id sid tid token lemma pos 6h440r9919t 1 1 the the DET 6h440r9919t 1 2 goal goal NOUN 6h440r9919t 1 3 of of ADP 6h440r9919t 1 4 this this DET 6h440r9919t 1 5 thesis thesis NOUN 6h440r9919t 1 6 is be AUX 6h440r9919t 1 7 to to PART 6h440r9919t 1 8 study study VERB 6h440r9919t 1 9 rees ree NOUN 6h440r9919t 1 10 algebra algebra NOUN 6h440r9919t 1 11 r(i r(i SPACE 6h440r9919t 1 12 ) ) PUNCT 6h440r9919t 1 13 and and CCONJ 6h440r9919t 1 14 the the DET 6h440r9919t 1 15 special special ADJ 6h440r9919t 1 16 fiber fiber NOUN 6h440r9919t 1 17 ring ring PROPN 6h440r9919t 1 18 f(i f(i PROPN 6h440r9919t 1 19 ) ) PUNCT 6h440r9919t 1 20 for for ADP 6h440r9919t 1 21 a a DET 6h440r9919t 1 22 family family NOUN 6h440r9919t 1 23 of of ADP 6h440r9919t 1 24 ideals ideal NOUN 6h440r9919t 1 25 . . PUNCT 6h440r9919t 2 1 given give VERB 6h440r9919t 2 2 a a DET 6h440r9919t 2 3 map map NOUN 6h440r9919t 2 4 between between ADP 6h440r9919t 2 5 projective projective ADJ 6h440r9919t 2 6 spaces space NOUN 6h440r9919t 2 7 parameterizing parameterize VERB 6h440r9919t 2 8 a a DET 6h440r9919t 2 9 variety variety NOUN 6h440r9919t 2 10 , , PUNCT 6h440r9919t 2 11 the the DET 6h440r9919t 2 12 rees ree NOUN 6h440r9919t 2 13 algebra algebra NOUN 6h440r9919t 2 14 is be AUX 6h440r9919t 2 15 the the DET 6h440r9919t 2 16 coordinate coordinate NOUN 6h440r9919t 2 17 ring ring NOUN 6h440r9919t 2 18 of of ADP 6h440r9919t 2 19 the the DET 6h440r9919t 2 20 graph graph NOUN 6h440r9919t 2 21 and and CCONJ 6h440r9919t 2 22 the the DET 6h440r9919t 2 23 special special ADJ 6h440r9919t 2 24 fiber fiber NOUN 6h440r9919t 2 25 ring ring NOUN 6h440r9919t 2 26 is be AUX 6h440r9919t 2 27 the the DET 6h440r9919t 2 28 coordinate coordinate NOUN 6h440r9919t 2 29 ring ring NOUN 6h440r9919t 2 30 of of ADP 6h440r9919t 2 31 the the DET 6h440r9919t 2 32 image image NOUN 6h440r9919t 2 33 . . PUNCT 6h440r9919t 3 1 we we PRON 6h440r9919t 3 2 will will AUX 6h440r9919t 3 3 compute compute VERB 6h440r9919t 3 4 the the DET 6h440r9919t 3 5 defining define VERB 6h440r9919t 3 6 ideal ideal NOUN 6h440r9919t 3 7 of of ADP 6h440r9919t 3 8 these these DET 6h440r9919t 3 9 algebras algebra NOUN 6h440r9919t 3 10 . . PUNCT 6h440r9919t 4 1 let let VERB 6h440r9919t 4 2 r r PROPN 6h440r9919t 4 3 = = PROPN 6h440r9919t 4 4 k[x_1 k[x_1 PROPN 6h440r9919t 4 5 , , PUNCT 6h440r9919t 4 6 ... ... PUNCT 6h440r9919t 4 7 , , PUNCT 6h440r9919t 4 8 x_d x_d PUNCT 6h440r9919t 4 9 ] ] PUNCT 6h440r9919t 4 10 for for ADP 