id sid tid token lemma pos n296ww75v07 1 1 let let VERB n296ww75v07 1 2 sl sl PROPN n296ww75v07 1 3 be be AUX n296ww75v07 1 4 the the DET n296ww75v07 1 5 infinity infinity ADJ n296ww75v07 1 6 - - PUNCT n296ww75v07 1 7 category category NOUN n296ww75v07 1 8 of of ADP n296ww75v07 1 9 simplicial simplicial ADJ n296ww75v07 1 10 restricted restricted ADJ n296ww75v07 1 11 lie lie NOUN n296ww75v07 1 12 algebras algebra NOUN n296ww75v07 1 13 over over ADP n296ww75v07 1 14 f f PROPN n296ww75v07 1 15 , , PUNCT n296ww75v07 1 16 the the DET n296ww75v07 1 17 algebraic algebraic ADJ n296ww75v07 1 18 closure closure NOUN n296ww75v07 1 19 of of ADP n296ww75v07 1 20 a a DET n296ww75v07 1 21 finite finite ADJ n296ww75v07 1 22 field field NOUN n296ww75v07 1 23 f_p f_p SPACE n296ww75v07 1 24 . . PUNCT n296ww75v07 2 1 by by ADP n296ww75v07 2 2 the the DET n296ww75v07 2 3 work work NOUN n296ww75v07 2 4 of of ADP n296ww75v07 2 5 a. a. PROPN n296ww75v07 2 6 k. k. PROPN n296ww75v07 2 7 bousfield bousfield PROPN n296ww75v07 2 8 et et PROPN n296ww75v07 2 9 al al PROPN n296ww75v07 2 10 . . PUNCT n296ww75v07 3 1 on on ADP n296ww75v07 3 2 the the DET n296ww75v07 3 3 unstable unstable ADJ n296ww75v07 3 4 adams adams PROPN n296ww75v07 3 5 spectral spectral ADJ n296ww75v07 3 6 sequence sequence NOUN n296ww75v07 3 7 , , PUNCT n296ww75v07 3 8 the the DET n296ww75v07 3 9 category category NOUN n296ww75v07 3 10 sl sl NOUN n296ww75v07 3 11 can can AUX n296ww75v07 3 12 be be AUX n296ww75v07 3 13 viewed view VERB n296ww75v07 3 14 as as ADP n296ww75v07 3 15 an an DET n296ww75v07 3 16 algebraic algebraic ADJ n296ww75v07 3 17 approximation approximation NOUN n296ww75v07 3 18 of of ADP n296ww75v07 3 19 the the DET n296ww75v07 3 20 infinity infinity ADJ n296ww75v07 3 21 - - PUNCT n296ww75v07 3 22 category category NOUN n296ww75v07 3 23 of of ADP n296ww75v07 3 24 pointed pointed ADJ n296ww75v07 3 25 p p NOUN n296ww75v07 3 26 - - PUNCT n296ww75v07 3 27 complete complete ADJ n296ww75v07 3 28 spaces space NOUN n296ww75v07 3 29 . . PUNCT n296ww75v07 4 1 we we PRON n296ww75v07 4 2 study study VERB n296ww75v07 4 3 the the DET n296ww75v07 4 4 functor functor NOUN n296ww75v07 4 5 calculus calculus NOUN n296ww75v07 4 6 in in ADP n296ww75v07 4 7 the the DET n296ww75v07 4 8 category category NOUN n296ww75v07 4 9 sl sl PROPN n296ww75v07 4 10 . . PUNCT n296ww75v07 5 1 more more ADV n296ww75v07 5 2 specifically specifically ADV n296ww75v07 5 3 , , PUNCT n296ww75v07 5 4 we we PRON n296ww75v07 5 5 consider consider VERB n296ww75v07 5 6 the the DET n296ww75v07 5 7 taylor taylor PROPN n296ww75v07 5 8 tower tower NOUN n296ww75v07 5 9 for for ADP n296ww75v07 5 10 the