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Introduction

On February 7, 2018, Mounir Mahjoubi, then the “digital minister” of France (le secrétariat
d’État chargé du Numérique), told the civil service to use only computer methods that could
be understood (Mahjoubi 2018). To be precise, what he actually said to l’Assemblée Nationale
was:

Aucun algorithme non explicable ne pourra être utilisé.

I gave this toGoogle Translate and asked for it in English. What I got (onOctober 13, 2019) was:

No algorithm that can not be explained can not be used.

That’s a longway from fluent English. As I count the “not” words, it’s actually reversed inmean-
ing. But, what if I leave off the final period when I enter it in Google Translate? Then I get:

No non-explainable algorithm can be used

Quite different, and although only barely fluent, now the meaning is right. The difference was
only the final punctuation on the sentence.1

This is an example of the fragility of an AI algorithm. The point is not that both translations
are of doubtful quality. The point is that a seemingly insignificant change in the input produced
such a difference in the output. In this case, the fragility was detected by accident.

1In themonths betweenmy original queries inOctober 2019 and the final preparations for publication inNovember
2020, the algorithmhas changed to produce the same translationwith orwithout a period: “Nonon-explicable algorithm
can be used.”
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Machine learning systems have a set of data for training. For example, if you are interested in
translation, and you have a large collection of text in both French and English, you might notice
that theword truck in English appears where theword camion appears in French. And the system
might “learn” this translation. It would then apply this in other examples; this is called general-
ization. Of course if you wish to translate French into British English, a preferred translation of
camion is lorry. And if the context of your English truck is a US discussion of thewheels and axles
underneath railway vehicles, the better French word is le bogie.

Deep learning enthusiasts believe that with enough examples, machine learning systems will
be able to generalize correctly. There can be various kinds of failures: we can discuss both (a)
problems in the scope of the training data and (b) problems in the kind of modeling done. If the
system has sufficiently general input data so that it learns well enough to produce reliably correct
results on examples it has not seen,we call it robust; robustness is the opposite of fragility. Fragility
errors here can arise frommany sources—for example, the training datamaynot be representative
of the real problem (if you train amachine translation program solely on engineering documents,
do not expect it to do well on theater reviews). Or, the data may not have the scope of the real
problem: if you train for “boat” based on ocean liners, don’t be surprised if the program fails on
canoes.

In addition, there are also modeling issues. Suppose you use a very simple model, such as a
linear model, for data that is actually perhaps quadratic or exponential. This is called “underfit-
ting” and may often arise when there is not enough training data. The reverse is also possible:
there may be a lot of training data, includingmany noisy points, and the programmay decide on
a very complex model to cover all the noise in the training data. This is called “overfitting” and
gives you an answer too dependent on noise and outliers in your data. For example, 1998 was an
unusually warm year, but the decline in world temperature for the next few years suggests it was
noise in the data, not a change in the development of climate.

Fragility is also a problem in image recognition (“AIRecognition” 2017). Currently themost
common technique for image recognition research projects is the use of convolutional neural
nets. Recently, several papers have looked at how trivial modifications to images may impact im-
age classification. Here (figure 9.1) is an image taken from (Su, Vargas, and Sakurai 2019). The
original image class is in black and the classifier choice (and confidence) after adding a single un-
usual pixel are shown in blue, with the extraneous pixel in white. The images were deliberately
processed at low resolution—hence the pixellation—tomatch the input requirement of a popu-
lar image classification program.

The authors experimentedwith algorithms tofind thequickest single-pixel change thatwould
deceive an image classifier. They were routinely able to fool the recognition software. In this ex-
ample, the deception was deliberate; the researchers searched for the best place to change the
image.

Bias andmistakes

We have seen a major change in the way we do machine learning, and there are real dangers in-
volved. The current enthusiasm for neural nets risks the use of processes which cannot be under-
stood, asMahjoubi warned, andwhich can thus conceal methods wewould not approve of, such
as discrimination in lending or hiring. Cathy O’Neil has described this in her bookWeapons of
Math Destruction (2016).

There is much research today that seeks methods to explain what neural nets are doing. See
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Figure 9.1: Examples of misclassification.

Guidiotti et al. (2017) for a survey. There is also a 2018 DARPA program on “Explainable AI.”
Techniques used can include looking at the results over a range of input data and seeing if the
neural net can be modeled by a decision tree, or modifying the input data to see which input
elements have the greatest effect on the results, and then showing that to the user. For example,
Mariusz Bojarski et al. describe a self-driving system that highlights what it thinks is important in
what it is seeing (2017). However, this is generally research in progress, and it raises the question
of whether we can trust the explanation generator.