6h440r9919t 4 11 d d NOUN 6h440r9919t 4 12 greater great ADJ 6h440r9919t 4 13 than than ADP 6h440r9919t 4 14 or or CCONJ 6h440r9919t 4 15 equal equal ADJ 6h440r9919t 4 16 to to ADP 6h440r9919t 4 17 4 4 NUM 6h440r9919t 4 18 be be AUX 6h440r9919t 4 19 a a DET 6h440r9919t 4 20 polynomial polynomial ADJ 6h440r9919t 4 21 ring ring NOUN 6h440r9919t 4 22 with with ADP 6h440r9919t 4 23 homogeneous homogeneous ADJ 6h440r9919t 4 24 maximal maximal ADJ 6h440r9919t 4 25 ideal ideal ADJ 6h440r9919t 4 26 m. m. NOUN 6h440r9919t 4 27 we we PRON 6h440r9919t 4 28 study study VERB 6h440r9919t 4 29 the the DET 6h440r9919t 4 30 r r NOUN 6h440r9919t 4 31 - - PUNCT 6h440r9919t 4 32 ideals ideal NOUN 6h440r9919t 4 33 i i PRON 6h440r9919t 4 34 which which PRON 6h440r9919t 4 35 are be AUX 6h440r9919t 4 36 m m NOUN 6h440r9919t 4 37 - - ADJ 6h440r9919t 4 38 primary primary ADJ 6h440r9919t 4 39 , , PUNCT 6h440r9919t 4 40 gorenstein gorenstein NOUN 6h440r9919t 4 41 , , PUNCT 6h440r9919t 4 42 generated generate VERB 6h440r9919t 4 43 in in ADP 6h440r9919t 4 44 degree degree NOUN 6h440r9919t 4 45 2 2 NUM 6h440r9919t 4 46 , , PUNCT 6h440r9919t 4 47 and and CCONJ 6h440r9919t 4 48 have have VERB 6h440r9919t 4 49 a a DET 6h440r9919t 4 50 gorenstein gorenstein ADJ 6h440r9919t 4 51 linear linear ADJ 6h440r9919t 4 52 resolution resolution NOUN 6h440r9919t 4 53 . . PUNCT 6h440r9919t 5 1 the the DET 6h440r9919t 5 2 defining define VERB 6h440r9919t 5 3 ideal ideal NOUN 6h440r9919t 5 4 of of ADP 6h440r9919t 5 5 the the DET 6h440r9919t 5 6 rees ree NOUN 6h440r9919t 5 7 algebra algebra NOUN 6h440r9919t 5 8 will will AUX 6h440r9919t 5 9 be be AUX 6h440r9919t 5 10 of of ADP 6h440r9919t 5 11 fiber fiber NOUN 6h440r9919t 5 12 type type NOUN 6h440r9919t 5 13 . . PUNCT 6h440r9919t 6 1 that that ADV 6h440r9919t 6 2 is is ADV 6h440r9919t 6 3 , , PUNCT 6h440r9919t 6 4 the the DET 6h440r9919t 6 5 defining define VERB 6h440r9919t 6 6 ideal ideal NOUN 6h440r9919t 6 7 of of ADP 6h440r9919t 6 8 the the DET 6h440r9919t 6 9 rees ree NOUN 6h440r9919t 6 10 algebra algebra NOUN 6h440r9919t 6 11 is be AUX 6h440r9919t 6 12 generated generate VERB 6h440r9919t 6 13 by by ADP 6h440r9919t 6 14 the the DET 6h440r9919t 6 15 defining define VERB 6h440r9919t 6 16 ideals ideal NOUN 6h440r9919t 6 17 of of ADP 6h440r9919t 6 18 the the DET 6h440r9919t 6 19 special special ADJ 6h440r9919t 6 20 fiber fiber NOUN 6h440r9919t 6 21 ring ring NOUN 6h440r9919t 6 22 and and CCONJ 6h440r9919t 6 23 of of