id sid tid token lemma pos coo.31924059551022 1 1 90 90 NUM coo.31924059551022 1 2 production production NUM coo.31924059551022 1 3 note note NOUN coo.31924059551022 1 4 cornell cornell PROPN coo.31924059551022 1 5 university university PROPN coo.31924059551022 1 6 library library NOUN coo.31924059551022 1 7 produced produce VERB coo.31924059551022 1 8 this this DET coo.31924059551022 1 9 volume volume NOUN coo.31924059551022 1 10 to to PART coo.31924059551022 1 11 replace replace VERB coo.31924059551022 1 12 the the DET coo.31924059551022 1 13 irreparably irreparably ADV coo.31924059551022 1 14 deteriorated deteriorate VERB coo.31924059551022 1 15 original original ADJ coo.31924059551022 1 16 . . PUNCT coo.31924059551022 2 1 it it PRON coo.31924059551022 2 2 was be AUX coo.31924059551022 2 3 scanned scan VERB coo.31924059551022 2 4 using use VERB coo.31924059551022 2 5 xerox xerox PROPN coo.31924059551022 2 6 software software NOUN coo.31924059551022 2 7 and and CCONJ coo.31924059551022 2 8 equipment equipment NOUN coo.31924059551022 2 9 at at ADP coo.31924059551022 2 10 600 600 NUM coo.31924059551022 2 11 dots dot NOUN coo.31924059551022 2 12 per per ADP coo.31924059551022 2 13 inch inch NOUN coo.31924059551022 2 14 resolution resolution NOUN coo.31924059551022 2 15 and and CCONJ coo.31924059551022 2 16 compressed compress VERB coo.31924059551022 2 17 prior prior ADV coo.31924059551022 2 18 to to ADP coo.31924059551022 2 19 storage storage NOUN coo.31924059551022 2 20 using use VERB coo.31924059551022 2 21 ccitt ccitt ADJ coo.31924059551022 2 22 group group NOUN coo.31924059551022 2 23 4 4 NUM coo.31924059551022 2 24 compression compression NOUN coo.31924059551022 2 25 . . PUNCT coo.31924059551022 3 1 the the DET coo.31924059551022 3 2 digital digital ADJ coo.31924059551022 3 3 data datum NOUN coo.31924059551022 3 4 were be AUX coo.31924059551022 3 5 used use VERB coo.31924059551022 3 6 to to PART coo.31924059551022 3 7 create create VERB coo.31924059551022 3 8 cornell cornell PROPN coo.31924059551022 3 9 's 's PART coo.31924059551022 3 10 replacement replacement NOUN coo.31924059551022 3 11 volume volume NOUN coo.31924059551022 3 12 on on ADP coo.31924059551022 3 13 paper paper NOUN coo.31924059551022 3 14 that that PRON coo.31924059551022 3 15 meets meet VERB coo.31924059551022 3 16 the the DET coo.31924059551022 3 17 ansi ansi PROPN coo.31924059551022 3 18 standard standard PROPN coo.31924059551022 3 19 z39.48 z39.48 PROPN coo.31924059551022 3 20 - - PROPN coo.31924059551022 3 21 1984 1984 NUM coo.31924059551022 3 22 . . PUNCT coo.31924059551022 4 1 the the DET coo.31924059551022 4 2 production production NOUN coo.31924059551022 4 3 of of ADP coo.31924059551022 4 4 this this DET coo.31924059551022 4 5 volume volume NOUN coo.31924059551022 4 6 was be AUX coo.31924059551022 4 7 supported support VERB coo.31924059551022 4 8 in in ADP coo.31924059551022 4 9 part part NOUN coo.31924059551022 4 10 by by ADP coo.31924059551022 4 11 the the DET coo.31924059551022 4 12 commission commission NOUN coo.31924059551022 4 13 on on ADP coo.31924059551022 4 14 preservation preservation NOUN coo.31924059551022 4 15 and and CCONJ coo.31924059551022 4 16 access access NOUN coo.31924059551022 4 17 and and CCONJ coo.31924059551022 4 18 the the DET coo.31924059551022 4 19 xerox xerox PROPN coo.31924059551022 4 20 corporation corporation NOUN coo.31924059551022 4 21 . . PUNCT coo.31924059551022 5 1 1990 1990 NUM coo.31924059551022 5 2 . . PUNCT coo.31924059551022 6 1   PUNCT coo.31924059551022 6 2 (cornell (cornell X coo.31924059551022 7 1 unirmitg unirmitg ADJ coo.31924059551022 7 2 jibaro jibaro PROPN coo.31924059551022 7 3 bought buy VERB coo.31924059551022 7 4 with with ADP coo.31924059551022 7 5 the the DET coo.31924059551022 7 6 income income NOUN coo.31924059551022 7 7 from from ADP coo.31924059551022 7 8 the the DET coo.31924059551022 7 9 sage sage NOUN coo.31924059551022 7 10 endowment endowment NOUN coo.31924059551022 7 11 fund fund NOUN coo.31924059551022 7 12 the the DET coo.31924059551022 7 13 gift gift NOUN coo.31924059551022 7 14 of of ADP coo.31924059551022 7 15 3hcttrg 3hcttrg NUM coo.31924059551022 7 16 ïîl ïîl NOUN coo.31924059551022 7 17 . . PUNCT coo.31924059551022 8 1 sage sage NOUN coo.31924059551022 8 2 1891 1891 NUM coo.31924059551022 8 3 k.&xojjl k.&xojjl PROPN coo.31924059551022 8 4 alalia alalia NOUN coo.31924059551022 8 5   X coo.31924059551022 9 1 a a ADJ coo.31924059551022 9 2 presentation presentation NOUN coo.31924059551022 9 3 of of ADP coo.31924059551022 9 4 the the DET coo.31924059551022 9 5 theory theory NOUN coo.31924059551022 9 6 of of ADP coo.31924059551022 9 7 hermite hermite PROPN coo.31924059551022 9 8 ’s ’s PART coo.31924059551022 9 9 form form NOUN coo.31924059551022 9 10 of of ADP coo.31924059551022 9 11 lamé lamé NOUN coo.31924059551022 9 12 ’s ’s PART coo.31924059551022 9 13 equation equation NOUN coo.31924059551022 9 14 with with ADP coo.31924059551022 9 15 a a DET coo.31924059551022 9 16 determination determination NOUN coo.31924059551022 9 17 of of ADP coo.31924059551022 9 18 the the DET coo.31924059551022 9 19 explicit explicit ADJ coo.31924059551022 9 20 forms form NOUN coo.31924059551022 9 21 in in ADP coo.31924059551022 9 22 terms term NOUN coo.31924059551022 9 23 of of ADP coo.31924059551022 9 24 the the DET coo.31924059551022 9 25 function function NOUN coo.31924059551022 9 26 for for ADP coo.31924059551022 9 27 the the DET coo.31924059551022 9 28 case case NOUN coo.31924059551022 9 29 n n CCONJ coo.31924059551022 9 30 equal equal ADJ coo.31924059551022 9 31 to to ADP coo.31924059551022 9 32 three three NUM coo.31924059551022 9 33 . . PUNCT coo.31924059551022 10 1 candidates candidate NOUN coo.31924059551022 10 2 thesis thesis NOUN coo.31924059551022 10 3 for for ADP coo.31924059551022 10 4 the the DET coo.31924059551022 10 5 degree degree NOUN coo.31924059551022 10 6 of of ADP coo.31924059551022 10 7 doctor doctor NOUN coo.31924059551022 10 8 of of ADP coo.31924059551022 10 9 philosophy philosophy NOUN coo.31924059551022 10 10 presented present VERB coo.31924059551022 10 11 by by ADP coo.31924059551022 10 12 j. j. PROPN coo.31924059551022 10 13 brace brace PROPN coo.31924059551022 10 14 chittenden chittenden PROPN coo.31924059551022 10 15 , , PUNCT coo.31924059551022 10 16 a.m. a.m. PROPN coo.31924059551022 10 17 , , PUNCT coo.31924059551022 10 18 parker parker PROPN coo.31924059551022 10 19 fellow fellow PROPN coo.31924059551022 10 20 op op PROPN coo.31924059551022 10 21 harvard harvard PROPN coo.31924059551022 10 22 univ univ PROPN coo.31924059551022 10 23 . . PROPN coo.31924059551022 10 24 , , PUNCT coo.31924059551022 10 25 instructor instructor NOUN coo.31924059551022 10 26 in in ADP coo.31924059551022 10 27 princeton princeton PROPN coo.31924059551022 10 28 college college PROPN coo.31924059551022 10 29 . . PUNCT coo.31924059551022 11 1 to to ADP coo.31924059551022 11 2 the the DET coo.31924059551022 11 3 philosophical philosophical ADJ coo.31924059551022 11 4 faculty faculty NOUN coo.31924059551022 11 5 of of ADP coo.31924059551022 11 6 the the DET coo.31924059551022 11 7 albertus albertus PROPN coo.31924059551022 11 8 universitat universitat PROPN coo.31924059551022 11 9 of of ADP coo.31924059551022 11 10 königrsberg königrsberg PROPN coo.31924059551022 11 11 in in ADP coo.31924059551022 11 12 pr pr PROPN coo.31924059551022 11 13 . . PROPN coo.31924059551022 11 14 printed print VERB coo.31924059551022 11 15 by by ADP coo.31924059551022 11 16 b. b. PROPN coo.31924059551022 11 17 g. g. PROPN coo.31924059551022 11 18 teubner teubner PROPN coo.31924059551022 11 19 , , PUNCT coo.31924059551022 11 20 leipzig leipzig PROPN coo.31924059551022 11 21 . . PUNCT coo.31924059551022 12 1 1893 1893 NUM coo.31924059551022 12 2 . . PUNCT coo.31924059551022 13 1 ψ ψ X coo.31924059551022 13 2   X coo.31924059551022 14 1 dedicated dedicate VERB coo.31924059551022 14 2 to to ADP coo.31924059551022 14 3 the the DET coo.31924059551022 14 4 first first ADJ coo.31924059551022 14 5 of of ADP coo.31924059551022 14 6 my my PRON coo.31924059551022 14 7 many many ADJ coo.31924059551022 14 8 teachers teacher NOUN coo.31924059551022 14 9 , , PUNCT coo.31924059551022 14 10 my my PRON coo.31924059551022 14 11 mother mother NOUN coo.31924059551022 14 12 who who PRON coo.31924059551022 14 13 more more ADJ coo.31924059551022 14 14 than than ADP coo.31924059551022 14 15 all all DET coo.31924059551022 14 16 others other NOUN coo.31924059551022 14 17 has have AUX coo.31924059551022 14 18 rendered render VERB coo.31924059551022 14 19 the the DET coo.31924059551022 14 20 realizations realization NOUN coo.31924059551022 14 21 of of ADP coo.31924059551022 14 22 my my PRON coo.31924059551022 14 23 student student NOUN coo.31924059551022 14 24 life life NOUN coo.31924059551022 14 25 possible possible ADJ coo.31924059551022 14 26 , , PUNCT coo.31924059551022 14 27 for for ADP coo.31924059551022 14 28 whom whom PRON coo.31924059551022 14 29 no no DET coo.31924059551022 14 30 sacrifice sacrifice NOUN coo.31924059551022 14 31 has have AUX coo.31924059551022 14 32 been be AUX coo.31924059551022 14 33 to to PART coo.31924059551022 14 34 great great ADJ coo.31924059551022 14 35 in in ADP coo.31924059551022 14 36 furthering further VERB coo.31924059551022 14 37 the the DET coo.31924059551022 14 38 interests interest NOUN coo.31924059551022 14 39 of of ADP coo.31924059551022 14 40 her her PRON coo.31924059551022 14 41 sons son NOUN coo.31924059551022 14 42 . . PUNCT coo.31924059551022 15 1   PUNCT coo.31924059551022 16 1 introduction introduction PROPN coo.31924059551022 16 2 . . PUNCT coo.31924059551022 17 1 the the DET coo.31924059551022 17 2 following follow VERB coo.31924059551022 17 3 thesis thesis NOUN coo.31924059551022 17 4 is be AUX coo.31924059551022 17 5 practically practically ADV coo.31924059551022 17 6 a a DET coo.31924059551022 17 7 presentation presentation NOUN coo.31924059551022 17 8 of of ADP coo.31924059551022 17 9 the the DET coo.31924059551022 17 10 general general ADJ coo.31924059551022 17 11 analytical analytical ADJ coo.31924059551022 17 12 theory theory NOUN coo.31924059551022 17 13 of of ADP coo.31924059551022 17 14 lame lame PROPN coo.31924059551022 17 15 's 's PART coo.31924059551022 17 16 deferential deferential ADJ coo.31924059551022 17 17 equation equation NOUN coo.31924059551022 17 18 of of ADP coo.31924059551022 17 19 the the DET coo.31924059551022 17 20 form form NOUN coo.31924059551022 17 21 known know VERB coo.31924059551022 17 22 as as ADP coo.31924059551022 17 23 hermite hermite PROPN coo.31924059551022 17 24 ’s ’s PART coo.31924059551022 17 25 . . PUNCT coo.31924059551022 18 1 the the DET coo.31924059551022 18 2 underlying underlie VERB coo.31924059551022 18 3 principles principle NOUN coo.31924059551022 18 4 and and CCONJ coo.31924059551022 18 5 also also ADV coo.31924059551022 18 6 the the DET coo.31924059551022 18 7 general general ADJ coo.31924059551022 18 8 solutions solution NOUN coo.31924059551022 18 9 are be AUX coo.31924059551022 18 10 therefore therefore ADV coo.31924059551022 18 11 necessarily necessarily ADV coo.31924059551022 18 12 based base VERB coo.31924059551022 18 13 upon upon SCONJ coo.31924059551022 18 14 the the DET coo.31924059551022 18 15 original original ADJ coo.31924059551022 18 16 work work NOUN coo.31924059551022 18 17 of of ADP coo.31924059551022 18 18 m. m. NOUN coo.31924059551022 18 19 hermite hermite PROPN coo.31924059551022 18 20 , , PUNCT coo.31924059551022 18 21 published publish VERB coo.31924059551022 18 22 for for ADP coo.31924059551022 18 23 the the DET coo.31924059551022 18 24 first first ADJ coo.31924059551022 18 25 time time NOUN coo.31924059551022 18 26 in in ADP coo.31924059551022 18 27 paris paris PROPN coo.31924059551022 18 28 in in ADP coo.31924059551022 18 29 1877 1877 NUM coo.31924059551022 18 30 in in ADP coo.31924059551022 18 31 the the DET coo.31924059551022 18 32 comptes compte NOUN coo.31924059551022 18 33 rendus rendu VERB coo.31924059551022 18 34 under under ADP coo.31924059551022 18 35 the the DET coo.31924059551022 18 36 title title NOUN coo.31924059551022 18 37 “ " PUNCT coo.31924059551022 18 38 sur sur X coo.31924059551022 18 39 quelques quelques X coo.31924059551022 18 40 applications application NOUN coo.31924059551022 18 41 des des X coo.31924059551022 18 42 fonctions fonction NOUN coo.31924059551022 18 43 elliptiques elliptique NOUN coo.31924059551022 18 44 ” " PUNCT coo.31924059551022 18 45 and and CCONJ coo.31924059551022 18 46 on on ADP coo.31924059551022 18 47 a a DET coo.31924059551022 18 48 later later ADJ coo.31924059551022 18 49 treatment treatment NOUN coo.31924059551022 18 50 of of ADP coo.31924059551022 18 51 the the DET coo.31924059551022 18 52 subject subject NOUN coo.31924059551022 18 53 by by ADP coo.31924059551022 18 54 halphen halphen ADV coo.31924059551022 18 55 in in ADP coo.31924059551022 18 56 his his PRON coo.31924059551022 18 57 work work NOUN coo.31924059551022 18 58 entitled entitle VERB coo.31924059551022 18 59 “ " PUNCT coo.31924059551022 18 60 traité traité NOUN coo.31924059551022 18 61 des des PROPN coo.31924059551022 18 62 fonctions fonction NOUN coo.31924059551022 18 63 elliptiques elliptiques PROPN coo.31924059551022 18 64 et et NOUN coo.31924059551022 18 65 leur leur X coo.31924059551022 18 66 applications application NOUN coo.31924059551022 18 67 ” " PUNCT coo.31924059551022 18 68 , , PUNCT coo.31924059551022 18 69 vol vol NOUN coo.31924059551022 18 70 . . PROPN coo.31924059551022 18 71 ii ii PROPN coo.31924059551022 18 72 , , PUNCT coo.31924059551022 18 73 paris paris PROPN coo.31924059551022 18 74 1888 1888 NUM coo.31924059551022 18 75 . . PUNCT coo.31924059551022 19 1 m. m. NOUN coo.31924059551022 19 2 hermite hermite PROPN coo.31924059551022 19 3 has have AUX coo.31924059551022 19 4 employed employ VERB coo.31924059551022 19 5 the the DET coo.31924059551022 19 6 older old ADJ coo.31924059551022 19 7 jacobian jacobian ADJ coo.31924059551022 19 8 functions function NOUN coo.31924059551022 19 9 while while SCONJ coo.31924059551022 19 10 halphen halphen ADV coo.31924059551022 19 11 has have AUX coo.31924059551022 19 12 used use VERB coo.31924059551022 19 13 in in ADP coo.31924059551022 19 14 every every DET coo.31924059551022 19 15 case case NOUN coo.31924059551022 19 16 the the DET coo.31924059551022 19 17 weierstrass weierstrass PROPN coo.31924059551022 19 18 p p PROPN coo.31924059551022 19 19 function function NOUN coo.31924059551022 19 20 , , PUNCT coo.31924059551022 19 21 and and CCONJ coo.31924059551022 19 22 not not PART coo.31924059551022 19 23 only only ADV coo.31924059551022 19 24 the the DET coo.31924059551022 19 25 notation notation NOUN coo.31924059551022 19 26 but but CCONJ coo.31924059551022 19 27 the the DET coo.31924059551022 19 28 ultimate ultimate ADJ coo.31924059551022 19 29 forms form NOUN coo.31924059551022 19 30 as as ADV coo.31924059551022 19 31 well well ADV coo.31924059551022 19 32 as as ADP coo.31924059551022 19 33 the the DET coo.31924059551022 19 34 complex complex ADJ coo.31924059551022 19 35 functions function NOUN coo.31924059551022 19 36 in in ADP coo.31924059551022 19 37 which which PRON coo.31924059551022 19 38 they they PRON coo.31924059551022 19 39 are be AUX coo.31924059551022 19 40 expressed express VERB coo.31924059551022 19 41 are be AUX coo.31924059551022 19 42 in in ADP coo.31924059551022 19 43 the the DET coo.31924059551022 19 44 two two NUM coo.31924059551022 19 45 works work NOUN coo.31924059551022 19 46 intirely intirely ADV coo.31924059551022 19 47 different different ADJ coo.31924059551022 19 48 . . PUNCT coo.31924059551022 20 1 as as ADV coo.31924059551022 20 2 far far ADV coo.31924059551022 20 3 as as SCONJ coo.31924059551022 20 4 i i PRON coo.31924059551022 20 5 know know VERB coo.31924059551022 20 6 , , PUNCT coo.31924059551022 20 7 no no DET coo.31924059551022 20 8 attempt attempt NOUN coo.31924059551022 20 9 has have AUX coo.31924059551022 20 10 before before ADV coo.31924059551022 20 11 been be AUX coo.31924059551022 20 12 made make VERB coo.31924059551022 20 13 to to PART coo.31924059551022 20 14 establish establish VERB coo.31924059551022 20 15 the the DET coo.31924059551022 20 16 absolute absolute ADJ coo.31924059551022 20 17 relations relation NOUN coo.31924059551022 20 18 of of ADP coo.31924059551022 20 19 these these DET coo.31924059551022 20 20 different different ADJ coo.31924059551022 20 21 functions function NOUN coo.31924059551022 20 22 . . PUNCT coo.31924059551022 21 1 in in ADP coo.31924059551022 21 2 attempting attempt VERB coo.31924059551022 21 3 to to PART coo.31924059551022 21 4 do do VERB coo.31924059551022 21 5 this this PRON coo.31924059551022 21 6 , , PUNCT coo.31924059551022 21 7 i i PRON coo.31924059551022 21 8 have have AUX coo.31924059551022 21 9 developed develop VERB coo.31924059551022 21 10 the the DET coo.31924059551022 21 11 intire intire ADJ coo.31924059551022 21 12 theory theory NOUN coo.31924059551022 21 13 in in ADP coo.31924059551022 21 14 a a DET coo.31924059551022 21 15 new new ADJ coo.31924059551022 21 16 presentation presentation NOUN coo.31924059551022 21 17 , , PUNCT coo.31924059551022 21 18 working work VERB coo.31924059551022 21 19 out out ADP coo.31924059551022 21 20 the the DET coo.31924059551022 21 21 results result NOUN coo.31924059551022 21 22 of of ADP coo.31924059551022 21 23 m. m. NOUN coo.31924059551022 21 24 hermite hermite NOUN coo.31924059551022 21 25 in in ADP coo.31924059551022 21 26 terms term NOUN coo.31924059551022 21 27 of of ADP coo.31924059551022 21 28 the the DET coo.31924059551022 21 29 p p NOUN coo.31924059551022 21 30 function function NOUN coo.31924059551022 21 31 , , PUNCT coo.31924059551022 21 32 having have VERB coo.31924059551022 21 33 principly principly ADV coo.31924059551022 21 34 in in ADP coo.31924059551022 21 35 view view NOUN coo.31924059551022 21 36 a a DET coo.31924059551022 21 37 determination determination NOUN coo.31924059551022 21 38 of of ADP coo.31924059551022 21 39 the the DET coo.31924059551022 21 40 explicit explicit ADJ coo.31924059551022 21 41 values value NOUN coo.31924059551022 21 42 of of ADP coo.31924059551022 21 43 all all DET coo.31924059551022 21 44 the the DET coo.31924059551022 21 45 forms form NOUN coo.31924059551022 21 46 for for ADP coo.31924059551022 21 47 the the DET coo.31924059551022 21 48 special special ADJ coo.31924059551022 21 49 case case NOUN coo.31924059551022 21 50 n n ADP coo.31924059551022 21 51 equal equal ADJ coo.31924059551022 21 52 to to ADP coo.31924059551022 21 53 three three NUM coo.31924059551022 21 54 . . PUNCT coo.31924059551022 22 1 i i PRON coo.31924059551022 22 2 may may AUX coo.31924059551022 22 3 add add VERB coo.31924059551022 22 4 that that SCONJ coo.31924059551022 22 5 owing owe VERB coo.31924059551022 22 6 to to ADP coo.31924059551022 22 7 the the DET coo.31924059551022 22 8 exceptional exceptional ADJ coo.31924059551022 22 9 privilege privilege NOUN coo.31924059551022 22 10 granted grant VERB coo.31924059551022 22 11 by by ADP coo.31924059551022 22 12 the the DET coo.31924059551022 22 13 minister minister NOUN coo.31924059551022 22 14 of of ADP coo.31924059551022 22 15 education education NOUN coo.31924059551022 22 16 and and CCONJ coo.31924059551022 22 17 the the DET coo.31924059551022 22 18 philosophical philosophical ADJ coo.31924059551022 22 19 faculty faculty NOUN coo.31924059551022 22 20 of of ADP coo.31924059551022 22 21 the the DET coo.31924059551022 22 22 albertus albertus PROPN coo.31924059551022 22 23 - - PUNCT coo.31924059551022 22 24 universitát universitát PROPN coo.31924059551022 22 25 allowing allow VERB coo.31924059551022 22 26 the the DET coo.31924059551022 22 27 publishing publishing NOUN coo.31924059551022 22 28 of of ADP coo.31924059551022 22 29 this this DET coo.31924059551022 22 30 thesis thesis NOUN coo.31924059551022 22 31 in in ADP coo.31924059551022 22 32 english english PROPN coo.31924059551022 22 33 , , PUNCT coo.31924059551022 22 34 6 6 SPACE coo.31924059551022 22 35 introduction introduction NOUN coo.31924059551022 22 36 . . PUNCT coo.31924059551022 23 1 i i PRON coo.31924059551022 23 2 am be AUX coo.31924059551022 23 3 not not PART coo.31924059551022 23 4 without without ADP coo.31924059551022 23 5 hope hope NOUN coo.31924059551022 23 6 that that SCONJ coo.31924059551022 23 7 this this DET coo.31924059551022 23 8 general general ADJ coo.31924059551022 23 9 presentation presentation NOUN coo.31924059551022 23 10 of of ADP coo.31924059551022 23 11 the the DET coo.31924059551022 23 12 theory theory NOUN coo.31924059551022 23 13 of of ADP coo.31924059551022 23 14 lame lame PROPN coo.31924059551022 23 15 ’s ’s PART coo.31924059551022 23 16 functions function NOUN coo.31924059551022 23 17 may may AUX coo.31924059551022 23 18 prove prove VERB coo.31924059551022 23 19 a a DET coo.31924059551022 23 20 welcome welcome ADJ coo.31924059551022 23 21 addition addition NOUN coo.31924059551022 23 22 to to ADP coo.31924059551022 23 23 the the DET coo.31924059551022 23 24 literature literature NOUN coo.31924059551022 23 25 of of ADP coo.31924059551022 23 26 the the DET coo.31924059551022 23 27 subject subject NOUN coo.31924059551022 23 28 where where SCONJ coo.31924059551022 23 29 in in ADP coo.31924059551022 23 30 english english PROPN coo.31924059551022 23 31 todhunter todhunter PROPN coo.31924059551022 23 32 ’s ’s PART coo.31924059551022 23 33 “ " PUNCT coo.31924059551022 23 34 lame lame PROPN coo.31924059551022 23 35 ’s ’s PART coo.31924059551022 23 36 and and CCONJ coo.31924059551022 23 37 bessel bessel PROPN coo.31924059551022 23 38 ’s ’s PART coo.31924059551022 23 39 functions function NOUN coo.31924059551022 23 40 ” " PUNCT coo.31924059551022 23 41 is be AUX coo.31924059551022 23 42 the the DET coo.31924059551022 23 43 only only ADJ coo.31924059551022 23 44 representative representative NOUN coo.31924059551022 23 45 . . PUNCT coo.31924059551022 24 1 finally finally ADV coo.31924059551022 24 2 i i PRON coo.31924059551022 24 3 must must AUX coo.31924059551022 24 4 acknowledge acknowledge VERB coo.31924059551022 24 5 my my PRON coo.31924059551022 24 6 indebtedness indebtedness NOUN coo.31924059551022 24 7 to to ADP coo.31924059551022 24 8 prof prof PROPN coo.31924059551022 24 9 . . PUNCT coo.31924059551022 25 1 lindemann lindemann PROPN coo.31924059551022 25 2 not not PART coo.31924059551022 25 3 only only ADV coo.31924059551022 25 4 for for ADP coo.31924059551022 25 5 the the DET coo.31924059551022 25 6 direction direction NOUN coo.31924059551022 25 7 of of ADP coo.31924059551022 25 8 a a DET coo.31924059551022 25 9 most most ADV coo.31924059551022 25 10 valuable valuable ADJ coo.31924059551022 25 11 course course NOUN coo.31924059551022 25 12 of of ADP coo.31924059551022 25 13 reading reading NOUN coo.31924059551022 25 14 but but CCONJ coo.31924059551022 25 15 for for ADP coo.31924059551022 25 16 a a DET coo.31924059551022 25 17 general general NOUN coo.31924059551022 25 18 although although ADV coo.31924059551022 25 19 , , PUNCT coo.31924059551022 25 20 owing owe VERB coo.31924059551022 25 21 to to ADP coo.31924059551022 25 22 a a DET coo.31924059551022 25 23 lack lack NOUN coo.31924059551022 25 24 of of ADP coo.31924059551022 25 25 time time NOUN coo.31924059551022 25 26 , , PUNCT coo.31924059551022 25 27 a a PRON coo.31924059551022 25 28 by by ADP coo.31924059551022 25 29 no no DET coo.31924059551022 25 30 means mean NOUN coo.31924059551022 25 31 detailed detailed ADJ coo.31924059551022 25 32 review review NOUN coo.31924059551022 25 33 of of ADP coo.31924059551022 25 34 the the DET coo.31924059551022 25 35 work work NOUN coo.31924059551022 25 36 . . PUNCT coo.31924059551022 26 1 contents contents NUM coo.31924059551022 26 2 . . PUNCT coo.31924059551022 27 1 page page NOUN coo.31924059551022 27 2 introduction introduction NOUN coo.31924059551022 27 3 ............................................................ ............................................................ PUNCT coo.31924059551022 27 4 5 5 NUM coo.31924059551022 27 5 part part NOUN coo.31924059551022 27 6 1 1 NUM coo.31924059551022 27 7 . . PUNCT coo.31924059551022 28 1 history history NOUN coo.31924059551022 28 2 and and CCONJ coo.31924059551022 28 3 definitions definition NOUN coo.31924059551022 28 4 . . PUNCT coo.31924059551022 29 1 the the DET coo.31924059551022 29 2 problem problem NOUN coo.31924059551022 29 3 of of ADP coo.31924059551022 29 4 lamé lamé PROPN coo.31924059551022 29 5 ..................................................... ..................................................... PUNCT coo.31924059551022 29 6 il il PROPN coo.31924059551022 29 7 the the DET coo.31924059551022 29 8 problem problem NOUN coo.31924059551022 29 9 of of ADP coo.31924059551022 29 10 hermite hermite PROPN coo.31924059551022 29 11 .................................................. .................................................. PUNCT coo.31924059551022 29 12 13 13 NUM coo.31924059551022 29 13 definitions definition NOUN coo.31924059551022 29 14 ............................................................. ............................................................. PUNCT coo.31924059551022 29 15 15 15 NUM coo.31924059551022 29 16 part part NOUN coo.31924059551022 29 17 2 2 NUM coo.31924059551022 29 18 . . PUNCT coo.31924059551022 30 1 hermite hermite PROPN coo.31924059551022 30 2 ’s ’s PART coo.31924059551022 30 3 integral integral ADJ coo.31924059551022 30 4 as as ADP coo.31924059551022 30 5 a a DET coo.31924059551022 30 6 sum sum NOUN coo.31924059551022 30 7 . . PUNCT coo.31924059551022 31 1 the the DET coo.31924059551022 31 2 function function NOUN coo.31924059551022 31 3 of of ADP coo.31924059551022 31 4 the the DET coo.31924059551022 31 5 second second ADJ coo.31924059551022 31 6 species specie NOUN coo.31924059551022 31 7 ...................................... ...................................... PUNCT coo.31924059551022 31 8 17 17 NUM coo.31924059551022 31 9 transformation transformation NOUN coo.31924059551022 31 10 of of ADP coo.31924059551022 31 11 hermite hermite NOUN coo.31924059551022 31 12 ’s ’s PART coo.31924059551022 31 13 equation equation NOUN coo.31924059551022 31 14 · · PUNCT coo.31924059551022 31 15 . . PUNCT coo.31924059551022 32 1 ................................ ................................ PUNCT coo.31924059551022 32 2 20 20 NUM coo.31924059551022 32 3 development development NOUN coo.31924059551022 32 4 of of ADP coo.31924059551022 32 5 the the DET coo.31924059551022 32 6 integral integral ADJ coo.31924059551022 32 7 ............................................. ............................................. X coo.31924059551022 32 8 21 21 NUM coo.31924059551022 32 9 development development NOUN coo.31924059551022 32 10 of of ADP coo.31924059551022 32 11 the the DET coo.31924059551022 32 12 eliment eliment NOUN coo.31924059551022 32 13 of of ADP coo.31924059551022 32 14 the the DET coo.31924059551022 32 15 function function NOUN coo.31924059551022 32 16 of of ADP coo.31924059551022 32 17 the the DET coo.31924059551022 32 18 second second ADJ coo.31924059551022 32 19 species specie NOUN coo.31924059551022 32 20 ... ... PUNCT coo.31924059551022 32 21 23 23 NUM coo.31924059551022 32 22 determination determination NOUN coo.31924059551022 32 23 of of ADP coo.31924059551022 32 24 the the DET coo.31924059551022 32 25 integral integral NOUN coo.31924059551022 32 26 ........................................... ........................................... X coo.31924059551022 32 27 25 25 NUM coo.31924059551022 32 28 part part NOUN coo.31924059551022 32 29 3 3 NUM coo.31924059551022 32 30 . . PUNCT coo.31924059551022 33 1 the the DET coo.31924059551022 33 2 integral integral NOUN coo.31924059551022 33 3 as as ADP coo.31924059551022 33 4 a a DET coo.31924059551022 33 5 product product NOUN coo.31924059551022 33 6 . . PUNCT coo.31924059551022 34 1 indirect indirect ADJ coo.31924059551022 34 2 solution solution NOUN coo.31924059551022 34 3 ...................................................... ...................................................... PUNCT coo.31924059551022 34 4 28 28 NUM coo.31924059551022 34 5 solution solution NOUN coo.31924059551022 34 6 for for ADP coo.31924059551022 34 7 n n NOUN coo.31924059551022 34 8 : : PUNCT coo.31924059551022 34 9 = = PRON coo.31924059551022 34 10 2 2 NUM coo.31924059551022 34 11 ..................................................... ..................................................... NUM coo.31924059551022 34 12 30 30 NUM coo.31924059551022 35 1 the the DET coo.31924059551022 35 2 product product NOUN coo.31924059551022 35 3 y y PROPN coo.31924059551022 35 4 of of ADP coo.31924059551022 35 5 the the DET coo.31924059551022 35 6 two two NUM coo.31924059551022 35 7 solutions solution NOUN coo.31924059551022 35 8 ...................................... ...................................... PUNCT coo.31924059551022 35 9 32 32 NUM coo.31924059551022 35 10 direct direct ADJ coo.31924059551022 35 11 solution solution NOUN coo.31924059551022 35 12 ......................................................... ......................................................... PUNCT coo.31924059551022 35 13 37 37 NUM coo.31924059551022 35 14 determination determination NOUN coo.31924059551022 35 15 of of ADP coo.31924059551022 35 16 y y PROPN coo.31924059551022 35 17 for for ADP coo.31924059551022 35 18 n n CCONJ coo.31924059551022 35 19 = = X coo.31924059551022 35 20 3 3 NUM coo.31924059551022 35 21 ............................................ ............................................ NUM coo.31924059551022 35 22 40 40 NUM coo.31924059551022 35 23 part part NOUN coo.31924059551022 35 24 4 4 NUM coo.31924059551022 35 25 . . PUNCT coo.31924059551022 36 1 the the DET coo.31924059551022 36 2 special special ADJ coo.31924059551022 36 3 functions function NOUN coo.31924059551022 36 4 of of ADP coo.31924059551022 36 5 lamé lamé NOUN coo.31924059551022 36 6 . . PUNCT coo.31924059551022 37 1 functions function NOUN coo.31924059551022 37 2 of of ADP coo.31924059551022 37 3 the the DET coo.31924059551022 37 4 first first ADJ coo.31924059551022 37 5 sort sort NOUN coo.31924059551022 37 6 ............................................. ............................................. NOUN coo.31924059551022 37 7 42 42 NUM coo.31924059551022 37 8 functions function NOUN coo.31924059551022 37 9 of of ADP coo.31924059551022 37 10 the the DET coo.31924059551022 37 11 second second ADJ coo.31924059551022 37 12 sort sort NOUN coo.31924059551022 37 13 ............................................ ............................................ PUNCT coo.31924059551022 37 14 43 43 NUM coo.31924059551022 37 15 functions function NOUN coo.31924059551022 37 16 of of ADP coo.31924059551022 37 17 the the DET coo.31924059551022 37 18 third third ADJ coo.31924059551022 37 19 sort sort NOUN coo.31924059551022 37 20 ............................................ ............................................ PUNCT coo.31924059551022 37 21 44 44 NUM coo.31924059551022 37 22 part part NOUN coo.31924059551022 37 23 5 5 NUM coo.31924059551022 37 24 . . PUNCT coo.31924059551022 38 1 reduction reduction NOUN coo.31924059551022 38 2 of of ADP coo.31924059551022 38 3 the the DET coo.31924059551022 38 4 forms form NOUN coo.31924059551022 38 5 u u PROPN coo.31924059551022 38 6 n n CCONJ coo.31924059551022 38 7 = = X coo.31924059551022 38 8 3 3 NUM coo.31924059551022 38 9 ” " PUNCT coo.31924059551022 38 10 . . PUNCT coo.31924059551022 39 1 identity identity NOUN coo.31924059551022 39 2 of of ADP coo.31924059551022 39 3 solutions solution NOUN coo.31924059551022 39 4 ................................................... ................................................... PUNCT coo.31924059551022 39 5 45 45 NUM coo.31924059551022 39 6 determination determination NOUN coo.31924059551022 39 7 of of ADP coo.31924059551022 39 8 x x SYM coo.31924059551022 39 9 and and CCONJ coo.31924059551022 39 10 v. v. ADP coo.31924059551022 39 11 first first ADJ coo.31924059551022 39 12 method method NOUN coo.31924059551022 39 13 ................................ ................................ PUNCT coo.31924059551022 39 14 47 47 NUM coo.31924059551022 39 15 x x PUNCT coo.31924059551022 39 16 as as ADP coo.31924059551022 39 17 function function NOUN coo.31924059551022 39 18 of of ADP coo.31924059551022 39 19 φ φ PROPN coo.31924059551022 39 20 ................................................ ................................................ X coo.31924059551022 39 21 48 48 NUM coo.31924059551022 39 22 factors factor NOUN coo.31924059551022 39 23 of of ADP coo.31924059551022 39 24 φ φ PROPN coo.31924059551022 39 25 ....................................................... ....................................................... PROPN coo.31924059551022 39 26 49 49 NUM coo.31924059551022 39 27 case case NOUN coo.31924059551022 39 28 φ φ X coo.31924059551022 39 29 = = SYM coo.31924059551022 39 30 0 0 NUM coo.31924059551022 39 31 ......................................................... ......................................................... NUM coo.31924059551022 39 32 49 49 NUM coo.31924059551022 39 33 definition definition NOUN coo.31924059551022 39 34 of of ADP coo.31924059551022 39 35 ψ ψ PROPN coo.31924059551022 39 36 and and CCONJ coo.31924059551022 39 37 p(v p(v PROPN coo.31924059551022 39 38 ) ) PUNCT coo.31924059551022 39 39 as as ADP coo.31924059551022 39 40 function function NOUN coo.31924059551022 39 41 of of ADP coo.31924059551022 39 42 ψ ψ PROPN coo.31924059551022 39 43 ........................ ........................ PROPN coo.31924059551022 39 44 50 50 NUM coo.31924059551022 39 45 definition definition NOUN coo.31924059551022 39 46 of of ADP coo.31924059551022 39 47 χ χ PROPN coo.31924059551022 39 48 and and CCONJ coo.31924059551022 39 49 p p NOUN coo.31924059551022 39 50 ( ( PUNCT coo.31924059551022 39 51 v v NOUN coo.31924059551022 39 52 ) ) PUNCT coo.31924059551022 39 53 as as ADP coo.31924059551022 39 54 function function NOUN coo.31924059551022 39 55 of of ADP coo.31924059551022 39 56 χ χ PROPN coo.31924059551022 39 57 ....................... ....................... NUM coo.31924059551022 39 58 51 51 NUM coo.31924059551022 39 59 reduction reduction NOUN coo.31924059551022 39 60 of of ADP coo.31924059551022 39 61 lame lame PROPN coo.31924059551022 39 62 ’s ’s PART coo.31924059551022 39 63 functions function NOUN coo.31924059551022 39 64 φ φ PROPN coo.31924059551022 39 65 = = SYM coo.31924059551022 39 66 0 0 NUM coo.31924059551022 39 67 ...................... ...................... PUNCT coo.31924059551022 39 68 ' ' PUNCT coo.31924059551022 39 69 .... .... PUNCT coo.31924059551022 39 70 51 51 NUM coo.31924059551022 39 71 integral integral ADJ coo.31924059551022 39 72 χ χ NOUN coo.31924059551022 39 73 = = SYM coo.31924059551022 39 74 0 0 NUM coo.31924059551022 39 75 ..................................................... ..................................................... NUM coo.31924059551022 39 76 52 52 NUM coo.31924059551022 39 77 case case NOUN coo.31924059551022 39 78 ώ ώ PROPN coo.31924059551022 39 79 = = SYM coo.31924059551022 39 80 0 0 NUM coo.31924059551022 39 81 ......................................................... ......................................................... NUM coo.31924059551022 39 82 52 52 NUM coo.31924059551022 39 83 8 8 ADJ coo.31924059551022 39 84 contents content NOUN coo.31924059551022 39 85 . . PUNCT coo.31924059551022 40 1 page page NOUN coo.31924059551022 40 2 relation relation NOUN coo.31924059551022 40 3 of of ADP coo.31924059551022 40 4 y y PROPN coo.31924059551022 40 5 and and CCONJ coo.31924059551022 40 6 c c NOUN coo.31924059551022 40 7 to to ADP coo.31924059551022 40 8 the the DET coo.31924059551022 40 9 special special ADJ coo.31924059551022 40 10 functions function NOUN coo.31924059551022 40 11 of of ADP coo.31924059551022 40 12 lamé lamé NOUN coo.31924059551022 40 13 .................... .................... PUNCT coo.31924059551022 40 14 52 52 NUM coo.31924059551022 40 15 analytic analytic ADJ coo.31924059551022 40 16 form form NOUN coo.31924059551022 40 17 of of ADP coo.31924059551022 40 18 y y PROPN coo.31924059551022 40 19 and and CCONJ coo.31924059551022 40 20 y y PROPN coo.31924059551022 40 21 ........................................... ........................................... PROPN coo.31924059551022 41 1 53 53 NUM coo.31924059551022 41 2 condition condition NOUN coo.31924059551022 41 3 ( ( PUNCT coo.31924059551022 41 4 7 7 NUM coo.31924059551022 41 5 = = SYM coo.31924059551022 41 6 0 0 NUM coo.31924059551022 41 7 . . PUNCT coo.31924059551022 42 1 special special ADJ coo.31924059551022 42 2 functions function NOUN coo.31924059551022 42 3 of of ADP coo.31924059551022 42 4 lamé lamé NOUN coo.31924059551022 42 5 .......................... .......................... PUNCT coo.31924059551022 42 6 53 53 NUM coo.31924059551022 42 7 condition condition NOUN coo.31924059551022 42 8 p p NOUN coo.31924059551022 42 9 = = SYM coo.31924059551022 42 10 0 0 NUM coo.31924059551022 42 11 . . PUNCT coo.31924059551022 42 12 functions function NOUN coo.31924059551022 42 13 of of ADP coo.31924059551022 42 14 first first ADJ coo.31924059551022 42 15 sort sort NOUN coo.31924059551022 42 16 ............................ ............................ PUNCT coo.31924059551022 42 17 54 54 NUM coo.31924059551022 42 18 condition condition NOUN coo.31924059551022 42 19 q q X coo.31924059551022 42 20 = = SYM coo.31924059551022 42 21 0 0 NUM coo.31924059551022 42 22 . . PUNCT coo.31924059551022 42 23 functions function NOUN coo.31924059551022 42 24 of of ADP coo.31924059551022 42 25 second second ADJ coo.31924059551022 42 26 sort sort NOUN coo.31924059551022 42 27 .......................... .......................... PUNCT coo.31924059551022 42 28 55 55 NUM coo.31924059551022 42 29 absolute absolute ADJ coo.31924059551022 42 30 relations relation NOUN coo.31924059551022 42 31 of of ADP coo.31924059551022 42 32 qx qx PROPN coo.31924059551022 42 33 and and CCONJ coo.31924059551022 42 34 φχ φχ PROPN coo.31924059551022 42 35 ....................................... ....................................... PROPN coo.31924059551022 42 36 55 55 NUM coo.31924059551022 42 37 determination determination NOUN coo.31924059551022 42 38 of of ADP coo.31924059551022 42 39 g g PROPN coo.31924059551022 42 40 .................................................... .................................................... NOUN coo.31924059551022 42 41 56 56 NUM coo.31924059551022 42 42 the the DET coo.31924059551022 42 43 integrals integral NOUN coo.31924059551022 42 44 = = PUNCT coo.31924059551022 42 45 0 0 NUM coo.31924059551022 42 46 , , PUNCT coo.31924059551022 42 47 q2 q2 PROPN coo.31924059551022 42 48 — — PUNCT coo.31924059551022 42 49 0 0 NUM coo.31924059551022 42 50 , , PUNCT coo.31924059551022 42 51 = = SYM coo.31924059551022 42 52 0 0 NUM coo.31924059551022 42 53 ............................. ............................. NUM coo.31924059551022 42 54 56 56 NUM coo.31924059551022 43 1 the the DET coo.31924059551022 43 2 discriminant discriminant NOUN coo.31924059551022 43 3 of of ADP coo.31924059551022 43 4 y y PROPN coo.31924059551022 43 5 .................................................. .................................................. PUNCT coo.31924059551022 43 6 57 57 NUM coo.31924059551022 43 7 resultant resultant NOUN coo.31924059551022 43 8 of of ADP coo.31924059551022 43 9 y y PROPN coo.31924059551022 43 10 and and CCONJ coo.31924059551022 43 11 φ(α) φ(α) SPACE coo.31924059551022 43 12 ............................................... ............................................... NUM coo.31924059551022 43 13 57 57 NUM coo.31924059551022 43 14 discriminant discriminant NOUN coo.31924059551022 43 15 in in ADP coo.31924059551022 43 16 terms term NOUN coo.31924059551022 43 17 of of ADP coo.31924059551022 43 18 this this DET coo.31924059551022 43 19 resultant resultant NOUN coo.31924059551022 43 20 ............................... ............................... PUNCT coo.31924059551022 43 21 58 58 NUM coo.31924059551022 43 22 discriminant discriminant NOUN coo.31924059551022 43 23 in in ADP coo.31924059551022 43 24 terms term NOUN coo.31924059551022 43 25 of of ADP coo.31924059551022 43 26 p p PROPN coo.31924059551022 43 27 and and CCONJ coo.31924059551022 43 28 q q PRON coo.31924059551022 43 29 ...................................... ...................................... X coo.31924059551022 43 30 58 58 NUM coo.31924059551022 43 31 special special ADJ coo.31924059551022 43 32 results result NOUN coo.31924059551022 43 33 , , PUNCT coo.31924059551022 43 34 n n CCONJ coo.31924059551022 43 35 = = X coo.31924059551022 43 36 3 3 NUM coo.31924059551022 43 37 ............................................. ............................................. NUM coo.31924059551022 43 38 59 59 NUM coo.31924059551022 43 39 determination determination NOUN coo.31924059551022 43 40 of of ADP coo.31924059551022 43 41 x x SYM coo.31924059551022 43 42 and and CCONJ coo.31924059551022 43 43 v. v. ADP coo.31924059551022 43 44 second second ADJ coo.31924059551022 43 45 method method NOUN coo.31924059551022 43 46 ................................. ................................. PUNCT coo.31924059551022 43 47 60 60 NUM coo.31924059551022 43 48 reduction reduction NOUN coo.31924059551022 43 49 of of ADP coo.31924059551022 43 50 the the DET coo.31924059551022 43 51 general general ADJ coo.31924059551022 43 52 function function NOUN coo.31924059551022 43 53 .................................. .................................. PUNCT coo.31924059551022 43 54 60 60 NUM coo.31924059551022 43 55 development development NOUN coo.31924059551022 43 56 of of ADP coo.31924059551022 43 57 φ(% φ(% NOUN coo.31924059551022 43 58 = = PROPN coo.31924059551022 43 59 3 3 X coo.31924059551022 43 60 ) ) PUNCT coo.31924059551022 43 61 ........................................... ........................................... PUNCT coo.31924059551022 44 1 62 62 NUM coo.31924059551022 44 2 development development NOUN coo.31924059551022 44 3 of of ADP coo.31924059551022 44 4 ψ(% ψ(% PROPN coo.31924059551022 44 5 = = PROPN coo.31924059551022 44 6 3) 3) NUM coo.31924059551022 44 7 ............................................ ............................................ NUM coo.31924059551022 44 8 64 64 NUM coo.31924059551022 44 9 development development NOUN coo.31924059551022 44 10 of of ADP coo.31924059551022 44 11 e e X coo.31924059551022 44 12 ( ( PUNCT coo.31924059551022 44 13 n n X coo.31924059551022 44 14 — — PUNCT coo.31924059551022 44 15 3 3 X coo.31924059551022 44 16 ) ) PUNCT coo.31924059551022 44 17 ............................................. ............................................. PUNCT coo.31924059551022 45 1 65 65 NUM coo.31924059551022 45 2 reduction reduction NOUN coo.31924059551022 45 3 of of ADP coo.31924059551022 45 4 x x SYM coo.31924059551022 45 5 and and CCONJ coo.31924059551022 45 6 v v NOUN coo.31924059551022 45 7 from from ADP coo.31924059551022 45 8 these these DET coo.31924059551022 45 9 forms form NOUN coo.31924059551022 45 10 ................................. ................................. PUNCT coo.31924059551022 45 11 66 66 NUM coo.31924059551022 45 12 general general ADJ coo.31924059551022 45 13 forms form NOUN coo.31924059551022 45 14 for for ADP coo.31924059551022 45 15 .r .r PROPN coo.31924059551022 45 16 , , PUNCT coo.31924059551022 45 17 p p NOUN coo.31924059551022 45 18 ( ( PUNCT coo.31924059551022 45 19 v v NOUN coo.31924059551022 45 20 ) ) PUNCT coo.31924059551022 45 21 and and CCONJ coo.31924059551022 45 22 p p NOUN coo.31924059551022 45 23 ' ' PUNCT coo.31924059551022 45 24 ( ( PUNCT coo.31924059551022 45 25 v) v) VERB coo.31924059551022 45 26 .......... .......... INTJ coo.31924059551022 45 27 % % INTJ coo.31924059551022 45 28 ................. ................. NOUN coo.31924059551022 45 29 66 66 NUM coo.31924059551022 45 30 determination determination NOUN coo.31924059551022 45 31 of of ADP coo.31924059551022 45 32 forms form NOUN coo.31924059551022 45 33 ( ( PUNCT coo.31924059551022 45 34 n n CCONJ coo.31924059551022 45 35 = = SYM coo.31924059551022 45 36 3) 3) NUM coo.31924059551022 45 37 ..................................... ..................................... PROPN coo.31924059551022 45 38 68 68 NUM coo.31924059551022 45 39 reduction reduction NOUN coo.31924059551022 45 40 to to ADP coo.31924059551022 45 41 the the DET coo.31924059551022 45 42 first first ADJ coo.31924059551022 45 43 forms form NOUN coo.31924059551022 45 44 .......................................... .......................................... PUNCT coo.31924059551022 45 45 69 69 NUM coo.31924059551022 45 46 determination determination NOUN coo.31924059551022 45 47 of of ADP coo.31924059551022 45 48 v. v. PROPN coo.31924059551022 45 49 third third ADJ coo.31924059551022 45 50 method method NOUN coo.31924059551022 45 51 ........................................... ........................................... PUNCT coo.31924059551022 45 52 70 70 NUM coo.31924059551022 45 53 value value NOUN coo.31924059551022 45 54 of of ADP coo.31924059551022 45 55 the the DET coo.31924059551022 45 56 constant constant ADJ coo.31924059551022 45 57 tct tct NOUN coo.31924059551022 45 58 ............................................ ............................................ PUNCT coo.31924059551022 45 59 70 70 NUM coo.31924059551022 45 60 general general ADJ coo.31924059551022 45 61 form form NOUN coo.31924059551022 45 62 as as ADP coo.31924059551022 45 63 product product NOUN coo.31924059551022 45 64 of of ADP coo.31924059551022 45 65 φ1 φ1 PROPN coo.31924059551022 45 66 ? ? PUNCT coo.31924059551022 45 67 φ2 φ2 PROPN coo.31924059551022 45 68 , , PUNCT coo.31924059551022 45 69 φ3 φ3 PROPN coo.31924059551022 45 70 .............................. .............................. PROPN coo.31924059551022 45 71 71 71 NUM coo.31924059551022 46 1 the the DET coo.31924059551022 46 2 functions function NOUN coo.31924059551022 46 3 fli fli NOUN coo.31924059551022 46 4 p2 p2 PROPN coo.31924059551022 46 5 , , PUNCT coo.31924059551022 46 6 fs fs PROPN coo.31924059551022 46 7 ........................................... ........................................... NOUN coo.31924059551022 46 8 72 72 NUM coo.31924059551022 46 9 forms form NOUN coo.31924059551022 46 10 for for ADP coo.31924059551022 46 11 p(v p(v PROPN coo.31924059551022 46 12 ) ) PUNCT coo.31924059551022 46 13 and and CCONJ coo.31924059551022 46 14 p p PROPN coo.31924059551022 46 15 iv iv X coo.31924059551022 46 16 ) ) PUNCT coo.31924059551022 46 17 in in ADP coo.31924059551022 46 18 terms term NOUN coo.31924059551022 46 19 of of ADP coo.31924059551022 46 20 f f PROPN coo.31924059551022 46 21 ? ? PROPN coo.31924059551022 46 22 and and CCONJ coo.31924059551022 46 23 φ; φ; NOUN coo.31924059551022 46 24 ...................... ...................... PUNCT coo.31924059551022 46 25 72 72 NUM coo.31924059551022 46 26 relation relation NOUN coo.31924059551022 46 27 of of ADP coo.31924059551022 46 28 fn fn NOUN coo.31924059551022 46 29 = = SYM coo.31924059551022 46 30 i3 i3 PROPN coo.31924059551022 46 31 to to ADP coo.31924059551022 46 32 χ χ ADJ coo.31924059551022 46 33 and and CCONJ coo.31924059551022 46 34 the the DET coo.31924059551022 46 35 factors factor NOUN coo.31924059551022 46 36 of of ADP coo.31924059551022 46 37 χ χ VERB coo.31924059551022 46 38 ......................... ......................... NUM coo.31924059551022 46 39 73 73 NUM coo.31924059551022 46 40 reduction reduction NOUN coo.31924059551022 46 41 to to ADP coo.31924059551022 46 42 the the DET coo.31924059551022 46 43 forms form NOUN coo.31924059551022 46 44 of of ADP coo.31924059551022 46 45 m. m. NOUN coo.31924059551022 46 46 hermite hermite PROPN coo.31924059551022 46 47 ............................... ............................... PUNCT coo.31924059551022 46 48 73 73 NUM coo.31924059551022 46 49 general general ADJ coo.31924059551022 46 50 discussion discussion NOUN coo.31924059551022 46 51 ......................................................... ......................................................... NUM coo.31924059551022 46 52 73 73 NUM coo.31924059551022 46 53 review review NOUN coo.31924059551022 46 54 of of ADP coo.31924059551022 46 55 the the DET coo.31924059551022 46 56 theory theory NOUN coo.31924059551022 46 57 .................................................. .................................................. PUNCT coo.31924059551022 46 58 73 73 NUM coo.31924059551022 46 59 general general ADJ coo.31924059551022 46 60 integral integral ADJ coo.31924059551022 46 61 p p NOUN coo.31924059551022 46 62 = = SYM coo.31924059551022 46 63 0 0 NUM coo.31924059551022 46 64 ............................................... ............................................... NUM coo.31924059551022 46 65 74 74 NUM coo.31924059551022 46 66 integral integral ADJ coo.31924059551022 46 67 q q NOUN coo.31924059551022 46 68 = = SYM coo.31924059551022 46 69 0 0 NUM coo.31924059551022 46 70 , , PUNCT coo.31924059551022 46 71 v v NOUN coo.31924059551022 46 72 = = NOUN coo.31924059551022 46 73 ωλ ωλ PROPN coo.31924059551022 46 74 , , PUNCT coo.31924059551022 46 75 x x PUNCT coo.31924059551022 46 76 = = PUNCT coo.31924059551022 46 77 0 0 NUM coo.31924059551022 46 78 ..................................... ..................................... NUM coo.31924059551022 46 79 74 74 NUM coo.31924059551022 47 1 integral integral ADJ coo.31924059551022 47 2 fx fx NOUN coo.31924059551022 47 3 = = NOUN coo.31924059551022 47 4 0 0 NUM coo.31924059551022 47 5 or or CCONJ coo.31924059551022 47 6 χ χ PRON coo.31924059551022 47 7 = = SYM coo.31924059551022 47 8 0 0 NUM coo.31924059551022 47 9 , , PUNCT coo.31924059551022 47 10 v v NOUN coo.31924059551022 47 11 = = NOUN coo.31924059551022 47 12 ωλ ωλ PROPN coo.31924059551022 47 13 , , PUNCT coo.31924059551022 47 14 x x PUNCT coo.31924059551022 47 15 = = PRON coo.31924059551022 47 16 4= 4= NUM coo.31924059551022 47 17 0 0 NUM coo.31924059551022 47 18 ......................... ......................... NUM coo.31924059551022 47 19 74 74 NUM coo.31924059551022 47 20 case case NOUN coo.31924059551022 47 21 v v X coo.31924059551022 47 22 = = NOUN coo.31924059551022 47 23 0 0 NUM coo.31924059551022 47 24 ........................................................... ........................................................... NUM coo.31924059551022 47 25 75 75 NUM coo.31924059551022 47 26 functions function NOUN coo.31924059551022 47 27 of of ADP coo.31924059551022 47 28 m. m. NOUN coo.31924059551022 47 29 mittag mittag PROPN coo.31924059551022 47 30 - - PUNCT coo.31924059551022 47 31 leffler leffler NOUN coo.31924059551022 47 32 ............................................. ............................................. PROPN coo.31924059551022 47 33 75 75 NUM coo.31924059551022 47 34 relation relation NOUN coo.31924059551022 47 35 to to ADP coo.31924059551022 47 36 the the DET coo.31924059551022 47 37 case case NOUN coo.31924059551022 47 38 χ χ X coo.31924059551022 47 39 — — PUNCT coo.31924059551022 47 40 0 0 NUM coo.31924059551022 47 41 ........................................ ........................................ NUM coo.31924059551022 47 42 75 75 NUM coo.31924059551022 47 43 definition definition NOUN coo.31924059551022 47 44 of of ADP coo.31924059551022 47 45 the the DET coo.31924059551022 47 46 functions function NOUN coo.31924059551022 47 47 .......................................... .......................................... PUNCT coo.31924059551022 47 48 75 75 NUM coo.31924059551022 47 49 determination determination NOUN coo.31924059551022 47 50 as as ADP coo.31924059551022 47 51 a a DET coo.31924059551022 47 52 special special ADJ coo.31924059551022 47 53 case case NOUN coo.31924059551022 47 54 of of ADP coo.31924059551022 47 55 the the DET coo.31924059551022 47 56 doubly doubly ADV coo.31924059551022 47 57 periodic periodic ADJ coo.31924059551022 47 58 function function NOUN coo.31924059551022 47 59 of of ADP coo.31924059551022 47 60 the the DET coo.31924059551022 47 61 second second ADJ coo.31924059551022 47 62 species specie NOUN coo.31924059551022 47 63 ....................................... ....................................... PUNCT coo.31924059551022 47 64 * * PUNCT coo.31924059551022 47 65 . . PUNCT coo.31924059551022 47 66 . . PUNCT coo.31924059551022 47 67 . . PUNCT coo.31924059551022 48 1 76 76 NUM coo.31924059551022 48 2 determination determination NOUN coo.31924059551022 48 3 of of ADP coo.31924059551022 48 4 the the DET coo.31924059551022 48 5 eliment eliment ADJ coo.31924059551022 48 6 , , PUNCT coo.31924059551022 48 7 v v ADP coo.31924059551022 48 8 = = PROPN coo.31924059551022 48 9 0 0 NUM coo.31924059551022 48 10 ............................... ............................... NUM coo.31924059551022 48 11 77 77 NUM coo.31924059551022 48 12 integral integral NOUN coo.31924059551022 48 13 ( ( PUNCT coo.31924059551022 48 14 * * PUNCT coo.31924059551022 48 15 = = X coo.31924059551022 48 16 0) 0) NUM coo.31924059551022 48 17 ..................................................... ..................................................... NUM coo.31924059551022 48 18 78 78 NUM coo.31924059551022 48 19 table table NOUN coo.31924059551022 48 20 of of ADP coo.31924059551022 48 21 forms form NOUN coo.31924059551022 48 22 and and CCONJ coo.31924059551022 48 23 relations relation NOUN coo.31924059551022 48 24 ( ( PUNCT coo.31924059551022 48 25 n n X coo.31924059551022 48 26 = = ADP coo.31924059551022 48 27 3) 3) NUM coo.31924059551022 48 28 ....................................... ....................................... NUM coo.31924059551022 48 29 79 79 NUM coo.31924059551022 48 30 thesis thesis SPACE coo.31924059551022 48 31 . . PUNCT coo.31924059551022 48 32   PUNCT coo.31924059551022 49 1 part part X coo.31924059551022 49 2 i. i. PROPN coo.31924059551022 49 3 historical historical PROPN coo.31924059551022 49 4 development development PROPN coo.31924059551022 49 5 and and CCONJ coo.31924059551022 49 6 definition definition NOUN coo.31924059551022 49 7 of of ADP coo.31924059551022 49 8 the the DET coo.31924059551022 49 9 equation equation NOUN coo.31924059551022 49 10 of of ADP coo.31924059551022 49 11 lamé lamé NOUN coo.31924059551022 49 12 . . PUNCT coo.31924059551022 50 1 the the DET coo.31924059551022 50 2 problem problem NOUN coo.31924059551022 50 3 of of ADP coo.31924059551022 50 4 lamé lamé NOUN coo.31924059551022 50 5 . . PUNCT coo.31924059551022 51 1 in in ADP coo.31924059551022 51 2 order order NOUN coo.31924059551022 51 3 to to PART coo.31924059551022 51 4 arrive arrive VERB coo.31924059551022 51 5 at at ADP coo.31924059551022 51 6 an an DET coo.31924059551022 51 7 understanding understanding NOUN coo.31924059551022 51 8 of of ADP coo.31924059551022 51 9 the the DET coo.31924059551022 51 10 highly highly ADV coo.31924059551022 51 11 generalized generalize VERB coo.31924059551022 51 12 forms form NOUN coo.31924059551022 51 13 that that PRON coo.31924059551022 51 14 have have AUX coo.31924059551022 51 15 taken take VERB coo.31924059551022 51 16 the the DET coo.31924059551022 51 17 name name NOUN coo.31924059551022 51 18 of of ADP coo.31924059551022 51 19 lamé lamé NOUN coo.31924059551022 51 20 it it PRON coo.31924059551022 51 21 is be AUX coo.31924059551022 51 22 adivisable adivisable ADJ coo.31924059551022 51 23 to to PART coo.31924059551022 51 24 return return VERB coo.31924059551022 51 25 for for ADP coo.31924059551022 51 26 the the DET coo.31924059551022 51 27 moment moment NOUN coo.31924059551022 51 28 to to ADP coo.31924059551022 51 29 the the DET coo.31924059551022 51 30 original original ADJ coo.31924059551022 51 31 problem problem NOUN coo.31924059551022 51 32 of of ADP coo.31924059551022 51 33 the the DET coo.31924059551022 51 34 potential potential NOUN coo.31924059551022 51 35 in in ADP coo.31924059551022 51 36 which which PRON coo.31924059551022 51 37 they they PRON coo.31924059551022 51 38 claim claim VERB coo.31924059551022 51 39 a a DET coo.31924059551022 51 40 common common ADJ coo.31924059551022 51 41 origin origin NOUN coo.31924059551022 51 42 . . PUNCT coo.31924059551022 52 1 lagrange lagrange PROPN coo.31924059551022 52 2 and and CCONJ coo.31924059551022 52 3 laplace laplace NOUN coo.31924059551022 52 4 ( ( PUNCT coo.31924059551022 52 5 1782 1782 NUM coo.31924059551022 52 6 ) ) PUNCT coo.31924059551022 52 7 in in ADP coo.31924059551022 52 8 their their PRON coo.31924059551022 52 9 researches research NOUN coo.31924059551022 52 10 with with ADP coo.31924059551022 52 11 respect respect NOUN coo.31924059551022 52 12 to to ADP coo.31924059551022 52 13 the the DET coo.31924059551022 52 14 earth earth NOUN coo.31924059551022 52 15 regarded regard VERB coo.31924059551022 52 16 as as ADP coo.31924059551022 52 17 a a DET coo.31924059551022 52 18 solid solid ADJ coo.31924059551022 52 19 sphere sphere NOUN coo.31924059551022 52 20 developed develop VERB coo.31924059551022 52 21 the the DET coo.31924059551022 52 22 potential potential ADJ coo.31924059551022 52 23 function function NOUN coo.31924059551022 52 24 * * PUNCT coo.31924059551022 52 25 ) ) PUNCT coo.31924059551022 52 26 which which PRON coo.31924059551022 52 27 led lead VERB coo.31924059551022 52 28 to to ADP coo.31924059551022 52 29 the the DET coo.31924059551022 52 30 development development NOUN coo.31924059551022 52 31 of of ADP coo.31924059551022 52 32 the the DET coo.31924059551022 52 33 theory theory NOUN coo.31924059551022 52 34 of of ADP coo.31924059551022 52 35 the the DET coo.31924059551022 52 36 kugelfunction kugelfunction NOUN coo.31924059551022 52 37 . . PUNCT coo.31924059551022 53 1 from from ADP coo.31924059551022 53 2 this this DET coo.31924059551022 53 3 date date NOUN coo.31924059551022 53 4 until until ADP coo.31924059551022 53 5 1839 1839 NUM coo.31924059551022 53 6 the the DET coo.31924059551022 53 7 only only ADJ coo.31924059551022 53 8 name name NOUN coo.31924059551022 53 9 that that PRON coo.31924059551022 53 10 need need VERB coo.31924059551022 53 11 be be AUX coo.31924059551022 53 12 mentioned mention VERB coo.31924059551022 53 13 is be AUX coo.31924059551022 53 14 that that PRON coo.31924059551022 53 15 of of ADP coo.31924059551022 53 16 fourier fourier NOUN coo.31924059551022 53 17 ( ( PUNCT coo.31924059551022 53 18 1822 1822 NUM coo.31924059551022 53 19 ) ) PUNCT coo.31924059551022 53 20 who who PRON coo.31924059551022 53 21 , , PUNCT coo.31924059551022 53 22 in in ADP coo.31924059551022 53 23 developing develop VERB coo.31924059551022 53 24 his his PRON coo.31924059551022 53 25 theory theory NOUN coo.31924059551022 53 26 of of ADP coo.31924059551022 53 27 heat heat NOUN coo.31924059551022 53 28 solved solve VERB coo.31924059551022 53 29 the the DET coo.31924059551022 53 30 problem problem NOUN coo.31924059551022 53 31 with with ADP coo.31924059551022 53 32 reference reference NOUN coo.31924059551022 53 33 to to PART coo.31924059551022 53 34 a'right a'right VERB coo.31924059551022 53 35 angled angle VERB coo.31924059551022 53 36 cylinder cylinder NOUN coo.31924059551022 53 37 discovering discover VERB coo.31924059551022 53 38 the the DET coo.31924059551022 53 39 series series NOUN coo.31924059551022 53 40 named name VERB coo.31924059551022 53 41 after after ADP coo.31924059551022 53 42 him he PRON coo.31924059551022 53 43 . . PUNCT coo.31924059551022 54 1 in in ADP coo.31924059551022 54 2 the the DET coo.31924059551022 54 3 following following ADJ coo.31924059551022 54 4 decade decade NOUN coo.31924059551022 54 5 * * PUNCT coo.31924059551022 54 6 * * NOUN coo.31924059551022 54 7 ) ) PUNCT coo.31924059551022 54 8 however however ADV coo.31924059551022 54 9 lamé lamé PROPN coo.31924059551022 54 10 * * NOUN coo.31924059551022 54 11 * * NOUN coo.31924059551022 54 12 * * PUNCT coo.31924059551022 54 13 ) ) PUNCT coo.31924059551022 54 14 generalized generalize VERB coo.31924059551022 54 15 the the DET coo.31924059551022 54 16 work work NOUN coo.31924059551022 54 17 of of ADP coo.31924059551022 54 18 his his PRON coo.31924059551022 54 19 predicessors predicessor NOUN coo.31924059551022 54 20 by by ADP coo.31924059551022 54 21 solving solve VERB coo.31924059551022 54 22 the the DET coo.31924059551022 54 23 problem problem NOUN coo.31924059551022 54 24 for for ADP coo.31924059551022 54 25 an an DET coo.31924059551022 54 26 ellipsoid ellipsoid NOUN coo.31924059551022 54 27 with with ADP coo.31924059551022 54 28 three three NUM coo.31924059551022 54 29 unequal unequal ADJ coo.31924059551022 54 30 axes axis NOUN coo.31924059551022 54 31 thus thus ADV coo.31924059551022 54 32 laying lay VERB coo.31924059551022 54 33 the the DET coo.31924059551022 54 34 foundation foundation NOUN coo.31924059551022 54 35 for for ADP coo.31924059551022 54 36 the the DET coo.31924059551022 54 37 development development NOUN coo.31924059551022 54 38 of of ADP coo.31924059551022 54 39 functions function NOUN coo.31924059551022 54 40 of of ADP coo.31924059551022 54 41 which which PRON coo.31924059551022 54 42 the the DET coo.31924059551022 54 43 former former ADJ coo.31924059551022 54 44 are be AUX coo.31924059551022 54 45 but but CCONJ coo.31924059551022 54 46 special special ADJ coo.31924059551022 54 47 cases case NOUN coo.31924059551022 54 48 . . PUNCT coo.31924059551022 55 1 he he PRON coo.31924059551022 55 2 used use VERB coo.31924059551022 55 3 to to ADP coo.31924059551022 55 4 this this DET coo.31924059551022 55 5 end end NOUN coo.31924059551022 55 6 the the DET coo.31924059551022 55 7 inductive inductive ADJ coo.31924059551022 55 8 method method NOUN coo.31924059551022 55 9 arriving arrive VERB coo.31924059551022 55 10 at at ADP coo.31924059551022 55 11 special special ADJ coo.31924059551022 55 12 solutions solution NOUN coo.31924059551022 55 13 through through ADP coo.31924059551022 55 14 a a DET coo.31924059551022 55 15 study study NOUN coo.31924059551022 55 16 of of ADP coo.31924059551022 55 17 the the DET coo.31924059551022 55 18 problem problem NOUN coo.31924059551022 55 19 already already ADV coo.31924059551022 55 20 solved solve VERB coo.31924059551022 55 21 with with ADP coo.31924059551022 55 22 reference reference NOUN coo.31924059551022 55 23 to to ADP coo.31924059551022 55 24 the the DET coo.31924059551022 55 25 sphere sphere NOUN coo.31924059551022 55 26 . . PUNCT coo.31924059551022 56 1 the the DET coo.31924059551022 56 2 problem problem NOUN coo.31924059551022 56 3 of of ADP coo.31924059551022 56 4 lamé lamé NOUN coo.31924059551022 56 5 may may AUX coo.31924059551022 56 6 be be AUX coo.31924059551022 56 7 stated state VERB coo.31924059551022 56 8 thus thus ADV coo.31924059551022 56 9 : : PUNCT coo.31924059551022 56 10 let let VERB coo.31924059551022 56 11 the the DET coo.31924059551022 56 12 surface surface NOUN coo.31924059551022 56 13 of of ADP coo.31924059551022 56 14 an an DET coo.31924059551022 56 15 ellipsoid ellipsoid ADJ coo.31924059551022 56 16 he he PRON coo.31924059551022 56 17 given give VERB coo.31924059551022 56 18 by by ADP coo.31924059551022 56 19 the the DET coo.31924059551022 56 20 equation equation NOUN coo.31924059551022 56 21 u u PROPN coo.31924059551022 56 22 = = PROPN coo.31924059551022 56 23 u0 u0 PROPN coo.31924059551022 56 24 ¡ ¡ PROPN coo.31924059551022 57 1 it it PRON coo.31924059551022 57 2 is be AUX coo.31924059551022 57 3 required require VERB coo.31924059551022 57 4 to to PART coo.31924059551022 57 5 find find VERB coo.31924059551022 57 6 a a DET coo.31924059551022 57 7 function function NOUN coo.31924059551022 57 8 t t NOUN coo.31924059551022 57 9 which which PRON coo.31924059551022 57 10 will will AUX coo.31924059551022 57 11 satisfy satisfy VERB coo.31924059551022 57 12 the the DET coo.31924059551022 57 13 equation equation NOUN coo.31924059551022 57 14 of of ADP coo.31924059551022 57 15 the the DET coo.31924059551022 57 16 potential potential NOUN coo.31924059551022 57 17 and and CCONJ coo.31924059551022 57 18 which which PRON coo.31924059551022 57 19 for for ADP coo.31924059551022 57 20 the the DET coo.31924059551022 57 21 value value NOUN coo.31924059551022 57 22 u u PROPN coo.31924059551022 57 23 = = PROPN coo.31924059551022 57 24 u0 u0 PROPN coo.31924059551022 57 25 will will AUX coo.31924059551022 57 26 reduce reduce VERB coo.31924059551022 57 27 to to ADP coo.31924059551022 57 28 a a DET coo.31924059551022 57 29 given give VERB coo.31924059551022 57 30 * * NOUN coo.31924059551022 57 31 ) ) PUNCT coo.31924059551022 57 32 see see VERB coo.31924059551022 57 33 note note NOUN coo.31924059551022 57 34 heine heine NOUN coo.31924059551022 57 35 , , PUNCT coo.31924059551022 57 36 handbuch handbuch PROPN coo.31924059551022 57 37 der der PROPN coo.31924059551022 57 38 kugelfunctionen kugelfunctionen PROPN coo.31924059551022 57 39 , , PUNCT coo.31924059551022 57 40 p. p. NOUN coo.31924059551022 57 41 2 2 NUM coo.31924059551022 57 42 , , PUNCT coo.31924059551022 57 43 berlin berlin PROPN coo.31924059551022 57 44 1878 1878 NUM coo.31924059551022 57 45 , , PUNCT coo.31924059551022 57 46 and and CCONJ coo.31924059551022 57 47 heine heine NOUN coo.31924059551022 57 48 , , PUNCT coo.31924059551022 57 49 2d 2d PROPN coo.31924059551022 57 50 voi voi X coo.31924059551022 57 51 . . PUNCT coo.31924059551022 58 1 zusátze zusátze PROPN coo.31924059551022 58 2 zum zum PROPN coo.31924059551022 58 3 ersten ersten NOUN coo.31924059551022 58 4 bande bande NOUN coo.31924059551022 58 5 . . PUNCT coo.31924059551022 59 1 * * PUNCT