Many popular magazines have discussed this problem; Forbes, for example, had an explana-
tion of how the choice of datasets can produce a biased result without any deliberate attempt to
do so (Taulli 2019). Similarly, theNew York Times discussed the way groups of primarily young
white men will build systems that focus on their data, and give wrong or discriminatory answers
in more general situations (Tugend 2019). The MIT Media Lab hosts the Algorithmic Justice
League, trying to stop organizations from building socially slanted systems. Similar thoughts
come from groups like the Data and Society Research Institute or the AI Now Institute.

Again, the problems may be accidental or deliberate. The phrase “data poisoning” has been
used to suggest malicious creation of training data or examples of data designed to deceive ma-
chine learning systems. There is now aDARPAresearch program, “GuaranteeingAIRobustness
against Deception (GARD),” supporting research to learn how to stop trickery such as a demon-
stration of converting a traffic stop sign to a 45 mph speed limit with a few stickers (Eykholt et
al. 2018). More generally, bias in systems deciding whether to grant loans may be discriminatory
but nevertheless profitable.

Even if you want to detect AI mistakes, recognizing such problems is difficult. Often things
will be wrong and we won’t knowwhy. And even hypothetical (but perhaps erroneous) explana-
tions can be very convincing; people easily believe plausible stories. I routinely give my students
a paper that concludes that prior ownership of a cat prevents fatal myocardial infarctions; its re-
sult implies that cats are more protective than statin drugs (Qureshi et al. 2009). The students
are very quick to come up with possibilities like “petting a cat is relaxing, relaxation reduces your
blood pressure, and lower blood pressure decreases the risk of heart attacks.” Then I have to ex-
plain that the paper evaluates 32 possibilities (prior/current ownership⇥ cats/dogs⇥ 4 medical
conditions⇥ fatal/nonfatal) and you shouldn’t be surprised if you evaluate 32 chances and one
is significant at the 0.05 level, which is only 1 in 20. In this example, there is also the question of
reverse causality: perhaps someone who is in ill health will decide he is too sick to take care of a
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Figure 9.2: Panoramic landscape.

pet, so that the poor health is not caused by the lack of a cat, but rather the poor health causes
the absence of a cat.

Sometimes explanations can help, as in a machine learning program that was deliberately
trained to distinguish images of wolves and dogs but was trained using pictures of wolves that
always contained snow and pictures of dogs that never did (Ribeiro, Singh, and Guestrin 2016).
Without explaining that, 10 of 27 subjects thought the classifier was trustworthy; after point-
ing out the snow only 3 of 27 subjects believed the system. Usually you don’t get such a clear
presentation of a mis-trained system.

Recognition of problems

Can we tell when something is wrong? Here’s the result of a Google Photo merge of three other
photos; two landscapes and a picture of somebody’s friend. The software was told to make a
panorama and stitched the images together (Peng 2018). It looks like a joke, and evenmade it into
a list of top jokes on reddit. The author’s point was that the panorama system didn’t understand
basic composition: people are not the same scale as mountains.

Often, machine learning results are overstated. Google Flu Trends was acclaimed for several
years and then turned out to be undependable (Lazer et al. 2014). A study that attempted to
compare the performance of machine learning systems for medical diagnosis with actual doctors
found that of over 20,000 papers analyzed, only a few dozen had data suitable for an evaluation
(Liu et al. 2019). The results claimed comparable accuracy, but virtually none of the papers
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presented adequate data to support that conclusion.
Unusually promising results are sometimes the result of overfitting (Brownlee 2018); this is

what was wrong with Google Flu Trends. Amachine learning program can learn a large number
of special cases and then find that the results do not generalize. In other cases problems can result
when using “clean” data for training, and then encounteringmessier data in applications. Ideally,
training and testing data should be from the same dataset and divided at random, but it can be
tempting to start offwith examples that are the result of initial and higher quality data collection.

Sometimes in the past we had a choice betweenmodeling and data for predictions. Consider,
for example, the problem of guessing what the weather will be tomorrow. We now do this based
on amodel of the atmosphere that uses theNavier-Stokes equations; we use supercomputers and
derive tomorrow’s atmosphere from today’s (Christensen 2015). What did we do before we had
supercomputers? Solving those equations by hand is impractical. One of the methods was “pre-
diction by analogy”: find some day in the past whose weather wasmost similar to today. Suppose
that day is Oct. 20, 1970. Then use October 21, 1970 as tomorrow’s prediction. Prediction by
analogy doesn’t require you to have a model or use advancedmathematics. In this case, however,
it doesn’t work as well—partly because we don’t have enough past days to choose from, and we
only get new days at the rate of one per day.

