id sid tid token lemma pos 9s161546c7g 1 1 for for ADP 9s161546c7g 1 2 graphs graph NOUN 9s161546c7g 1 3 g g PROPN 9s161546c7g 1 4 and and CCONJ 9s161546c7g 1 5 h h NOUN 9s161546c7g 1 6 , , PUNCT 9s161546c7g 1 7 an an DET 9s161546c7g 1 8 h h NOUN 9s161546c7g 1 9 -coloring -coloring NOUN 9s161546c7g 1 10 of of ADP 9s161546c7g 1 11 g g PROPN 9s161546c7g 1 12 , , PUNCT 9s161546c7g 1 13 or or CCONJ 9s161546c7g 1 14 homomorphism homomorphism NOUN 9s161546c7g 1 15 from from ADP 9s161546c7g 1 16 g g PROPN 9s161546c7g 1 17 to to ADP 9s161546c7g 1 18 h h PROPN 9s161546c7g 1 19 , , PUNCT 9s161546c7g 1 20 is be AUX 9s161546c7g 1 21 an an DET 9s161546c7g 1 22 edge edge NOUN 9s161546c7g 1 23 - - PUNCT 9s161546c7g 1 24 preserving preserve VERB 9s161546c7g 1 25 map map NOUN 9s161546c7g 1 26 from from ADP 9s161546c7g 1 27 the the DET 9s161546c7g 1 28 vertices vertex NOUN 9s161546c7g 1 29 of of ADP 9s161546c7g 1 30 g g NOUN 9s161546c7g 1 31 to to ADP 9s161546c7g 1 32 the the DET 9s161546c7g 1 33 vertices vertex NOUN 9s161546c7g 1 34 of of ADP 9s161546c7g 1 35 h h NOUN 9s161546c7g 1 36 . . PUNCT 9s161546c7g 2 1 h h NOUN 9s161546c7g 2 2 -colorings -coloring NOUN 9s161546c7g 2 3 generalize generalize VERB 9s161546c7g 2 4 such such ADJ 9s161546c7g 2 5 graph graph NOUN 9s161546c7g 2 6 theory theory NOUN 9s161546c7g 2 7 notions notion NOUN 9s161546c7g 2 8 as as ADP 9s161546c7g 2 9 proper proper ADJ 9s161546c7g 2 10 colorings coloring NOUN 9s161546c7g 2 11 and and CCONJ 9s161546c7g 2 12 independent independent ADJ 9s161546c7g 2 13 sets set NOUN 9s161546c7g 2 14 . . PUNCT 9s161546c7g 3 1 in in ADP 9s161546c7g 3 2 this this DET 9s161546c7g 3 3 dissertation dissertation NOUN 9s161546c7g 3 4 , , PUNCT 9s161546c7g 3 5 we we PRON 9s161546c7g 3 6 consider consider VERB 9s161546c7g 3 7 four four NUM 9s161546c7g 3 8 questions question NOUN 9s161546c7g 3 9 involving involve VERB 9s161546c7g 3 10 h h NOUN 9s161546c7g 3 11 -colorings -coloring NOUN 9s161546c7g 3 12 of of ADP 9s161546c7g 3 13 graphs graph NOUN 9s161546c7g 3 14 . . PUNCT 9s161546c7g 4 1 recently recently ADV 9s161546c7g 4 2 , , PUNCT 9s161546c7g 4 3 galvin galvin PROPN 9s161546c7g 4 4 [ [ X 9s161546c7g 4 5 27 27 NUM 9s161546c7g 4 6 ] ] PUNCT 9s161546c7g 4 7 showed show VERB 9s161546c7g 4 8 that that SCONJ 9s161546c7g 4 9 the the DET 9s161546c7g 