id sid tid token lemma pos wh246q20m97 1 1 biometric biometric ADJ wh246q20m97 1 2 verification verification NOUN wh246q20m97 1 3 systems system NOUN wh246q20m97 1 4 employing employ VERB wh246q20m97 1 5 images image NOUN wh246q20m97 1 6 of of ADP wh246q20m97 1 7 the the DET wh246q20m97 1 8 iris iris NOUN wh246q20m97 1 9 are be AUX wh246q20m97 1 10 claimed claim VERB wh246q20m97 1 11 to to PART wh246q20m97 1 12 be be AUX wh246q20m97 1 13 extremely extremely ADV wh246q20m97 1 14 accurate accurate ADJ wh246q20m97 1 15 , , PUNCT wh246q20m97 1 16 yielding yield VERB wh246q20m97 1 17 no no DET wh246q20m97 1 18 false false ADJ wh246q20m97 1 19 accepts accept NOUN wh246q20m97 1 20 at at ADP wh246q20m97 1 21 any any DET wh246q20m97 1 22 reasonable reasonable ADJ wh246q20m97 1 23 false false ADJ wh246q20m97 1 24 reject reject ADJ wh246q20m97 1 25 rate rate NOUN wh246q20m97 1 26 . . PUNCT wh246q20m97 2 1 however however ADV wh246q20m97 2 2 , , PUNCT wh246q20m97 2 3 there there PRON wh246q20m97 2 4 are be VERB wh246q20m97 2 5 few few ADJ wh246q20m97 2 6 if if SCONJ wh246q20m97 2 7 any any DET wh246q20m97 2 8 large large ADJ wh246q20m97 2 9 scale scale NOUN wh246q20m97 2 10 experimental experimental ADJ wh246q20m97 2 11 evaluations evaluation NOUN wh246q20m97 2 12 on on ADP wh246q20m97 2 13 public public ADJ wh246q20m97 2 14 iris iris NOUN wh246q20m97 2 15 datasets dataset NOUN wh246q20m97 2 16 reported report VERB wh246q20m97 2 17 in in ADP wh246q20m97 2 18 the the DET wh246q20m97 2 19 literature literature NOUN wh246q20m97 2 20 . . PUNCT wh246q20m97 3 1 we we PRON wh246q20m97 3 2 have have AUX wh246q20m97 3 3 collected collect VERB wh246q20m97 3 4 an an DET wh246q20m97 3 5 iris iris PROPN wh246q20m97 3 6 image image NOUN wh246q20m97 3 7 dataset dataset NOUN wh246q20m97 3 8 of of ADP wh246q20m97 3 9 over over ADP wh246q20m97 3 10 25,000 25,000 NUM wh246q20m97 3 11 iris iris NOUN wh246q20m97 3 12 images image NOUN wh246q20m97 3 13 from from ADP wh246q20m97 3 14 over over ADP wh246q20m97 3 15 300 300 NUM wh246q20m97 3 16 persons person NOUN wh246q20m97 3 17 ( ( PUNCT wh246q20m97 3 18 over over ADP wh246q20m97 3 19 600 600 NUM wh246q20m97 3 20 irises iris NOUN wh246q20m97 3 21 ) ) PUNCT wh246q20m97 3 22 . . PUNCT wh246q20m97 4 1 when when SCONJ wh246q20m97 4 2 collecting collect VERB wh246q20m97 4 3 the the DET wh246q20m97 4 4 dataset dataset NOUN wh246q20m97 4 5 , , PUNCT wh246q20m97 4 6 we we PRON wh246q20m97 4 7 intentionally intentionally ADV wh246q20m97 4 8 allowed allow VERB wh246q20m97 4 9 a a DET wh246q20m97 4 10 broader broad ADJ wh246q20m97 4 11 image image NOUN wh246q20m97 4 12 quality quality NOUN wh246q20m97 4 13 range range NOUN wh246q20m97 4 14 than than ADP wh246q20m97 4 15 that that PRON wh246q20m97 4 16 allowed allow VERB wh246q20m97 4 17 by by ADP wh246q20m97 4 18 default default NOUN wh246q20m97 4 19 in in ADP wh246q20m97 4 20 current current ADJ wh246q20m97 4 21 commercial commercial ADJ wh246q20m97 4 22 iris