id sid tid token lemma pos pc289g57c3s 1 1 in in ADP pc289g57c3s 1 2 this this DET pc289g57c3s 1 3 dissertation dissertation NOUN pc289g57c3s 1 4 , , PUNCT pc289g57c3s 1 5 we we PRON pc289g57c3s 1 6 study study VERB pc289g57c3s 1 7 several several ADJ pc289g57c3s 1 8 problems problem NOUN pc289g57c3s 1 9 in in ADP pc289g57c3s 1 10 commutative commutative ADJ pc289g57c3s 1 11 algebra algebra NOUN pc289g57c3s 1 12 . . PUNCT pc289g57c3s 2 1 the the DET pc289g57c3s 2 2 first first ADJ pc289g57c3s 2 3 problem problem NOUN pc289g57c3s 2 4 we we PRON pc289g57c3s 2 5 study study VERB pc289g57c3s 2 6 is be AUX pc289g57c3s 2 7 the the DET pc289g57c3s 2 8 regularity regularity NOUN pc289g57c3s 2 9 of of ADP pc289g57c3s 2 10 tor tor X pc289g57c3s 2 11 for for ADP pc289g57c3s 2 12 weakly weakly ADJ pc289g57c3s 2 13 stable stable ADJ pc289g57c3s 2 14 ideals ideal NOUN pc289g57c3s 2 15 . . PUNCT pc289g57c3s 3 1 we we PRON pc289g57c3s 3 2 prove prove VERB pc289g57c3s 3 3 that that SCONJ pc289g57c3s 3 4 if if SCONJ pc289g57c3s 3 5 i i PRON pc289g57c3s 3 6 and and CCONJ pc289g57c3s 3 7 j j NOUN pc289g57c3s 3 8 are be AUX pc289g57c3s 3 9 weakly weakly ADJ pc289g57c3s 3 10 stable stable ADJ pc289g57c3s 3 11 ideals ideal NOUN pc289g57c3s 3 12 in in ADP pc289g57c3s 3 13 a a DET pc289g57c3s 3 14 polynomial polynomial ADJ pc289g57c3s 3 15 ring ring NOUN pc289g57c3s 3 16 r r NOUN pc289g57c3s 3 17 = = NOUN pc289g57c3s 3 18 k[x_1, k[x_1, SPACE pc289g57c3s 3 19 ... ... PUNCT pc289g57c3s 3 20 ,x_n ,x_n PUNCT pc289g57c3s 3 21 ] ] PUNCT pc289g57c3s 3 22 over over ADP pc289g57c3s 3 23 a a DET pc289g57c3s 3 24 field field NOUN pc289g57c3s 3 25 k k PROPN pc289g57c3s 3 26 , , PUNCT pc289g57c3s 3 27 then then ADV pc289g57c3s 3 28 the the DET pc289g57c3s 3 29 regularity regularity NOUN pc289g57c3s 3 30 of of ADP pc289g57c3s 3 31 tor^r_i(r tor^r_i(r SPACE pc289g57c3s 3 32 / / SYM pc289g57c3s 3 33 i i PROPN pc289g57c3s 3 34 , , PUNCT pc289g57c3s 3 35 r r NOUN pc289g57c3s 3 36 / / SYM pc289g57c3s 3 37 j j NOUN pc289g57c3s 3 38 ) ) PUNCT pc289g57c3s 3 39 is be AUX pc289g57c3s 3 40 bounded bound VERB pc289g57c3s 3 41 by by ADP pc289g57c3s 3 42 reg^r reg^r PROPN pc289g57c3s 3 43 r r PROPN pc289g57c3s 3 44 / / SYM pc289g57c3s 3 45 i i NOUN pc289g57c3s 3 46 + + CCONJ pc289g57c3s 3 47 reg_r reg_r X pc289g57c3s 3 48 r r NOUN pc289g57c3s 3 49 / / SYM pc289g57c3s 3 50 j j X pc289g57c3s 3 51 + + X pc289g57c3s 3 52 i. i. NOUN pc289g57c3s 3 53 we we PRON pc289g57c3s 3 54 also also ADV pc289g57c3s 3 55 give give VERB pc289g57c3s 3 56 a a DET pc289g57c3s 3 57 bound bind VERB pc289g57c3s 3 58 for for ADP pc289g57c3s 3 59 the the DET pc289g57c3s 3 60 regularity regularity NOUN pc289g57c3s 3 61 of of ADP pc289g57c3s 3 62 ext^i_r(r ext^i_r(r NOUN pc289g57c3s 