id sid tid token lemma pos j098z893122 1 1 we we PRON j098z893122 1 2 consider consider VERB j098z893122 1 3 peterzil peterzil NOUN j098z893122 1 4 - - PUNCT j098z893122 1 5 steinhorn steinhorn VERB j098z893122 1 6 groups group NOUN j098z893122 1 7 defined define VERB j098z893122 1 8 in in ADP j098z893122 1 9 o o ADJ j098z893122 1 10 - - ADJ j098z893122 1 11 minimal minimal ADJ j098z893122 1 12 expansions expansion NOUN j098z893122 1 13 of of ADP j098z893122 1 14 the the DET j098z893122 1 15 reals real NOUN j098z893122 1 16 . . PUNCT j098z893122 2 1 these these PRON j098z893122 2 2 are be AUX j098z893122 2 3 one one NUM j098z893122 2 4 - - PUNCT j098z893122 2 5 dimensional dimensional ADJ j098z893122 2 6 torsion torsion NOUN j098z893122 2 7 - - PUNCT j098z893122 2 8 free free ADJ j098z893122 2 9 subgroups subgroup NOUN j098z893122 2 10 of of ADP j098z893122 2 11 arbitrary arbitrary ADJ j098z893122 2 12 definable definable ADJ j098z893122 2 13 and and CCONJ j098z893122 2 14 not not PART j098z893122 2 15 definably definably ADV j098z893122 2 16 compact compact ADJ j098z893122 2 17 groups group NOUN j098z893122 2 18 . . PUNCT j098z893122 3 1 we we PRON j098z893122 3 2 show show VERB j098z893122 3 3 that that SCONJ j098z893122 3 4 each each DET j098z893122 3 5 peterzil peterzil NOUN j098z893122 3 6 - - PUNCT j098z893122 3 7 steinhorn steinhorn VERB j098z893122 3 8 group group NOUN j098z893122 3 9 is be AUX j098z893122 3 10 isomorphic isomorphic ADJ j098z893122 3 11 to to ADP j098z893122 3 12 either either CCONJ j098z893122 3 13 the the DET j098z893122 3 14 additive additive ADJ j098z893122 3 15 or or CCONJ j098z893122 3 16 the the DET j098z893122 3 17 multiplicative multiplicative ADJ j098z893122 3 18 group group NOUN j098z893122 3 19 of of ADP j098z893122 3 20 the the DET j098z893122 3 21 reals real NOUN j098z893122 3 22 and and CCONJ j098z893122 3 23 we we PRON j098z893122 3 24 provide provide VERB j098z893122 3 25 a a DET j098z893122 3 26 simple simple ADJ j098z893122 3 27 criterion criterion NOUN j098z893122 3 28 that that PRON j098z893122 3 29 can can AUX j098z893122 3 30 be be AUX j098z893122 3 31 used use VERB j098z893122 3 32 to to PART j098z893122 3 33 classify classify VERB j098z893122 3 34 each each DET j098z893122 3 35 such such ADJ j098z893122 3 36 group group NOUN j098z893122 3 37 into into ADP j098z893122 3 38 one one NUM j098z893122 3 39 of of ADP j098z893122 3 40 those those DET j098z893122 3 41 two two NUM j098z893122 3 42 categories category NOUN j098z893122 3 43 . . PUNCT j098z893122 4 1 additionally additionally ADV j098z893122 4 2 , , PUNCT j098z893122 4 3 we we PRON j098z893122 4 4 find find VERB j098z893122 4 5 the the DET j098z893122 4 6 tangent tangent ADJ j098z893122 4 7 space space NOUN j098z893122 4 8 of of ADP j098z893122 4 9 any any DET j098z893122 4 10 arbitrary arbitrary ADJ j098z893122 4 11 peterzil peterzil NOUN j098z893122 4 12 - - PUNCT j098z893122 4 13 steinhorn steinhorn VERB j098z893122 4 14 group group NOUN j098z893122 4 15 at at ADP j098z893122 4 16 its its PRON j098z893122 4 17 identity identity NOUN j098z893122 4 18 . . PUNCT j098z893122 5 1 finally finally ADV j098z893122 5 2 , , PUNCT j098z893122 5 3 for for ADP j098z893122 5 4 the the DET j098z893122 5 5 case case NOUN j098z893122 5 6 of of ADP j098z893122 5 7 polynomially polynomially ADV j098z893122 5 8 bounded bound VERB j098z893122 5 9 o o ADJ j098z893122 5 10 - - ADJ j098z893122 5 11 minimal minimal ADJ j098z893122 5 12 expansions expansion NOUN j098z893122 5 13 of of ADP j098z893122 5 14 the the DET j098z893122 5 15 reals real NOUN j098z893122 5 16 , , PUNCT j098z893122 5 17 we we PRON j098z893122 5 18 give give VERB j098z893122 5 19 a a DET j098z893122 5 20 complete complete ADJ j098z893122 5 21 description description NOUN j098z893122 5 22 of of ADP j098z893122 5 23 all all DET j098z893122 5 24 peterzil peterzil NOUN j098z893122 5 25 - - PUNCT j098z893122 5 26 steinhorn steinhorn VERB j098z893122 5 27 groups group NOUN j098z893122 5 28 . . PUNCT