coo.31924059551022 59 2 * * PUNCT coo.31924059551022 59 3 ) ) PUNCT coo.31924059551022 59 4 see see VERB coo.31924059551022 59 5 also also ADV coo.31924059551022 59 6 reference reference NOUN coo.31924059551022 59 7 to to ADP coo.31924059551022 59 8 green green PROPN coo.31924059551022 59 9 heine heine PROPN coo.31924059551022 59 10 p. p. PROPN coo.31924059551022 59 11 1 1 NUM coo.31924059551022 59 12 . . PUNCT coo.31924059551022 60 1 * * PUNCT coo.31924059551022 60 2 * * PUNCT coo.31924059551022 60 3 * * PUNCT coo.31924059551022 60 4 ) ) PUNCT coo.31924059551022 60 5 mémoire mémoire X coo.31924059551022 60 6 sur sur X coo.31924059551022 60 7 les les X coo.31924059551022 60 8 axes axis NOUN coo.31924059551022 60 9 des des X coo.31924059551022 60 10 surfaces surface NOUN coo.31924059551022 60 11 isothermes isothermes PROPN coo.31924059551022 60 12 du du PROPN coo.31924059551022 60 13 second second PROPN coo.31924059551022 60 14 degree degree NOUN coo.31924059551022 60 15 considérés considéré VERB coo.31924059551022 60 16 comme comme X coo.31924059551022 60 17 des des X coo.31924059551022 60 18 fonctions fonction NOUN coo.31924059551022 60 19 de de X coo.31924059551022 60 20 la la X coo.31924059551022 60 21 temperature temperature PROPN coo.31924059551022 60 22 . . PUNCT coo.31924059551022 61 1 journal journal PROPN coo.31924059551022 61 2 des des X coo.31924059551022 61 3 mathématiques mathématiques X coo.31924059551022 61 4 pures pure NOUN coo.31924059551022 61 5 et et NOUN coo.31924059551022 61 6 appliqués appliqué NOUN coo.31924059551022 61 7 . . PUNCT coo.31924059551022 62 1 lre lre PROPN coo.31924059551022 62 2 série série PROPN coo.31924059551022 62 3 , , PUNCT coo.31924059551022 62 4 t. t. PROPN coo.31924059551022 62 5 iv iv PROPN coo.31924059551022 62 6 , , PUNCT coo.31924059551022 62 7 p. p. PROPN coo.31924059551022 62 8 103 103 NUM coo.31924059551022 62 9 . . PUNCT coo.31924059551022 63 1 1839 1839 NUM coo.31924059551022 63 2 . . PUNCT coo.31924059551022 64 1 12 12 NUM coo.31924059551022 64 2 part part NOUN coo.31924059551022 64 3 i. i. PROPN coo.31924059551022 64 4 d d PROPN coo.31924059551022 64 5 ] ] X coo.31924059551022 64 6 function function NOUN coo.31924059551022 64 7 of of ADP coo.31924059551022 64 8 v v PROPN coo.31924059551022 64 9 and and CCONJ coo.31924059551022 64 10 w w PROPN coo.31924059551022 64 11 , , PUNCT coo.31924059551022 64 12 where where SCONJ coo.31924059551022 64 13 t t PROPN coo.31924059551022 64 14 is be AUX coo.31924059551022 64 15 the the DET coo.31924059551022 64 16 temperature temperature NOUN coo.31924059551022 64 17 at at ADP coo.31924059551022 64 18 a a DET coo.31924059551022 64 19 point point NOUN coo.31924059551022 64 20 whose whose DET coo.31924059551022 64 21 elliptic elliptic ADJ coo.31924059551022 64 22 coordinates coordinate NOUN coo.31924059551022 64 23 are be AUX coo.31924059551022 64 24 u u PROPN coo.31924059551022 64 25 , , PUNCT coo.31924059551022 64 26 v v NOUN coo.31924059551022 64 27 and and CCONJ coo.31924059551022 64 28 w. w. NOUN coo.31924059551022 64 29 the the DET coo.31924059551022 64 30 working work VERB coo.31924059551022 64 31 eliments eliment NOUN coo.31924059551022 64 32 are be AUX coo.31924059551022 64 33 then then ADV coo.31924059551022 64 34 , , PUNCT coo.31924059551022 64 35 the the DET coo.31924059551022 64 36 potential potential ADJ coo.31924059551022 64 37 function function NOUN coo.31924059551022 64 38 , , PUNCT coo.31924059551022 64 39 generally generally ADV coo.31924059551022 64 40 written write VERB coo.31924059551022 64 41 or or CCONJ coo.31924059551022 64 42 transformed transform VERB coo.31924059551022 64 43 in in ADP coo.31924059551022 64 44 terms term NOUN coo.31924059551022 64 45 of of ADP coo.31924059551022 64 46 the the DET coo.31924059551022 64 47 p p NOUN coo.31924059551022 64 48 function function NOUN coo.31924059551022 64 49 [ [ X coo.31924059551022 64 50 2 2 NUM coo.31924059551022 64 51 ] ] SYM coo.31924059551022 64 52 · · PUNCT coo.31924059551022 64 53 · · PUNCT coo.31924059551022 64 54 ( ( PUNCT coo.31924059551022 64 55 pv pv INTJ coo.31924059551022 64 56 — — PUNCT coo.31924059551022 64 57 pu)^ pu)^ PROPN coo.31924059551022 64 58 + + CCONJ coo.31924059551022 64 59 ( ( PUNCT coo.31924059551022 64 60 pu pu PROPN coo.31924059551022 64 61 — — PUNCT coo.31924059551022 64 62 pv)^ pv)^ PROPN coo.31924059551022 64 63 + + SYM coo.31924059551022 64 64 ( ( PUNCT coo.31924059551022 64 65 pu pu PROPN coo.31924059551022 64 66 - - PUNCT coo.31924059551022 64 67 pv)ÿ^r pv)ÿ^r NOUN coo.31924059551022 64 68 = = NOUN coo.31924059551022 64 69 0 0 PUNCT coo.31924059551022 64 70 the the DET coo.31924059551022 64 71 relation relation NOUN coo.31924059551022 64 72 , , PUNCT coo.31924059551022 64 73 [ [ X coo.31924059551022 64 74 3 3 X coo.31924059551022 64 75 ] ] PUNCT coo.31924059551022 64 76 • • PUNCT coo.31924059551022 64 77 t t NOUN coo.31924059551022 64 78 — — PUNCT coo.31924059551022 64 79 f(u f(u NOUN coo.31924059551022 64 80 ) ) PUNCT coo.31924059551022 64 81 f(v f(v PROPN coo.31924059551022 64 82 ) ) PUNCT coo.31924059551022 64 83 f(w f(w PROPN coo.31924059551022 64 84 ) ) PUNCT coo.31924059551022 64 85 and and CCONJ coo.31924059551022 64 86 the the DET coo.31924059551022 64 87 equation equation NOUN coo.31924059551022 64 88 [ [ X coo.31924059551022 64 89 4 4 X coo.31924059551022 64 90 ] ] PUNCT coo.31924059551022 65 1 • • PUNCT coo.31924059551022 65 2 g g NOUN coo.31924059551022 65 3 = = PUNCT coo.31924059551022 66 1 [ [ X coo.31924059551022 66 2 apu apu X coo.31924059551022 66 3 + + PROPN coo.31924059551022 66 4 b]y b]y PUNCT coo.31924059551022 66 5 where where SCONJ coo.31924059551022 66 6 y y PROPN coo.31924059551022 66 7 = = X coo.31924059551022 66 8 f(u f(u PROPN coo.31924059551022 66 9 ) ) PUNCT coo.31924059551022 66 10 and and CCONJ coo.31924059551022 66 11 a a PRON coo.31924059551022 66 12 and and CCONJ coo.31924059551022 66 13 b b NOUN coo.31924059551022 66 14 are be AUX coo.31924059551022 66 15 constants constant NOUN coo.31924059551022 66 16 . . PUNCT coo.31924059551022 67 1 if if SCONJ coo.31924059551022 67 2 t t PROPN coo.31924059551022 67 3 is be AUX coo.31924059551022 67 4 developed develop VERB coo.31924059551022 67 5 by by ADP coo.31924059551022 67 6 maclaurin maclaurin PROPN coo.31924059551022 67 7 's 's PART coo.31924059551022 67 8 theorem theorem NOUN coo.31924059551022 67 9 with with ADP coo.31924059551022 67 10 respect respect NOUN coo.31924059551022 67 11 to to ADP coo.31924059551022 67 12 the the DET coo.31924059551022 67 13 rectangular rectangular ADJ coo.31924059551022 67 14 coordinates coordinate NOUN coo.31924059551022 67 15 , , PUNCT coo.31924059551022 67 16 we we PRON coo.31924059551022 67 17 may may AUX coo.31924059551022 67 18 write write VERB coo.31924059551022 67 19 :* :* PUNCT coo.31924059551022 67 20 ) ) PUNCT coo.31924059551022 67 21 œ œ NUM coo.31924059551022 67 22 ............. ............. PUNCT coo.31924059551022 67 23 7 7 NUM coo.31924059551022 67 24 = = SYM coo.31924059551022 67 25 t0 t0 X coo.31924059551022 67 26 + + SYM coo.31924059551022 67 27 zí zí PROPN coo.31924059551022 67 28 + + PROPN coo.31924059551022 67 29 t2 t2 PROPN coo.31924059551022 68 1 + + PUNCT coo.31924059551022 68 2 ... ... PUNCT coo.31924059551022 69 1 + + CCONJ coo.31924059551022 69 2 r r X coo.31924059551022 69 3 „ „ X coo.31924059551022 69 4 + + PUNCT coo.31924059551022 69 5 · · PUNCT coo.31924059551022 69 6 · · PUNCT coo.31924059551022 69 7 · · PUNCT coo.31924059551022 69 8 where where SCONJ coo.31924059551022 69 9 tn tn PROPN coo.31924059551022 69 10 in in ADP coo.31924059551022 69 11 general general ADJ coo.31924059551022 69 12 is be AUX coo.31924059551022 69 13 an an DET coo.31924059551022 69 14 intire intire ADJ coo.31924059551022 69 15 homogenious homogenious ADJ coo.31924059551022 69 16 polynomial polynomial NOUN coo.31924059551022 69 17 of of ADP coo.31924059551022 69 18 the the DET coo.31924059551022 69 19 nih nih PROPN coo.31924059551022 69 20 degree degree NOUN coo.31924059551022 69 21 , , PUNCT coo.31924059551022 69 22 it it PRON coo.31924059551022 69 23 is be AUX coo.31924059551022 69 24 observed observe VERB coo.31924059551022 69 25 that that SCONJ coo.31924059551022 69 26 each each PRON coo.31924059551022 69 27 of of ADP coo.31924059551022 69 28 the the DET coo.31924059551022 69 29 functions function NOUN coo.31924059551022 69 30 tn tn PROPN coo.31924059551022 69 31 will will AUX coo.31924059551022 69 32 also also ADV coo.31924059551022 69 33 satisfy satisfy VERB coo.31924059551022 69 34 [ [ X coo.31924059551022 69 35 1 1 NUM coo.31924059551022 69 36 ] ] PUNCT coo.31924059551022 69 37 , , PUNCT coo.31924059551022 69 38 the the DET coo.31924059551022 69 39 equation equation NOUN coo.31924059551022 69 40 of of ADP coo.31924059551022 69 41 the the DET coo.31924059551022 69 42 potential potential NOUN coo.31924059551022 69 43 , , PUNCT coo.31924059551022 69 44 in in ADP coo.31924059551022 69 45 which which DET coo.31924059551022 69 46 case case NOUN coo.31924059551022 69 47 [ [ X coo.31924059551022 69 48 1 1 X coo.31924059551022 69 49 ] ] PUNCT coo.31924059551022 69 50 would would AUX coo.31924059551022 69 51 be be AUX coo.31924059551022 69 52 an an DET coo.31924059551022 69 53 intire intire ADJ coo.31924059551022 69 54 homogeneous homogeneous ADJ coo.31924059551022 69 55 polynomial polynomial NOUN coo.31924059551022 69 56 of of ADP coo.31924059551022 69 57 the the DET coo.31924059551022 69 58 ( ( PUNCT coo.31924059551022 69 59 w w NOUN coo.31924059551022 69 60 — — PUNCT coo.31924059551022 69 61 2)d 2)d NUM coo.31924059551022 69 62 degree degree NOUN coo.31924059551022 69 63 . . PUNCT coo.31924059551022 70 1 this this DET coo.31924059551022 70 2 polynomial polynomial NOUN coo.31924059551022 70 3 must must AUX coo.31924059551022 70 4 be be AUX coo.31924059551022 70 5 identically identically ADV coo.31924059551022 70 6 zero zero NUM coo.31924059551022 70 7 which which PRON coo.31924059551022 70 8 will will AUX coo.31924059551022 70 9 impose impose VERB coo.31924059551022 70 10 -|·(n -|·(n PROPN coo.31924059551022 70 11 — — PUNCT coo.31924059551022 70 12 1 1 X coo.31924059551022 70 13 ) ) PUNCT coo.31924059551022 70 14 n n CCONJ coo.31924059551022 70 15 linear linear PROPN coo.31924059551022 70 16 conditions condition NOUN coo.31924059551022 70 17 . . PUNCT coo.31924059551022 71 1 the the DET coo.31924059551022 71 2 quantities quantity NOUN coo.31924059551022 71 3 tn tn PROPN coo.31924059551022 71 4 will will AUX coo.31924059551022 71 5 have have VERB coo.31924059551022 71 6 in in ADP coo.31924059551022 71 7 all all DET coo.31924059551022 71 8 y y NOUN coo.31924059551022 71 9 ( ( PUNCT coo.31924059551022 71 10 w w X coo.31924059551022 71 11 + + NUM coo.31924059551022 71 12 1 1 NUM coo.31924059551022 71 13 ) ) PUNCT coo.31924059551022 71 14 ( ( PUNCT coo.31924059551022 71 15 n n CCONJ coo.31924059551022 71 16 + + CCONJ coo.31924059551022 71 17 2 2 NUM coo.31924059551022 71 18 ) ) PUNCT coo.31924059551022 71 19 constants constant NOUN coo.31924059551022 71 20 , , PUNCT coo.31924059551022 71 21 which which PRON coo.31924059551022 71 22 leaves leave VERB coo.31924059551022 71 23 the the DET coo.31924059551022 71 24 difference difference NOUN coo.31924059551022 71 25 2n 2n NUM coo.31924059551022 71 26 + + PUNCT coo.31924059551022 71 27 1 1 NUM coo.31924059551022 71 28 equal equal ADJ coo.31924059551022 71 29 to to ADP coo.31924059551022 71 30 the the DET coo.31924059551022 71 31 number number NOUN coo.31924059551022 71 32 of of ADP coo.31924059551022 71 33 constants constant NOUN coo.31924059551022 71 34 that that PRON coo.31924059551022 71 35 may may AUX coo.31924059551022 71 36 be be AUX coo.31924059551022 71 37 considered consider VERB coo.31924059551022 71 38 arbitrary arbitrary ADJ coo.31924059551022 71 39 . . PUNCT coo.31924059551022 72 1 now now ADV coo.31924059551022 72 2 the the DET coo.31924059551022 72 3 general general ADJ coo.31924059551022 72 4 expression expression NOUN coo.31924059551022 72 5 for for ADP coo.31924059551022 72 6 x2 x2 PROPN coo.31924059551022 72 7 in in ADP coo.31924059551022 72 8 terms term NOUN coo.31924059551022 72 9 of of ADP coo.31924059551022 72 10 p p PROPN coo.31924059551022 72 11 is be AUX coo.31924059551022 72 12 known know VERB coo.31924059551022 72 13 to to PART coo.31924059551022 72 14 be be AUX coo.31924059551022 72 15 r61 r61 NOUN coo.31924059551022 72 16 . . PUNCT coo.31924059551022 72 17 . . PUNCT coo.31924059551022 72 18 . . PUNCT coo.31924059551022 73 1 t2x2 t2x2 PUNCT coo.31924059551022 73 2 = = X coo.31924059551022 73 3 ( ( PUNCT coo.31924059551022 73 4 p*-««)(*»-‘«hp*- p*-««)(*»-‘«hp*- X coo.31924059551022 73 5 * * NOUN coo.31924059551022 73 6 « « NOUN coo.31924059551022 73 7 ) ) PUNCT coo.31924059551022 73 8 ( ( PUNCT coo.31924059551022 73 9 ea ea PROPN coo.31924059551022 73 10 ep ep PROPN coo.31924059551022 73 11 ) ) PUNCT coo.31924059551022 73 12 ( ( PUNCT coo.31924059551022 73 13 ea ea X coo.31924059551022 73 14 < < X coo.31924059551022 73 15 v v ADP coo.31924059551022 73 16 x x PUNCT coo.31924059551022 73 17 being be AUX coo.31924059551022 73 18 a a DET coo.31924059551022 73 19 constant constant ADJ coo.31924059551022 73 20 , , PUNCT coo.31924059551022 73 21 from from ADP coo.31924059551022 73 22 which which PRON coo.31924059551022 73 23 we we PRON coo.31924059551022 73 24 see see VERB coo.31924059551022 73 25 that that SCONJ coo.31924059551022 73 26 by by ADP coo.31924059551022 73 27 a a DET coo.31924059551022 73 28 change change NOUN coo.31924059551022 73 29 of of ADP coo.31924059551022 73 30 variable variable ADJ coo.31924059551022 73 31 tn tn PROPN coo.31924059551022 73 32 may may AUX coo.31924059551022 73 33 become become VERB coo.31924059551022 73 34 an an DET coo.31924059551022 73 35 intire intire ADJ coo.31924059551022 73 36 homogeneous homogeneous ADJ coo.31924059551022 73 37 function function NOUN coo.31924059551022 73 38 of of ADP coo.31924059551022 73 39 the the DET coo.31924059551022 73 40 nth nth NOUN coo.31924059551022 73 41 degree degree NOUN coo.31924059551022 73 42 with with ADP coo.31924059551022 73 43 respect respect NOUN coo.31924059551022 73 44 to to ADP coo.31924059551022 73 45 the the DET coo.31924059551022 73 46 variables variable NOUN coo.31924059551022 73 47 [ [ X coo.31924059551022 73 48 7] 7] NUM coo.31924059551022 73 49 ............. ............. PUNCT coo.31924059551022 73 50 ypu ypu PROPN coo.31924059551022 73 51 — — PUNCT coo.31924059551022 73 52 ^ ^ PROPN coo.31924059551022 73 53 , , PUNCT coo.31924059551022 73 54 y y PROPN coo.31924059551022 73 55 pu pu PROPN coo.31924059551022 73 56 — — PUNCT coo.31924059551022 73 57 e2 e2 PROPN coo.31924059551022 73 58 , , PUNCT coo.31924059551022 73 59 y y PROPN coo.31924059551022 73 60 pu pu PROPN coo.31924059551022 73 61 — — PUNCT coo.31924059551022 73 62 e3 e3 PROPN coo.31924059551022 73 63 quantities quantity NOUN coo.31924059551022 73 64 proportional proportional ADJ coo.31924059551022 73 65 to to ADP coo.31924059551022 73 66 the the DET coo.31924059551022 73 67 axes axis NOUN coo.31924059551022 73 68 of of ADP coo.31924059551022 73 69 the the DET coo.31924059551022 73 70 ellipsoid ellipsoid NOUN coo.31924059551022 73 71 , , PUNCT coo.31924059551022 73 72 and and CCONJ coo.31924059551022 73 73 of of ADP coo.31924059551022 73 74 the the DET coo.31924059551022 73 75 1st 1st ADJ coo.31924059551022 73 76 degree degree NOUN coo.31924059551022 73 77 , , PUNCT coo.31924059551022 73 78 pu pu PROPN coo.31924059551022 73 79 being be AUX coo.31924059551022 73 80 of of ADP coo.31924059551022 73 81 the the DET coo.31924059551022 73 82 second second ADJ coo.31924059551022 73 83 and and CCONJ coo.31924059551022 73 84 p'u p'u ADV coo.31924059551022 73 85 of of ADP coo.31924059551022 73 86 the the DET coo.31924059551022 73 87 third third NOUN coo.31924059551022 73 88 . . PUNCT coo.31924059551022 74 1 we we PRON coo.31924059551022 74 2 have have VERB coo.31924059551022 74 3 then then ADV coo.31924059551022 74 4 that that SCONJ coo.31924059551022 74 5 t t PROPN coo.31924059551022 74 6 , , PUNCT coo.31924059551022 74 7 the the DET coo.31924059551022 74 8 function function NOUN coo.31924059551022 74 9 sought seek VERB coo.31924059551022 74 10 , , PUNCT coo.31924059551022 74 11 is be AUX coo.31924059551022 74 12 composed compose VERB coo.31924059551022 74 13 of of ADP coo.31924059551022 74 14 similar similar ADJ coo.31924059551022 74 15 functions function NOUN coo.31924059551022 74 16 tn tn PROPN coo.31924059551022 74 17 , , PUNCT coo.31924059551022 74 18 where where SCONJ coo.31924059551022 74 19 tn tn PROPN coo.31924059551022 74 20 is be AUX coo.31924059551022 74 21 of of ADP coo.31924059551022 74 22 the the DET coo.31924059551022 74 23 wth wth NOUN coo.31924059551022 74 24 degree degree NOUN coo.31924059551022 74 25 , , PUNCT coo.31924059551022 74 26 is be AUX coo.31924059551022 74 27 symmetrical symmetrical ADJ coo.31924059551022 74 28 ) ) PUNCT coo.31924059551022 74 29 see see VERB coo.31924059551022 74 30 halphen halphen ADV coo.31924059551022 74 31 . . PUNCT coo.31924059551022 75 1 vol vol NOUN coo.31924059551022 75 2 . . PUNCT coo.31924059551022 76 1 ii ii PROPN coo.31924059551022 76 2 p. p. NOUN coo.31924059551022 76 3 466 466 NUM coo.31924059551022 76 4 . . PUNCT coo.31924059551022 77 1 historical historical ADJ coo.31924059551022 77 2 development development NOUN coo.31924059551022 77 3 and and CCONJ coo.31924059551022 77 4 definition definition NOUN coo.31924059551022 77 5 of of ADP coo.31924059551022 77 6 the the DET coo.31924059551022 77 7 equation equation NOUN coo.31924059551022 77 8 of of ADP coo.31924059551022 77 9 lamé lamé NOUN coo.31924059551022 77 10 . . PUNCT coo.31924059551022 78 1 13 13 NUM coo.31924059551022 78 2 with with ADP coo.31924059551022 78 3 respect respect NOUN coo.31924059551022 78 4 to to ADP coo.31924059551022 78 5 uy uy PROPN coo.31924059551022 78 6 v v PROPN coo.31924059551022 78 7 and and CCONJ coo.31924059551022 78 8 w w PROPN coo.31924059551022 78 9 and and CCONJ coo.31924059551022 78 10 having have VERB coo.31924059551022 78 11 2n 2n NUM coo.31924059551022 78 12 1 1 NUM coo.31924059551022 78 13 arbitrary arbitrary ADJ coo.31924059551022 78 14 constants constant NOUN coo.31924059551022 78 15 * * PUNCT coo.31924059551022 78 16 is be AUX coo.31924059551022 78 17 capable capable ADJ coo.31924059551022 78 18 of of ADP coo.31924059551022 78 19 satisfying satisfy VERB coo.31924059551022 78 20 the the DET coo.31924059551022 78 21 equation equation NOUN coo.31924059551022 78 22 [ [ X coo.31924059551022 78 23 2 2 X coo.31924059551022 78 24 ] ] PUNCT coo.31924059551022 78 25 of of ADP coo.31924059551022 78 26 the the DET coo.31924059551022 78 27 potential potential NOUN coo.31924059551022 78 28 . . PUNCT coo.31924059551022 79 1 from from ADP coo.31924059551022 79 2 the the DET coo.31924059551022 79 3 above above ADJ coo.31924059551022 79 4 relations relation NOUN coo.31924059551022 79 5 we we PRON coo.31924059551022 79 6 derive derive VERB coo.31924059551022 79 7 [ [ PUNCT coo.31924059551022 79 8 8 8 NUM coo.31924059551022 79 9 ] ] PUNCT coo.31924059551022 79 10 · · PUNCT coo.31924059551022 79 11 · · PUNCT coo.31924059551022 79 12 ' ' PUNCT coo.31924059551022 79 13 · · PUNCT coo.31924059551022 79 14 0 0 NUM coo.31924059551022 79 15 = = SYM coo.31924059551022 79 16 f'ufvfw f'ufvfw ADP coo.31924059551022 79 17 = = PUNCT coo.31924059551022 79 18 tfj£ tfj£ NOUN coo.31924059551022 79 19 = = X coo.31924059551022 80 1 [ [ X coo.31924059551022 80 2 apu apu X coo.31924059551022 80 3 + + ADP coo.31924059551022 80 4 b]t b]t NOUN coo.31924059551022 80 5 with with ADP coo.31924059551022 80 6 corresponding corresponding ADJ coo.31924059551022 80 7 equations equation NOUN coo.31924059551022 80 8 for for ADP coo.31924059551022 80 9 v v NOUN coo.31924059551022 80 10 and and CCONJ coo.31924059551022 80 11 w. w. NOUN coo.31924059551022 80 12 if if SCONJ coo.31924059551022 80 13 then then ADV coo.31924059551022 80 14 one one PRON coo.31924059551022 80 15 can can AUX coo.31924059551022 80 16 find find VERB coo.31924059551022 80 17 2n 2n NUM coo.31924059551022 80 18 + + CCONJ coo.31924059551022 80 19 1 1 NUM coo.31924059551022 80 20 systems system NOUN coo.31924059551022 80 21 of of ADP coo.31924059551022 80 22 constants constant NOUN coo.31924059551022 80 23 a a PRON coo.31924059551022 80 24 and and CCONJ coo.31924059551022 80 25 b b NOUN coo.31924059551022 80 26 of of ADP coo.31924059551022 80 27 such such ADJ coo.31924059551022 80 28 sort sort NOUN coo.31924059551022 80 29 that that DET coo.31924059551022 80 30 for for ADP coo.31924059551022 80 31 each each PRON coo.31924059551022 80 32 of of ADP coo.31924059551022 80 33 these these DET coo.31924059551022 80 34 systems system NOUN coo.31924059551022 80 35 there there ADV coo.31924059551022 80 36 exists exist VERB coo.31924059551022 80 37 a a DET coo.31924059551022 80 38 solution solution NOUN coo.31924059551022 80 39 y y PROPN coo.31924059551022 80 40 = = PUNCT coo.31924059551022 80 41 fu fu PROPN coo.31924059551022 80 42 of of ADP coo.31924059551022 80 43 equation equation NOUN coo.31924059551022 80 44 [ [ X coo.31924059551022 80 45 4 4 NUM coo.31924059551022 80 46 ] ] PUNCT coo.31924059551022 80 47 where where SCONJ coo.31924059551022 80 48 y y PROPN coo.31924059551022 80 49 is be AUX coo.31924059551022 80 50 an an DET coo.31924059551022 80 51 intire intire ADJ coo.31924059551022 80 52 function function NOUN coo.31924059551022 80 53 of of ADP coo.31924059551022 80 54 the the DET coo.31924059551022 80 55 nth nth NOUN coo.31924059551022 80 56 degree degree NOUN coo.31924059551022 80 57 each each PRON coo.31924059551022 80 58 of of ADP coo.31924059551022 80 59 the the DET coo.31924059551022 80 60 corresponding correspond VERB coo.31924059551022 80 61 products product NOUN coo.31924059551022 80 62 fufvfw fufvfw ADV coo.31924059551022 