iris PROPN wh246q20m97 4 23 recognition recognition PROPN wh246q20m97 4 24 systems system NOUN wh246q20m97 4 25 . . PUNCT wh246q20m97 5 1 the the DET wh246q20m97 5 2 iris iris PROPN wh246q20m97 5 3 images image NOUN wh246q20m97 5 4 used use VERB wh246q20m97 5 5 in in ADP wh246q20m97 5 6 our our PRON wh246q20m97 5 7 experiments experiment NOUN wh246q20m97 5 8 have have AUX wh246q20m97 5 9 been be AUX wh246q20m97 5 10 , , PUNCT wh246q20m97 5 11 or or CCONJ wh246q20m97 5 12 will will AUX wh246q20m97 5 13 be be AUX wh246q20m97 5 14 , , PUNCT wh246q20m97 5 15 released release VERB wh246q20m97 5 16 as as ADP wh246q20m97 5 17 part part NOUN wh246q20m97 5 18 of of ADP wh246q20m97 5 19 the the DET wh246q20m97 5 20 iris iris PROPN wh246q20m97 5 21 challenge challenge NOUN wh246q20m97 5 22 evaluation evaluation NOUN wh246q20m97 5 23 ( ( PUNCT wh246q20m97 5 24 ice ice NOUN wh246q20m97 5 25 ) ) PUNCT wh246q20m97 5 26 . . PUNCT wh246q20m97 6 1 we we PRON wh246q20m97 6 2 reimplemented reimplemente VERB wh246q20m97 6 3 in in ADP wh246q20m97 6 4 c c PROPN wh246q20m97 6 5 an an DET wh246q20m97 6 6 open open ADJ wh246q20m97 6 7 source source NOUN wh246q20m97 6 8 iris iris PROPN wh246q20m97 6 9 recognition recognition NOUN wh246q20m97 6 10 system system NOUN wh246q20m97 6 11 , , PUNCT wh246q20m97 6 12 which which PRON wh246q20m97 6 13 was be AUX wh246q20m97 6 14 originally originally ADV wh246q20m97 6 15 implemented implement VERB wh246q20m97 6 16 in in ADP wh246q20m97 6 17 matlab matlab NOUN wh246q20m97 6 18 by by ADP wh246q20m97 6 19 libor libor PROPN wh246q20m97 6 20 masek masek PROPN wh246q20m97 6 21 . . PUNCT wh246q20m97 7 1 the the DET wh246q20m97 7 2 ice ice NOUN wh246q20m97 7 3 baseline baseline NOUN wh246q20m97 7 4 is be AUX wh246q20m97 7 5 a a DET wh246q20m97 7 6 c++ c++ NOUN wh246q20m97 7 7 translation translation NOUN wh246q20m97 7 8 of of ADP wh246q20m97 7 9 our our PRON wh246q20m97 7 10 c c NOUN wh246q20m97 7 11 re re NOUN wh246q20m97 7 12 - - NOUN wh246q20m97 7 13 implementation implementation NOUN wh246q20m97 7 14 with with ADP wh246q20m97 7 15 modifications modification NOUN wh246q20m97 7 16 for for ADP wh246q20m97 7 17 optimization optimization NOUN wh246q20m97 7 18 in in ADP wh246q20m97 7 19 speed speed NOUN wh246q20m97 7 20 and and CCONJ wh246q20m97 7 21 memory memory NOUN wh246q20m97 7 22 usage usage NOUN wh246q20m97 7 23 . . PUNCT wh246q20m97 8 1 we we PRON wh246q20m97 8 2 evaluated evaluate VERB wh246q20m97 8 3 the the DET wh246q20m97 8 4 effects effect NOUN wh246q20m97 8 5 of of ADP wh246q20m97 8 6 iris iris PROPN wh246q20m97 8 7 image image NOUN wh246q20m97 8 8 quality quality NOUN wh246q20m97 8 9 by by ADP wh246q20m97 8 10 using use VERB wh246q20m97 8 11 the the DET wh246q20m97 8 12 ice ice NOUN wh246q20m97 8 13 baseline baseline NOUN wh246q20m97 8 14 system system NOUN wh246q20m97 8 15 on on ADP wh246q20m97 8 16 our our PRON wh246q20m97 8 17 iris iris PROPN wh246q20m97 8 18 dataset dataset NOUN wh246q20m97 