id sid tid token lemma pos qn59q239w65 1 1 the the DET qn59q239w65 1 2 classification classification NOUN qn59q239w65 1 3 by by ADP qn59q239w65 1 4 palais palais PROPN qn59q239w65 1 5 of of ADP qn59q239w65 1 6 g g PROPN qn59q239w65 1 7 - - PUNCT qn59q239w65 1 8 spaces space NOUN qn59q239w65 1 9 , , PUNCT qn59q239w65 1 10 topological topological ADJ qn59q239w65 1 11 spaces space NOUN qn59q239w65 1 12 acted act VERB qn59q239w65 1 13 on on ADP qn59q239w65 1 14 by by ADP qn59q239w65 1 15 homeomorphisms homeomorphism NOUN qn59q239w65 1 16 by by ADP qn59q239w65 1 17 a a DET qn59q239w65 1 18 compact compact ADJ qn59q239w65 1 19 lie lie NOUN qn59q239w65 1 20 group group NOUN qn59q239w65 1 21 g g PROPN qn59q239w65 1 22 , , PUNCT qn59q239w65 1 23 is be AUX qn59q239w65 1 24 refined refine VERB qn59q239w65 1 25 . . PUNCT qn59q239w65 2 1 under under ADP qn59q239w65 2 2 mild mild ADJ qn59q239w65 2 3 topological topological ADJ qn59q239w65 2 4 hypotheses hypothesis NOUN qn59q239w65 2 5 , , PUNCT qn59q239w65 2 6 it it PRON qn59q239w65 2 7 is be AUX qn59q239w65 2 8 shown show VERB qn59q239w65 2 9 that that SCONJ qn59q239w65 2 10 when when SCONJ qn59q239w65 2 11 a a DET qn59q239w65 2 12 sequence sequence NOUN qn59q239w65 2 13 of of ADP qn59q239w65 2 14 orbit orbit NOUN qn59q239w65 2 15 spaces space NOUN qn59q239w65 2 16 is be AUX qn59q239w65 2 17 ' ' PUNCT qn59q239w65 2 18 close close ADJ qn59q239w65 2 19 ' ' PUNCT qn59q239w65 2 20 to to ADP qn59q239w65 2 21 a a DET qn59q239w65 2 22 limit limit NOUN qn59q239w65 2 23 orbit orbit NOUN qn59q239w65 2 24 space space NOUN qn59q239w65 2 25 , , PUNCT qn59q239w65 2 26 in in ADP qn59q239w65 2 27 some some DET qn59q239w65 2 28 suitable suitable ADJ qn59q239w65 2 29 sense sense NOUN qn59q239w65 2 30 , , PUNCT qn59q239w65 2 31 within within ADP qn59q239w65 2 32 a a DET qn59q239w65 2 33 larger large ADJ qn59q239w65 2 34 ambient ambient ADJ qn59q239w65 2 35 orbit orbit NOUN qn59q239w65 2 36 space space NOUN qn59q239w65 2 37 , , PUNCT qn59q239w65 2 38 the the DET qn59q239w65 2 39 g g NOUN qn59q239w65 2 40 - - PUNCT qn59q239w65 2 41 spaces space NOUN qn59q239w65 2 42 in in ADP qn59q239w65 2 43 the the DET qn59q239w65 2 44 tail tail NOUN qn59q239w65 2 45 of of ADP qn59q239w65 2 46 the the DET qn59q239w65 2 47 sequence sequence NOUN qn59q239w65 2 48 are be AUX qn59q239w65 2 49 strongly strongly ADV qn59q239w65 2 50 equivalent equivalent ADJ qn59q239w65 2 51 to to ADP qn59q239w65 2 52 the the DET qn59q239w65 2 53 limit limit NOUN qn59q239w65 2 54 g g NOUN qn59q239w65 2 55 - - PUNCT qn59q239w65 2 56 space space NOUN qn59q239w65 2 57 . . PUNCT qn59q239w65 3 1 three three NUM qn59q239w65 3 2 applications application NOUN qn59q239w65 3 3 of of ADP qn59q239w65 3 4 the the DET qn59q239w65 3 5 theory theory NOUN qn59q239w65 3 6 to to ADP qn59q239w65 3 7 alexandrov alexandrov PROPN qn59q239w65 3 8 and and CCONJ qn59q239w65 3 9 riemannian riemannian ADJ qn59q239w65 3 10 geometry geometry NOUN qn59q239w65 3 11 are be AUX qn59q239w65 3 12 then then ADV qn59q239w65 3 13 given give VERB qn59q239w65 3 14 . . PUNCT qn59q239w65 4 1 the the DET qn59q239w65 4 2 covering covering NOUN qn59q239w65 4 3 homotopy homotopy NOUN qn59q239w65 4 4 theorem theorem NOUN qn59q239w65 4 5 , , PUNCT qn59q239w65 4 6 which which PRON qn59q239w65 4 7 is be AUX qn59q239w65 4 8 key key ADJ qn59q239w65 4 9 to to ADP qn59q239w65 4 10 the the DET qn59q239w65 4 11 classification classification NOUN qn59q239w65 4 12 theory theory NOUN qn59q239w65 4 13 , , PUNCT qn59q239w65 4 14 is be AUX qn59q239w65 4 15 used use VERB qn59q239w65 4 16 to to PART qn59q239w65 4 17 prove prove VERB qn59q239w65 4 18 a a DET qn59q239w65 4 19 version version NOUN qn59q239w65 4 20 of of ADP qn59q239w65 4 21 the the DET qn59q239w65 4 22 slice slice NOUN qn59q239w65 4 23 theorem theorem NOUN qn59q239w65 4 24 for for ADP qn59q239w65 4 25 