id sid tid token lemma pos st74cn73540 1 1 in in ADP st74cn73540 1 2 this this DET st74cn73540 1 3 thesis thesis NOUN st74cn73540 1 4 we we PRON st74cn73540 1 5 explore explore VERB st74cn73540 1 6 three three NUM st74cn73540 1 7 projects project NOUN st74cn73540 1 8 , , PUNCT st74cn73540 1 9 all all PRON st74cn73540 1 10 related relate VERB st74cn73540 1 11 to to ADP st74cn73540 1 12 the the DET st74cn73540 1 13 special special ADJ st74cn73540 1 14 fiber fiber NOUN st74cn73540 1 15 ring ring NOUN st74cn73540 1 16 somehow somehow ADV st74cn73540 1 17 . . PUNCT st74cn73540 2 1 consider consider VERB st74cn73540 2 2 a a DET st74cn73540 2 3 rational rational ADJ st74cn73540 2 4 map map NOUN st74cn73540 2 5 from from ADP st74cn73540 2 6 projective projective ADJ st74cn73540 2 7 d-1 d-1 NOUN st74cn73540 2 8 space space NOUN st74cn73540 2 9 to to PART st74cn73540 2 10 projective projective VERB st74cn73540 2 11 m-1 m-1 NUM st74cn73540 2 12 space space NOUN st74cn73540 2 13 given give VERB st74cn73540 2 14 by by ADP st74cn73540 2 15 m m NOUN st74cn73540 2 16 many many ADJ st74cn73540 2 17 degree degree NOUN st74cn73540 2 18 δ δ PROPN st74cn73540 2 19 forms form NOUN st74cn73540 2 20 , , PUNCT st74cn73540 2 21 g_1, g_1, X st74cn73540 2 22 ... ... PROPN st74cn73540 2 23 ,g_m ,g_m PUNCT st74cn73540 2 24 , , PUNCT st74cn73540 2 25 in in ADP st74cn73540 2 26 d d NOUN st74cn73540 2 27 variables variable NOUN st74cn73540 2 28 . . PUNCT st74cn73540 3 1 let let VERB st74cn73540 3 2 i i PRON st74cn73540 3 3 be be AUX st74cn73540 3 4 the the DET st74cn73540 3 5 ideal ideal NOUN st74cn73540 3 6 generated generate VERB st74cn73540 3 7 by by ADP st74cn73540 3 8 these these DET st74cn73540 3 9 forms form NOUN st74cn73540 3 10 . . PUNCT st74cn73540 4 1 the the DET st74cn73540 4 2 special special ADJ st74cn73540 4 3 fiber fiber NOUN st74cn73540 4 4 ring ring NOUN st74cn73540 4 5 is be AUX st74cn73540 4 6 the the DET st74cn73540 4 7 ring ring NOUN st74cn73540 4 8 corresponding correspond VERB st74cn73540 4 9 to to ADP st74cn73540 4 10 the the DET st74cn73540 4 11 closure closure NOUN st74cn73540 4 12 of of ADP st74cn73540 4 13 the the DET st74cn73540 4 14 image image NOUN st74cn73540 4 15 of of ADP st74cn73540 4 16 this this DET st74cn73540 4 17 map map NOUN st74cn73540 4 18 , , PUNCT st74cn73540 4 19 denoted denote VERB st74cn73540 4 20 f(i).in f(i).in ADV st74cn73540 4 21 the the DET st74cn73540 4 22 first first ADJ st74cn73540 4 23 project project NOUN st74cn73540 4 24 we we PRON st74cn73540 4 25 restrict restrict VERB st74cn73540 4 26 to to ADP st74cn73540 4 27 the the DET st74cn73540 4 28 case case NOUN st74cn73540 4 29 d d X st74cn73540 4 30 = = SYM st74cn73540 4 31 2 2 NUM st74cn73540 4 32 and and CCONJ st74cn73540 4 33 m m VERB st74cn73540 4 34 = = X st74cn73540 4 35 3 3 NUM st74cn73540 4 36 . . PUNCT st74cn73540 5 1 in in ADP st74cn73540 5 2 this this DET st74cn73540 5 3 case case NOUN st74cn73540 5 4 proj(f(i proj(f(i PROPN st74cn73540 5 5 ) ) PUNCT st74cn73540 5 6 ) ) PUNCT st74cn73540 5 7 is be AUX st74cn73540 5 8 a a DET st74cn73540 5 9 rational rational ADJ st74cn73540 5 10 plane