8 19 . . PUNCT wh246q20m97 9 1 we we PRON wh246q20m97 9 2 have have AUX wh246q20m97 9 3 implemented implement VERB wh246q20m97 9 4 an an DET wh246q20m97 9 5 improved improved ADJ wh246q20m97 9 6 iris iris NOUN wh246q20m97 9 7 segmentation segmentation NOUN wh246q20m97 9 8 and and CCONJ wh246q20m97 9 9 eyelid eyelid ADJ wh246q20m97 9 10 detection detection NOUN wh246q20m97 9 11 stage stage NOUN wh246q20m97 9 12 compared compare VERB wh246q20m97 9 13 to to ADP wh246q20m97 9 14 the the DET wh246q20m97 9 15 ice ice NOUN wh246q20m97 9 16 baseline baseline NOUN wh246q20m97 9 17 code code NOUN wh246q20m97 9 18 , , PUNCT wh246q20m97 9 19 and and CCONJ wh246q20m97 9 20 experimentally experimentally ADV wh246q20m97 9 21 verified verify VERB wh246q20m97 9 22 an an DET wh246q20m97 9 23 improvement improvement NOUN wh246q20m97 9 24 in in ADP wh246q20m97 9 25 both both DET wh246q20m97 9 26 the the DET wh246q20m97 9 27 verification verification NOUN wh246q20m97 9 28 and and CCONJ wh246q20m97 9 29 identification identification NOUN wh246q20m97 9 30 contexts context NOUN wh246q20m97 9 31 . . PUNCT wh246q20m97 10 1 replacing replace VERB wh246q20m97 10 2 the the DET wh246q20m97 10 3 ice ice NOUN wh246q20m97 10 4 baseline baseline NOUN wh246q20m97 10 5 segmentation segmentation NOUN wh246q20m97 10 6 with with ADP wh246q20m97 10 7 our our PRON wh246q20m97 10 8 improved improved ADJ wh246q20m97 10 9 segmentation segmentation NOUN wh246q20m97 10 10 algorithm algorithm NOUN wh246q20m97 10 11 , , PUNCT wh246q20m97 10 12 and and CCONJ wh246q20m97 10 13 keeping keep VERB wh246q20m97 10 14 other other ADJ wh246q20m97 10 15 modules module NOUN wh246q20m97 10 16 of of ADP wh246q20m97 10 17 the the DET wh246q20m97 10 18 ice ice NOUN wh246q20m97 10 19 baseline baseline NOUN wh246q20m97 10 20 the the DET wh246q20m97 10 21 same same ADJ wh246q20m97 10 22 , , PUNCT wh246q20m97 10 23 leads lead VERB wh246q20m97 10 24 to to ADP wh246q20m97 10 25 an an DET wh246q20m97 10 26 increase increase NOUN wh246q20m97 10 27 of of ADP wh246q20m97 10 28 over over ADP wh246q20m97 10 29 6 6 NUM wh246q20m97 10 30 % % NOUN wh246q20m97 10 31 in in ADP wh246q20m97 10 32 the the DET wh246q20m97 10 33 rank rank NOUN wh246q20m97 10 34 - - PUNCT wh246q20m97 10 35 one one NUM wh246q20m97 10 36 recognition recognition NOUN wh246q20m97 10 37 rate rate NOUN wh246q20m97 10 38 and and CCONJ wh246q20m97 10 39 a a DET wh246q20m97 10 40 decrease decrease NOUN wh246q20m97 10 41 of of ADP wh246q20m97 10 42 over over ADP wh246q20m97 10 43 4 4 NUM wh246q20m97 10 44 % % NOUN wh246q20m97 10 45 in in ADP wh246q20m97 10 46 the the DET wh246q20m97 10 47 equal equal ADJ wh246q20m97 10 48 error error NOUN wh246q20m97 10 49 rate rate NOUN wh246q20m97 10 50 . . PUNCT wh246q20m97 11 1 we we PRON wh246q20m97 11 2 utilized utilize VERB wh246q20m97 11 3 an an DET wh246q20m97 11 4 active active ADJ wh246q20m97 11 5 contour contour NOUN wh246q20m97 11 6 model model NOUN wh246q20m97 11 7 to to PART