In fact, Huug van den Dool estimated the number of days of data needed to make accurate
predictions as 1030 years, which is farmore than the age of the universe (Wilks 2008). The under-
lying problem is that theweather is very random. If your state lottery is properly run, it should be
completely pointless to look at past winning numbers and try to guess the next one. The weather
is not that randombut it has toomuch variation to be solved easily by analogy. If your problem is
very simple (tic-tac-toe) you could indeed write down each position andwhat the best next move
is; there are only about 255,000 games.

To deal with more realistic problems, much of machine learning research is now focused on
obtaining larger training sets. Instead of trying to learnmore about the characteristics of a system
that is beingmodeled, the effort is driven by the dictum, “more data beats better algorithms.” In a
review of the history of speech recognition, XuedongHuang, James Baker, andRaj Reddywrite,
“The power of these systems arises mainly from their ability to collect, process, and learn from
very large datasets. The basic learning and decoding algorithms have not changed substantially in
40 years” (2014). Nevertheless, speech recognition has gone from frustration to useful products
such as dictation software or home appliances.

Lacking a model, however, means that we won’t know the limits of the calculations being
done. For example, if you have some data that looks quadratic, but you fit a linear model, any
attempt at extrapolation is fraught with error. If you are using a “black box” system, you don’t
knowwhen this is happening. And, regrettably, many of theAI software systems are sold as black
boxes where the purchasers and users do not have access to the process, even if they are imagined
to be able to understand it.

What’s changing

Many AI researchers are sensitive to the risks, especially given the publicity over self-driving cars.
As the hype over “deep learning” built up, writers discussed examples such as a Pittsburgh med-
ical system that proposed to send patients with both pneumonia and asthma home, because the
computer had not understood that patients with both problems were actually being sent to the
ICU (Bornstein 2016; Caruana et al. 2015).
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Figure 9.3: Explainability.

Many people work on ways of explaining or presenting neural net software (Harley 2015).
Most important, perhaps, are new EU regulations that prohibit automated decisionmaking that
affects EU citizens, and provides a “right of explanation” (Metz 2016).

We recognize that systemswhich don’t rely on amathematicalmodelmay be cheaper to build
than one where the coders understand what is going on. More serious is that they may be more
accurate. This image is from the same article on understandability (Bornstein 2016).

If there really is a tradeoff betweenwhatwill solve the problem andwhat can be explained, we
know that many system builders will choose to solve the problem. And yet even having explana-
tionsmay not be an answer; a key paper on interpretability discusses the complexities ofmeaning
related to explanation, causality, and modeling (Lipton 2018).

Arend Hintze has noted that we do not always impose a demand for explanation on people.
I can write that the New York Public Library main building is well proportioned and attractive
without anyone expecting that I will recite its dimensions or the source of the marble used to
construct it. And for some problems that’s fine: I don’t care how my camera decides on the
focus distance to the subject. Where it matters, however, we often want explanations; the hard
ethical problem, as noted before, is if better performance can be achieved in an inexplicable way.

Recommendations

2017 saw the publication of the “Asilomar AI principles” (2017). Two of these principles are:

• Safety: AI systems should be safe and secure throughout their operational lifetime, and
verifiably so where applicable and feasible.

• Failure Transparency: If an AI system causes harm, it should be possible to ascertain
why.

The problem is that the technology used to build many systems does not enable verifiability
and explanation. Similarly the World Economic Forum calls for protection against discrimina-
tion but notes many ways in which technology can have unanticipated and undesirable effects as
a result of machine learning (“How to Prevent” 2018).
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Historically there has been and continues to be too much hype. An important image recog-
nition task is distinguishing malignant and benign spots on mammograms. There have been
promises for decades that computers would do this better than radiologists. Here are examples
from 1995 (“computer-aided diagnosis can improve radiologists’ observational performance”)
(Schmidt and Nishikawa) and 2009 (“The Bayesian network significantly exceeded the perfor-
mance of interpreting radiologists”) (Burnside et al.). A typical recent AI paper to do this with
convolutional neural nets reports 90% accuracy (Singh et al. 2020). To put this in perspective,
the problem is complex, but some examples aremore straightforward, and even pigeons can reach
85% (Levenson et al. 2015). A serious recent review is “Diagnostic Accuracy ofDigital Screening
MammographyWith andWithout Computer-Aided Detection” (Lehman et al. 2015). Very re-
cently there was another claim that computers have surpassed radiologists (Walsh 2020); we will
have to await evaluation. As with many claims of medical progress, replicability and evaluation
are needed before doctors will be willing to believe them.