3 63 / / SYM pc289g57c3s 3 64 i i PROPN pc289g57c3s 3 65 , , PUNCT pc289g57c3s 3 66 r r NOUN pc289g57c3s 3 67 ) ) PUNCT pc289g57c3s 3 68 for for ADP pc289g57c3s 3 69 i i PRON pc289g57c3s 3 70 a a DET pc289g57c3s 3 71 weakly weakly ADJ pc289g57c3s 3 72 stable stable ADJ pc289g57c3s 3 73 ideal ideal NOUN pc289g57c3s 3 74 . . PUNCT pc289g57c3s 4 1 for for ADP pc289g57c3s 4 2 the the DET pc289g57c3s 4 3 second second ADJ pc289g57c3s 4 4 problem problem NOUN pc289g57c3s 4 5 , , PUNCT pc289g57c3s 4 6 we we PRON pc289g57c3s 4 7 define define VERB pc289g57c3s 4 8 an an DET pc289g57c3s 4 9 operation operation NOUN pc289g57c3s 4 10 on on ADP pc289g57c3s 4 11 monomial monomial ADJ pc289g57c3s 4 12 ideals ideal NOUN pc289g57c3s 4 13 known know VERB pc289g57c3s 4 14 as as ADP pc289g57c3s 4 15 the the DET pc289g57c3s 4 16 lcm lcm NOUN pc289g57c3s 4 17 - - PUNCT pc289g57c3s 4 18 dual dual ADJ pc289g57c3s 4 19 . . PUNCT pc289g57c3s 5 1 we we PRON pc289g57c3s 5 2 study study VERB pc289g57c3s 5 3 the the DET pc289g57c3s 5 4 properties property NOUN pc289g57c3s 5 5 of of ADP pc289g57c3s 5 6 the the DET pc289g57c3s 5 7 lcm lcm NOUN pc289g57c3s 5 8 - - NOUN pc289g57c3s 5 9 dual dual ADJ pc289g57c3s 5 10 for for ADP pc289g57c3s 5 11 several several ADJ pc289g57c3s 5 12 classes class NOUN pc289g57c3s 5 13 of of ADP pc289g57c3s 5 14 monomial monomial ADJ pc289g57c3s 5 15 ideals ideal NOUN pc289g57c3s 5 16 . . PUNCT pc289g57c3s 6 1 the the DET pc289g57c3s 6 2 first first ADJ pc289g57c3s 6 3 class class NOUN pc289g57c3s 6 4 of of ADP pc289g57c3s 6 5 ideals ideal NOUN pc289g57c3s 6 6 that that PRON pc289g57c3s 6 7 arises arise VERB pc289g57c3s 6 8 from from ADP pc289g57c3s 6 9 graph graph NOUN pc289g57c3s 6 10 theory theory NOUN pc289g57c3s 6 11 are be AUX pc289g57c3s 6 12 ferrers ferrer NOUN pc289g57c3s 6 13 ideals ideal NOUN pc289g57c3s 6 14 , , PUNCT pc289g57c3s 6 15 which which PRON pc289g57c3s 6 16 are be AUX pc289g57c3s 6 17 edge edge NOUN pc289g57c3s 6 18 ideals ideal NOUN pc289g57c3s 6 19 of of ADP pc289g57c3s 6 20 a a DET pc289g57c3s 6 21 ferrers ferrer NOUN pc289g57c3s 6 22 graph graph NOUN pc289g57c3s 6 23 . . PUNCT pc289g57c3s 7 1 we we PRON pc289g57c3s 7 2 show show VERB pc289g57c3s 7 3 that that SCONJ pc289g57c3s 7 4 the the DET pc289g57c3s 7 5 lcm lcm NOUN pc289g57c3s 7 6 - - NOUN pc289g57c3s 7 7 dual dual NOUN pc289g57c3s 7 8 of of ADP pc289g57c3s 7 9 a a DET pc289g57c3s 7 10 ferrers ferrer NOUN pc289g57c3s 7 11 ideal ideal ADJ pc289g57c3s 7 12 is be AUX pc289g57c3s 7 13 the the DET pc289g57c3s 7 14 alexander alexander NOUN pc289g57c3s 7 15 dual dual NOUN pc289g57c3s 7 16 of of ADP pc289g57c3s 7 17 the the DET pc289g57c3s 7 18 edge edge NOUN pc289g57c3s 7 19 ideal ideal NOUN pc289g57c3s 7 20 of of ADP