wh246q20m97 11 8 refine refine VERB wh246q20m97 11 9 the the DET wh246q20m97 11 10 noise noise NOUN wh246q20m97 11 11 detection detection NOUN wh246q20m97 11 12 results result NOUN wh246q20m97 11 13 and and CCONJ wh246q20m97 11 14 optimized optimize VERB wh246q20m97 11 15 the the DET wh246q20m97 11 16 matching matching NOUN wh246q20m97 11 17 stage stage NOUN wh246q20m97 11 18 to to PART wh246q20m97 11 19 compensate compensate VERB wh246q20m97 11 20 for for ADP wh246q20m97 11 21 the the DET wh246q20m97 11 22 possible possible ADJ wh246q20m97 11 23 inaccuracy inaccuracy NOUN wh246q20m97 11 24 in in ADP wh246q20m97 11 25 iris iris NOUN wh246q20m97 11 26 segmentation segmentation NOUN wh246q20m97 11 27 and and CCONJ wh246q20m97 11 28 noise noise NOUN wh246q20m97 11 29 detection detection NOUN wh246q20m97 11 30 , , PUNCT wh246q20m97 11 31 which which PRON wh246q20m97 11 32 leads lead VERB wh246q20m97 11 33 to to ADP wh246q20m97 11 34 another another DET wh246q20m97 11 35 0.95 0.95 NUM wh246q20m97 11 36 % % NOUN wh246q20m97 11 37 increase increase NOUN wh246q20m97 11 38 in in ADP wh246q20m97 11 39 the the DET wh246q20m97 11 40 rank rank NOUN wh246q20m97 11 41 one one NUM wh246q20m97 11 42 recognition recognition NOUN wh246q20m97 11 43 rate rate NOUN wh246q20m97 11 44 and and CCONJ wh246q20m97 11 45 0.85 0.85 NUM wh246q20m97 11 46 % % NOUN wh246q20m97 11 47 decrease decrease NOUN wh246q20m97 11 48 in in ADP wh246q20m97 11 49 the the DET wh246q20m97 11 50 equal equal ADJ wh246q20m97 11 51 error error NOUN wh246q20m97 11 52 rate rate NOUN wh246q20m97 11 53 . . PUNCT wh246q20m97 12 1 this this DET wh246q20m97 12 2 research research NOUN wh246q20m97 12 3 demonstrates demonstrate VERB wh246q20m97 12 4 that that SCONJ wh246q20m97 12 5 a a DET wh246q20m97 12 6 more more ADV wh246q20m97 12 7 accurate accurate ADJ wh246q20m97 12 8 iris iris NOUN wh246q20m97 12 9 segmentation segmentation NOUN wh246q20m97 12 10 helps help VERB wh246q20m97 12 11 to to PART wh246q20m97 12 12 improve improve VERB wh246q20m97 12 13 the the DET wh246q20m97 12 14 overall overall ADJ wh246q20m97 12 15 system system NOUN wh246q20m97 12 16 performance performance NOUN wh246q20m97 12 17 , , PUNCT wh246q20m97 12 18 and and CCONJ wh246q20m97 12 19 that that SCONJ wh246q20m97 12 20 the the DET wh246q20m97 12 21 inaccuracy inaccuracy NOUN wh246q20m97 12 22 of of ADP wh246q20m97 12 23 iris iris PROPN wh246q20m97 12 24 segmentation segmentation NOUN wh246q20m97 12 25 and and CCONJ wh246q20m97 12 26 noise noise NOUN wh246q20m97 12 27 detection detection NOUN wh246q20m97 12 28 could could AUX wh246q20m97 12 29 be be AUX wh246q20m97 12 30 partly partly ADV wh246q20m97 12 31 compensated compensate VERB wh246q20m97 12 32 for for ADP wh246q20m97 12 33 with with ADP wh246q20m97 12 34 optimizations optimization NOUN wh246q20m97 12 35 in in ADP wh246q20m97 12 36 the the DET wh246q20m97 12 37 matching matching NOUN wh246q20m97 12 38 stage stage NOUN wh246q20m97 12 39 . . PUNCT