4 10 maximum maximum ADJ 9s161546c7g 4 11 number number NOUN 9s161546c7g 4 12 of of ADP 9s161546c7g 4 13 independent independent ADJ 9s161546c7g 4 14 sets set NOUN 9s161546c7g 4 15 in in ADP 9s161546c7g 4 16 an an DET 9s161546c7g 4 17 n n NOUN 9s161546c7g 4 18 vertex vertex NOUN 9s161546c7g 4 19 minimum minimum NOUN 9s161546c7g 4 20 degree degree NOUN 9s161546c7g 4 21 & & CCONJ 9s161546c7g 4 22 # # SYM 9s161546c7g 4 23 948 948 NUM 9s161546c7g 4 24 ; ; PUNCT 9s161546c7g 4 25 graph graph NOUN 9s161546c7g 4 26 occurs occur VERB 9s161546c7g 4 27 ( ( PUNCT 9s161546c7g 4 28 for for ADP 9s161546c7g 4 29 sufficiently sufficiently ADV 9s161546c7g 4 30 large large ADJ 9s161546c7g 4 31 n n NOUN 9s161546c7g 4 32 ) ) PUNCT 9s161546c7g 4 33 when when SCONJ 9s161546c7g 4 34 g g PROPN 9s161546c7g 4 35 = = NOUN 9s161546c7g 4 36 kδ,n−δ kδ,n−δ PROPN 9s161546c7g 4 37 ; ; PUNCT 9s161546c7g 4 38 . . PUNCT 9s161546c7g 5 1 first first ADV 9s161546c7g 5 2 , , PUNCT 9s161546c7g 5 3 we we PRON 9s161546c7g 5 4 show show VERB 9s161546c7g 5 5 this this DET 9s161546c7g 5 6 result result NOUN 9s161546c7g 5 7 holds hold VERB 9s161546c7g 5 8 for for ADP 9s161546c7g 5 9 level level NOUN 9s161546c7g 5 10 sets set NOUN 9s161546c7g 5 11 : : PUNCT 9s161546c7g 5 12 for for ADP 9s161546c7g 5 13 all all DET 9s161546c7g 5 14 triples triple NOUN 9s161546c7g 5 15 ( ( PUNCT 9s161546c7g 5 16 n n NOUN 9s161546c7g 5 17 , , PUNCT 9s161546c7g 5 18 & & CCONJ 9s161546c7g 5 19 # # SYM 9s161546c7g 5 20 948 948 NUM 9s161546c7g 5 21 ; ; PUNCT 9s161546c7g 5 22 , , PUNCT 9s161546c7g 5 23 t t PROPN 9s161546c7g 5 24 ) ) PUNCT 9s161546c7g 5 25 with with ADP 9s161546c7g 5 26 & & CCONJ 9s161546c7g 5 27 # # SYM 9s161546c7g 5 28 948 948 NUM 9s161546c7g 5 29 ; ; PUNCT 9s161546c7g 5 30 & & CCONJ 9s161546c7g 5 31 # # SYM 9s161546c7g 5 32 8804 8804 NUM 9s161546c7g 5 33 ; ; PUNCT 9s161546c7g 5 34 3 3 NUM 9s161546c7g 5 35 and and CCONJ 9s161546c7g 5 36 t t PROPN 9s161546c7g 5 37 & & CCONJ 9s161546c7g 5 38 # # SYM 9s161546c7g 5 39 8805 8805 NUM 9s161546c7g 5 40 ; ; PUNCT 9s161546c7g 5 41 3 3 NUM 9s161546c7g 5 42 , , PUNCT 9s161546c7g 5 43 no no DET 9s161546c7g 5 44 n n ADJ 9s161546c7g 5 45 - - PUNCT 9s161546c7g 5 46 vertex vertex NOUN 9s161546c7g 5 47 graph graph NOUN 9s161546c7g 5 48 with with ADP 9s161546c7g 5 49 minimum minimum ADJ 9s161546c7g 