id sid tid token lemma pos gh93gx43s3t 1 1 for for ADP gh93gx43s3t 1 2 sobolev sobolev PROPN gh93gx43s3t 1 3 exponent exponent PROPN gh93gx43s3t 1 4 s s VERB gh93gx43s3t 1 5 > > X gh93gx43s3t 1 6 5=2 5=2 NUM gh93gx43s3t 1 7 , , PUNCT gh93gx43s3t 1 8 it it PRON gh93gx43s3t 1 9 is be AUX gh93gx43s3t 1 10 shown show VERB gh93gx43s3t 1 11 that that SCONJ gh93gx43s3t 1 12 the the DET gh93gx43s3t 1 13 data data NOUN gh93gx43s3t 1 14 - - PUNCT gh93gx43s3t 1 15 to to ADP gh93gx43s3t 1 16 - - PUNCT gh93gx43s3t 1 17 solution solution NOUN gh93gx43s3t 1 18 map map NOUN gh93gx43s3t 1 19 for for ADP gh93gx43s3t 1 20 the2 the2 PROPN gh93gx43s3t 1 21 - - PUNCT gh93gx43s3t 1 22 component component NOUN gh93gx43s3t 1 23 camassa camassa ADJ gh93gx43s3t 1 24 - - PUNCT gh93gx43s3t 1 25 holm holm NOUN gh93gx43s3t 1 26 system system NOUN gh93gx43s3t 1 27 is be AUX gh93gx43s3t 1 28 continuous continuous ADJ gh93gx43s3t 1 29 from from ADP gh93gx43s3t 1 30 hs hs X gh93gx43s3t 1 31 x x X gh93gx43s3t 1 32 hs􀀀-1 hs􀀀-1 PROPN gh93gx43s3t 1 33 into into ADP gh93gx43s3t 1 34 c([0 c([0 SPACE gh93gx43s3t 1 35 ; ; PUNCT gh93gx43s3t 1 36 t];hs t];hs PROPN gh93gx43s3t 1 37 x x SYM gh93gx43s3t 1 38 hs􀀀-1 hs􀀀-1 NUM gh93gx43s3t 1 39 ) ) PUNCT gh93gx43s3t 1 40 but but CCONJ gh93gx43s3t 1 41 not not PART gh93gx43s3t 1 42 uniformly uniformly ADV gh93gx43s3t 1 43 continuous continuous ADJ gh93gx43s3t 1 44 . . PUNCT gh93gx43s3t 2 1 the the DET gh93gx43s3t 2 2 proof proof NOUN gh93gx43s3t 2 3 of of ADP gh93gx43s3t 2 4 non non ADJ gh93gx43s3t 2 5 - - ADJ gh93gx43s3t 2 6 uniform uniform ADJ gh93gx43s3t 2 7 dependence dependence NOUN gh93gx43s3t 2 8 on on ADP gh93gx43s3t 2 9 the the DET gh93gx43s3t 2 10 initial initial ADJ gh93gx43s3t 2 11 data datum NOUN gh93gx43s3t 2 12 is be AUX gh93gx43s3t 2 13 based base VERB gh93gx43s3t 2 14 on on ADP gh93gx43s3t 2 15 the the DET gh93gx43s3t 2 16 method method NOUN gh93gx43s3t 2 17 of of ADP gh93gx43s3t 2 18 approximate approximate ADJ gh93gx43s3t 2 19 solutions solution NOUN gh93gx43s3t 2 20 , , PUNCT gh93gx43s3t 2 21 delicate delicate ADJ gh93gx43s3t 2 22 commutator commutator NOUN gh93gx43s3t 2 23 and and CCONJ gh93gx43s3t 2 24 multiplier multipli ADJ gh93gx43s3t 2 25 estimates estimate NOUN gh93gx43s3t 2 26 , , PUNCT gh93gx43s3t 2 27 and and CCONJ gh93gx43s3t 2 28 well well ADV gh93gx43s3t 2 29 - - PUNCT gh93gx43s3t 2 30 posedness posedness NOUN gh93gx43s3t 2 31 results result NOUN gh93gx43s3t 2 32 for for ADP gh93gx43s3t 2 33 the the DET gh93gx43s3t 2 34 solution solution NOUN gh93gx43s3t 2 35 and and CCONJ gh93gx43s3t 2 36 its its PRON gh93gx43s3t 2 37 lifespan lifespan NOUN gh93gx43s3t 2 38 . . PUNCT gh93gx43s3t 3 1 also also ADV gh93gx43s3t 3 2 , , PUNCT gh93gx43s3t 3 3 the the DET gh93gx43s3t 3 4 solution solution NOUN gh93gx43s3t 3 5 map map NOUN gh93gx43s3t 3 6 is be AUX gh93gx43s3t 3 7 holder holder NOUN gh93gx43s3t 3 8 continuous continuous ADJ gh93gx43s3t 3 9 if if SCONJ gh93gx43s3t 3 10 the the DET gh93gx43s3t 3 11 hs hs X gh93gx43s3t 3 12 x x X gh93gx43s3t 3 13 hs-􀀀1 hs-􀀀1 PROPN gh93gx43s3t 3 14 norm norm NOUN gh93gx43s3t 3 15 is be AUX gh93gx43s3t 3 16 replaced replace VERB gh93gx43s3t 3 17 by by ADP gh93gx43s3t 3 18 an an DET gh93gx43s3t 3 19 hr hr NOUN gh93gx43s3t 3 20 x x SYM gh93gx43s3t 3 21 hr􀀀-1 hr􀀀-1 PROPN gh93gx43s3t 3 22 norm norm NOUN gh93gx43s3t 3 23 for for ADP gh93gx43s3t 3 24 0 0 NUM gh93gx43s3t 3 25 r r X gh93gx43s3t 3 26 < < X gh93gx43s3t 3 27 s. s. PROPN