ff;Bi?m#X+QKf;QQ;H2+`2�iBp2H�#f[mB+F/`�r@/�i�b2i) shows the genera-
tor learning how to produce better sketches over time. Moving from left to right, the generator
begins by outputting random noise and progressively generates better sketches as it tries to trick
the discriminator.

inherently begins tomap regions of the randomly sampled Z space to characteristics found in the
real dataset. Contrarily, as the discriminator finds that it is not identifying better fakes accurately,
it learns to separate these out in new ways.

At first, the generator outputs random data and the discriminator easily catches these fakes
(Figure 2.4). As the results of the discriminator feed back into the generator, however, the gen-
erator learns to trick its foe by creating more convincing fakes. The discriminator consecutively
learns to better separate out these more convincing fakes. Turn after turn, the two networks
drive one another to become better at their specialized tasks and the generated data becomes in-
creasingly like the real data.5 At the end of training, ideally, it will not be possible to distinguish
between real and fake (Figure 2.5).

In the original publication, the first GANs were trained on sets of small images, like the
Toronto Face Dataset, which contains 32 ⇥ 32 pixel grayscale photos of faces and facial expres-
sions (Goodfellow et al. 2014). Although the generator’s results were convincing when com-
pared to the originals, the fake images were still small, colorless, and pixelated. Since then an
explosion of research into GANs and increased computational power has led to strikingly realis-

5See ?iiTb,ffTQHQ+Hm#X;Bi?m#XBQf;�MH�#f (accessed Jan 17, 2020) (Kahng et al. 2019).

https://github.com/googlecreativelab/quickdraw-dataset
https://poloclub.github.io/ganlab/
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Figure 2.5: The fully trained generator from Figure 2.4 produces examples that are not readily
distinguishable from real world data. The top row of sketches were produced by the GAN and
the bottom row were drawn by humans.

tic images. The most recent milestone was reached in 2019 by researchers with NVIDIA, who
built a GAN that generates high-quality photo-realistic images of people (Karras, Laine, andAila
2019). When contrastedwith the results of 2014 (Figure 2.6), the stunning progression ofGANs
is self-evident, and it is difficult to believe that the person on the right does not exist.

SomeApplications of Generative Adversarial Networks

Over the past five years, many papers on implementations of GANs have been released by re-
searchers (Alqahtani, Kavakli-Thorne, andKumar 2019;Wang, She, andWard 2019). The list of
applications is extensive and ever growing, but it is worth pointing out some of the major exam-
ples as of 2019 and why they are significant. These examples highlight the vast power of GANs
and underscore the importance of understanding and carefully scrutinizing this type of machine
learning.

Data Augmentation

Onemajor problem inmachine learning has always been the lack of labeled datasets, which are re-
quired by supervised learning approaches. Labeling data is time consuming and expensive. With-
out good labeled data, trained models are limited in their power to learn and in their ability to
generalize to real-world problems. Services, such as Amazon’s Mechanical Turk, have attempted
to crowdsource the tedious process ofmanually assigning labels to data, but labeling has remained
a bottleneck in machine learning. GANs are helping to alleviate this bottleneck by generating
new labeled data that is indistinguishable from the real data. This process can grow a small la-
beled dataset into one that is larger and more useful for training purposes. In the area of medical
imaging and diagnostics this may have profound effects (Yi, Walia, and Babyn 2019). For exam-
ple, GANs can produce photorealistic images of skin lesions that expert dermatologists are able
to separate from real images only slightly over 50% of the time (Baur, Albarqouni, and Navab
2018) and they can synthesize high-resolutionmammograms for training better cancer detection
algorithms (Korkinof et al. 2018).

A corollary effect of these developments inmedical imaging is the potential to publicly release
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Figure 2.6: An image of a generated face from the original GAN publication (left) and the 2019
milestone (right) shows how the ability of GANs to produce photo-realistic images has evolved
since 2014.

large medical datasets and thereby expand researchers’ access to important data. Whereas the
dissemination of traditionalmedical images is constrained by strict health privacy laws, generated
images may not be governed by such rules. I qualify this statement with “may”, because any
restrictions or ethical guidelines for the use of medical data that is generated from real patient
data requires extensive discussion and legal reviews that have not yet happened. Under certain
conditions, it may also be possible to infer original data from a GAN (Mukherjee et al. 2019).
How institutional review boards, professional medical organizations, and courts weigh in on this
topic will be seen in the coming years.