alexandrov alexandrov PROPN qn59q239w65 4 26 spaces space NOUN qn59q239w65 4 27 , , PUNCT qn59q239w65 4 28 showing show VERB qn59q239w65 4 29 that that SCONJ qn59q239w65 4 30 the the DET qn59q239w65 4 31 local local ADJ qn59q239w65 4 32 action action NOUN qn59q239w65 4 33 of of ADP qn59q239w65 4 34 a a DET qn59q239w65 4 35 group group NOUN qn59q239w65 4 36 of of ADP qn59q239w65 4 37 isometries isometry NOUN qn59q239w65 4 38 is be AUX qn59q239w65 4 39 topologically topologically ADV qn59q239w65 4 40 determined determine VERB qn59q239w65 4 41 by by ADP qn59q239w65 4 42 its its PRON qn59q239w65 4 43 infinitesimal infinitesimal ADJ qn59q239w65 4 44 action action NOUN qn59q239w65 4 45 . . PUNCT qn59q239w65 5 1 the the DET qn59q239w65 5 2 refinement refinement NOUN qn59q239w65 5 3 of of ADP qn59q239w65 5 4 the the DET qn59q239w65 5 5 classification classification NOUN qn59q239w65 5 6 theory theory NOUN qn59q239w65 5 7 is be AUX qn59q239w65 5 8 used use VERB qn59q239w65 5 9 to to PART qn59q239w65 5 10 prove prove VERB qn59q239w65 5 11 an an DET qn59q239w65 5 12 equivariant equivariant ADJ qn59q239w65 5 13 version version NOUN qn59q239w65 5 14 of of ADP qn59q239w65 5 15 perelman perelman NOUN qn59q239w65 5 16 's 's PART qn59q239w65 5 17 stability stability NOUN qn59q239w65 5 18 theorem theorem NOUN qn59q239w65 5 19 for for ADP qn59q239w65 5 20 equicontinous equicontinous ADJ qn59q239w65 5 21 sequences sequence NOUN qn59q239w65 5 22 of of ADP qn59q239w65 5 23 isometric isometric ADJ qn59q239w65 5 24 actions action NOUN qn59q239w65 5 25 by by ADP qn59q239w65 5 26 a a DET qn59q239w65 5 27 fixed fix VERB qn59q239w65 5 28 compact compact ADJ qn59q239w65 5 29 lie lie NOUN qn59q239w65 5 30 group group NOUN qn59q239w65 5 31 . . PUNCT qn59q239w65 6 1 the the DET qn59q239w65 6 2 class class NOUN qn59q239w65 6 3 of of ADP qn59q239w65 6 4 riemannian riemannian ADJ qn59q239w65 6 5 orbifolds orbifold NOUN qn59q239w65 6 6 of of ADP qn59q239w65 6 7 a a DET qn59q239w65 6 8 given give VERB qn59q239w65 6 9 dimension dimension NOUN qn59q239w65 6 10 defined define VERB qn59q239w65 6 11 by by ADP qn59q239w65 6 12 a a DET qn59q239w65 6 13 lower lower ADV qn59q239w65 6 14 bound bind VERB qn59q239w65 6 15 on on ADP qn59q239w65 6 16 the the DET qn59q239w65 6 17 sectional sectional ADJ qn59q239w65 6 18 curvature curvature NOUN qn59q239w65 6 19 and and CCONJ qn59q239w65 6 20 the the DET qn59q239w65 6 21 volume volume NOUN qn59q239w65 6 22 and and CCONJ qn59q239w65 6 23 an an DET qn59q239w65 6 24 upper upper ADJ qn59q239w65 6 25 bound bind VERB qn59q239w65 6 26 on on ADP qn59q239w65 6 27 the the DET qn59q239w65 6 28 diameter diameter NOUN qn59q239w65 6 29 is be AUX qn59q239w65 6 30 shown show VERB qn59q239w65 6 31 to to PART qn59q239w65 6 32 be be AUX qn59q239w65 6 33 finite finite ADJ qn59q239w65 6 34 up up ADP qn59q239w65 6 35 to to ADP qn59q239w65 6 36 orbifold orbifold ADJ qn59q239w65 6 37 homeomorphism homeomorphism NOUN qn59q239w65 6 38 . . PUNCT qn59q239w65 7 1 furthermore furthermore ADV qn59q239w65 7 2 , , PUNCT qn59q239w65 7 3 any any DET qn59q239w65 7 4 class class NOUN qn59q239w65 7 5 of of ADP qn59q239w65 7 6 isospectral isospectral ADJ qn59q239w65 7 7 riemannian riemannian ADJ qn59q239w65 7 8 orbifolds orbifold NOUN qn59q239w65 7 9 with with ADP qn59q239w65 7 10 a a DET qn59q239w65 7 11 lower lower ADV qn59q239w65 7 12 bound bind VERB qn59q239w65 7 13 on on ADP qn59q239w65 7 14 the the DET qn59q239w65 7 15 sectional sectional ADJ qn59q239w65 7 16 curvature curvature NOUN qn59q239w65 7 17 is be AUX qn59q239w65 7 18 also also ADV qn59q239w65 7 19 shown show VERB qn59q239w65 7 20 to to PART qn59q239w65 7 21 be be AUX qn59q239w65 7 22 finite finite ADJ qn59q239w65 7 23 up up ADP qn59q239w65 7 24 to to ADP qn59q239w65 7 25 orbifold orbifold ADJ qn59q239w65 7 26 homeomorphism homeomorphism NOUN qn59q239w65 7 27 . . PUNCT