pc289g57c3s 7 21 the the DET pc289g57c3s 7 22 complement complement NOUN pc289g57c3s 7 23 of of ADP pc289g57c3s 7 24 the the DET pc289g57c3s 7 25 ferrers ferrer NOUN pc289g57c3s 7 26 graph graph NOUN pc289g57c3s 7 27 . . PUNCT pc289g57c3s 8 1 the the DET pc289g57c3s 8 2 second second ADJ pc289g57c3s 8 3 class class NOUN pc289g57c3s 8 4 of of ADP pc289g57c3s 8 5 ideals ideal NOUN pc289g57c3s 8 6 we we PRON pc289g57c3s 8 7 consider consider VERB pc289g57c3s 8 8 are be AUX pc289g57c3s 8 9 specializations specialization NOUN pc289g57c3s 8 10 of of ADP pc289g57c3s 8 11 ferrers ferrer NOUN pc289g57c3s 8 12 ideals ideal NOUN pc289g57c3s 8 13 , , PUNCT pc289g57c3s 8 14 strongly strongly ADV pc289g57c3s 8 15 stable stable ADJ pc289g57c3s 8 16 ideals ideal NOUN pc289g57c3s 8 17 of of ADP pc289g57c3s 8 18 degree degree NOUN pc289g57c3s 8 19 two two NUM pc289g57c3s 8 20 . . PUNCT pc289g57c3s 9 1 we we PRON pc289g57c3s 9 2 find find VERB pc289g57c3s 9 3 a a DET pc289g57c3s 9 4 cellular cellular ADJ pc289g57c3s 9 5 complex complex NOUN pc289g57c3s 9 6 which which PRON pc289g57c3s 9 7 supports support VERB pc289g57c3s 9 8 the the DET pc289g57c3s 9 9 minimal minimal ADJ pc289g57c3s 9 10 free free ADJ pc289g57c3s 9 11 resolution resolution NOUN pc289g57c3s 9 12 for for ADP pc289g57c3s 9 13 the the DET pc289g57c3s 9 14 lcm lcm NOUN pc289g57c3s 9 15 - - NOUN pc289g57c3s 9 16 duals dual NOUN pc289g57c3s 9 17 of of ADP pc289g57c3s 9 18 these these DET pc289g57c3s 9 19 strongly strongly ADV pc289g57c3s 9 20 stable stable ADJ pc289g57c3s 9 21 ideals ideal NOUN pc289g57c3s 9 22 . . PUNCT pc289g57c3s 10 1 we we PRON pc289g57c3s 10 2 describe describe VERB pc289g57c3s 10 3 minimal minimal ADJ pc289g57c3s 10 4 free free ADJ pc289g57c3s 10 5 resolutions resolution NOUN pc289g57c3s 10 6 of of ADP pc289g57c3s 10 7 lcm lcm NOUN pc289g57c3s 10 8 - - NOUN pc289g57c3s 10 9 duals dual NOUN pc289g57c3s 10 10 of of ADP pc289g57c3s 10 11 strongly strongly ADV pc289g57c3s 10 12 stable stable ADJ pc289g57c3s 10 13 ideals ideal NOUN pc289g57c3s 10 14 generated generate VERB pc289g57c3s 10 15 in in ADP pc289g57c3s 10 16 degree degree NOUN pc289g57c3s 10 17 two two NUM pc289g57c3s 10 18 . . PUNCT pc289g57c3s 11 1 we we PRON pc289g57c3s 11 2 describe describe VERB pc289g57c3s 11 3 the the DET pc289g57c3s 11 4 special special ADJ pc289g57c3s 11 5 fiber fiber NOUN pc289g57c3s 11 6 ring ring NOUN pc289g57c3s 11 7 in in ADP pc289g57c3s 11 8 this this DET pc289g57c3s 11 9 case case NOUN pc289g57c3s 11 10 . . PUNCT pc289g57c3s 12 1 using use VERB pc289g57c3s 12 2 the the DET pc289g57c3s 12 3 same same ADJ pc289g57c3s 12 4 technique technique NOUN pc289g57c3s 12 5 , , PUNCT pc289g57c3s 12 6 we we PRON pc289g57c3s 12 7 consider consider VERB pc289g57c3s 