In addition to generating entirely new data, a GAN can augment datasets by expanding their
coverage to new domains. For example, autonomous vehicles must cope with an array of road
and weather conditions that are unpredictable. Training a model to identify pedestrians, street
signs, road lines, and so on with images taken on a sunny day will not translate well to variable
real-world conditions. Using onedataset, in a process knownas style transfer,GANs can translate
one image to other domains (Figure2.7). This can include creating night road scenes from day
scenes (Romera et al. 2019) and producing images of street signs under varying lighting condi-
tions (Chowdhury et al. 2019). This added data permitsmodels to account for greater variability
under operating conditions without the high cost of photographing all possible conditions and
manually labeling them. Beyondmedicine and autonomous vehicles, generative data augmenta-
tion will progressively impact other imaging-heavy fields (Shorten and Khoshgoftaar 2019) like
remote sensing (L. Ma et al. 2019; D. Ma, Tang, and Zhao 2019).

Creativity andDesign

The question of whethermachines can possess creativity or artistic ability is philosophically diffi-
cult to answer (Mazzone and Elgammal 2019;McCormack, Gifford, andHutchings 2019). Still,
in 2018, Christie’s auctioned off its first piece of GAN art for $432,500 (Cohn 2018) andGANs
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Figure 2.7: The images on the left are originals and the images on the right have beenmodified by
a GANwith the ability to translate images between the domains of “dirty lens” and “clean lens”
on a vehicle (from Uřičář et al. 2019, fig. 11).
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Figure 2.8: This example of GauGAN in action shows a sketched out scene on the left turned
into a photo-realistic landscape on the right. *If any representatives of Christie’s are reading, the
author would be happy to auction this piece.

are increasingly assisting humans in the creative process for all forms of media. Simple models,
like CycleGAN, are already able to stylize images in the manner of Van Gogh or Monet (Zhu et
al. 2017), and more varied stylistic GANs are emerging.

GauGAN, a beta tool released by NVIDIA, is a great example of GAN-assisted creativity in
action. GauGANallows you to rough out a scene using a paint brush for different categories, like
clouds, flowers, and houses (Figure 2.8). It then converts this into a photo reflecting what you
have drawn. The online demo6 remains limited, but the underlying model is powerful and has
massive potential (Park et al. 2019). Recently, Martin Scorsese’s The Irishman made headlines
for its digital de-aging of Robert Deniro and other actors. Although this process did not involve
GANs, it is highly likely that in the future, GANs will become a major part of cinematic post-
production (Giardina 2019) through assistive tools like GauGAN.

Fashion and product design are also being impacted by the use of GANs. Text-to-image syn-
thesis, which can take free text or categories as input to generate a photo-realistic image, has
promising potential (Rostamzadeh et al. 2018). By accepting text as input, GANs can let de-
signers rapidly generate new ideas or visualize concepts for products at the start of the design
process. For example, a recently published GAN for clothing design accepts basic text and out-
puts modeled images of the described clothing (Banerjee et al. 2019; Figure 9). In an example of
automotive design, a single sketch can be used to generate realistic photos of multiple perspec-
tives of a vehicle (Radhakrishnan et al. 2018). The many fields that rely on quick sketching or
visual prototyping, such as architecture or web design, are likely to be influenced by the use of
GAN-assisted design software in coming years.

In a similar vein, GANs have an upcoming role in the creation of new medicines, chemi-
cals, and materials (Zhavoronkov 2018). By training a GAN on existing chemical and material
structures, research is showing that novel chemicals andmaterials can be designedwith particular
properties (Gómez-Bombarelli et al. 2018; Sanchez-Lengeling and Aspuru-Guzik 2018). This is
facilitated by how information is encoded in the GAN’s latent space (the n-dimensional space
from which the generator samples; see “Z” in Figure 2.3). As the generator learns to produce
realistic examples, certain aspects of the original data become encoded in regions of the latent

6See ?iiT,ffMpB/B�@`2b2�`+?@KBM;vmHBmX+QKf;�m;�Mf (last accessed January 12, 2019).

http://nvidia-research-mingyuliu.com/gaugan/
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Figure 2.9: Text-to-image synthesis can generate images of new fashions based on a description.
From the input “maroon round neck mini print a-line bodycon short sleeves” a GAN has pro-
duced these three photos (from Banerjee et al. 2019, fig. 11).