ADP 6h440r9919t 6 24 the the DET 6h440r9919t 6 25 symmetric symmetric ADJ 6h440r9919t 6 26 algebra algebra NOUN 6h440r9919t 6 27 . . PUNCT 6h440r9919t 7 1 the the DET 6h440r9919t 7 2 defining define VERB 6h440r9919t 7 3 ideal ideal NOUN 6h440r9919t 7 4 of of ADP 6h440r9919t 7 5 the the DET 6h440r9919t 7 6 symmetric symmetric ADJ 6h440r9919t 7 7 algebra algebra NOUN 6h440r9919t 7 8 is be AUX 6h440r9919t 7 9 well well ADV 6h440r9919t 7 10 understood understand VERB 6h440r9919t 7 11 , , PUNCT 6h440r9919t 7 12 so so ADV 6h440r9919t 7 13 we we PRON 6h440r9919t 7 14 concentrate concentrate VERB 6h440r9919t 7 15 on on ADP 6h440r9919t 7 16 computing compute VERB 6h440r9919t 7 17 the the DET 6h440r9919t 7 18 defining define VERB 6h440r9919t 7 19 ideal ideal NOUN 6h440r9919t 7 20 of of ADP 6h440r9919t 7 21 the the DET 6h440r9919t 7 22 special special ADJ 6h440r9919t 7 23 fiber fiber NOUN 6h440r9919t 7 24 ring ring NOUN 6h440r9919t 7 25 . . PUNCT 6h440r9919t 8 1 in in ADP 6h440r9919t 8 2 chapter chapter NOUN 6h440r9919t 8 3 4 4 NUM 6h440r9919t 8 4 , , PUNCT 6h440r9919t 8 5 the the DET 6h440r9919t 8 6 defining define VERB 6h440r9919t 8 7 ideal ideal NOUN 6h440r9919t 8 8 of of ADP 6h440r9919t 8 9 the the DET 6h440r9919t 8 10 special special ADJ 6h440r9919t 8 11 fiber fiber NOUN 6h440r9919t 8 12 ring ring PROPN 6h440r9919t 8 13 f(i f(i PROPN 6h440r9919t 8 14 ) ) PUNCT 6h440r9919t 8 15 will will AUX 6h440r9919t 8 16 be be AUX 6h440r9919t 8 17 given give VERB 6h440r9919t 8 18 as as ADP 6h440r9919t 8 19 a a DET 6h440r9919t 8 20 sub sub NOUN 6h440r9919t 8 21 - - NOUN 6h440r9919t 8 22 ideal ideal ADJ 6h440r9919t 8 23 of of ADP 6h440r9919t 8 24 the the DET 6h440r9919t 8 25 2x2 2x2 NUM 6h440r9919t 8 26 minors minor NOUN 6h440r9919t 8 27 of of ADP 6h440r9919t 8 28 a a DET 6h440r9919t 8 29 symmetric symmetric ADJ 6h440r9919t 8 30 matrix matrix NOUN 6h440r9919t 8 31 of of ADP 6h440r9919t 8 32 variables variable NOUN 6h440r9919t 8 33 modeled model VERB 6h440r9919t 8 34 after after ADP 6h440r9919t 8 35 the the DET 6h440r9919t 8 36 defining define VERB 6h440r9919t 8 37 ideal ideal NOUN 6h440r9919t 8 38 of of ADP 6h440r9919t 8 39 f(m^2 f(m^2 PROPN 6h440r9919t 8 40 ) ) PUNCT 6h440r9919t 8 41 . . PUNCT 6h440r9919t 9 1 in in ADP 6h440r9919t 9 2 chapter chapter NOUN 6h440r9919t 9 3 5 5 NUM 6h440r9919t 9 4 , , PUNCT 6h440r9919t 9 5 the the DET 6h440r9919t 9 6 defining define VERB 6h440r9919t 9 7 ideal ideal NOUN 6h440r9919t 9 8 of of ADP 6h440r9919t 