80 63 will will AUX coo.31924059551022 80 64 furnish furnish VERB coo.31924059551022 80 65 a a DET coo.31924059551022 80 66 term term NOUN coo.31924059551022 80 67 tn tn NOUN coo.31924059551022 80 68 of of ADP coo.31924059551022 80 69 t t PROPN coo.31924059551022 80 70 and and CCONJ coo.31924059551022 80 71 the the DET coo.31924059551022 80 72 problem problem NOUN coo.31924059551022 80 73 of of ADP coo.31924059551022 80 74 lamé lamé NOUN coo.31924059551022 80 75 will will AUX coo.31924059551022 80 76 be be AUX coo.31924059551022 80 77 solved solve VERB coo.31924059551022 80 78 . . PUNCT coo.31924059551022 81 1 the the DET coo.31924059551022 81 2 value value NOUN coo.31924059551022 81 3 of of ADP coo.31924059551022 81 4 a a PRON coo.31924059551022 81 5 for for ADP coo.31924059551022 81 6 all all PRON coo.31924059551022 81 7 of of ADP coo.31924059551022 81 8 these these DET coo.31924059551022 81 9 systems system NOUN coo.31924059551022 81 10 is be AUX coo.31924059551022 81 11 n{n n{n ADJ coo.31924059551022 81 12 -f1 -f1 PROPN coo.31924059551022 81 13 ) ) PUNCT coo.31924059551022 81 14 where where SCONJ coo.31924059551022 81 15 n n PROPN coo.31924059551022 81 16 may may AUX coo.31924059551022 81 17 be be AUX coo.31924059551022 81 18 considered consider VERB coo.31924059551022 81 19 as as ADP coo.31924059551022 81 20 always always ADV coo.31924059551022 81 21 positive positive ADJ coo.31924059551022 81 22 , , PUNCT coo.31924059551022 81 23 since since SCONJ coo.31924059551022 81 24 the the DET coo.31924059551022 81 25 substitution substitution NOUN coo.31924059551022 81 26 n n CCONJ coo.31924059551022 81 27 ^ ^ NOUN coo.31924059551022 81 28 — — PUNCT coo.31924059551022 81 29 ( ( PUNCT coo.31924059551022 81 30 n n X coo.31924059551022 81 31 -|1 -|1 X coo.31924059551022 81 32 ) ) PUNCT coo.31924059551022 81 33 does do AUX coo.31924059551022 81 34 not not PART coo.31924059551022 81 35 alter alter VERB coo.31924059551022 81 36 the the DET coo.31924059551022 81 37 value value NOUN coo.31924059551022 81 38 of of ADP coo.31924059551022 81 39 a. a. NOUN coo.31924059551022 81 40 the the DET coo.31924059551022 81 41 problem problem NOUN coo.31924059551022 81 42 of of ADP coo.31924059551022 81 43 hermite hermite PROPN coo.31924059551022 81 44 . . PUNCT coo.31924059551022 82 1 continuing continue VERB coo.31924059551022 82 2 our our PRON coo.31924059551022 82 3 review review NOUN coo.31924059551022 82 4 we we PRON coo.31924059551022 82 5 find find VERB coo.31924059551022 82 6 that that SCONJ coo.31924059551022 82 7 one one NUM coo.31924059551022 82 8 of of ADP coo.31924059551022 82 9 the the DET coo.31924059551022 82 10 original original ADJ coo.31924059551022 82 11 forms form NOUN coo.31924059551022 82 12 of of ADP coo.31924059551022 82 13 lamé;s lamé;s ADJ coo.31924059551022 82 14 equation equation NOUN coo.31924059551022 82 15 expressed express VERB coo.31924059551022 82 16 in in ADP coo.31924059551022 82 17 terms term NOUN coo.31924059551022 82 18 of of ADP coo.31924059551022 82 19 the the DET coo.31924059551022 82 20 jacobian jacobian ADJ coo.31924059551022 82 21 function function NOUN coo.31924059551022 82 22 is be AUX coo.31924059551022 82 23 [ [ X coo.31924059551022 82 24 9] 9] NUM coo.31924059551022 82 25 .............. .............. NUM coo.31924059551022 82 26 ^ ^ NOUN coo.31924059551022 82 27 — — PUNCT coo.31924059551022 83 1 [ [ X coo.31924059551022 83 2 w(w w(w NOUN coo.31924059551022 83 3 + + CCONJ coo.31924059551022 83 4 1 1 NUM coo.31924059551022 83 5 ) ) PUNCT coo.31924059551022 83 6 k?sn2x k?sn2x PROPN coo.31924059551022 83 7 -\-h]y -\-h]y PROPN coo.31924059551022 83 8 = = SYM coo.31924059551022 83 9 0 0 NUM coo.31924059551022 83 10 corresponding correspond VERB coo.31924059551022 83 11 to to ADP coo.31924059551022 83 12 the the DET coo.31924059551022 83 13 form form NOUN coo.31924059551022 83 14 [ [ X coo.31924059551022 83 15 4 4 NUM coo.31924059551022 83 16 ] ] X coo.31924059551022 83 17 * * PUNCT coo.31924059551022 83 18 ) ) PUNCT coo.31924059551022 84 1 [ [ X coo.31924059551022 84 2 10] 10] NUM coo.31924059551022 84 3 ............... ............... PUNCT coo.31924059551022 85 1 τί~ τί~ VERB coo.31924059551022 86 1 [ [ X coo.31924059551022 86 2 ♦ ♦ PROPN coo.31924059551022 86 3 » » X coo.31924059551022 86 4 ( ( PUNCT coo.31924059551022 86 5 » » PUNCT coo.31924059551022 86 6 + + X coo.31924059551022 86 7 l)pu l)pu PUNCT coo.31924059551022 87 1 + + PUNCT coo.31924059551022 87 2 b]y b]y PROPN coo.31924059551022 87 3 = = SYM coo.31924059551022 87 4 0 0 NUM coo.31924059551022 87 5 where where SCONJ coo.31924059551022 87 6 h h PROPN coo.31924059551022 87 7 is be AUX coo.31924059551022 87 8 an an DET coo.31924059551022 87 9 arbitrary arbitrary ADJ coo.31924059551022 87 10 constant constant NOUN coo.31924059551022 87 11 and and CCONJ coo.31924059551022 87 12 n n CCONJ coo.31924059551022 87 13 a a DET coo.31924059551022 87 14 positive positive ADJ coo.31924059551022 87 15 whole whole ADJ coo.31924059551022 87 16 number number NOUN coo.31924059551022 87 17 . . PUNCT coo.31924059551022 88 1 lamé lamé NOUN coo.31924059551022 88 2 succeeded succeed VERB coo.31924059551022 88 3 in in ADP coo.31924059551022 88 4 finding find VERB coo.31924059551022 88 5 the the DET coo.31924059551022 88 6 requisite requisite ADJ coo.31924059551022 88 7 number number NOUN coo.31924059551022 88 8 of of ADP coo.31924059551022 88 9 values value NOUN coo.31924059551022 88 10 of of ADP coo.31924059551022 88 11 h h NOUN coo.31924059551022 88 12 to to PART coo.31924059551022 88 13 complete complete VERB coo.31924059551022 88 14 his his PRON coo.31924059551022 88 15 solution solution NOUN coo.31924059551022 88 16 for for ADP coo.31924059551022 88 17 the the DET coo.31924059551022 88 18 ellipsoid ellipsoid ADJ coo.31924059551022 88 19 and and CCONJ coo.31924059551022 88 20 the the DET coo.31924059551022 88 21 solutions solution NOUN coo.31924059551022 88 22 of of ADP coo.31924059551022 88 23 [ [ PUNCT coo.31924059551022 88 24 4 4 NUM coo.31924059551022 88 25 ] ] PUNCT coo.31924059551022 88 26 corresponding correspond VERB coo.31924059551022 88 27 to to ADP coo.31924059551022 88 28 these these DET coo.31924059551022 88 29 values value NOUN coo.31924059551022 88 30 are be AUX coo.31924059551022 88 31 known know VERB coo.31924059551022 88 32 as as ADP coo.31924059551022 88 33 the the DET coo.31924059551022 88 34 original original ADJ coo.31924059551022 88 35 special special ADJ coo.31924059551022 88 36 functions function NOUN coo.31924059551022 88 37 of of ADP coo.31924059551022 88 38 lamé lamé NOUN coo.31924059551022 88 39 . . PUNCT coo.31924059551022 89 1 the the DET coo.31924059551022 89 2 problem problem NOUN coo.31924059551022 89 3 then then ADV coo.31924059551022 89 4 arose arise VERB coo.31924059551022 89 5 : : PUNCT coo.31924059551022 89 6 required require VERB coo.31924059551022 89 7 to to PART coo.31924059551022 89 8 determine determine VERB coo.31924059551022 89 9 a a DET coo.31924059551022 89 10 solution solution NOUN coo.31924059551022 89 11 of of ADP coo.31924059551022 89 12 lame lame PROPN coo.31924059551022 89 13 's 's PART coo.31924059551022 89 14 original original ADJ coo.31924059551022 89 15 equation equation NOUN coo.31924059551022 89 16 which which PRON coo.31924059551022 89 17 shall shall AUX coo.31924059551022 89 18 hold hold VERB coo.31924059551022 89 19 for for ADP coo.31924059551022 89 20 any any DET coo.31924059551022 89 21 values value NOUN coo.31924059551022 89 22 of of ADP coo.31924059551022 89 23 h h PROPN coo.31924059551022 89 24 and and CCONJ coo.31924059551022 89 25 n. n. NOUN coo.31924059551022 89 26 except except SCONJ coo.31924059551022 89 27 for for ADP coo.31924059551022 89 28 the the DET coo.31924059551022 89 29 special special ADJ coo.31924059551022 89 30 values value NOUN coo.31924059551022 89 31 η η PROPN coo.31924059551022 89 32 — — PUNCT coo.31924059551022 89 33 1 1 NUM coo.31924059551022 89 34 and and CCONJ coo.31924059551022 89 35 n n CCONJ coo.31924059551022 89 36 = = SYM coo.31924059551022 89 37 2 2 NUM coo.31924059551022 90 1 no no DET coo.31924059551022 90 2 advance advance NOUN coo.31924059551022 90 3 was be AUX coo.31924059551022 90 4 made make VERB coo.31924059551022 90 5 towards towards ADP coo.31924059551022 90 6 a a DET coo.31924059551022 90 7 solution solution NOUN coo.31924059551022 90 8 until until ADP coo.31924059551022 90 9 m. m. NOUN coo.31924059551022 90 10 hermite hermite PROPN coo.31924059551022 90 11 * * PUNCT coo.31924059551022 90 12 * * PUNCT coo.31924059551022 90 13 ) ) PUNCT coo.31924059551022 90 14 , , PUNCT coo.31924059551022 90 15 making make VERB coo.31924059551022 90 16 use use NOUN coo.31924059551022 90 17 of of ADP coo.31924059551022 90 18 the the DET coo.31924059551022 90 19 progress progress NOUN coo.31924059551022 90 20 in in ADP coo.31924059551022 90 21 the the DET coo.31924059551022 90 22 theory theory NOUN coo.31924059551022 90 23 of of ADP coo.31924059551022 90 24 functions function NOUN coo.31924059551022 90 25 inaugurated inaugurate VERB coo.31924059551022 90 26 by by ADP coo.31924059551022 90 27 cauchy cauchy NOUN coo.31924059551022 90 28 , , PUNCT coo.31924059551022 90 29 arrived arrive VERB coo.31924059551022 90 30 at at ADP coo.31924059551022 90 31 the the DET coo.31924059551022 90 32 solution solution NOUN coo.31924059551022 90 33 and and CCONJ coo.31924059551022 90 34 by by ADP coo.31924059551022 90 35 so so ADV coo.31924059551022 90 36 doing do VERB coo.31924059551022 90 37 opened open VERB coo.31924059551022 90 38 a a DET coo.31924059551022 90 39 new new ADJ coo.31924059551022 90 40 field field NOUN coo.31924059551022 90 41 for for ADP coo.31924059551022 90 42 * * PUNCT coo.31924059551022 90 43 ) ) PUNCT coo.31924059551022 90 44 see see VERB coo.31924059551022 90 45 transformation transformation NOUN coo.31924059551022 90 46 p. p. NOUN coo.31924059551022 90 47 20 20 NUM coo.31924059551022 90 48 . . PUNCT coo.31924059551022 91 1 * * PUNCT coo.31924059551022 91 2 * * PUNCT coo.31924059551022 91 3 ) ) PUNCT coo.31924059551022 91 4 sur sur X coo.31924059551022 91 5 quelques quelques X coo.31924059551022 91 6 applications application NOUN coo.31924059551022 91 7 des des X coo.31924059551022 91 8 fonctions fonction NOUN coo.31924059551022 91 9 elliptiques elliptique NOUN coo.31924059551022 91 10 . . PUNCT coo.31924059551022 92 1 comptes compte NOUN coo.31924059551022 92 2 rendus rendus PROPN coo.31924059551022 92 3 de de X coo.31924059551022 92 4 l’académie l’académie PROPN coo.31924059551022 92 5 des des X coo.31924059551022 92 6 sciences sciences PROPN coo.31924059551022 92 7 de de X coo.31924059551022 92 8 paris paris PROPN coo.31924059551022 92 9 . . PUNCT coo.31924059551022 93 1 1877 1877 NUM coo.31924059551022 93 2 . . PUNCT coo.31924059551022 94 1 14 14 X coo.31924059551022 94 2 part part NOUN coo.31924059551022 94 3 i. i. PROPN coo.31924059551022 94 4 ethe ethe PROPN coo.31924059551022 94 5 application application NOUN coo.31924059551022 94 6 of of ADP coo.31924059551022 94 7 the the DET coo.31924059551022 94 8 elliptic elliptic ADJ coo.31924059551022 94 9 functions function NOUN coo.31924059551022 94 10 and and CCONJ coo.31924059551022 94 11 leading lead VERB coo.31924059551022 94 12 later later ADV coo.31924059551022 94 13 to to ADP coo.31924059551022 94 14 the the DET coo.31924059551022 94 15 integration integration NOUN coo.31924059551022 94 16 of of ADP coo.31924059551022 94 17 a a DET coo.31924059551022 94 18 large large ADJ coo.31924059551022 94 19 class class NOUN coo.31924059551022 94 20 of of ADP coo.31924059551022 94 21 differential differential ADJ coo.31924059551022 94 22 equations equation NOUN coo.31924059551022 94 23 . . PUNCT coo.31924059551022 95 1 * * PUNCT coo.31924059551022 95 2 ) ) PUNCT coo.31924059551022 95 3 in in ADP coo.31924059551022 95 4 this this DET coo.31924059551022 95 5 connection connection NOUN coo.31924059551022 95 6 m. m. NOUN coo.31924059551022 95 7 hermite hermite PROPN coo.31924059551022 95 8 introduces introduce VERB coo.31924059551022 95 9 the the DET coo.31924059551022 95 10 functions function NOUN coo.31924059551022 95 11 called call VERB coo.31924059551022 95 12 by by ADP coo.31924059551022 95 13 him he PRON coo.31924059551022 95 14 doubly doubly ADV coo.31924059551022 95 15 periodic periodic ADJ coo.31924059551022 95 16 of of ADP coo.31924059551022 95 17 the the DET coo.31924059551022 95 18 second second ADJ coo.31924059551022 95 19 species specie NOUN coo.31924059551022 95 20 , , PUNCT coo.31924059551022 95 21 which which PRON coo.31924059551022 95 22 have have VERB coo.31924059551022 95 23 the the DET coo.31924059551022 95 24 special special ADJ coo.31924059551022 95 25 property property NOUN coo.31924059551022 95 26 , , PUNCT coo.31924059551022 95 27 that that PRON coo.31924059551022 95 28 save save VERB coo.31924059551022 95 29 for for ADP coo.31924059551022 95 30 a a DET coo.31924059551022 95 31 constant constant ADJ coo.31924059551022 95 32 factor factor NOUN coo.31924059551022 95 33 they they PRON coo.31924059551022 95 34 remain remain VERB coo.31924059551022 95 35 unaltered unaltered ADJ coo.31924059551022 95 36 upon upon SCONJ coo.31924059551022 95 37 the the DET coo.31924059551022 95 38 addition addition NOUN coo.31924059551022 95 39 to to ADP coo.31924059551022 95 40 the the DET coo.31924059551022 95 41 argument argument NOUN coo.31924059551022 95 42 of of ADP coo.31924059551022 95 43 the the DET coo.31924059551022 95 44 fundimental fundimental ADJ coo.31924059551022 95 45 periods period NOUN coo.31924059551022 95 46 . . PUNCT coo.31924059551022 96 1 the the DET coo.31924059551022 96 2 solution solution NOUN coo.31924059551022 96 3 of of ADP coo.31924059551022 96 4 m. m. NOUN coo.31924059551022 96 5 hermite hermite PROPN coo.31924059551022 96 6 developed develop VERB coo.31924059551022 96 7 in in ADP coo.31924059551022 96 8 terms term NOUN coo.31924059551022 96 9 of of ADP coo.31924059551022 96 10 snu snu NOUN coo.31924059551022 96 11 and and CCONJ coo.31924059551022 96 12 for for ADP coo.31924059551022 96 13 n n CCONJ coo.31924059551022 96 14 odd odd ADJ coo.31924059551022 96 15 may may AUX coo.31924059551022 96 16 be be AUX coo.31924059551022 96 17 written write VERB coo.31924059551022 96 18 in in ADP coo.31924059551022 96 19 the the DET coo.31924059551022 96 20 form form NOUN coo.31924059551022 96 21 [ [ X coo.31924059551022 97 1 11 11 NUM coo.31924059551022 97 2 ] ] PUNCT coo.31924059551022 97 3 y y PROPN coo.31924059551022 97 4 = = X coo.31924059551022 97 5 f(u f(u PROPN coo.31924059551022 97 6 ) ) PUNCT coo.31924059551022 97 7 = = PUNCT coo.31924059551022 98 1 i i PRON coo.31924059551022 98 2 > > X coo.31924059551022 98 3 : : PUNCT coo.31924059551022 98 4 γ(ϋν γ(ϋν NUM coo.31924059551022 98 5 ) ) PUNCT coo.31924059551022 98 6 vw vw ADP coo.31924059551022 98 7 + + CCONJ coo.31924059551022 98 8 \»lr \»lr NOUN coo.31924059551022 98 9 p(2v p(2v NOUN coo.31924059551022 98 10 — — PUNCT coo.31924059551022 98 11 i i PRON coo.31924059551022 98 12 “ " PUNCT coo.31924059551022 98 13 f f X coo.31924059551022 98 14 " " PUNCT coo.31924059551022 98 15 · · PUNCT coo.31924059551022 98 16 * * PUNCT coo.31924059551022 98 17 * * PUNCT coo.31924059551022 98 18 4 4 X coo.31924059551022 98 19 " " PUNCT coo.31924059551022 98 20 hy hy NOUN coo.31924059551022 98 21 _ _ NOUN coo.31924059551022 98 22 1 1 NUM coo.31924059551022 98 23 f(u f(u NOUN coo.31924059551022 98 24 ) ) PUNCT coo.31924059551022 98 25 where where SCONJ coo.31924059551022 98 26 n n PROPN coo.31924059551022 98 27 — — PUNCT coo.31924059551022 98 28 2v 2v NUM coo.31924059551022 98 29 — — PUNCT coo.31924059551022 98 30 1 1 NUM coo.31924059551022 98 31 , , PUNCT coo.31924059551022 98 32 with with ADP coo.31924059551022 98 33 a a DET coo.31924059551022 98 34 corresponding corresponding ADJ coo.31924059551022 98 35 form form NOUN coo.31924059551022 98 36 for for ADP coo.31924059551022 98 37 n n CCONJ coo.31924059551022 98 38 even even ADV coo.31924059551022 98 39 , , PUNCT coo.31924059551022 98 40 where where SCONJ coo.31924059551022 98 41 f(u f(u PROPN coo.31924059551022 98 42 ) ) PUNCT coo.31924059551022 98 43 is be AUX coo.31924059551022 98 44 a a DET coo.31924059551022 98 45 doubly doubly ADV coo.31924059551022 98 46 periodic periodic ADJ coo.31924059551022 98 47 function function NOUN coo.31924059551022 98 48 of of ADP coo.31924059551022 98 49 the the DET coo.31924059551022 98 50 second second ADJ coo.31924059551022 98 51 species specie NOUN coo.31924059551022 98 52 , , PUNCT coo.31924059551022 98 53 namely namely ADV coo.31924059551022 98 54 , , PUNCT coo.31924059551022 98 55 where where SCONJ coo.31924059551022 98 56 f(u f(u PROPN coo.31924059551022 98 57 ) ) PUNCT coo.31924059551022 98 58 = = PROPN coo.31924059551022 98 59 ex(-a~~ir ex(-a~~ir PROPN coo.31924059551022 98 60 ) ) PUNCT coo.31924059551022 98 61 % % NOUN coo.31924059551022 98 62 ( ( PUNCT coo.31924059551022 98 63 u u PROPN coo.31924059551022 98 64 ) ) PUNCT coo.31924059551022 98 65 x(u x(u PROPN coo.31924059551022 98 66 ) ) PUNCT coo.31924059551022 99 1 = = PROPN coo.31924059551022 99 2 h h PROPN coo.31924059551022 99 3 ' ' PUNCT coo.31924059551022 99 4 ( ( PUNCT coo.31924059551022 99 5 0 0 NUM coo.31924059551022 99 6 ) ) PUNCT coo.31924059551022 99 7 h h PROPN coo.31924059551022 99 8 ( ( PUNCT coo.31924059551022 99 9 u u PROPN coo.31924059551022 99 10 ω ω PROPN coo.31924059551022 99 11 ) ) PUNCT coo.31924059551022 99 12 θ{η θ{η PROPN coo.31924059551022 99 13 ) ) PUNCT coo.31924059551022 99 14 θ θ PROPN coo.31924059551022 99 15 ( ( PUNCT coo.31924059551022 99 16 ω ω PROPN coo.31924059551022 99 17 ) ) PUNCT coo.31924059551022 99 18 & & CCONJ coo.31924059551022 99 19 ' ' PUNCT coo.31924059551022 99 20 ( ( PUNCT coo.31924059551022 99 21 ω ω PROPN coo.31924059551022 99 22 ) ) PUNCT coo.31924059551022 99 23 θ(ω θ(ω PROPN coo.31924059551022 99 24 ) ) PUNCT coo.31924059551022 99 25 ( ( PUNCT coo.31924059551022 99 26 u u PROPN coo.31924059551022 99 27 — — PUNCT coo.31924059551022 99 28 ík ík NOUN coo.31924059551022 99 29 ' ' PUNCT coo.31924059551022 99 30 ) ) PUNCT coo.31924059551022 100 1 + + CCONJ coo.31924059551022 100 2 i i PRON coo.31924059551022 101 1 it it PRON coo.31924059551022 101 2 ω ω X coo.31924059551022 102 1 υκ υκ ADP coo.31924059551022 102 2 that that SCONJ coo.31924059551022 102 3 this this PRON coo.31924059551022 102 4 shall shall AUX coo.31924059551022 102 5 be be AUX coo.31924059551022 102 6 a a DET coo.31924059551022 102 7 solution solution NOUN coo.31924059551022 102 8 the the DET coo.31924059551022 102 9 quantities quantity NOUN coo.31924059551022 102 10 ω ω PROPN coo.31924059551022 103 1 and and CCONJ coo.31924059551022 103 2 λ λ NOUN coo.31924059551022 103 3 must must AUX coo.31924059551022 103 4 be be AUX coo.31924059551022 103 5 determined determine VERB coo.31924059551022 103 6 to to PART coo.31924059551022 103 7 correspond correspond VERB coo.31924059551022 103 8 with with ADP coo.31924059551022 103 9 definite definite ADJ coo.31924059551022 103 10 conditions condition NOUN coo.31924059551022 103 11 and and CCONJ coo.31924059551022 103 12 herein herein ADV coo.31924059551022 103 13 lies lie VERB coo.31924059551022 103 14 the the DET coo.31924059551022 103 15 chief chief ADJ coo.31924059551022 103 16 difficulty difficulty NOUN coo.31924059551022 103 17 when when SCONJ coo.31924059551022 103 18 explicit explicit ADJ coo.31924059551022 103 19 values value NOUN coo.31924059551022 103 20 of of ADP coo.31924059551022 103 21 the the DET coo.31924059551022 103 22 functions function NOUN coo.31924059551022 103 23 are be AUX coo.31924059551022 103 24 sought seek VERB coo.31924059551022 103 25 . . PUNCT coo.31924059551022 104 1 moreover moreover ADV coo.31924059551022 104 2 the the DET coo.31924059551022 104 3 above above ADJ coo.31924059551022 104 4 development development NOUN coo.31924059551022 104 5 fails fail VERB coo.31924059551022 104 6 as as SCONJ coo.31924059551022 104 7 we we PRON coo.31924059551022 104 8 shall shall AUX coo.31924059551022 104 9 find find VERB coo.31924059551022 104 10 when when SCONJ coo.31924059551022 104 11 seeking seek VERB coo.31924059551022 104 12 to to PART coo.31924059551022 104 13 deduce deduce VERB coo.31924059551022 104 14 the the DET coo.31924059551022 104 15 special special ADJ coo.31924059551022 104 16 functions function NOUN coo.31924059551022 104 17 of of ADP coo.31924059551022 104 18 m. m. NOUN coo.31924059551022 104 19 mittag mittag ADJ coo.31924059551022 104 20 - - PUNCT coo.31924059551022 104 21 lefifler lefifler NOUN coo.31924059551022 104 22 from from ADP coo.31924059551022 104 23 the the DET coo.31924059551022 104 24 general general ADJ coo.31924059551022 104 25 form form NOUN coo.31924059551022 104 26 . . PUNCT coo.31924059551022 105 1 m. m. NOUN coo.31924059551022 105 2 hermite hermite PROPN coo.31924059551022 105 3 was be AUX coo.31924059551022 105 4 thus thus ADV coo.31924059551022 105 5 led lead VERB coo.31924059551022 105 6 to to ADP coo.31924059551022 105 7 a a DET coo.31924059551022 105 8 new new ADJ coo.31924059551022 105 9 presentation presentation NOUN coo.31924059551022 105 10 of of ADP coo.31924059551022 105 11 the the DET coo.31924059551022 105 12 general general ADJ coo.31924059551022 105 13 solution solution NOUN coo.31924059551022 105 14 in in ADP coo.31924059551022 105 15 the the DET coo.31924059551022 105 16 form form NOUN coo.31924059551022 105 17 of of ADP coo.31924059551022 105 18 a a DET coo.31924059551022 105 19 product product NOUN coo.31924059551022 105 20 , , PUNCT coo.31924059551022 105 21 namely namely ADV coo.31924059551022 105 22 i±a i±a PROPN coo.31924059551022 105 23 e e PROPN coo.31924059551022 105 24 - - PROPN coo.31924059551022 105 25 uca uca ADJ coo.31924059551022 105 26 * * PROPN coo.31924059551022 105 27 ii ii PROPN coo.31924059551022 105 28 6ü6u 6ü6u PROPN coo.31924059551022 105 29 