12 8 a a DET pc289g57c3s 12 9 larger large ADJ pc289g57c3s 12 10 class class NOUN pc289g57c3s 12 11 of of ADP pc289g57c3s 12 12 ideals ideal NOUN pc289g57c3s 12 13 generated generate VERB pc289g57c3s 12 14 in in ADP pc289g57c3s 12 15 degree degree NOUN pc289g57c3s 12 16 two two NUM pc289g57c3s 12 17 , , PUNCT pc289g57c3s 12 18 and and CCONJ pc289g57c3s 12 19 find find VERB pc289g57c3s 12 20 their their PRON pc289g57c3s 12 21 minimal minimal ADJ pc289g57c3s 12 22 free free ADJ pc289g57c3s 12 23 resolutions resolution NOUN pc289g57c3s 12 24 . . PUNCT pc289g57c3s 13 1 we we PRON pc289g57c3s 13 2 also also ADV pc289g57c3s 13 3 show show VERB pc289g57c3s 13 4 that that SCONJ pc289g57c3s 13 5 when when SCONJ pc289g57c3s 13 6 the the DET pc289g57c3s 13 7 height height NOUN pc289g57c3s 13 8 of of ADP pc289g57c3s 13 9 a a DET pc289g57c3s 13 10 monomial monomial ADJ pc289g57c3s 13 11 ideal ideal NOUN pc289g57c3s 13 12 i i PRON pc289g57c3s 13 13 is be AUX pc289g57c3s 13 14 at at ADP pc289g57c3s 13 15 least least ADJ pc289g57c3s 13 16 2 2 NUM pc289g57c3s 13 17 , , PUNCT pc289g57c3s 13 18 the the DET pc289g57c3s 13 19 special special ADJ pc289g57c3s 13 20 fiber fiber NOUN pc289g57c3s 13 21 ring ring NOUN pc289g57c3s 13 22 of of ADP pc289g57c3s 13 23 i i PRON pc289g57c3s 13 24 is be AUX pc289g57c3s 13 25 isomorphic isomorphic ADJ pc289g57c3s 13 26 to to ADP pc289g57c3s 13 27 the the DET pc289g57c3s 13 28 special special ADJ pc289g57c3s 13 29 fiber fiber NOUN pc289g57c3s 13 30 ring ring NOUN pc289g57c3s 13 31 of of ADP pc289g57c3s 13 32 the the DET pc289g57c3s 13 33 lcm lcm NOUN pc289g57c3s 13 34 - - NOUN pc289g57c3s 13 35 dual dual NOUN pc289g57c3s 13 36 of of ADP pc289g57c3s 13 37 i. i. PROPN pc289g57c3s 13 38 we we PRON pc289g57c3s 13 39 use use VERB pc289g57c3s 13 40 this this PRON pc289g57c3s 13 41 to to PART pc289g57c3s 13 42 describe describe VERB pc289g57c3s 13 43 the the DET pc289g57c3s 13 44 special special ADJ pc289g57c3s 13 45 fiber fiber NOUN pc289g57c3s 13 46 rings ring NOUN pc289g57c3s 13 47 of of ADP pc289g57c3s 13 48 lcm lcm NOUN pc289g57c3s 13 49 - - NOUN pc289g57c3s 13 50 duals dual NOUN pc289g57c3s 13 51 of of ADP pc289g57c3s 13 52 strongly strongly ADV pc289g57c3s 13 53 stable stable ADJ pc289g57c3s 13 54 ideals ideal NOUN pc289g57c3s 13 55 in in ADP pc289g57c3s 13 56 degree degree NOUN pc289g57c3s 13 57 two two NUM pc289g57c3s 13 58 . . PUNCT pc289g57c3s 14 1 the the DET pc289g57c3s 14 2 third third ADJ pc289g57c3s 14 3 problem problem NOUN pc289g57c3s 14 4 we we PRON pc289g57c3s 14 5 consider consider VERB pc289g57c3s 14 6 deals deal NOUN pc289g57c3s 14 7 with with ADP pc289g57c3s 14 8 hilbert hilbert NOUN pc289g57c3s 14 9 functions function NOUN pc289g57c3s 14 10 of of ADP pc289g57c3s 