5 50 degree degree NOUN 9s161546c7g 5 51 & & CCONJ 9s161546c7g 5 52 # # SYM 9s161546c7g 5 53 948 948 NUM 9s161546c7g 5 54 ; ; PUNCT 9s161546c7g 5 55 admits admit VERB 9s161546c7g 5 56 more more ADV 9s161546c7g 5 57 independent independent ADJ 9s161546c7g 5 58 sets set NOUN 9s161546c7g 5 59 of of ADP 9s161546c7g 5 60 size size NOUN 9s161546c7g 5 61 t t NOUN 9s161546c7g 5 62 than than ADP 9s161546c7g 5 63 kδ,n−δ kδ,n−δ PROPN 9s161546c7g 5 64 ; ; PUNCT 9s161546c7g 5 65 , , PUNCT 9s161546c7g 5 66 and and CCONJ 9s161546c7g 5 67 we we PRON 9s161546c7g 5 68 obtain obtain VERB 9s161546c7g 5 69 the the DET 9s161546c7g 5 70 same same ADJ 9s161546c7g 5 71 conclusion conclusion NOUN 9s161546c7g 5 72 for for ADP 9s161546c7g 5 73 & & CCONJ 9s161546c7g 5 74 # # SYM 9s161546c7g 5 75 948 948 NUM 9s161546c7g 5 76 ; ; PUNCT 9s161546c7g 5 77 > > X 9s161546c7g 5 78 3 3 NUM 9s161546c7g 5 79 and and CCONJ 9s161546c7g 5 80 t t PROPN 9s161546c7g 5 81 & & CCONJ 9s161546c7g 5 82 # # SYM 9s161546c7g 5 83 8805 8805 NUM 9s161546c7g 5 84 ; ; PUNCT 9s161546c7g 5 85 2δ 2δ NUM 9s161546c7g 5 86 ; ; PUNCT 9s161546c7g 5 87 + + NUM 9s161546c7g 5 88 1 1 X 9s161546c7g 5 89 . . PUNCT 9s161546c7g 6 1 second second ADJ 9s161546c7g 6 2 , , PUNCT 9s161546c7g 6 3 we we PRON 9s161546c7g 6 4 begin begin VERB 9s161546c7g 6 5 the the DET 9s161546c7g 6 6 project project NOUN 9s161546c7g 6 7 of of ADP 9s161546c7g 6 8 generalizing generalize VERB 9s161546c7g 6 9 galvin?s galvin?s NOUN 9s161546c7g 6 10 result result NOUN 9s161546c7g 6 11 to to ADP 9s161546c7g 6 12 arbitrary arbitrary ADJ 9s161546c7g 6 13 h h NOUN 9s161546c7g 6 14 . . PUNCT 9s161546c7g 7 1 writing write VERB 9s161546c7g 7 2 hom(g hom(g NOUN 9s161546c7g 7 3 , , PUNCT 9s161546c7g 7 4 h h PROPN 9s161546c7g 7 5 ) ) PUNCT 9s161546c7g 7 6 for for ADP 9s161546c7g 7 7 the the DET 9s161546c7g 7 8 number number NOUN 9s161546c7g 7 9 of of ADP 9s161546c7g 7 10 h h NOUN 9s161546c7g 7 11 -colorings -coloring NOUN 9s161546c7g 7 12 of of ADP 9s161546c7g 7 13 g g PROPN 9s161546c7g 7 14 , , PUNCT 9s161546c7g 7 15 we we PRON 9s161546c7g 7 16 show show VERB 9s161546c7g 7 17 that that SCONJ 9s161546c7g 7 18 for for ADP 9s161546c7g 7 19 & & CCONJ 9s161546c7g 7 20 # # SYM 9s161546c7g 7 21 948 948 NUM 9s161546c7g 7 22 ; ; PUNCT 9s161546c7g 7 23 = = PROPN 9s161546c7g 7 24 1 1 NUM 9s161546c7g 7 25 and and CCONJ 9s161546c7g 7 26 & & CCONJ 9s161546c7g 7 27 # # SYM 9s161546c7g 7 28 948 948 NUM 9s161546c7g 7 29 ; ; PUNCT 9s161546c7g 7 30 = = PROPN 9s161546c7g 7 31 2 2 NUM 9s161546c7g 7 32 and and CCONJ 9s161546c7g 7 33 fixed fix VERB 9s161546c7g 7 34 h h NOUN 9s161546c7g 7 35 , , PUNCT 9s161546c7g 7 36 hom(g hom(g PROPN 9s161546c7g 7 37 , , PUNCT 9s161546c7g 7 38 h h PROPN 9s161546c7g 7 39 ) ) PUNCT 9s161546c7g 7 40 & & CCONJ 9s161546c7g 7 41 # # SYM 9s161546c7g 7 42 8804 8804 NUM 9s161546c7g 7 43 ; ; PUNCT 9s161546c7g 7 44 max{hom(kδ+1 max{hom(kδ+1 PROPN 9s161546c7g 7 45 , , PUNCT 9s161546c7g 7 46 h h PROPN 9s161546c7g 7 47 ) ) PUNCT 9s161546c7g 7 48 n/δ+1 n/δ+1 PROPN 9s161546c7g 7 49 , , PUNCT 9s161546c7g 7 50 hom(kδ,δ hom(kδ,δ NOUN 9s161546c7g 7 51 ; ; PUNCT 9s161546c7g 7 52 , , PUNCT 9s161546c7g 7 53 h h NOUN 9s161546c7g 7 54 ) ) PUNCT 9s161546c7g 7 55 2δ 2δ NUM 9s161546c7g 7 56 ; ; PUNCT 9s161546c7g 7 57 , , PUNCT 9s161546c7g 7 58 hom(kδ,n−δ hom(kδ,n−δ PROPN 9s161546c7g 7 59 ; ; PUNCT 9s161546c7g 7 60 , , PUNCT 9s161546c7g 7 61 h h NOUN 9s161546c7g 7 62 ) ) PUNCT 9s161546c7g 7 63 } } PUNCT 9s161546c7g 7 64 for for ADP 9s161546c7g 7 65 any any DET 9s161546c7g 7 66 n n NOUN 9s161546c7g 7 67 vertex vertex NOUN 9s161546c7g 7 68 minimum minimum NOUN 9s161546c7g 7 69 degree degree NOUN 9s161546c7g 7 70 & & CCONJ 9s161546c7g 7 71 # # SYM 9s161546c7g 7 72 948 948 NUM 9s161546c7g 7 73 ; ; PUNCT 9s161546c7g 7 74 graph graph NOUN 9s161546c7g 7 75 g g NOUN 9s161546c7g 7 76 ( ( PUNCT 9s161546c7g 7 77 for for ADP 9s161546c7g 7 78 sufficiently sufficiently ADV 9s161546c7g 7 79 large large ADJ 9s161546c7g 7 80 n n NOUN 9s161546c7g 7 81 ) ) PUNCT 9s161546c7g 7 82 . . PUNCT 9s161546c7g 8 1 for for ADP 9s161546c7g 8 2 & & CCONJ 9s161546c7g 8 3 # # SYM 9s161546c7g 8 4 948 948 NUM 9s161546c7g 8 5 ; ; PUNCT 9s161546c7g 8 6 & & CCONJ 9s161546c7g 8 7 # # SYM 9s161546c7g 8 8 8805 8805 NUM 9s161546c7g 8 9 ; ; PUNCT 9s161546c7g 8 10 3 3 NUM 9s161546c7g 8 11 ( ( PUNCT 9s161546c7g 8 12 and and CCONJ 9s161546c7g 8 13 sufficiently sufficiently ADV 9s161546c7g 8 14 large large ADJ 9s161546c7g 8 15 n n NOUN 9s161546c7g 8 16 ) ) PUNCT 9s161546c7g 8 17 , , PUNCT 9s161546c7g 8 18 we we PRON 9s161546c7g 8 19 provide provide VERB 9s161546c7g 8 20 a a DET 9s161546c7g 8 21 class class NOUN 