a. a. PROPN coo.31924059551022 105 30 = = SYM coo.31924059551022 105 31 a. a. PROPN coo.31924059551022 105 32 · · PUNCT coo.31924059551022 105 33 h h NOUN coo.31924059551022 105 34 · · PUNCT coo.31924059551022 105 35 · · PUNCT coo.31924059551022 105 36 a a DET coo.31924059551022 105 37 form form NOUN coo.31924059551022 105 38 of of ADP coo.31924059551022 105 39 solution solution NOUN coo.31924059551022 105 40 suited suit VERB coo.31924059551022 105 41 to to ADP coo.31924059551022 105 42 every every DET coo.31924059551022 105 43 case case NOUN coo.31924059551022 105 44 . . PUNCT coo.31924059551022 106 1 the the DET coo.31924059551022 106 2 general general ADJ coo.31924059551022 106 3 theory theory NOUN coo.31924059551022 106 4 based base VERB coo.31924059551022 106 5 upon upon SCONJ coo.31924059551022 106 6 the the DET coo.31924059551022 106 7 latter latter ADJ coo.31924059551022 106 8 solution solution NOUN coo.31924059551022 106 9 has have AUX coo.31924059551022 106 10 been be AUX coo.31924059551022 106 11 lately lately ADV coo.31924059551022 106 12 perfected perfect VERB coo.31924059551022 106 13 by by ADP coo.31924059551022 106 14 halphen halphen ADV coo.31924059551022 106 15 * * NOUN coo.31924059551022 106 16 * * PUNCT coo.31924059551022 106 17 ) ) PUNCT coo.31924059551022 106 18 , , PUNCT coo.31924059551022 106 19 who who PRON coo.31924059551022 106 20 , , PUNCT coo.31924059551022 106 21 confining confine VERB coo.31924059551022 106 22 himself himself PRON coo.31924059551022 106 23 in in ADP coo.31924059551022 106 24 the the DET coo.31924059551022 106 25 main main NOUN coo.31924059551022 106 26 to to ADP coo.31924059551022 106 27 the the DET coo.31924059551022 106 28 use use NOUN coo.31924059551022 106 29 of of ADP coo.31924059551022 106 30 the the DET coo.31924059551022 106 31 p p NOUN coo.31924059551022 106 32 function function NOUN coo.31924059551022 106 33 , , PUNCT coo.31924059551022 106 34 presents present VERB coo.31924059551022 106 35 the the DET coo.31924059551022 106 36 subject subject NOUN coo.31924059551022 106 37 in in ADP coo.31924059551022 106 38 an an DET coo.31924059551022 106 39 excellent excellent ADJ coo.31924059551022 106 40 but but CCONJ coo.31924059551022 106 41 highly highly ADV coo.31924059551022 106 42 condensed condense VERB coo.31924059551022 106 43 form form NOUN coo.31924059551022 106 44 . . PUNCT coo.31924059551022 107 1 * * PUNCT coo.31924059551022 107 2 ) ) PUNCT coo.31924059551022 107 3 equations equation NOUN coo.31924059551022 107 4 of of ADP coo.31924059551022 107 5 m. m. NOUN coo.31924059551022 107 6 éimile éimile NOUN coo.31924059551022 107 7 picard picard NOUN coo.31924059551022 107 8 . . PUNCT coo.31924059551022 108 1 comptes compte NOUN coo.31924059551022 108 2 rendus rendus PROPN coo.31924059551022 108 3 , , PUNCT coo.31924059551022 108 4 t. t. PROPN coo.31924059551022 108 5 xc xc PROPN coo.31924059551022 108 6 , , PUNCT coo.31924059551022 108 7 p. p. NOUN coo.31924059551022 108 8 128 128 NUM coo.31924059551022 108 9 and and CCONJ coo.31924059551022 108 10 293 293 NUM coo.31924059551022 108 11 . . PUNCT coo.31924059551022 109 1 — — PUNCT coo.31924059551022 109 2 prof prof NOUN coo.31924059551022 109 3 . . PUNCT coo.31924059551022 109 4 fuchs fuchs PROPN coo.31924059551022 109 5 , , PUNCT coo.31924059551022 109 6 ueber ueber ADJ coo.31924059551022 109 7 eine eine PROPN coo.31924059551022 109 8 classe classe PROPN coo.31924059551022 109 9 von von PROPN coo.31924059551022 109 10 differenzialgleichungen differenzialgleichungen PROPN coo.31924059551022 109 11 , , PUNCT coo.31924059551022 109 12 welche welche PROPN coo.31924059551022 109 13 durch durch PROPN coo.31924059551022 109 14 abelsche abelsche PROPN coo.31924059551022 109 15 oder oder PROPN coo.31924059551022 109 16 elliptische elliptische PROPN coo.31924059551022 109 17 functionen functionen PROPN coo.31924059551022 109 18 integrirbar integrirbar PROPN coo.31924059551022 109 19 sind sind PROPN coo.31924059551022 109 20 . . PUNCT coo.31924059551022 110 1 nachrichten nachrichten PROPN coo.31924059551022 110 2 von von PROPN coo.31924059551022 110 3 göttingen göttingen PROPN coo.31924059551022 110 4 1878 1878 NUM coo.31924059551022 110 5 , , PUNCT coo.31924059551022 110 6 and and CCONJ coo.31924059551022 110 7 hermite hermite NOUN coo.31924059551022 110 8 : : PUNCT coo.31924059551022 110 9 annali annali PROPN coo.31924059551022 110 10 di di PROPN coo.31924059551022 110 11 matematica matematica PROPN coo.31924059551022 110 12 , , PUNCT coo.31924059551022 110 13 serie serie PROPN coo.31924059551022 110 14 ii ii PROPN coo.31924059551022 110 15 , , PUNCT coo.31924059551022 110 16 bd bd PROPN coo.31924059551022 110 17 . . PROPN coo.31924059551022 110 18 ix ix PROPN coo.31924059551022 110 19 , , PUNCT coo.31924059551022 110 20 1878 1878 NUM coo.31924059551022 110 21 . . PUNCT coo.31924059551022 111 1 * * PUNCT coo.31924059551022 111 2 * * NOUN coo.31924059551022 111 3 ) ) PUNCT coo.31924059551022 111 4 traité traité NOUN coo.31924059551022 111 5 des des PROPN coo.31924059551022 111 6 fonctions fonction NOUN coo.31924059551022 111 7 elliptiques elliptiques PROPN coo.31924059551022 111 8 et et NOUN coo.31924059551022 111 9 leur leur PROPN coo.31924059551022 111 10 applications application NOUN coo.31924059551022 111 11 . . PUNCT coo.31924059551022 112 1 b. b. PROPN coo.31924059551022 112 2 ii ii PROPN coo.31924059551022 112 3 . . PROPN coo.31924059551022 112 4 paris paris PROPN coo.31924059551022 112 5 1888 1888 NUM coo.31924059551022 112 6 . . PUNCT coo.31924059551022 113 1 historical historical ADJ coo.31924059551022 113 2 development development NOUN coo.31924059551022 113 3 and and CCONJ coo.31924059551022 113 4 definition definition NOUN coo.31924059551022 113 5 of of ADP coo.31924059551022 113 6 the the DET coo.31924059551022 113 7 equation equation NOUN coo.31924059551022 113 8 of of ADP coo.31924059551022 113 9 lamé lamé NOUN coo.31924059551022 113 10 . . PUNCT coo.31924059551022 114 1 15 15 NUM coo.31924059551022 114 2 definitions definition NOUN coo.31924059551022 114 3 . . PUNCT coo.31924059551022 115 1 returning return VERB coo.31924059551022 115 2 to to PART coo.31924059551022 115 3 form form VERB coo.31924059551022 115 4 [ [ X coo.31924059551022 115 5 9 9 NUM coo.31924059551022 115 6 ] ] PUNCT coo.31924059551022 115 7 of of ADP coo.31924059551022 115 8 lame lame PROPN coo.31924059551022 115 9 's 's PART coo.31924059551022 115 10 equation equation NOUN coo.31924059551022 115 11 we we PRON coo.31924059551022 115 12 observe observe VERB coo.31924059551022 115 13 that that SCONJ coo.31924059551022 115 14 it it PRON coo.31924059551022 115 15 has have VERB coo.31924059551022 115 16 the the DET coo.31924059551022 115 17 following follow VERB coo.31924059551022 115 18 properties property NOUN coo.31924059551022 115 19 : : PUNCT coo.31924059551022 115 20 it it PRON coo.31924059551022 115 21 has have VERB coo.31924059551022 115 22 a a DET coo.31924059551022 115 23 coefficient coefficient NOUN coo.31924059551022 115 24 n n NOUN coo.31924059551022 115 25 ( ( PUNCT coo.31924059551022 115 26 n n X coo.31924059551022 115 27 + + CCONJ coo.31924059551022 115 28 1 1 X coo.31924059551022 115 29 ) ) PUNCT coo.31924059551022 115 30 wsn2x wsn2x PROPN coo.31924059551022 116 1 + + NOUN coo.31924059551022 116 2 h h NOUN coo.31924059551022 116 3 that that PRON coo.31924059551022 116 4 is be AUX coo.31924059551022 116 5 doubly doubly ADV coo.31924059551022 116 6 periodic periodic ADJ coo.31924059551022 116 7 and and CCONJ coo.31924059551022 116 8 has have VERB coo.31924059551022 116 9 only only ADV coo.31924059551022 116 10 one one NUM coo.31924059551022 116 11 infinite infinite NOUN coo.31924059551022 116 12 x x SYM coo.31924059551022 116 13 = = PROPN coo.31924059551022 116 14 ik ik PROPN coo.31924059551022 116 15 ! ! PROPN coo.31924059551022 116 16 and and CCONJ coo.31924059551022 116 17 its its PRON coo.31924059551022 116 18 congruents congruent NOUN coo.31924059551022 116 19 , , PUNCT coo.31924059551022 116 20 and and CCONJ coo.31924059551022 116 21 it it PRON coo.31924059551022 116 22 is be AUX coo.31924059551022 116 23 known know VERB coo.31924059551022 116 24 to to PART coo.31924059551022 116 25 have have VERB coo.31924059551022 116 26 an an DET coo.31924059551022 116 27 integral integral ADJ coo.31924059551022 116 28 which which PRON coo.31924059551022 116 29 is be AUX coo.31924059551022 116 30 a a DET coo.31924059551022 116 31 rational rational ADJ coo.31924059551022 116 32 function function NOUN coo.31924059551022 116 33 of of ADP coo.31924059551022 116 34 the the DET coo.31924059551022 116 35 variable variable NOUN coo.31924059551022 116 36 . . PUNCT coo.31924059551022 117 1 conformiug conformiug NOUN coo.31924059551022 117 2 with with ADP coo.31924059551022 117 3 these these DET coo.31924059551022 117 4 peculiarities peculiarity NOUN coo.31924059551022 117 5 m. m. VERB coo.31924059551022 117 6 mittag mittag ADJ coo.31924059551022 117 7 - - PUNCT coo.31924059551022 117 8 leffler leffler NOUN coo.31924059551022 117 9 * * PROPN coo.31924059551022 117 10 ) ) PUNCT coo.31924059551022 117 11 defines define VERB coo.31924059551022 117 12 the the DET coo.31924059551022 117 13 general general ADJ coo.31924059551022 117 14 hermite hermite PROPN coo.31924059551022 117 15 ’s ’s PART coo.31924059551022 117 16 form form NOUN coo.31924059551022 117 17 of of ADP coo.31924059551022 117 18 lamé lamé NOUN coo.31924059551022 117 19 ’s ’s PART coo.31924059551022 117 20 equation equation NOUN coo.31924059551022 117 21 of of ADP coo.31924059551022 117 22 the the DET coo.31924059551022 117 23 nth nth NOUN coo.31924059551022 117 24 order order NOUN coo.31924059551022 117 25 as as ADP coo.31924059551022 117 26 a a DET coo.31924059551022 117 27 linear linear ADJ coo.31924059551022 117 28 homogenious homogenious ADJ coo.31924059551022 117 29 differential differential ADJ coo.31924059551022 117 30 equation equation NOUN coo.31924059551022 117 31 of of ADP coo.31924059551022 117 32 the the DET coo.31924059551022 117 33 order order NOUN coo.31924059551022 117 34 n n CCONJ coo.31924059551022 117 35 having have VERB coo.31924059551022 117 36 coefficients coefficient NOUN coo.31924059551022 117 37 that that PRON coo.31924059551022 117 38 are be AUX coo.31924059551022 117 39 doubly doubly ADV coo.31924059551022 117 40 periodic periodic ADJ coo.31924059551022 117 41 functions function NOUN coo.31924059551022 117 42 , , PUNCT coo.31924059551022 117 43 having have VERB coo.31924059551022 117 44 the the DET coo.31924059551022 117 45 fundimental fundimental ADJ coo.31924059551022 117 46 periods period NOUN coo.31924059551022 117 47 2k 2k NUM coo.31924059551022 117 48 and and CCONJ coo.31924059551022 117 49 2ik 2ik PROPN coo.31924059551022 117 50 ' ' PUNCT coo.31924059551022 117 51 and and CCONJ coo.31924059551022 117 52 everywhere everywhere ADV coo.31924059551022 117 53 finite finite NOUN coo.31924059551022 117 54 save save VERB coo.31924059551022 117 55 in in ADP coo.31924059551022 117 56 the the DET coo.31924059551022 117 57 point point NOUN coo.31924059551022 117 58 x x PUNCT coo.31924059551022 118 1 = = X coo.31924059551022 118 2 ík ík NOUN coo.31924059551022 118 3 ' ' PUNCT coo.31924059551022 118 4 and and CCONJ coo.31924059551022 118 5 its its PRON coo.31924059551022 118 6 congruents congruent NOUN coo.31924059551022 118 7 which which PRON coo.31924059551022 118 8 alone alone ADV coo.31924059551022 118 9 are be AUX coo.31924059551022 118 10 infinite infinite ADJ coo.31924059551022 118 11 and and CCONJ coo.31924059551022 118 12 whose whose DET coo.31924059551022 118 13 general general ADJ coo.31924059551022 118 14 integral integral NOUN coo.31924059551022 118 15 is be AUX coo.31924059551022 118 16 a a DET coo.31924059551022 118 17 rational rational ADJ coo.31924059551022 118 18 function function NOUN coo.31924059551022 118 19 of of ADP coo.31924059551022 118 20 the the DET coo.31924059551022 118 21 variable variable NOUN coo.31924059551022 118 22 . . PUNCT coo.31924059551022 119 1 the the DET coo.31924059551022 119 2 general general ADJ coo.31924059551022 119 3 theory theory NOUN coo.31924059551022 119 4 of of ADP coo.31924059551022 119 5 herrn herrn PROPN coo.31924059551022 119 6 fuchs fuch NOUN coo.31924059551022 119 7 * * PUNCT coo.31924059551022 119 8 * * PUNCT coo.31924059551022 119 9 ) ) PUNCT coo.31924059551022 119 10 then then ADV coo.31924059551022 119 11 gives give VERB coo.31924059551022 119 12 the the DET coo.31924059551022 119 13 form form NOUN coo.31924059551022 119 14 , , PUNCT coo.31924059551022 119 15 namely namely ADV coo.31924059551022 119 16 [ [ X coo.31924059551022 119 17 12] 12] NUM coo.31924059551022 119 18 ............ ............ PUNCT coo.31924059551022 119 19 γ γ PROPN coo.31924059551022 119 20 * * PUNCT coo.31924059551022 119 21 + + PUNCT coo.31924059551022 119 22 φ2(%<”-2 φ2(%<”-2 SPACE coo.31924059551022 119 23 > > X coo.31924059551022 120 1 + + PUNCT coo.31924059551022 120 2 · · PUNCT coo.31924059551022 120 3 · · PUNCT coo.31924059551022 120 4 + + NUM coo.31924059551022 120 5 9n(x)y 9n(x)y NUM coo.31924059551022 120 6 = = PUNCT coo.31924059551022 120 7 o o X coo.31924059551022 120 8 where where SCONJ coo.31924059551022 120 9 φ2(χ φ2(χ SPACE coo.31924059551022 120 10 ) ) PUNCT coo.31924059551022 120 11 = = VERB coo.31924059551022 120 12 cc0 cc0 ADP coo.31924059551022 120 13 + + NOUN coo.31924059551022 120 14 axsn2x axsn2x PUNCT coo.31924059551022 120 15 φ3 φ3 X coo.31924059551022 120 16 < < X coo.31924059551022 120 17 » » X coo.31924059551022 120 18 --= --= X coo.31924059551022 120 19 βο βο PUNCT coo.31924059551022 120 20 + + PUNCT coo.31924059551022 120 21 βι*η2χ βι*η2χ NOUN coo.31924059551022 120 22 + + CCONJ coo.31924059551022 120 23 fiìdixsnix fiìdixsnix ADJ coo.31924059551022 120 24 < < X coo.31924059551022 120 25 si(x si(x X coo.31924059551022 120 26 ) ) PUNCT coo.31924059551022 120 27 = = PUNCT coo.31924059551022 121 1 γ0 γ0 PROPN coo.31924059551022 121 2 + + PROPN coo.31924059551022 121 3 γ^η2χ γ^η2χ NUM coo.31924059551022 121 4 -f -f PUNCT coo.31924059551022 121 5 y%dxsn2x y%dxsn2x X coo.31924059551022 121 6 + + CCONJ coo.31924059551022 121 7 fsd2xsn2x fsd2xsn2x ADJ coo.31924059551022 121 8 but but CCONJ coo.31924059551022 121 9 a a DET coo.31924059551022 121 10 better well ADJ coo.31924059551022 121 11 generalization generalization NOUN coo.31924059551022 121 12 based base VERB coo.31924059551022 121 13 upon upon SCONJ coo.31924059551022 121 14 a a DET coo.31924059551022 121 15 full full ADJ coo.31924059551022 121 16 representation representation NOUN coo.31924059551022 121 17 of of ADP coo.31924059551022 121 18 the the DET coo.31924059551022 121 19 singular singular ADJ coo.31924059551022 121 20 points point NOUN coo.31924059551022 121 21 is be AUX coo.31924059551022 121 22 given give VERB coo.31924059551022 121 23 by by ADP coo.31924059551022 121 24 prof prof PROPN coo.31924059551022 121 25 . . PUNCT coo.31924059551022 122 1 klein klein PROPN coo.31924059551022 123 1 * * PUNCT coo.31924059551022 123 2 * * PUNCT coo.31924059551022 123 3 * * PUNCT coo.31924059551022 123 4 ) ) PUNCT coo.31924059551022 123 5 and and CCONJ coo.31924059551022 123 6 later later ADV coo.31924059551022 123 7 stated state VERB coo.31924059551022 123 8 as as SCONJ coo.31924059551022 123 9 follows follow VERB coo.31924059551022 123 10 by by ADP coo.31924059551022 123 11 dr dr PROPN coo.31924059551022 123 12 . . PROPN coo.31924059551022 123 13 bôcherf bôcherf PROPN coo.31924059551022 123 14 ) ) PUNCT coo.31924059551022 123 15 . . PUNCT coo.31924059551022 124 1 first first ADV coo.31924059551022 124 2 the the DET coo.31924059551022 124 3 ordinary ordinary ADJ coo.31924059551022 124 4 form form NOUN coo.31924059551022 124 5 of of ADP coo.31924059551022 124 6 the the DET coo.31924059551022 124 7 equation equation NOUN coo.31924059551022 124 8 of of ADP coo.31924059551022 124 9 lamé lamé NOUN coo.31924059551022 124 10 may may AUX coo.31924059551022 124 11 through through ADP coo.31924059551022 124 12 transformation transformation PROPN coo.31924059551022 124 13 becomeff becomeff PROPN coo.31924059551022 124 14 ) ) PUNCT coo.31924059551022 124 15 rion rion NOUN coo.31924059551022 124 16 +1/_j +1/_j SPACE coo.31924059551022 124 17 _ _ PUNCT coo.31924059551022 124 18 _ _ PUNCT coo.31924059551022 125 1 + + PUNCT coo.31924059551022 126 1 -a- -a- PROPN coo.31924059551022 126 2 . . PUNCT coo.31924059551022 127 1 + + PUNCT coo.31924059551022 128 1 -1_\=___________________________axj^b -1_\=___________________________axj^b NOUN coo.31924059551022 129 1 _ _ NOUN coo.31924059551022 129 2 _ _ PUNCT coo.31924059551022 130 1 _ _ PUNCT coo.31924059551022 130 2 _ _ PUNCT coo.31924059551022 131 1 _ _ PUNCT coo.31924059551022 131 2 _ _ PUNCT coo.31924059551022 132 1 _ _ PUNCT coo.31924059551022 132 2 _ _ PUNCT coo.31924059551022 133 1 _ _ PUNCT coo.31924059551022 133 2 _ _ PUNCT coo.31924059551022 134 1 li0j li0j ADJ coo.31924059551022 134 2 dx2 dx2 PROPN coo.31924059551022 134 3 1 1 NUM coo.31924059551022 134 4 2 2 NUM coo.31924059551022 134 5 \x \x PROPN coo.31924059551022 134 6 — — PUNCT coo.31924059551022 134 7 ex ex NOUN coo.31924059551022 134 8 1 1 NUM coo.31924059551022 134 9 x x SYM coo.31924059551022 134 10 — — PUNCT coo.31924059551022 134 11 e% e% ADJ coo.31924059551022 134 12 1 1 NUM coo.31924059551022 134 13 x x SYM coo.31924059551022 134 14 — — PUNCT coo.31924059551022 134 15 ez ez PROPN coo.31924059551022 134 16 ) ) PUNCT coo.31924059551022 134 17 dx dx PROPN coo.31924059551022 134 18 4 4 NUM coo.31924059551022 134 19 ( ( PUNCT coo.31924059551022 134 20 x x PUNCT coo.31924059551022 134 21 — — PUNCT coo.31924059551022 134 22 et et NOUN coo.31924059551022 134 23 ) ) PUNCT coo.31924059551022 134 24 ( ( PUNCT coo.31924059551022 134 25 x x PUNCT coo.31924059551022 134 26 — — PUNCT coo.31924059551022 134 27 e2 e2 PROPN coo.31924059551022 134 28 ) ) PUNCT coo.31924059551022 134 29 ( ( PUNCT coo.31924059551022 134 30 x x PUNCT coo.31924059551022 134 31 — — PUNCT coo.31924059551022 134 32 e3 e3 PROPN coo.31924059551022 134 33 ) ) PUNCT coo.31924059551022 134 34 y y PROPN coo.31924059551022 134 35 where where SCONJ coo.31924059551022 134 36 the the DET coo.31924059551022 134 37 exponents exponent NOUN coo.31924059551022 134 38 of of ADP coo.31924059551022 134 39 the the DET coo.31924059551022 134 40 zeros zero NOUN coo.31924059551022 134 41 et et PROPN coo.31924059551022 134 42 , , PUNCT coo.31924059551022 134 43 e2j e2j X coo.31924059551022 134 44 e3 e3 PROPN coo.31924059551022 134 45 are be AUX coo.31924059551022 134 46 0 0 NUM coo.31924059551022 134 47 and and CCONJ coo.31924059551022 134 48 y y PROPN coo.31924059551022 134 49 and and CCONJ coo.31924059551022 134 50 that that PRON coo.31924059551022 134 51 of of ADP coo.31924059551022 134 52 the the DET coo.31924059551022 134 53 infinites infinite NOUN coo.31924059551022 134 54 ~ ~ PUNCT coo.31924059551022 134 55 · · PUNCT coo.31924059551022 134 56 from from ADP coo.31924059551022 134 57 this this DET coo.31924059551022 134 58 generalizing generalizing NOUN coo.31924059551022 134 59 by by ADP coo.31924059551022 134 60 the the DET coo.31924059551022 134 61 introduction introduction NOUN coo.31924059551022 134 62 of of ADP coo.31924059551022 134 63 n n CCONJ coo.31924059551022 134 64 zeros zero NOUN coo.31924059551022 134 65 we we PRON coo.31924059551022 134 66 have have VERB coo.31924059551022 134 67 the the DET coo.31924059551022 134 68 following following ADJ coo.31924059551022 134 69 definition definition NOUN coo.31924059551022 134 70 : : PUNCT coo.31924059551022 134 71 * * NOUN coo.31924059551022 134 72 ) ) PUNCT coo.31924059551022 134 73 annali annali PROPN coo.31924059551022 134 74 di di PROPN coo.31924059551022 134 75 matematica matematica PROPN coo.31924059551022 134 76 , , PUNCT coo.31924059551022 134 77 tomo tomo PROPN coo.31924059551022 134 78 xi xi PROPN coo.31924059551022 134 79 , , PUNCT coo.31924059551022 134 80 1882 1882 NUM coo.31924059551022 134 81 . . PUNCT coo.31924059551022 135 1 * * PUNCT coo.31924059551022 135 2 * * PUNCT coo.31924059551022 135 3 ) ) PUNCT coo.31924059551022 135 4 comptes compte VERB coo.31924059551022 135 5 rendus rendus X coo.31924059551022 135 6 etc etc X coo.31924059551022 135 7 . . X coo.31924059551022 135 8 1880 1880 NUM coo.31924059551022 135 9 . . PUNCT coo.31924059551022 136 1 p. p. NOUN coo.31924059551022 136 2 64 64 NUM coo.31924059551022 136 3 . . PUNCT coo.31924059551022 137 1 * * PUNCT coo.31924059551022 137 2 * * PUNCT coo.31924059551022 137 3 * * PUNCT coo.31924059551022 137 4 ) ) PUNCT coo.31924059551022 137 5 math math NOUN coo.31924059551022 137 6 . . PUNCT coo.31924059551022 138 1 annal annal PROPN coo.31924059551022 138 2 . . PUNCT coo.31924059551022 139 1 bd bd PROPN coo.31924059551022 139 2 . . PROPN coo.31924059551022 139 3 38 38 NUM coo.31924059551022 139 4 . . PUNCT coo.31924059551022 140 1 f f X coo.31924059551022 140 2 ) ) PUNCT coo.31924059551022 140 3 ueber ueber PROPN coo.31924059551022 140 4 die die PROPN coo.31924059551022 140 5 reihentwickelungen reihentwickelungen PROPN coo.31924059551022 140 6 der der PROPN coo.31924059551022 140 7 potentialtheorie potentialtheorie PROPN coo.31924059551022 140 8 . . PUNCT coo.31924059551022 141 1 göttingen göttingen PROPN coo.31924059551022 141 2 1891 1891 NUM coo.31924059551022 141 3 . . PUNCT coo.31924059551022 142 1 ff ff NOUN coo.31924059551022 142 2 ) ) PUNCT coo.31924059551022 142 3 see see VERB coo.31924059551022 142 4 also also ADV coo.31924059551022 142 5 transformation transformation NOUN coo.31924059551022 142 6 p. p. NOUN coo.31924059551022 142 7 20 20 NUM coo.31924059551022 142 8 . . PUNCT coo.31924059551022 143 1 16 16 NUM coo.31924059551022 143 2 part part NOUN coo.31924059551022 143 3 i. i. PROPN coo.31924059551022 143 4 historical historical PROPN coo.31924059551022 143 5 development