the DET n296ww75v07 5 11 functor functor NOUN n296ww75v07 5 12 l^r l^r PROPN n296ww75v07 5 13 of of ADP n296ww75v07 5 14 a a DET n296ww75v07 5 15 free free ADJ n296ww75v07 5 16 simplicial simplicial NOUN n296ww75v07 5 17 restricted restricted ADJ n296ww75v07 5 18 lie lie NOUN n296ww75v07 5 19 algebra algebra NOUN n296ww75v07 5 20 together together ADV n296ww75v07 5 21 with with ADP n296ww75v07 5 22 the the DET n296ww75v07 5 23 associated associated ADJ n296ww75v07 5 24 goodwillie goodwillie PROPN n296ww75v07 5 25 spectral spectral ADJ n296ww75v07 5 26 sequence sequence NOUN n296ww75v07 5 27 . . PUNCT n296ww75v07 6 1 we we PRON n296ww75v07 6 2 show show VERB n296ww75v07 6 3 that that SCONJ n296ww75v07 6 4 this this DET n296ww75v07 6 5 spectral spectral ADJ n296ww75v07 6 6 sequence sequence NOUN n296ww75v07 6 7 evaluated evaluate VERB n296ww75v07 6 8 at at ADP n296ww75v07 6 9 sigma^l sigma^l PROPN n296ww75v07 6 10 f f PROPN n296ww75v07 6 11 , , PUNCT n296ww75v07 6 12 l>=0 l>=0 PROPN n296ww75v07 6 13 degenerates degenerate VERB n296ww75v07 6 14 on on ADP n296ww75v07 6 15 the the DET n296ww75v07 6 16 third third ADJ n296ww75v07 6 17 page page NOUN n296ww75v07 6 18 after after ADP n296ww75v07 6 19 a a DET n296ww75v07 6 20 suitable suitable ADJ n296ww75v07 6 21 re re NOUN n296ww75v07 6 22 - - NOUN n296ww75v07 6 23 indexing indexing NOUN n296ww75v07 6 24 , , PUNCT n296ww75v07 6 25 which which PRON n296ww75v07 6 26 proves prove VERB n296ww75v07 6 27 an an DET n296ww75v07 6 28 algebraic algebraic ADJ n296ww75v07 6 29 version version NOUN n296ww75v07 6 30 of of ADP n296ww75v07 6 31 the the DET n296ww75v07 6 32 whitehead whitehead NOUN n296ww75v07 6 33 conjecture.in conjecture.in NUM n296ww75v07 6 34 our our PRON n296ww75v07 6 35 proof proof NOUN n296ww75v07 6 36 we we PRON n296ww75v07 6 37 compute compute VERB n296ww75v07 6 38 explicitly explicitly ADV n296ww75v07 6 39 the the DET n296ww75v07 6 40 differentials differential NOUN n296ww75v07 6 41 of of ADP n296ww75v07 6 42 the the DET n296ww75v07 6 43 goodwillie goodwillie PROPN n296ww75v07 6 44 spectral spectral ADJ n296ww75v07 6 45 sequence sequence NOUN n296ww75v07 6 46 in in ADP n296ww75v07 6 47 terms term NOUN n296ww75v07 6 48 of of ADP n296ww75v07 6 49 the the DET n296ww75v07 6 50 lambda lambda NOUN n296ww75v07 6 51 - - PUNCT n296ww75v07 6 52 algebra algebra NOUN n296ww75v07 6 53 of of ADP n296ww75v07 6 54 a. a. PROPN n296ww75v07 6 55 k. k. PROPN n296ww75v07 6 56 bousfield bousfield PROPN n296ww75v07 6 57 et et PROPN n296ww75v07 6 58 al al PROPN n296ww75v07 6 59 . . PROPN n296ww75v07 6 60 and and CCONJ n296ww75v07 6 61 the the DET n296ww75v07 6 62 dyer