9s161546c7g 8 22 of of ADP 9s161546c7g 8 23 h h PROPN 9s161546c7g 8 24 for for ADP 9s161546c7g 8 25 which which PRON 9s161546c7g 8 26 hom(g hom(g PROPN 9s161546c7g 8 27 , , PUNCT 9s161546c7g 8 28 h h PROPN 9s161546c7g 8 29 ) ) PUNCT 9s161546c7g 8 30 & & CCONJ 9s161546c7g 8 31 # # SYM 9s161546c7g 8 32 8804 8804 NUM 9s161546c7g 8 33 ; ; PUNCT 9s161546c7g 8 34 hom(kδ,n−δ hom(kδ,n−δ PROPN 9s161546c7g 8 35 ; ; PUNCT 9s161546c7g 8 36 , , PUNCT 9s161546c7g 8 37 h h PROPN 9s161546c7g 8 38 ) ) PUNCT 9s161546c7g 8 39 for for ADP 9s161546c7g 8 40 any any DET 9s161546c7g 8 41 g g NOUN 9s161546c7g 8 42 in in ADP 9s161546c7g 8 43 this this DET 9s161546c7g 8 44 family family NOUN 9s161546c7g 8 45 . . PUNCT 9s161546c7g 9 1 third third ADJ 9s161546c7g 9 2 , , PUNCT 9s161546c7g 9 3 for for ADP 9s161546c7g 9 4 a a DET 9s161546c7g 9 5 given give VERB 9s161546c7g 9 6 h h NOUN 9s161546c7g 9 7 , , PUNCT 9s161546c7g 9 8 k k PROPN 9s161546c7g 9 9 & & CCONJ 9s161546c7g 9 10 # # SYM 9s161546c7g 9 11 8712 8712 NUM 9s161546c7g 9 12 ; ; PUNCT 9s161546c7g 9 13 v v NOUN 9s161546c7g 9 14 ( ( PUNCT 9s161546c7g 9 15 h h PROPN 9s161546c7g 9 16 ) ) PUNCT 9s161546c7g 9 17 , , PUNCT 9s161546c7g 9 18 and and CCONJ 9s161546c7g 9 19 regular regular ADJ 9s161546c7g 9 20 bipartite bipartite PROPN 9s161546c7g 9 21 g g PROPN 9s161546c7g 9 22 , , PUNCT 9s161546c7g 9 23 we we PRON 9s161546c7g 9 24 consider consider VERB 9s161546c7g 9 25 the the DET 9s161546c7g 9 26 proportion proportion NOUN 9s161546c7g 9 27 of of ADP 9s161546c7g 9 28 vertices vertex NOUN 9s161546c7g 9 29 of of ADP 9s161546c7g 9 30 g g NOUN 9s161546c7g 9 31 that that PRON 9s161546c7g 9 32 get get AUX 9s161546c7g 9 33 mapped map VERB 9s161546c7g 9 34 to to ADP 9s161546c7g 9 35 k k PROPN 9s161546c7g 9 36 in in ADP 9s161546c7g 9 37 a a DET 9s161546c7g 9 38 uniformly uniformly ADV 9s161546c7g 9 39 chosen choose VERB 9s161546c7g 9 40 h h PROPN 9s161546c7g 9 41 -coloring -colore VERB 9s161546c7g 9 42 of of ADP 9s161546c7g 9 43 g. g. NOUN 9s161546c7g 9 44 we we PRON 9s161546c7g 9 45 find find VERB 9s161546c7g 9 46 numbers number NOUN 9s161546c7g 9 47 0 0 NUM 9s161546c7g 9 48 & & CCONJ 9s161546c7g 9 49 # # SYM 9s161546c7g 9 50 8804 8804 NUM 9s161546c7g 9 51 ; ; PUNCT 9s161546c7g 9 52 a−(k a−(k PROPN 9s161546c7g 9 53 ) ) PUNCT 9s161546c7g 9 54 & & CCONJ 9s161546c7g 