development NOUN coo.31924059551022 143 6 and and CCONJ coo.31924059551022 143 7 definition definition NOUN coo.31924059551022 143 8 of of ADP coo.31924059551022 143 9 the the DET coo.31924059551022 143 10 equation equation NOUN coo.31924059551022 143 11 of of ADP coo.31924059551022 143 12 lamé lamé NOUN coo.31924059551022 143 13 . . PUNCT coo.31924059551022 144 1 „ „ PUNCT coo.31924059551022 144 2 mit mit VERB coo.31924059551022 144 3 dem dem PROPN coo.31924059551022 144 4 namen namen PROPN coo.31924059551022 144 5 lamésche lamésche PROPN coo.31924059551022 144 6 gleichung gleichung PROPN coo.31924059551022 144 7 bezeichnen bezeichnen PROPN coo.31924059551022 144 8 wir wir PROPN coo.31924059551022 144 9 eine eine PROPN coo.31924059551022 144 10 überall überall PROPN coo.31924059551022 144 11 regulare regulare NOUN coo.31924059551022 144 12 homogene homogene PROPN coo.31924059551022 144 13 differentialgleichimg differentialgleichimg PROPN coo.31924059551022 144 14 zweiter zweiter PROPN coo.31924059551022 144 15 ordnung ordnung PROPN coo.31924059551022 144 16 mit mit PROPN coo.31924059551022 144 17 rationalen rationalen PROPN coo.31924059551022 144 18 coëfficiënten coëfficiënten PROPN coo.31924059551022 144 19 , , PUNCT coo.31924059551022 144 20 deren deren PROPN coo.31924059551022 144 21 i i PRON coo.31924059551022 144 22 m m VERB coo.31924059551022 144 23 endlichen endlichen PROPN coo.31924059551022 144 24 gelegene gelegene PROPN coo.31924059551022 144 25 singulare singulare PROPN coo.31924059551022 144 26 punkte punkte PROPN coo.31924059551022 144 27 et et PROPN coo.31924059551022 144 28 , , PUNCT coo.31924059551022 144 29 e2 e2 PROPN coo.31924059551022 144 30 · · PUNCT coo.31924059551022 144 31 · · PUNCT coo.31924059551022 144 32 en en X coo.31924059551022 144 33 sammtlich sammtlich PROPN coo.31924059551022 144 34 die die PROPN coo.31924059551022 144 35 exponenten exponenten VERB coo.31924059551022 144 36 0 0 NUM coo.31924059551022 144 37 , , PUNCT coo.31924059551022 144 38 ~ ~ PUNCT coo.31924059551022 144 39 beset beset VERB coo.31924059551022 144 40 zen zen NOUN coo.31924059551022 144 41 , , PUNCT coo.31924059551022 144 42 und und ADV coo.31924059551022 144 43 in in ADP coo.31924059551022 144 44 unendlichen unendlichen PROPN coo.31924059551022 144 45 nur nur PROPN coo.31924059551022 144 46 einen einen PROPN coo.31924059551022 144 47 uneigentlich uneigentlich PROPN coo.31924059551022 144 48 singularen singularen PROPN coo.31924059551022 144 49 punkt punkt PROPN coo.31924059551022 144 50 aufweist aufweist NOUN coo.31924059551022 144 51 “ " PUNCT coo.31924059551022 144 52 lame lame PROPN coo.31924059551022 144 53 ’s ’s PART coo.31924059551022 144 54 equation equation NOUN coo.31924059551022 144 55 becomes become VERB coo.31924059551022 144 56 in in ADP coo.31924059551022 144 57 accordance accordance NOUN coo.31924059551022 144 58 with with ADP coo.31924059551022 144 59 this this DET coo.31924059551022 144 60 definition definition NOUN coo.31924059551022 144 61 and and CCONJ coo.31924059551022 144 62 freed free VERB coo.31924059551022 144 63 from from ADP coo.31924059551022 144 64 the the DET coo.31924059551022 144 65 possibility possibility NOUN coo.31924059551022 144 66 of of ADP coo.31924059551022 144 67 a a DET coo.31924059551022 144 68 logarithmic logarithmic ADJ coo.31924059551022 144 69 irrationality irrationality NOUN coo.31924059551022 144 70 through through ADP coo.31924059551022 144 71 a a DET coo.31924059551022 144 72 determination determination NOUN coo.31924059551022 144 73 of of ADP coo.31924059551022 144 74 the the DET coo.31924059551022 144 75 coefficient coefficient NOUN coo.31924059551022 144 76 of of ADP coo.31924059551022 144 77 xn xn PROPN coo.31924059551022 144 78 — — PUNCT coo.31924059551022 144 79 s s PROPN coo.31924059551022 144 80 : : PUNCT coo.31924059551022 144 81 & & CCONJ coo.31924059551022 144 82 y y PROPN coo.31924059551022 144 83 _ _ PROPN coo.31924059551022 144 84 \ \ PROPN coo.31924059551022 144 85 f f PROPN coo.31924059551022 144 86 ( ( PUNCT coo.31924059551022 144 87 χ χ X coo.31924059551022 144 88 ) ) PUNCT coo.31924059551022 144 89 dx2 dx2 NOUN coo.31924059551022 144 90 ' ' PUNCT coo.31924059551022 144 91 2fx 2fx PROPN coo.31924059551022 144 92 dx dx PROPN coo.31924059551022 144 93 ϊτφ ϊτφ PROPN coo.31924059551022 144 94 - - PROPN coo.31924059551022 144 95 f+ f+ X coo.31924059551022 144 96 + + NUM coo.31924059551022 144 97 ~+m]y= ~+m]y= PUNCT coo.31924059551022 144 98 0 0 PUNCT coo.31924059551022 144 99 where where SCONJ coo.31924059551022 144 100 f(x f(x PROPN coo.31924059551022 144 101 ) ) PUNCT coo.31924059551022 144 102 = = PROPN coo.31924059551022 144 103 ( ( PUNCT coo.31924059551022 144 104 x x PUNCT coo.31924059551022 144 105 — — PUNCT coo.31924059551022 144 106 ef ef PROPN coo.31924059551022 144 107 ) ) PUNCT coo.31924059551022 144 108 ( ( PUNCT coo.31924059551022 144 109 x x PUNCT coo.31924059551022 144 110 — — PUNCT coo.31924059551022 144 111 e2 e2 PROPN coo.31924059551022 144 112 ) ) PUNCT coo.31924059551022 144 113 · · PUNCT coo.31924059551022 144 114 · · PUNCT coo.31924059551022 144 115 · · PUNCT coo.31924059551022 144 116 ( ( PUNCT coo.31924059551022 144 117 x x PUNCT coo.31924059551022 144 118 — — PUNCT coo.31924059551022 144 119 en en ADV coo.31924059551022 144 120 ) ) PUNCT coo.31924059551022 144 121 . . PUNCT coo.31924059551022 145 1 it it PRON coo.31924059551022 145 2 .is .is PUNCT coo.31924059551022 146 1 further far ADV coo.31924059551022 146 2 evident evident ADJ coo.31924059551022 146 3 that that SCONJ coo.31924059551022 146 4 this this DET coo.31924059551022 146 5 form form NOUN coo.31924059551022 146 6 , , PUNCT coo.31924059551022 146 7 like like ADP coo.31924059551022 146 8 the the DET coo.31924059551022 146 9 hermite hermite ADJ coo.31924059551022 146 10 form form NOUN coo.31924059551022 146 11 and and CCONJ coo.31924059551022 146 12 as as ADV coo.31924059551022 146 13 previously previously ADV coo.31924059551022 146 14 developed develop VERB coo.31924059551022 146 15 by by ADP coo.31924059551022 146 16 prof prof PROPN coo.31924059551022 146 17 . . PROPN coo.31924059551022 146 18 heine heine PROPN coo.31924059551022 146 19 , , PUNCT coo.31924059551022 146 20 is be AUX coo.31924059551022 146 21 but but CCONJ coo.31924059551022 146 22 a a DET coo.31924059551022 146 23 special special ADJ coo.31924059551022 146 24 case case NOUN coo.31924059551022 146 25 of of ADP coo.31924059551022 146 26 a a DET coo.31924059551022 146 27 general general ADJ coo.31924059551022 146 28 equation equation NOUN coo.31924059551022 146 29 of of ADP coo.31924059551022 146 30 a a DET coo.31924059551022 146 31 higher high ADJ coo.31924059551022 146 32 order order NOUN coo.31924059551022 146 33 . . PUNCT coo.31924059551022 147 1 in in ADP coo.31924059551022 147 2 speaking speak VERB coo.31924059551022 147 3 of of ADP coo.31924059551022 147 4 laméis laméis NOUN coo.31924059551022 147 5 equation equation NOUN coo.31924059551022 147 6 we we PRON coo.31924059551022 147 7 will will AUX coo.31924059551022 147 8 understand understand VERB coo.31924059551022 147 9 an an DET coo.31924059551022 147 10 equation equation NOUN coo.31924059551022 147 11 conforming conform VERB coo.31924059551022 147 12 with with ADP coo.31924059551022 147 13 the the DET coo.31924059551022 147 14 above above ADJ coo.31924059551022 147 15 definition definition NOUN coo.31924059551022 147 16 whose whose DET coo.31924059551022 147 17 general general ADJ coo.31924059551022 147 18 form form NOUN coo.31924059551022 147 19 is be AUX coo.31924059551022 147 20 given give VERB coo.31924059551022 147 21 by by ADP coo.31924059551022 147 22 [ [ X coo.31924059551022 147 23 14j 14j NOUN coo.31924059551022 147 24 and and CCONJ coo.31924059551022 147 25 , , PUNCT coo.31924059551022 147 26 if if SCONJ coo.31924059551022 147 27 the the DET coo.31924059551022 147 28 order order NOUN coo.31924059551022 147 29 is be AUX coo.31924059551022 147 30 higher high ADJ coo.31924059551022 147 31 than than ADP coo.31924059551022 147 32 the the DET coo.31924059551022 147 33 second second ADJ coo.31924059551022 147 34 , , PUNCT coo.31924059551022 147 35 distinguish distinguish ADJ coo.31924059551022 147 36 by by ADP coo.31924059551022 147 37 mentioning mention VERB coo.31924059551022 147 38 the the DET coo.31924059551022 147 39 order order NOUN coo.31924059551022 147 40 . . PUNCT coo.31924059551022 148 1 forms form NOUN coo.31924059551022 148 2 [ [ PUNCT coo.31924059551022 148 3 9 9 NUM coo.31924059551022 148 4 ] ] PUNCT coo.31924059551022 148 5 and and CCONJ coo.31924059551022 148 6 [ [ X coo.31924059551022 148 7 10 10 X coo.31924059551022 148 8 ] ] PUNCT coo.31924059551022 148 9 will will AUX coo.31924059551022 148 10 then then ADV coo.31924059551022 148 11 be be AUX coo.31924059551022 148 12 called call VERB coo.31924059551022 148 13 hermite5s hermite5s NUM coo.31924059551022 148 14 forms form NOUN coo.31924059551022 148 15 of of ADP coo.31924059551022 148 16 lamé5s lamé5s PUNCT coo.31924059551022 148 17 equation equation NOUN coo.31924059551022 148 18 or or CCONJ coo.31924059551022 148 19 simply simply ADV coo.31924059551022 148 20 hermite hermite PROPN coo.31924059551022 148 21 s s PART coo.31924059551022 148 22 equation equation NOUN coo.31924059551022 148 23 , , PUNCT coo.31924059551022 148 24 where where SCONJ coo.31924059551022 148 25 again again ADV coo.31924059551022 148 26 the the DET coo.31924059551022 148 27 order order NOUN coo.31924059551022 148 28 need need AUX coo.31924059551022 148 29 be be AUX coo.31924059551022 148 30 mentioned mention VERB coo.31924059551022 148 31 only only ADV coo.31924059551022 148 32 if if SCONJ coo.31924059551022 148 33 it it PRON coo.31924059551022 148 34 be be VERB coo.31924059551022 148 35 other other ADJ coo.31924059551022 148 36 than than ADP coo.31924059551022 148 37 the the DET coo.31924059551022 148 38 second second ADJ coo.31924059551022 148 39 . . PUNCT coo.31924059551022 149 1 any any DET coo.31924059551022 149 2 solution solution NOUN coo.31924059551022 149 3 of of ADP coo.31924059551022 149 4 any any DET coo.31924059551022 149 5 form form NOUN coo.31924059551022 149 6 of of ADP coo.31924059551022 149 7 lame lame PROPN coo.31924059551022 149 8 ’s ’s PART coo.31924059551022 149 9 equation equation NOUN coo.31924059551022 149 10 will will AUX coo.31924059551022 149 11 be be AUX coo.31924059551022 149 12 a a DET coo.31924059551022 149 13 function function NOUN coo.31924059551022 149 14 of of ADP coo.31924059551022 149 15 lamé lamé NOUN coo.31924059551022 149 16 and and CCONJ coo.31924059551022 149 17 if if SCONJ coo.31924059551022 149 18 the the DET coo.31924059551022 149 19 doubly doubly ADJ coo.31924059551022 149 20 periodic periodic ADJ coo.31924059551022 149 21 functions function NOUN coo.31924059551022 149 22 first first ADV coo.31924059551022 149 23 determined determine VERB coo.31924059551022 149 24 by by ADP coo.31924059551022 149 25 lamé lamé NOUN coo.31924059551022 149 26 are be AUX coo.31924059551022 149 27 mentioned mention VERB coo.31924059551022 149 28 they they PRON coo.31924059551022 149 29 will will AUX coo.31924059551022 149 30 be be AUX coo.31924059551022 149 31 designated designate VERB coo.31924059551022 149 32 as as ADP coo.31924059551022 149 33 the the DET coo.31924059551022 149 34 special special ADJ coo.31924059551022 149 35 functions function NOUN coo.31924059551022 149 36 of of ADP coo.31924059551022 149 37 lamé lamé NOUN coo.31924059551022 149 38 . . PUNCT coo.31924059551022 150 1 part part X coo.31924059551022 150 2 il il PROPN coo.31924059551022 150 3 hermite hermite PROPN coo.31924059551022 150 4 ’s ’s PART coo.31924059551022 150 5 integral integral ADJ coo.31924059551022 150 6 as as ADP coo.31924059551022 150 7 a a DET coo.31924059551022 150 8 sam sam PROPN coo.31924059551022 150 9 . . PUNCT coo.31924059551022 151 1 the the DET coo.31924059551022 151 2 function function NOUN coo.31924059551022 151 3 of of ADP coo.31924059551022 151 4 the the DET coo.31924059551022 151 5 second second ADJ coo.31924059551022 151 6 species specie NOUN coo.31924059551022 151 7 . . PUNCT coo.31924059551022 152 1 we we PRON coo.31924059551022 152 2 have have VERB coo.31924059551022 152 3 the the DET coo.31924059551022 152 4 problem problem NOUN coo.31924059551022 152 5 required require VERB coo.31924059551022 152 6 the the DET coo.31924059551022 152 7 integral integral ADJ coo.31924059551022 152 8 y y PROPN coo.31924059551022 152 9 of of ADP coo.31924059551022 152 10 the the DET coo.31924059551022 152 11 equation equation NOUN coo.31924059551022 152 12 [ [ PUNCT coo.31924059551022 152 13 15] 15] NUM coo.31924059551022 152 14 .................... .................... PUNCT coo.31924059551022 152 15 = = PUNCT coo.31924059551022 152 16 m m VERB coo.31924059551022 152 17 y y PROPN coo.31924059551022 152 18 where where SCONJ coo.31924059551022 152 19 h h PROPN coo.31924059551022 152 20 is be AUX coo.31924059551022 152 21 taken take VERB coo.31924059551022 152 22 arbitrarily arbitrarily ADV coo.31924059551022 152 23 , , PUNCT coo.31924059551022 152 24 n n CCONJ coo.31924059551022 152 25 is be AUX coo.31924059551022 152 26 any any DET coo.31924059551022 152 27 intire intire ADJ coo.31924059551022 152 28 positive positive ADJ coo.31924059551022 152 29 number number NOUN coo.31924059551022 152 30 and and CCONJ coo.31924059551022 152 31 k k PROPN coo.31924059551022 152 32 is be AUX coo.31924059551022 152 33 the the DET coo.31924059551022 152 34 modulus modulus NOUN coo.31924059551022 152 35 of of ADP coo.31924059551022 152 36 the the DET coo.31924059551022 152 37 elliptic elliptic ADJ coo.31924059551022 152 38 function function NOUN coo.31924059551022 152 39 . . PUNCT coo.31924059551022 153 1 m. m. NOUN coo.31924059551022 153 2 hermite hermite PROPN coo.31924059551022 153 3 introduces introduce VERB coo.31924059551022 153 4 to to ADP coo.31924059551022 153 5 this this DET coo.31924059551022 153 6 end end NOUN coo.31924059551022 153 7 a a DET coo.31924059551022 153 8 function function NOUN coo.31924059551022 153 9 which which PRON coo.31924059551022 153 10 he he PRON coo.31924059551022 153 11 names name VERB coo.31924059551022 153 12 doubly doubly ADV coo.31924059551022 153 13 periodic periodic ADJ coo.31924059551022 153 14 of of ADP coo.31924059551022 153 15 the the DET coo.31924059551022 153 16 second second ADJ coo.31924059551022 153 17 species specie NOUN coo.31924059551022 153 18 , , PUNCT coo.31924059551022 153 19 which which PRON coo.31924059551022 153 20 may may AUX coo.31924059551022 153 21 be be AUX coo.31924059551022 153 22 defined define VERB coo.31924059551022 153 23 as as ADP coo.31924059551022 153 24 a a DET coo.31924059551022 153 25 product product NOUN coo.31924059551022 153 26 of of ADP coo.31924059551022 153 27 a a DET coo.31924059551022 153 28 quotient quotient NOUN coo.31924059551022 153 29 composed compose VERB coo.31924059551022 153 30 of of ADP coo.31924059551022 153 31 ú ú PROPN coo.31924059551022 153 32 functions function NOUN coo.31924059551022 153 33 , , PUNCT coo.31924059551022 153 34 the the DET coo.31924059551022 153 35 number number NOUN coo.31924059551022 153 36 of of ADP coo.31924059551022 153 37 zeros zero NOUN coo.31924059551022 153 38 being be AUX coo.31924059551022 153 39 equal equal ADJ coo.31924059551022 153 40 to to ADP coo.31924059551022 153 41 the the DET coo.31924059551022 153 42 number number NOUN coo.31924059551022 153 43 of of ADP coo.31924059551022 153 44 the the DET coo.31924059551022 153 45 infinites infinite NOUN coo.31924059551022 153 46 , , PUNCT coo.31924059551022 153 47 and and CCONJ coo.31924059551022 153 48 an an DET coo.31924059551022 153 49 exponential exponential NOUN coo.31924059551022 153 50 , , PUNCT coo.31924059551022 153 51 having have VERB coo.31924059551022 153 52 the the DET coo.31924059551022 153 53 property property NOUN coo.31924059551022 153 54 of of ADP coo.31924059551022 153 55 reproducing reproduce VERB coo.31924059551022 153 56 itself itself PRON coo.31924059551022 153 57 multiplied multiply VERB coo.31924059551022 153 58 by by ADP coo.31924059551022 153 59 an an DET coo.31924059551022 153 60 exponential exponential ADJ coo.31924059551022 153 61 factor factor NOUN coo.31924059551022 153 62 when when SCONJ coo.31924059551022 153 63 the the DET coo.31924059551022 153 64 variable variable NOUN coo.31924059551022 153 65 is be AUX coo.31924059551022 153 66 increased increase VERB coo.31924059551022 153 67 by by ADP coo.31924059551022 153 68 the the DET coo.31924059551022 153 69 periods period NOUN coo.31924059551022 153 70 2k 2k NUM coo.31924059551022 153 71 and and CCONJ coo.31924059551022 153 72 2ik 2ik PROPN coo.31924059551022 153 73 . . PUNCT coo.31924059551022 154 1 it it PRON coo.31924059551022 154 2 is be AUX coo.31924059551022 154 3 defined define VERB coo.31924059551022 154 4 then then ADV coo.31924059551022 154 5 in in ADP coo.31924059551022 154 6 general general ADJ coo.31924059551022 154 7 by by ADP coo.31924059551022 154 8 the the DET coo.31924059551022 154 9 relations relation NOUN coo.31924059551022 154 10 : : PUNCT coo.31924059551022 154 11 [ [ X coo.31924059551022 154 12 16 16 NUM coo.31924059551022 154 13 ] ] PUNCT coo.31924059551022 154 14 f(u f(u PROPN coo.31924059551022 154 15 + + CCONJ coo.31924059551022 154 16 2 2 NUM coo.31924059551022 154 17 k k X coo.31924059551022 154 18 ) ) PUNCT coo.31924059551022 154 19 = = PROPN coo.31924059551022 154 20 μέ(η μέ(η PROPN coo.31924059551022 154 21 ) ) PUNCT coo.31924059551022 154 22 f(u f(u PROPN coo.31924059551022 155 1 + + PROPN coo.31924059551022 155 2 2ik 2ik PROPN coo.31924059551022 155 3 ' ' PUNCT coo.31924059551022 155 4 ) ) PUNCT coo.31924059551022 155 5 = = PUNCT coo.31924059551022 155 6 p'f(u p'f(u PROPN coo.31924059551022 155 7 ) ) PUNCT coo.31924059551022 156 1 f f PROPN coo.31924059551022 156 2 ( ( PUNCT coo.31924059551022 156 3 u u PROPN coo.31924059551022 156 4 ) ) PUNCT coo.31924059551022 156 5 = = PROPN coo.31924059551022 156 6 c(u c(u PROPN coo.31924059551022 156 7 — — PUNCT coo.31924059551022 156 8 aí aí ADV coo.31924059551022 156 9 ) ) PUNCT coo.31924059551022 156 10 a(u a(u PROPN coo.31924059551022 156 11 — — PUNCT coo.31924059551022 156 12 aí aí ADV coo.31924059551022 156 13 ) ) PUNCT coo.31924059551022 156 14 . . PUNCT coo.31924059551022 156 15 . . PUNCT coo.31924059551022 156 16 . . PUNCT coo.31924059551022 157 1 a(u a(u PROPN coo.31924059551022 157 2 — — PUNCT coo.31924059551022 157 3 an_f an_f NOUN coo.31924059551022 157 4 ) ) PUNCT coo.31924059551022 157 5 ^ ^ X coo.31924059551022 158 1 o(u o(u PROPN coo.31924059551022 158 2 — — PUNCT coo.31924059551022 158 3 c(u c(u PROPN coo.31924059551022 158 4 — — PUNCT coo.31924059551022 158 5 a(u a(u PROPN coo.31924059551022 158 6 — — PUNCT coo.31924059551022 158 7 6n—1 6n—1 PROPN coo.31924059551022 158 8 ) ) PUNCT coo.31924059551022 158 9 the the DET coo.31924059551022 158 10 factors factor NOUN coo.31924059551022 158 11 μ μ PROPN coo.31924059551022 158 12 and and CCONJ coo.31924059551022 158 13 μ μ NOUN coo.31924059551022 158 14 are be AUX coo.31924059551022 158 15 called call VERB coo.31924059551022 158 16 multiplicators multiplicator NOUN coo.31924059551022 158 17 . . PUNCT coo.31924059551022 159 1 m. m. NOUN coo.31924059551022 159 2 hermite hermite PROPN coo.31924059551022 159 3 might might AUX coo.31924059551022 159 4 have have AUX coo.31924059551022 159 5 been be AUX coo.31924059551022 159 6 led lead VERB coo.31924059551022 159 7 to to ADP coo.31924059551022 159 8 the the DET coo.31924059551022 159 9 employment employment NOUN coo.31924059551022 159 10 of of ADP coo.31924059551022 159 11 this this DET coo.31924059551022 159 12 function function NOUN coo.31924059551022 159 13 by by ADP coo.31924059551022 159 14 the the DET coo.31924059551022 159 15 following follow VERB coo.31924059551022 159 16 analysis analysis NOUN coo.31924059551022 159 17 which which PRON coo.31924059551022 159 18 is be AUX coo.31924059551022 159 19 essentially essentially ADV coo.31924059551022 159 20 that that SCONJ coo.31924059551022 159 21 given give VERB coo.31924059551022 159 22 by by ADP coo.31924059551022 159 23 halphen halphen ADV coo.31924059551022 159 24 . . PUNCT coo.31924059551022 159 25 * * PUNCT coo.31924059551022 159 26 ) ) PUNCT coo.31924059551022 159 27 consider consider VERB coo.31924059551022 159 28 for for ADP coo.31924059551022 159 29 the the DET coo.31924059551022 159 30 moment moment NOUN coo.31924059551022 159 31 that that PRON coo.31924059551022 159 32 y y PROPN coo.31924059551022 159 33 be be VERB coo.31924059551022 159 34 such such DET coo.31924059551022 159 35 a a DET coo.31924059551022 159 36 function function NOUN coo.31924059551022 159 37 of of ADP coo.31924059551022 159 38 the the DET coo.31924059551022 159 39 second second ADJ coo.31924059551022 159 40 species specie NOUN coo.31924059551022 159 41 but but CCONJ coo.31924059551022 159 42 having have VERB coo.31924059551022 159 43 instead instead ADV coo.31924059551022 159 44 of of ADP coo.31924059551022 159 45 the the DET coo.31924059551022 159 46 n n CCONJ coo.31924059551022 159 47 different different ADJ coo.31924059551022 159 48 poles pole NOUN coo.31924059551022 159 49 but but CCONJ coo.31924059551022 159 50 one one NUM coo.31924059551022 159 51 pole pole NOUN coo.31924059551022 159 52 u u NOUN coo.31924059551022 160 1 ξξ ξξ INTJ coo.31924059551022 161 1 o o NOUN coo.31924059551022 161 2 of of ADP coo.31924059551022 161 3 the the DET coo.31924059551022 161 4 nth nth NOUN coo.31924059551022 161 5 order order NOUN coo.31924059551022 161 6 in in ADP coo.31924059551022 161 7 which which DET coo.31924059551022 161 8 case case NOUN coo.31924059551022 161 9 the the DET coo.31924059551022 161 10 function function NOUN coo.31924059551022 161 11 will will AUX coo.31924059551022 161 12 have have VERB coo.31924059551022 161 13 n n