dyer NOUN n296ww75v07 6 63 - - PUNCT n296ww75v07 6 64 lashof lashof ADJ n296ww75v07 6 65 - - PUNCT n296ww75v07 6 66 lie lie NOUN n296ww75v07 6 67 power power NOUN n296ww75v07 6 68 operations operation NOUN n296ww75v07 6 69 , , PUNCT n296ww75v07 6 70 which which PRON n296ww75v07 6 71 naturally naturally ADV n296ww75v07 6 72 act act VERB n296ww75v07 6 73 on on ADP n296ww75v07 6 74 the the DET n296ww75v07 6 75 homology homology NOUN n296ww75v07 6 76 groups group NOUN n296ww75v07 6 77 of of ADP n296ww75v07 6 78 a a DET n296ww75v07 6 79 spectral spectral ADJ n296ww75v07 6 80 lie lie NOUN n296ww75v07 6 81 algebra algebra NOUN n296ww75v07 6 82 . . PUNCT n296ww75v07 7 1 as as ADP n296ww75v07 7 2 an an DET n296ww75v07 7 3 essential essential ADJ n296ww75v07 7 4 ingredient ingredient NOUN n296ww75v07 7 5 of of ADP n296ww75v07 7 6 our our PRON n296ww75v07 7 7 calculations calculation NOUN n296ww75v07 7 8 , , PUNCT n296ww75v07 7 9 we we PRON n296ww75v07 7 10 establish establish VERB n296ww75v07 7 11 a a DET n296ww75v07 7 12 general general ADJ n296ww75v07 7 13 leibniz leibniz NOUN n296ww75v07 7 14 rule rule NOUN n296ww75v07 7 15 in in ADP n296ww75v07 7 16 functor functor NOUN n296ww75v07 7 17 calculus calculus NOUN n296ww75v07 7 18 associated associate VERB n296ww75v07 7 19 to to ADP n296ww75v07 7 20 the the DET n296ww75v07 7 21 composition composition NOUN n296ww75v07 7 22 of of ADP n296ww75v07 7 23 mapping mapping NOUN n296ww75v07 7 24 spaces space NOUN n296ww75v07 7 25 , , PUNCT n296ww75v07 7 26 which which PRON n296ww75v07 7 27 conceptualizes conceptualize VERB n296ww75v07 7 28 certain certain ADJ n296ww75v07 7 29 formulas formula NOUN n296ww75v07 7 30 of of ADP n296ww75v07 7 31 w. w. PROPN n296ww75v07 7 32 h. h. PROPN n296ww75v07 7 33 lin lin PROPN n296ww75v07 7 34 . . PUNCT n296ww75v07 8 1 also also ADV n296ww75v07 8 2 , , PUNCT n296ww75v07 8 3 as as ADP n296ww75v07 8 4 a a DET n296ww75v07 8 5 byproduct byproduct NOUN n296ww75v07 8 6 , , PUNCT n296ww75v07 8 7 we we PRON n296ww75v07 8 8 identify identify VERB n296ww75v07 8 9 previously previously ADV n296ww75v07 8 10 unknown unknown ADJ n296ww75v07 8 11 adem adem PROPN n296ww75v07 8 12 relations relation NOUN n296ww75v07 8 13 for for ADP n296ww75v07 8 14 the the DET n296ww75v07 8 15 dyer dyer NOUN n296ww75v07 8 16 - - PUNCT n296ww75v07 8 17 lashof lashof ADJ n296ww75v07 8 18 - - PUNCT n296ww75v07 8 19 lie lie NOUN n296ww75v07 8 20 operations operation NOUN n296ww75v07 8 21 in in ADP n296ww75v07 8 22 the the DET n296ww75v07 8 23 odd odd ADJ n296ww75v07 8 24 - - PUNCT n296ww75v07 8 25 primary primary ADJ n296ww75v07 8 26 case case NOUN n296ww75v07 8 27 . . PUNCT