9 55 # # SYM 9s161546c7g 9 56 8804 8804 NUM 9s161546c7g 9 57 ; ; PUNCT 9s161546c7g 9 58 a+(k a+(k PROPN 9s161546c7g 9 59 ) ) PUNCT 9s161546c7g 9 60 & & CCONJ 9s161546c7g 9 61 # # SYM 9s161546c7g 9 62 8804 8804 NUM 9s161546c7g 9 63 ; ; PUNCT 9s161546c7g 9 64 1 1 NUM 9s161546c7g 9 65 with with ADP 9s161546c7g 9 66 the the DET 9s161546c7g 9 67 property property NOUN 9s161546c7g 9 68 that that PRON 9s161546c7g 9 69 for for ADP 9s161546c7g 9 70 all all DET 9s161546c7g 9 71 such such ADJ 9s161546c7g 9 72 g g NOUN 9s161546c7g 9 73 , , PUNCT 9s161546c7g 9 74 with with ADP 9s161546c7g 9 75 high high ADJ 9s161546c7g 9 76 probability probability NOUN 9s161546c7g 9 77 the the DET 9s161546c7g 9 78 proportion proportion NOUN 9s161546c7g 9 79 is be AUX 9s161546c7g 9 80 between between ADP 9s161546c7g 9 81 a−(k a−(k ADJ 9s161546c7g 9 82 ) ) PUNCT 9s161546c7g 9 83 and and CCONJ 9s161546c7g 9 84 a+(k a+(k SPACE 9s161546c7g 9 85 ) ) PUNCT 9s161546c7g 9 86 , , PUNCT 9s161546c7g 9 87 and and CCONJ 9s161546c7g 9 88 we we PRON 9s161546c7g 9 89 give give VERB 9s161546c7g 9 90 examples example NOUN 9s161546c7g 9 91 where where SCONJ 9s161546c7g 9 92 these these DET 9s161546c7g 9 93 extremes extreme NOUN 9s161546c7g 9 94 are be AUX 9s161546c7g 9 95 achieved achieve VERB 9s161546c7g 9 96 . . PUNCT 9s161546c7g 10 1 fourth fourth ADV 9s161546c7g 10 2 , , PUNCT 9s161546c7g 10 3 we we PRON 9s161546c7g 10 4 study study VERB 9s161546c7g 10 5 the the DET 9s161546c7g 10 6 set set NOUN 9s161546c7g 10 7 of of ADP 9s161546c7g 10 8 h h NOUN 9s161546c7g 10 9 -colorings -coloring NOUN 9s161546c7g 10 10 of of ADP 9s161546c7g 10 11 the the DET 9s161546c7g 10 12 even even ADV 9s161546c7g 10 13 discrete discrete ADJ 9s161546c7g 10 14 torus torus NOUN 9s161546c7g 10 15 zdm zdm PROPN 9s161546c7g 10 16 . . PUNCT 9s161546c7g 11 1 for for ADP 9s161546c7g 11 2 any any DET 9s161546c7g 11 3 h h NOUN 9s161546c7g 11 4 and and CCONJ 9s161546c7g 11 5 fixed fix VERB 9s161546c7g 11 6 m m NOUN 9s161546c7g 11 7 , , PUNCT 9s161546c7g 11 8 we we PRON 9s161546c7g 11 9 show show VERB 9s161546c7g 11 10 that that SCONJ 9s161546c7g 11 11 the the DET 9s161546c7g 11 12 space space NOUN 9s161546c7g 11 13 of of ADP 9s161546c7g 11 14 h h NOUN 9s161546c7g 11 15 -colorings -coloring NOUN 9s161546c7g 11 16 of of ADP 9s161546c7g 11 17 zdm zdm