plane NOUN st74cn73540 5 11 curve curve NOUN st74cn73540 5 12 , , PUNCT st74cn73540 5 13 and and CCONJ st74cn73540 5 14 we we PRON st74cn73540 5 15 analyze analyze VERB st74cn73540 5 16 its its PRON st74cn73540 5 17 singularities singularity NOUN st74cn73540 5 18 using use VERB st74cn73540 5 19 the the DET st74cn73540 5 20 syzygy syzygy PROPN st74cn73540 5 21 matrix matrix NOUN st74cn73540 5 22 of of ADP st74cn73540 5 23 i. i. PROPN st74cn73540 5 24 we we PRON st74cn73540 5 25 are be AUX st74cn73540 5 26 specifically specifically ADV st74cn73540 5 27 interested interested ADJ st74cn73540 5 28 in in ADP st74cn73540 5 29 cusps cusps NOUN st74cn73540 5 30 . . PUNCT st74cn73540 6 1 motivated motivate VERB st74cn73540 6 2 by by ADP st74cn73540 6 3 this this PRON st74cn73540 6 4 and and CCONJ st74cn73540 6 5 the the DET st74cn73540 6 6 classical classical ADJ st74cn73540 6 7 plücker plücker NOUN st74cn73540 6 8 relations relation NOUN st74cn73540 6 9 , , PUNCT st74cn73540 6 10 we we PRON st74cn73540 6 11 exhibit exhibit VERB st74cn73540 6 12 a a DET st74cn73540 6 13 curious curious ADJ st74cn73540 6 14 categorization categorization NOUN st74cn73540 6 15 of of ADP st74cn73540 6 16 the the DET st74cn73540 6 17 dual dual ADJ st74cn73540 6 18 curve curve NOUN st74cn73540 6 19 using use VERB st74cn73540 6 20 the the DET st74cn73540 6 21 syzygy syzygy PROPN st74cn73540 6 22 matrix matrix NOUN st74cn73540 6 23 . . PUNCT st74cn73540 7 1 we we PRON st74cn73540 7 2 then then ADV st74cn73540 7 3 use use VERB st74cn73540 7 4 this this PRON st74cn73540 7 5 to to PART st74cn73540 7 6 give give VERB st74cn73540 7 7 previously previously ADV st74cn73540 7 8 unknown unknown ADJ st74cn73540 7 9 bounds bound NOUN st74cn73540 7 10 on on ADP st74cn73540 7 11 the the DET st74cn73540 7 12 number number NOUN st74cn73540 7 13 of of ADP st74cn73540 7 14 cusps cusps NOUN st74cn73540 7 15 for for ADP st74cn73540 7 16 fixed fix VERB st74cn73540 7 17 splitting splitting NOUN st74cn73540 7 18 types.in types.in NUM st74cn73540 7 19 the the DET st74cn73540 7 20 second second ADJ st74cn73540 7 21 project project NOUN st74cn73540 7 22 we we PRON st74cn73540 7 23 ask ask VERB st74cn73540 7 24 for for ADP st74cn73540 7 25 fixed fix VERB st74cn73540 7 26 d d NOUN st74cn73540 7 27 , , PUNCT st74cn73540 7 28 m m PROPN st74cn73540 7 29 , , PUNCT st74cn73540 7 30 and and CCONJ st74cn73540 7 31 δ δ PROPN st74cn73540 7 32 , , PUNCT st74cn73540 7 33 as as SCONJ st74cn73540 7 34 the the DET st74cn73540 7 35 g_i g_i NOUN st74cn73540 7 36 vary vary VERB st74cn73540 7 37 what what PRON st74cn73540 7 38 is be AUX st74cn73540 7 39 the the DET st74cn73540 7 40 minimal minimal ADJ st74cn73540 7 41 multiplicity multiplicity NOUN st74cn73540 7 42 of of ADP st74cn73540 7 43 f(i f(i PROPN st74cn73540 7 44 ) ) PUNCT st74cn73540 7 45 ? ? PUNCT st74cn73540 8 1 this this DET st74cn73540 8 2 study study NOUN st74cn73540 8 3 leads lead VERB st74cn73540 8 4 us we PRON st74cn73540 8 5 to to PART st74cn73540 8 6 investigate investigate VERB st74cn73540 8 7 the the DET st74cn73540 8 8 case case NOUN st74cn73540 8 9 when when SCONJ st74cn73540 8 10 i i PRON st74cn73540 8 11 is be AUX st74cn73540 8 12 a a DET st74cn73540 8 13 strongly strongly ADV st74cn73540 8 14 stable stable ADJ st74cn73540 8 15 ideal ideal NOUN st74cn73540 8 16 . . PUNCT st74cn73540 9 1 we we PRON st74cn73540 9 2 give give VERB st74cn73540 9 3 classification classification NOUN st74cn73540 9 4 results result NOUN st74cn73540 9 5 for for ADP st74cn73540 9 6 minimal minimal ADJ st74cn73540 9 7 multiplicity multiplicity NOUN st74cn73540 9 8 strongly strongly ADV st74cn73540 9 9 stable stable ADJ st74cn73540 9 10 elements element NOUN st74cn73540 9 11 and and CCONJ st74cn73540 9 12 also also ADV st74cn73540 9 13 study study VERB st74cn73540 9 14 when when SCONJ st74cn73540 9 15 an an DET st74cn73540 9 16 equigenerated equigenerate VERB st74cn73540 9 17 2 2 NUM st74cn73540 9 18 - - PUNCT st74cn73540 9 19 borel borel PROPN st74cn73540 9 20 ideal ideal NOUN st74cn73540 9 21 is be AUX st74cn73540 9 22 cohen-macaulay.finally cohen-macaulay.finally ADV st74cn73540 9 23 , , PUNCT st74cn73540 9 24 in in ADP st74cn73540 9 25 the the DET st74cn73540 9 26 third third ADJ st74cn73540 9 27 project project NOUN st74cn73540 9 28 , , PUNCT st74cn73540 9 29 we we PRON st74cn73540 9 30 investigate investigate VERB st74cn73540 9 31 the the DET st74cn73540 9 32 case case NOUN st74cn73540 9 33 where where SCONJ st74cn73540 9 34 i i PRON st74cn73540 9 35 defines define VERB st74cn73540 9 36 a a DET st74cn73540 9 37 gorenstein gorenstein ADJ st74cn73540 9 38 - - PUNCT st74cn73540 9 39 linear linear NOUN st74cn73540 9 40 ideal ideal NOUN st74cn73540 9 41 for for ADP st74cn73540 9 42 d d PROPN st74cn73540 9 43 ≥ ≥ PROPN st74cn73540 9 44 4 4 NUM st74cn73540 9 45 . . PUNCT st74cn73540 10 1 in in ADP st74cn73540 10 2 this this DET st74cn73540 10 3 case case NOUN st74cn73540 10 4 , , PUNCT st74cn73540 10 5 we we PRON st74cn73540 10 6 are be AUX st74cn73540 10 7 most most ADV st74cn73540 10 8 interested interested ADJ st74cn73540 10 9 in in ADP st74cn73540 10 10 the the DET st74cn73540 10 11 defining define VERB st74cn73540 10 12 equations equation NOUN st74cn73540 10 13 of of ADP st74cn73540 10 14 the the DET st74cn73540 10 15 special special ADJ st74cn73540 10 16 fiber fiber NOUN st74cn73540 10 17 ring ring NOUN st74cn73540 10 18 . . PUNCT st74cn73540 11 1 we we PRON st74cn73540 11 2 describe describe VERB st74cn73540 11 3 the the DET st74cn73540 11 4 symmetric symmetric ADJ st74cn73540 11 5 gorenstein gorenstein ADJ st74cn73540 11 6 - - PUNCT st74cn73540 11 7 linear linear NOUN st74cn73540 11 8 ideals ideal NOUN st74cn73540 11 9 when when SCONJ st74cn73540 11 10 δ δ NOUN st74cn73540 11 11 = = SYM st74cn73540 11 12 3 3 NUM st74cn73540 11 13 and and CCONJ st74cn73540 11 14 use use VERB st74cn73540 11 15 sagbi sagbi PROPN st74cn73540 11 16 basis basis NOUN st74cn73540 11 17 techniques technique NOUN st74cn73540 11 18 to to PART st74cn73540 11 19 exhibit exhibit VERB st74cn73540 11 20 some some DET st74cn73540 11 21 evidence evidence NOUN st74cn73540 11 22 for for ADP st74cn73540 11 23 a a DET st74cn73540 11 24 conjecture conjecture NOUN st74cn73540 11 25 . . PUNCT