What should we do? Software testing generally is a decades-old discipline, and many basic
principles of regression testing apply here also:

• Test data should cover the full range of expected input.

• Test data should also cover unexpected and even illegal input.

• Test data should include known past failures believed cleared up.

• Test data should exercise all parts of the program, and all important paths (coverage).

• Test data should include a set of data which is representative of the distribution of actual
data, to be used for timing purposes.

It is difficult to apply these ideas in parts of the AI world. If the allowed input is speech, there
is no exhaustive list of utterances which can be sampled. If a black-box commercial machine
learning package is being used, there is no way to ask about coverage of any number of test cases.
If a program is constantly learning from new data, there is no list of previously fixed failures to
be collected that reflects the constantly changing program.

And obviously the circumstances of usematter. Wemaywell, as a society, decide that forcing
banks evaluating loan applications to use decision trees instead of deep learning is appropriate,
so that we know whether illegal discrimination is going on, even if this raises the costs to the
banks. We might also believe that the safest possible railway operation is important, even if the
automated train doesn’t routinely explain how it balanced its choices of acceleration to achieve
high punctuality and low risk.

What would I suggest?
Organizationally:

• Have teams including both the computer scientists and the users.

• Collaborate with a statistician: they’ve seen a lot of these problems before.

• Work on easier problems.

As examples, I watched a group of zoologists with a group of computer scientists discussing
how to improve accuracy at identifying animals in photographs. The discussion indicated that
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you needed hundreds of training examples at a minimum, if not thousands, since the animals do
not typically walk up to the camera and pose for a full-frame shot. It was important to have both
the peoplewhounderstood the learning systems and the peoplewhoknewwhat the pictureswere
realistically like. The most amusing contribution by a statistician happened when a computer
scientist offered a program that tried to recognize individual giraffes, and a zoologist complained
that it only worked if you had a view of the right-hand side of the giraffe. Somebody who knew
statistics perked up and said “it’s a 50% chance of recognizing the animal? I can do the math for
that.” And it is simpler to do “is there any animal in the picture?” before asking “which animal
is it?” and create two easier problems.

Technically:

• Try to interpolate rather than extrapolate: use the algorithmonpoints “inside” the training
set (thinking in multiple dimensions).

• Lean towards feature detection and modeling rather than completely unsupervised learn-
ing.

• Emphasize continuous rather than discrete variables.

I suggest usingmethods that involve feature detection, since that tells youwhat the algorithm
is relying on. For example, consider the Google Flu Trends failure; the public was not told what
termswere used. AsDavid Lazer noted, some of themwere just “winter” terms (like ‘basketball’).
If you know that, you might be skeptical. More significant are decisions like jail sentences or
college admissions; knowing that racial or religious discrimination are not relevant can be verified
by knowing that the programdid not use them. Knowingwhat featureswere used can sometimes
help the user: if you know that your loan applicationwas downrated because of your credit score,
it may be possible for you to pay off some bill to raise the score.

Sometimes you have to use categorical variables (what county do you live in?) but if you have
a choice of how you phrase a variable, asking something like “how many minutes a day do you
spend reading?” is likely to produce a better fit than asking people to choose “howmuch do you
read: never, sometimes, a lot?” A machine learning algorithm may tell you how much of the
variance each input variable explains; you can use that information to focus on the variables that
aremost important to your problem, and decide whether you think you aremeasuring themwell
enough.

Why not extrapolate? Sadly, as I write this in early April 2020, we are seeing all sorts of ex-
trapolations of the COVID-19 epidemic, with expected US deaths ranging from 30,000 to 2
million, as people try to fit various functions (Gaussians, logistic regression, or whatever) with
inadequately precise data and uncertain models. A simpler example is Mark Twain’s: “In the
space of one hundred and seventy-six years the Lower Mississippi has shortened itself two hun-
dred and forty-two miles. That is an average of a trifle over one mile and a third per year. There-
fore, any calm person, who is not blind or idiotic, can see that in the ‘OldOolitic Silurian Period,’
just a million years ago next November, the LowerMississippi River was upwards of one million
three hundred thousand miles long, and stuck out over the Gulf of Mexico like a fishing-rod.
And by the same token any person can see that seven hundred and forty-two years from now the
Lower Mississippi will be only a mile and three-quarters long, and Cairo and New Orleans will
have joined their streets together, and be plodding comfortably along under a single mayor and a
mutual board of aldermen” (1883).
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Finally, note the advice of Edgar Allan Poe: “Believe nothing you hear, and only one half that
you see.”
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