PROPN 9s161546c7g 11 18 may may AUX 9s161546c7g 11 19 be be AUX 9s161546c7g 11 20 partitioned partition VERB 9s161546c7g 11 21 into into ADP 9s161546c7g 11 22 a a DET 9s161546c7g 11 23 subset subset NOUN 9s161546c7g 11 24 of of ADP 9s161546c7g 11 25 negligible negligible ADJ 9s161546c7g 11 26 size size NOUN 9s161546c7g 11 27 ( ( PUNCT 9s161546c7g 11 28 as as SCONJ 9s161546c7g 11 29 d d NOUN 9s161546c7g 11 30 grows grow VERB 9s161546c7g 11 31 ) ) PUNCT 9s161546c7g 11 32 and and CCONJ 9s161546c7g 11 33 a a DET 9s161546c7g 11 34 collection collection NOUN 9s161546c7g 11 35 of of ADP 9s161546c7g 11 36 subsets subset NOUN 9s161546c7g 11 37 indexed index VERB 9s161546c7g 11 38 by by ADP 9s161546c7g 11 39 certain certain ADJ 9s161546c7g 11 40 pairs pair NOUN 9s161546c7g 11 41 ( ( PUNCT 9s161546c7g 11 42 a a DET 9s161546c7g 11 43 , , PUNCT 9s161546c7g 11 44 b b NOUN 9s161546c7g 11 45 ) ) PUNCT 9s161546c7g 11 46 & & CCONJ 9s161546c7g 11 47 # # SYM 9s161546c7g 11 48 8712 8712 NUM 9s161546c7g 11 49 ; ; PUNCT 9s161546c7g 11 50 v v X 9s161546c7g 11 51 ( ( PUNCT 9s161546c7g 11 52 h)2 h)2 NOUN 9s161546c7g 11 53 , , PUNCT 9s161546c7g 11 54 with with ADP 9s161546c7g 11 55 each each DET 9s161546c7g 11 56 h h NOUN 9s161546c7g 11 57 -coloring -colore VERB 9s161546c7g 11 58 in in ADP 9s161546c7g 11 59 the the DET 9s161546c7g 11 60 subset subset NOUN 9s161546c7g 11 61 indexed index VERB 9s161546c7g 11 62 by by ADP 9s161546c7g 11 63 ( ( PUNCT 9s161546c7g 11 64 a a DET 9s161546c7g 11 65 , , PUNCT 9s161546c7g 11 66 b b NOUN 9s161546c7g 11 67 ) ) PUNCT 9s161546c7g 11 68 having have VERB 9s161546c7g 11 69 almost almost ADV 9s161546c7g 11 70 all all PRON 9s161546c7g 11 71 vertices vertex NOUN 9s161546c7g 11 72 in in ADP 9s161546c7g 11 73 one one NUM 9s161546c7g 11 74 partition partition NOUN 9s161546c7g 11 75 class class NOUN 9s161546c7g 11 76 mapped map VERB 9s161546c7g 11 77 to to ADP 9s161546c7g 11 78 a a DET 9s161546c7g 11 79 and and CCONJ 9s161546c7g 11 80 almost almost ADV 9s161546c7g 11 81 all all PRON 9s161546c7g 11 82 vertices vertex NOUN 9s161546c7g 11 83 in in ADP 9s161546c7g 11 84 the the DET 9s161546c7g 11 85 other other ADJ 9s161546c7g 11 86 partition partition NOUN 9s161546c7g 11 87 class class NOUN 9s161546c7g 11 88 mapped map VERB 9s161546c7g 11 89 to to ADP 9s161546c7g 11 90 b. b. PROPN