14 11 cohen cohen NOUN pc289g57c3s 14 12 - - PUNCT pc289g57c3s 14 13 macaulay macaulay NOUN pc289g57c3s 14 14 local local ADJ pc289g57c3s 14 15 rings ring NOUN pc289g57c3s 14 16 . . PUNCT pc289g57c3s 15 1 given give VERB pc289g57c3s 15 2 a a DET pc289g57c3s 15 3 cohen cohen ADJ pc289g57c3s 15 4 - - PUNCT pc289g57c3s 15 5 macaulay macaulay NOUN pc289g57c3s 15 6 local local ADJ pc289g57c3s 15 7 ring ring NOUN pc289g57c3s 15 8 ( ( PUNCT pc289g57c3s 15 9 r r NOUN pc289g57c3s 15 10 , , PUNCT pc289g57c3s 15 11 m m NOUN pc289g57c3s 15 12 ) ) PUNCT pc289g57c3s 15 13 of of ADP pc289g57c3s 15 14 dimension dimension NOUN pc289g57c3s 15 15 d d PROPN pc289g57c3s 15 16 & & CCONJ pc289g57c3s 15 17 gt gt PROPN pc289g57c3s 15 18 ; ; PUNCT pc289g57c3s 15 19 0 0 NUM pc289g57c3s 15 20 , , PUNCT pc289g57c3s 15 21 we we PRON pc289g57c3s 15 22 study study VERB pc289g57c3s 15 23 the the DET pc289g57c3s 15 24 depth depth NOUN pc289g57c3s 15 25 of of ADP pc289g57c3s 15 26 the the DET pc289g57c3s 15 27 associated associate VERB pc289g57c3s 15 28 graded grade VERB pc289g57c3s 15 29 ring ring NOUN pc289g57c3s 15 30 of of ADP pc289g57c3s 15 31 r r NOUN pc289g57c3s 15 32 with with ADP pc289g57c3s 15 33 respect respect NOUN pc289g57c3s 15 34 to to ADP pc289g57c3s 15 35 the the DET pc289g57c3s 15 36 maximal maximal ADJ pc289g57c3s 15 37 ideal ideal NOUN pc289g57c3s 15 38 m. m. NOUN pc289g57c3s 15 39 we we PRON pc289g57c3s 15 40 analyze analyze VERB pc289g57c3s 15 41 the the DET pc289g57c3s 15 42 case case NOUN pc289g57c3s 15 43 where where SCONJ pc289g57c3s 15 44 the the DET pc289g57c3s 15 45 multiplicity multiplicity NOUN pc289g57c3s 15 46 e e NOUN pc289g57c3s 15 47 is be AUX pc289g57c3s 15 48 h+3 h+3 SPACE pc289g57c3s 15 49 , , PUNCT pc289g57c3s 15 50 where where SCONJ pc289g57c3s 15 51 h h NOUN pc289g57c3s 15 52 is be AUX pc289g57c3s 15 53 the the DET pc289g57c3s 15 54 embedding embed VERB pc289g57c3s 15 55 codimension codimension NOUN pc289g57c3s 15 56 . . PUNCT pc289g57c3s 16 1 the the DET pc289g57c3s 16 2 tool tool NOUN pc289g57c3s 16 3 we we PRON pc289g57c3s 16 4 use use VERB pc289g57c3s 16 5 is be AUX pc289g57c3s 16 6 the the DET pc289g57c3s 16 7 bigraded bigrade VERB pc289g57c3s 16 8 sally sally ADJ pc289g57c3s 16 9 module module NOUN pc289g57c3s 16 10 s s NOUN pc289g57c3s 16 11 of of ADP pc289g57c3s 16 12 m m PROPN pc289g57c3s 16 13 with with ADP pc289g57c3s 16 14 respect respect NOUN pc289g57c3s 16 15 to to ADP pc289g57c3s 16 16 j j PROPN pc289g57c3s 16 17 , , PUNCT pc289g57c3s 16 18 where where SCONJ pc289g57c3s 16 19 j j PROPN pc289g57c3s 16 20 is be AUX pc289g57c3s 16 21 a a DET pc289g57c3s 16 22 minimal minimal ADJ pc289g57c3s 16 23 reduction reduction NOUN pc289g57c3s 16 24 of of ADP pc289g57c3s 16 25 m. m. NOUN