9 9 the the DET 6h440r9919t 9 10 special special ADJ 6h440r9919t 9 11 fiber fiber NOUN 6h440r9919t 9 12 ring ring NOUN 6h440r9919t 9 13 of of ADP 6h440r9919t 9 14 i i PRON 6h440r9919t 9 15 will will AUX 6h440r9919t 9 16 be be AUX 6h440r9919t 9 17 described describe VERB 6h440r9919t 9 18 as as ADP 6h440r9919t 9 19 a a DET 6h440r9919t 9 20 saturation saturation NOUN 6h440r9919t 9 21 of of ADP 6h440r9919t 9 22 the the DET 6h440r9919t 9 23 maximal maximal ADJ 6h440r9919t 9 24 minors minor NOUN 6h440r9919t 9 25 of of ADP 6h440r9919t 9 26 the the DET 6h440r9919t 9 27 jacobian jacobian ADJ 6h440r9919t 9 28 dual dual NOUN 6h440r9919t 9 29 . . PUNCT 6h440r9919t 10 1 we we PRON 6h440r9919t 10 2 include include VERB 6h440r9919t 10 3 both both DET 6h440r9919t 10 4 descriptions description NOUN 6h440r9919t 10 5 of of ADP 6h440r9919t 10 6 the the DET 6h440r9919t 10 7 defining define VERB 6h440r9919t 10 8 ideal ideal NOUN 6h440r9919t 10 9 in in ADP 6h440r9919t 10 10 this this DET 6h440r9919t 10 11 manuscript manuscript NOUN 6h440r9919t 10 12 because because SCONJ 6h440r9919t 10 13 while while SCONJ 6h440r9919t 10 14 the the DET 6h440r9919t 10 15 methods method NOUN 6h440r9919t 10 16 in in ADP 6h440r9919t 10 17 chapter chapter NOUN 6h440r9919t 10 18 4 4 NUM 6h440r9919t 10 19 give give VERB 6h440r9919t 10 20 explicit explicit ADJ 6h440r9919t 10 21 polynomial polynomial ADJ 6h440r9919t 10 22 generators generator NOUN 6h440r9919t 10 23 of of ADP 6h440r9919t 10 24 the the DET 6h440r9919t 10 25 defining define VERB 6h440r9919t 10 26 ideal ideal NOUN 6h440r9919t 10 27 , , PUNCT 6h440r9919t 10 28 the the DET 6h440r9919t 10 29 methods method NOUN 6h440r9919t 10 30 in in ADP 6h440r9919t 10 31 chapter chapter NOUN 6h440r9919t 10 32 5 5 NUM 6h440r9919t 10 33 are be AUX 6h440r9919t 10 34 more more ADV 6h440r9919t 10 35 likely likely ADJ 6h440r9919t 10 36 to to PART 6h440r9919t 10 37 generalize generalize VERB 6h440r9919t 10 38 to to ADP 6h440r9919t 10 39 the the DET 6h440r9919t 10 40 larger large ADJ 6h440r9919t 10 41 class class NOUN 6h440r9919t 10 42 of of ADP 6h440r9919t 10 43 m m NOUN 6h440r9919t 10 44 - - ADJ 6h440r9919t 10 45 primary primary ADJ 6h440r9919t 10 46 gorenstein gorenstein NOUN 6h440r9919t 10 47 ideals ideal NOUN 6h440r9919t 10 48 having have VERB 6h440r9919t 10 49 a a DET 6h440r9919t 10 50 gorenstein gorenstein ADJ 6h440r9919t 10 51 linear linear ADJ 6h440r9919t 10 52 resolution resolution NOUN 6h440r9919t 10 53 . . PUNCT