Figure 2.10: Two examples of linearly-spacedmappings across the latent space between generated
images A and B.Note that by taking one image andmoving closer to another, you can alter prop-
erties in the image, such as adding steam, removing a cup handle, or changing the angle of view.
These characteristics of the dataset are learned by the generator during training and encoded in
the latent space. (GAN built on coffee cup sketches from Google’s QuickDraw dataset)

space. By moving through this latent space or sampling particular areas, new data with desired
properties can then be generated. This can be seen by periodically sampling the latent space and
generating an image as one moves between two generated images (Figure 2.10). In the same way,
by moving in certain directions or sampling from particular areas of the latent space, new chem-
icals or medicines with specific properties can be generated.7

Impersonation and the Invisible

I have reserved some of the more dystopian and likely more well-heard-of applications of GANs
for last. This is the area where GANs’ ability to generate convincing media is challenging our
perceptions of reality and raising extreme ethical questions (Harper 2018). Deep fakes are, of
course, the most well known of these. This can include the creation of fake images, videos, and
audioof an individual or themodificationof anymedia to alterwhat someone appears tobedoing
or saying. In images and video in particular, GANs make it possible to swap the identity of an
individual andmanipulate facial attributes or expressions (Tolosana et al. 2020). A large portion

7This is also relevant to facial manipulation discussed below.
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Figure 2.11: GANs are providing a method to reconstruct hidden images of people and objects.
Images 1–3 show reconstructions as compared to an input occluded image (OCC) and a ground
truth image (GT) (from Fulgeri et al. 2019, fig. 6).

of technical literature is, in fact, now devoted to detecting faked and altered media (see Tolosana
et al. 2020, Table IV and V). It remains to be seen how successful any approaches will be. From a
theoretical perspective, anything that can detect fakes can also be used to train a better generator
since the training process of a GAN is founded on outsmarting a detector (i.e. the discriminator
network).

One shocking extension of deep fakes that has emerged is transcript to video creation, which
generates a video of someone speaking fromawritten text. If youwant to see this atwork, you can
view clips of Nixon giving the speech written in the case of an Apollo 11 disaster.8 As of now,
deep fakes like this remain choppy and are largely limited to politicians and celebrities because
they require large datasets and additional manipulation, but this limitation is not likely to last. If
the evolution of GANs for images is any predictor, the entire emerging field of video generation
is likely to progress rapidly. One can imagine the incorporation of text-to-image and deep fakes
enabling someone to produce an image of, say, “politican X doing action Y,” simply by typing it.

An application of GANs that parallels deep fakes and is likely more menacing in the short
term is the infilling or adding of hidden, invisible, or predicted information to existing media.
One nascent use is video prediction from an image. For example, in 2017, researchers were able
to build a GAN that produced 1-second video clips from a single starting frame (Vondrick and
Torralba 2017). This may not seem impressive, but video is notoriously difficult to work with
because the content of a succeeding frame can vary so drastically from the preceding frame (for
other examples of on-going research into video prediction, see Cai et al. 2018; Wen et al. 2019).

For still images, occluded object reconstruction, in which a GAN is trained to produce a
full image of a person or object that is partially hidden behind something else, is progressing
(Fulgeri et al. 2019; see Figure 11). For some applications, like autonomous driving, this could
save lives as itwouldhelp topickoutwhen apartially-occludedpedestrian is about to emerge from

8See ?iiT,ffM2rbXKBiX2/mfkyRNfKBi@�TQHHQ@/22T7�F2@�`i@BMbi�HH�iBQM@�BKb@iQ@2KTQr2`@K
Q`2@/Bb+2`MBM;@Tm#HB+@RRk8.

http://news.mit.edu/2019/mit-apollo-deepfake-art-installation-aims-to-empower-more-discerning-public-1125
http://news.mit.edu/2019/mit-apollo-deepfake-art-installation-aims-to-empower-more-discerning-public-1125


24 Machine Learning, Libraries, and Cross-Disciplinary Researchǔ Chapter 2

behind a parked car. On the other hand, for surveillance technology, it can further undermine
anonymity. Indeed, such GANs are already being explicitly studied for surveillance purposes
(Fabbri, Calderara, and Cucchiara 2017). Lastly, I would be remiss if I did not mention that
researchers have designed a GAN that can generate an image of what you are thinking about,
using EEG signals (Tirupattur et al. 2018).

GANs and the Future

The tension between the creation of more realistic generated data and the technology to detect
maliciously generated information is onlybeginning. Themachine learning anddata scienceplat-
form, Kaggle, is replete with publicly-accessible python code for building GANs and detecting
fake data. Money, too, is freely flowing in this domain of research; The 2019 Deepfake Detec-
tionChallenge sponsored by Facebook, AWS, andMicrosoft boasted onemillion dollars in prizes
(?iiTb,ffrrrXF�;;H2X+QKf+f/22T7�F2@/2i2+iBQM@+?�HH2M;2 accessed April 20,
2020). Meanwhile, industry leaders, such as NVidia, continue to fund the training of better and
more convincing GANs. The structure of a GAN, with its generator and detector paired adver-
sarially, is nowbeingmirrored in society as groups of researchers competitivelywork to create and
discern generated data. The path that this machine-learning arms race will take is unpredictable,
and, therefore, it is all the more important to scrutinize it and make it comprehensible to the
broader publics whom it will affect.
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