VERB coo.31924059551022 161 14 roots root NOUN coo.31924059551022 161 15 . . PUNCT coo.31924059551022 162 1 upon upon SCONJ coo.31924059551022 162 2 developing develop VERB coo.31924059551022 162 3 the the DET coo.31924059551022 162 4 properties property NOUN coo.31924059551022 162 5 of of ADP coo.31924059551022 162 6 this this DET coo.31924059551022 162 7 function function NOUN coo.31924059551022 162 8 one one PRON coo.31924059551022 162 9 finds find VERB coo.31924059551022 162 10 that that SCONJ coo.31924059551022 162 11 its its PRON coo.31924059551022 162 12 second second ADJ coo.31924059551022 162 13 derivative derivative NOUN coo.31924059551022 162 14 has have VERB coo.31924059551022 162 15 the the DET coo.31924059551022 162 16 same same ADJ coo.31924059551022 162 17 multiplicator multiplicator NOUN coo.31924059551022 162 18 as as ADP coo.31924059551022 162 19 the the DET coo.31924059551022 162 20 function function NOUN coo.31924059551022 162 21 * * PUNCT coo.31924059551022 162 22 ) ) PUNCT coo.31924059551022 162 23 bd bd PROPN coo.31924059551022 162 24 . . PROPN coo.31924059551022 162 25 ii ii PROPN coo.31924059551022 162 26 p. p. PROPN coo.31924059551022 162 27 495 495 NUM coo.31924059551022 162 28 . . PUNCT coo.31924059551022 163 1 2 2 NUM coo.31924059551022 163 2 18 18 NUM coo.31924059551022 163 3 part part NOUN coo.31924059551022 163 4 il il X coo.31924059551022 163 5 itself itself PRON coo.31924059551022 163 6 and and CCONJ coo.31924059551022 163 7 that that SCONJ coo.31924059551022 163 8 therefore therefore ADV coo.31924059551022 163 9 the the DET coo.31924059551022 163 10 quotient quotient NOUN coo.31924059551022 163 11 y y PROPN coo.31924059551022 163 12 " " PUNCT coo.31924059551022 163 13 : : PUNCT coo.31924059551022 163 14 y y PROPN coo.31924059551022 163 15 will will AUX coo.31924059551022 163 16 not not PART coo.31924059551022 163 17 only only ADV coo.31924059551022 163 18 be be AUX coo.31924059551022 163 19 doubly doubly ADV coo.31924059551022 163 20 periodic periodic ADJ coo.31924059551022 163 21 but but CCONJ coo.31924059551022 163 22 will will AUX coo.31924059551022 163 23 have have VERB coo.31924059551022 163 24 a a DET coo.31924059551022 163 25 single single ADJ coo.31924059551022 163 26 pole pole NOUN coo.31924059551022 163 27 u u PROPN coo.31924059551022 163 28 εξ εξ PROPN coo.31924059551022 163 29 o o PROPN coo.31924059551022 163 30 of of ADP coo.31924059551022 163 31 the the DET coo.31924059551022 163 32 second second ADJ coo.31924059551022 163 33 order order NOUN coo.31924059551022 163 34 . . PUNCT coo.31924059551022 164 1 this this DET coo.31924059551022 164 2 function function NOUN coo.31924059551022 164 3 then then ADV coo.31924059551022 164 4 satisfies satisfy VERB coo.31924059551022 164 5 the the DET coo.31924059551022 164 6 necessary necessary ADJ coo.31924059551022 164 7 conditions condition NOUN coo.31924059551022 164 8 and and CCONJ coo.31924059551022 164 9 the the DET coo.31924059551022 164 10 corresponding correspond VERB coo.31924059551022 164 11 quotient quotient NOUN coo.31924059551022 164 12 may may AUX coo.31924059551022 164 13 then then ADV coo.31924059551022 164 14 be be AUX coo.31924059551022 164 15 written write VERB coo.31924059551022 164 16 equal equal ADJ coo.31924059551022 164 17 to to ADP coo.31924059551022 164 18 n{n n{n NOUN coo.31924059551022 164 19 + + PROPN coo.31924059551022 164 20 1 1 X coo.31924059551022 164 21 ) ) PUNCT coo.31924059551022 164 22 sn2 sn2 PROPN coo.31924059551022 164 23 x x PUNCT coo.31924059551022 164 24 + + CCONJ coo.31924059551022 164 25 h h NOUN coo.31924059551022 164 26 where where SCONJ coo.31924059551022 164 27 h h NOUN coo.31924059551022 164 28 is be AUX coo.31924059551022 164 29 a a DET coo.31924059551022 164 30 constant constant ADJ coo.31924059551022 164 31 . . PUNCT coo.31924059551022 165 1 but but CCONJ coo.31924059551022 165 2 we we PRON coo.31924059551022 165 3 have have AUX coo.31924059551022 165 4 taken take VERB coo.31924059551022 165 5 this this DET coo.31924059551022 165 6 function function NOUN coo.31924059551022 165 7 with with ADP coo.31924059551022 165 8 the the DET coo.31924059551022 165 9 condition condition NOUN coo.31924059551022 165 10 that that SCONJ coo.31924059551022 165 11 it it PRON coo.31924059551022 165 12 have have VERB coo.31924059551022 165 13 but but CCONJ coo.31924059551022 165 14 one one NUM coo.31924059551022 165 15 pole pole NOUN coo.31924059551022 165 16 of of ADP coo.31924059551022 165 17 the the DET coo.31924059551022 165 18 order order NOUN coo.31924059551022 165 19 n n X coo.31924059551022 165 20 subject subject NOUN coo.31924059551022 165 21 to to ADP coo.31924059551022 165 22 the the DET coo.31924059551022 165 23 above above ADJ coo.31924059551022 165 24 conditions condition NOUN coo.31924059551022 165 25 which which PRON coo.31924059551022 165 26 affords afford VERB coo.31924059551022 165 27 n n CCONJ coo.31924059551022 165 28 arbitrary arbitrary ADJ coo.31924059551022 165 29 constants constant NOUN coo.31924059551022 165 30 and and CCONJ coo.31924059551022 165 31 employing employ VERB coo.31924059551022 165 32 also also ADV coo.31924059551022 165 33 an an DET coo.31924059551022 165 34 arbitrary arbitrary ADJ coo.31924059551022 165 35 constant constant ADJ coo.31924059551022 165 36 factor factor NOUN coo.31924059551022 165 37 we we PRON coo.31924059551022 165 38 obtain obtain VERB coo.31924059551022 165 39 ( ( PUNCT coo.31924059551022 165 40 n n CCONJ coo.31924059551022 165 41 + + CCONJ coo.31924059551022 165 42 1 1 X coo.31924059551022 165 43 ) ) PUNCT coo.31924059551022 165 44 arbitrarles arbitrarle VERB coo.31924059551022 165 45 in in ADV coo.31924059551022 165 46 all all ADV coo.31924059551022 165 47 . . PUNCT coo.31924059551022 166 1 that that PRON coo.31924059551022 166 2 is be AUX coo.31924059551022 166 3 sufficient sufficient ADJ coo.31924059551022 166 4 to to PART coo.31924059551022 166 5 satisfy satisfy VERB coo.31924059551022 166 6 all all DET coo.31924059551022 166 7 the the DET coo.31924059551022 166 8 conditions condition NOUN coo.31924059551022 166 9 and and CCONJ coo.31924059551022 166 10 leave leave VERB coo.31924059551022 166 11 h h NOUN coo.31924059551022 166 12 to to PART coo.31924059551022 166 13 be be AUX coo.31924059551022 166 14 chosen choose VERB coo.31924059551022 166 15 at at ADP coo.31924059551022 166 16 will will NOUN coo.31924059551022 166 17 . . PUNCT coo.31924059551022 167 1 hence hence ADV coo.31924059551022 167 2 we we PRON coo.31924059551022 167 3 must must AUX coo.31924059551022 167 4 conclude conclude VERB coo.31924059551022 167 5 that that SCONJ coo.31924059551022 167 6 there there PRON coo.31924059551022 167 7 is be VERB coo.31924059551022 167 8 no no DET coo.31924059551022 167 9 reason reason NOUN coo.31924059551022 167 10 why why SCONJ coo.31924059551022 167 11 y y PROPN coo.31924059551022 167 12 should should AUX coo.31924059551022 167 13 not not PART coo.31924059551022 167 14 be be AUX coo.31924059551022 167 15 a a DET coo.31924059551022 167 16 doubly doubly ADV coo.31924059551022 167 17 periodic periodic ADJ coo.31924059551022 167 18 function function NOUN coo.31924059551022 167 19 of of ADP coo.31924059551022 167 20 the the DET coo.31924059551022 167 21 second second ADJ coo.31924059551022 167 22 species specie NOUN coo.31924059551022 167 23 and and CCONJ coo.31924059551022 167 24 our our PRON coo.31924059551022 167 25 problem problem NOUN coo.31924059551022 167 26 reduces reduce VERB coo.31924059551022 167 27 to to ADP coo.31924059551022 167 28 the the DET coo.31924059551022 167 29 determination determination NOUN coo.31924059551022 167 30 of of ADP coo.31924059551022 167 31 a a DET coo.31924059551022 167 32 function function NOUN coo.31924059551022 167 33 whose whose DET coo.31924059551022 167 34 general general ADJ coo.31924059551022 167 35 form form NOUN coo.31924059551022 167 36 and and CCONJ coo.31924059551022 167 37 properties property NOUN coo.31924059551022 168 1 [ [ PUNCT coo.31924059551022 168 2 16 16 NUM coo.31924059551022 168 3 ] ] PUNCT coo.31924059551022 168 4 are be AUX coo.31924059551022 168 5 known know VERB coo.31924059551022 168 6 . . PUNCT coo.31924059551022 169 1 from from ADP coo.31924059551022 169 2 this this DET coo.31924059551022 169 3 standpoint standpoint NOUN coo.31924059551022 169 4 we we PRON coo.31924059551022 169 5 have have AUX coo.31924059551022 169 6 : : PUNCT coo.31924059551022 169 7 required require VERB coo.31924059551022 169 8 a a DET coo.31924059551022 169 9 function function NOUN coo.31924059551022 169 10 such such ADJ coo.31924059551022 169 11 that that SCONJ coo.31924059551022 169 12 f(u= f(u= ADP coo.31924059551022 169 13 [ [ X coo.31924059551022 169 14 if(îi)j if(îi)j X coo.31924059551022 169 15 £ £ PROPN coo.31924059551022 169 16 & & CCONJ coo.31924059551022 169 17 = = PRON coo.31924059551022 169 18 2 2 NUM coo.31924059551022 169 19 - - PUNCT coo.31924059551022 169 20 5γ 5γ NOUN coo.31924059551022 169 21 f(u f(u PROPN coo.31924059551022 169 22 + + CCONJ coo.31924059551022 169 23 a a DET coo.31924059551022 169 24 ' ' NOUN coo.31924059551022 169 25 ) ) PUNCT coo.31924059551022 169 26 — — PUNCT coo.31924059551022 169 27 ¿ ¿ PROPN coo.31924059551022 169 28 f(u f(u PROPN coo.31924059551022 169 29 ) ) PUNCT coo.31924059551022 169 30 , , PUNCT coo.31924059551022 169 31 a a DET coo.31924059551022 169 32 ' ' PUNCT coo.31924059551022 169 33 = = NOUN coo.31924059551022 169 34 2ík 2ík NOUN coo.31924059551022 169 35 ' ' PUNCT coo.31924059551022 169 36 . . PUNCT coo.31924059551022 170 1 define define VERB coo.31924059551022 170 2 : : PUNCT coo.31924059551022 170 3 [ [ X coo.31924059551022 170 4 17] 17] NUM coo.31924059551022 170 5 .................... .................... PUNCT coo.31924059551022 170 6 f(u f(u NOUN coo.31924059551022 170 7 ) ) PUNCT coo.31924059551022 170 8 = = PUNCT coo.31924059551022 170 9 ae-^±^^ ae-^±^^ SPACE coo.31924059551022 170 10 * * NOUN coo.31924059551022 170 11 ) ) PUNCT coo.31924059551022 170 12 which which PRON coo.31924059551022 170 13 function function VERB coo.31924059551022 170 14 we we PRON coo.31924059551022 170 15 will will AUX coo.31924059551022 170 16 speak speak VERB coo.31924059551022 170 17 of of ADP coo.31924059551022 170 18 as as ADP coo.31924059551022 170 19 the the DET coo.31924059551022 170 20 eliment eliment NOUN coo.31924059551022 170 21 the the DET coo.31924059551022 170 22 general general ADJ coo.31924059551022 170 23 form form NOUN coo.31924059551022 170 24 [ [ PUNCT coo.31924059551022 170 25 16 16 NUM coo.31924059551022 170 26 ] ] PUNCT coo.31924059551022 170 27 being be AUX coo.31924059551022 170 28 a a DET coo.31924059551022 170 29 product product NOUN coo.31924059551022 170 30 of of ADP coo.31924059551022 170 31 similar similar ADJ coo.31924059551022 170 32 eliments eliment NOUN coo.31924059551022 170 33 . . PUNCT coo.31924059551022 171 1 we we PRON coo.31924059551022 171 2 have have VERB coo.31924059551022 171 3 the the DET coo.31924059551022 171 4 fundimental fundimental ADJ coo.31924059551022 171 5 relations relation NOUN coo.31924059551022 171 6 : : PUNCT coo.31924059551022 171 7 ö(u ö(u PROPN coo.31924059551022 171 8 -|a -|a NOUN coo.31924059551022 171 9 ) ) PUNCT coo.31924059551022 171 10 = = PUNCT coo.31924059551022 171 11 — — PUNCT coo.31924059551022 171 12 a(ii)e2tiu+ris2 a(ii)e2tiu+ris2 ADV coo.31924059551022 171 13 a(u a(u PROPN coo.31924059551022 171 14 + + CCONJ coo.31924059551022 171 15 β β NOUN coo.31924059551022 171 16 ’ ' PUNCT coo.31924059551022 171 17 ) ) PUNCT coo.31924059551022 171 18 = = PUNCT coo.31924059551022 171 19 — — PUNCT coo.31924059551022 171 20 ί ί X coo.31924059551022 171 21 ~ ~ NUM coo.31924059551022 171 22 τ(τ)-φ τ(τ)-φ SPACE coo.31924059551022 171 23 · · PUNCT coo.31924059551022 171 24 whence whence ADV coo.31924059551022 171 25 f(u f(u PROPN coo.31924059551022 171 26 -f -f PUNCT coo.31924059551022 171 27 · · PUNCT coo.31924059551022 171 28 a a X coo.31924059551022 171 29 ) ) PUNCT coo.31924059551022 171 30 = = X coo.31924059551022 172 1 a a DET coo.31924059551022 172 2 6λ(ϋ 6λ(ϋ NUM coo.31924059551022 172 3 + + NUM coo.31924059551022 172 4 ω ω X coo.31924059551022 172 5 ) ) PUNCT coo.31924059551022 173 1 + + CCONJ coo.31924059551022 174 1 2ην 2ην PROPN coo.31924059551022 174 2 = = PUNCT coo.31924059551022 174 3 f(u)qxs*+2ilv f(u)qxs*+2ilv SPACE coo.31924059551022 174 4 . . PUNCT coo.31924059551022 175 1 choosing choose VERB coo.31924059551022 175 2 then then ADV coo.31924059551022 175 3 v v NOUN coo.31924059551022 175 4 and and CCONJ coo.31924059551022 175 5 λ λ PROPN coo.31924059551022 175 6 correctly correctly ADV coo.31924059551022 175 7 we we PRON coo.31924059551022 175 8 may may AUX coo.31924059551022 175 9 write write VERB coo.31924059551022 175 10 μ μ PROPN coo.31924059551022 175 11 = = SYM coo.31924059551022 175 12 βΐη βΐη PROPN coo.31924059551022 175 13 + + CCONJ coo.31924059551022 175 14 2ην 2ην PROPN coo.31924059551022 175 15 * * PUNCT coo.31924059551022 175 16 ) ) PUNCT coo.31924059551022 175 17 hermite hermite NOUN coo.31924059551022 175 18 , , PUNCT coo.31924059551022 175 19 in in ADP coo.31924059551022 175 20 the the DET coo.31924059551022 175 21 following following ADJ coo.31924059551022 175 22 analysis analysis NOUN coo.31924059551022 175 23 , , PUNCT coo.31924059551022 175 24 employs employ VERB coo.31924059551022 175 25 the the DET coo.31924059551022 175 26 function function NOUN coo.31924059551022 175 27 given give VERB coo.31924059551022 175 28 on on ADP coo.31924059551022 175 29 p. p. PROPN coo.31924059551022 175 30 11 11 NUM coo.31924059551022 175 31 , , PUNCT coo.31924059551022 175 32 namely namely ADV coo.31924059551022 175 33 the the DET coo.31924059551022 175 34 function function NOUN coo.31924059551022 175 35 χ χ PRON coo.31924059551022 175 36 expressed express VERB coo.31924059551022 175 37 in in ADP coo.31924059551022 175 38 terms term NOUN coo.31924059551022 175 39 of of ADP coo.31924059551022 175 40 the the DET coo.31924059551022 175 41 θ θ X coo.31924059551022 175 42 function function NOUN coo.31924059551022 175 43 . . PUNCT coo.31924059551022 176 1 hermite hermite SPACE coo.31924059551022 176 2 ’s ’s PART coo.31924059551022 176 3 integral integral ADJ coo.31924059551022 176 4 as as ADP coo.31924059551022 176 5 a a DET coo.31924059551022 176 6 sum sum NOUN coo.31924059551022 176 7 . . PUNCT coo.31924059551022 177 1 19 19 NUM coo.31924059551022 177 2 with with ADP coo.31924059551022 177 3 a a DET coo.31924059551022 177 4 corresponding corresponding ADJ coo.31924059551022 177 5 value value NOUN coo.31924059551022 177 6 for for ADP coo.31924059551022 177 7 μ μ NOUN coo.31924059551022 177 8 and and CCONJ coo.31924059551022 177 9 we we PRON coo.31924059551022 177 10 may may AUX coo.31924059551022 177 11 then then ADV coo.31924059551022 177 12 write write VERB coo.31924059551022 177 13 f(a f(a PROPN coo.31924059551022 177 14 ) ) PUNCT coo.31924059551022 177 15 = = X coo.31924059551022 177 16 φ(η φ(η SPACE coo.31924059551022 177 17 ) ) PUNCT coo.31924059551022 177 18 f(u f(u PROPN coo.31924059551022 177 19 ) ) PUNCT coo.31924059551022 178 1 v[u v[u PROPN coo.31924059551022 178 2 > > X coo.31924059551022 178 3 where where SCONJ coo.31924059551022 178 4 φ φ PROPN coo.31924059551022 178 5 is be AUX coo.31924059551022 178 6 a a DET coo.31924059551022 178 7 doubly doubly ADV coo.31924059551022 178 8 periodic periodic ADJ coo.31924059551022 178 9 function function NOUN coo.31924059551022 178 10 , , PUNCT coo.31924059551022 178 11 that that PRON coo.31924059551022 178 12 is be AUX coo.31924059551022 178 13 < < X coo.31924059551022 178 14 i>(ti i>(ti PROPN coo.31924059551022 178 15 -jm -jm SPACE coo.31924059551022 178 16 & & CCONJ coo.31924059551022 178 17 + + CCONJ coo.31924059551022 178 18 nao nao PROPN coo.31924059551022 178 19 = = PROPN coo.31924059551022 178 20 φ(μ φ(μ PROPN coo.31924059551022 178 21 ) ) PUNCT coo.31924059551022 178 22 · · PUNCT coo.31924059551022 178 23 again again ADV coo.31924059551022 178 24 f(u f(u PROPN coo.31924059551022 178 25 — — PUNCT coo.31924059551022 178 26 β β X coo.31924059551022 178 27 ) ) PUNCT coo.31924059551022 178 28 = = PROPN coo.31924059551022 178 29 = = X coo.31924059551022 178 30 i i X coo.31924059551022 178 31 ƒ ƒ X coo.31924059551022 178 32 ( ( PUNCT coo.31924059551022 178 33 « « PROPN coo.31924059551022 178 34 ) ) PUNCT coo.31924059551022 178 35 and and CCONJ coo.31924059551022 178 36 f(u f(u PROPN coo.31924059551022 178 37 — — PUNCT coo.31924059551022 178 38 sí sí PROPN coo.31924059551022 178 39 ' ' PUNCT coo.31924059551022 178 40 ) ) PUNCT coo.31924059551022 178 41 = = PROPN coo.31924059551022 178 42 f(u f(u PROPN coo.31924059551022 178 43 ) ) PUNCT coo.31924059551022 178 44 . . PUNCT coo.31924059551022 179 1 whence whence ADV coo.31924059551022 179 2 f(u f(u PROPN coo.31924059551022 179 3 — — PUNCT coo.31924059551022 179 4 z z X coo.31924059551022 179 5 — — PUNCT coo.31924059551022 179 6 a a X coo.31924059551022 179 7 ) ) PUNCT coo.31924059551022 179 8 = = PUNCT coo.31924059551022 179 9 — — PUNCT coo.31924059551022 179 10 f(u f(u NOUN coo.31924059551022 179 11 — — PUNCT coo.31924059551022 179 12 z z NOUN coo.31924059551022 179 13 ) ) PUNCT coo.31924059551022 180 1 where where SCONJ coo.31924059551022 180 2 f(z f(z PROPN coo.31924059551022 180 3 & & CCONJ coo.31924059551022 180 4 ) ) PUNCT coo.31924059551022 180 5 = = X coo.31924059551022 180 6 ^f ^f SPACE coo.31924059551022 180 7 { { PUNCT coo.31924059551022 180 8 ¿ ¿ PROPN coo.31924059551022 180 9 ) ) PUNCT coo.31924059551022 180 10 and and CCONJ coo.31924059551022 180 11 we we PRON coo.31924059551022 180 12 derive derive VERB coo.31924059551022 180 13 [ [ PUNCT coo.31924059551022 180 14 18] 18] NUM coo.31924059551022 180 15 .................. .................. PUNCT coo.31924059551022 180 16 φ(ζ φ(ζ SPACE coo.31924059551022 180 17 ) ) PUNCT coo.31924059551022 180 18 = = VERB coo.31924059551022 180 19 f(z)f(u f(z)f(u VERB coo.31924059551022 180 20 — — PUNCT coo.31924059551022 180 21 z z NOUN coo.31924059551022 180 22 ) ) PUNCT coo.31924059551022 180 23 where where SCONJ coo.31924059551022 180 24 φ φ PROPN coo.31924059551022 180 25 is be AUX coo.31924059551022 180 26 doubly doubly ADV coo.31924059551022 180 27 periodic periodic ADJ coo.31924059551022 180 28 . . PUNCT coo.31924059551022 181 1 from from ADP coo.31924059551022 181 2 this this DET coo.31924059551022 181 3 point point NOUN coo.31924059551022 181 4 the the DET coo.31924059551022 181 5 development development NOUN coo.31924059551022 181 6 of of ADP coo.31924059551022 181 7 f(u f(u NOUN coo.31924059551022 181 8 ) ) PUNCT coo.31924059551022 181 9 depends depend VERB coo.31924059551022 181 10 upon upon SCONJ coo.31924059551022 181 11 the the DET coo.31924059551022 181 12 theory theory NOUN coo.31924059551022 181 13 of of ADP coo.31924059551022 181 14 cauchy cauchy NOUN coo.31924059551022 181 15 , , PUNCT coo.31924059551022 181 16 as as SCONJ coo.31924059551022 181 17 it it PRON coo.31924059551022 181 18 is be AUX coo.31924059551022 181 19 obtained obtain VERB coo.31924059551022 181 20 by by ADP coo.31924059551022 181 21 calculating calculate VERB coo.31924059551022 181 22 the the DET coo.31924059551022 181 23 residuals residual NOUN coo.31924059551022 181 24 of of ADP coo.31924059551022 181 25 φ φ NOUN coo.31924059551022 181 26 for for ADP coo.31924059551022 181 27 the the DET coo.31924059551022 181 28 values value NOUN coo.31924059551022 181 29 of of ADP coo.31924059551022 181 30 the the DET coo.31924059551022 181 31 argument argument NOUN coo.31924059551022 181 32 that that PRON coo.31924059551022 181 33 render render VERB coo.31924059551022 181 34 it it PRON coo.31924059551022 181 35 infinite infinite ADJ coo.31924059551022 181 36 and and CCONJ coo.31924059551022 181 37 equating equate VERB coo.31924059551022 181 38 the the DET coo.31924059551022 181 39 sum sum NOUN coo.31924059551022 181 40 to to ADP coo.31924059551022 181 41 zero zero NUM coo.31924059551022 181 42 as as SCONJ coo.31924059551022 181 43 follows follow VERB coo.31924059551022 181 44 . . PUNCT coo.31924059551022 182 1 first first PROPN coo.31924059551022 182 2 f(ii f(ii PROPN coo.31924059551022 182 3 ) ) PUNCT coo.31924059551022 182 4 becomes become VERB coo.31924059551022 182 5 infinite infinite ADJ coo.31924059551022 182 6 for for ADP coo.31924059551022 182 7 the the DET coo.31924059551022 182 8 value value NOUN coo.31924059551022 183 1 u u PROPN coo.31924059551022 183 2 = = SYM coo.31924059551022 183 3 0 0 NUM coo.31924059551022 184 1 whence whence ADP coo.31924059551022 184 2 its its PRON coo.31924059551022 184 3 residual residual ADJ coo.31924059551022 184 4 eurof{u eurof{u PROPN coo.31924059551022 184 5 ) ) PUNCT coo.31924059551022 184 6 = = PUNCT coo.31924059551022 185 1 [ [ X coo.31924059551022 185 2 ufu]u ufu]u NOUN coo.31924059551022 185 3 = = NOUN coo.31924059551022 185 4 o o NOUN coo.31924059551022 185 5 = = X coo.31924059551022 185 6 a------—----------= a------—----------= PROPN coo.31924059551022 185 7 = = SYM coo.31924059551022 185 8 aõ(v aõ(v NOUN coo.31924059551022 185 9 ) ) PUNCT coo.31924059551022 185 10 mu mu PROPN coo.31924059551022 185 11 = = NOUN coo.31924059551022 185 12 o o NOUN coo.31924059551022 185 13 and and CCONJ coo.31924059551022 185 14 becomes become VERB coo.31924059551022 185 15 equal equal ADJ coo.31924059551022 185 16 to to ADP coo.31924059551022 185 17 unity unity NOUN coo.31924059551022 185 18 if if SCONJ coo.31924059551022 185 19 we we PRON coo.31924059551022 185 20 take take VERB coo.31924059551022 185 21 a a DET coo.31924059551022 185 22 whence whence NOUN coo.31924059551022 185 23 l l NOUN coo.31924059551022 185 24 a{v a{v SPACE coo.31924059551022 185 25 ) ) PUNCT coo.31924059551022 185 26 ' ' PUNCT coo.31924059551022 186 1 [ [ PUNCT coo.31924059551022 186 2 19 19 NUM coo.31924059551022 186 3 ] ] X coo.31924059551022 186 4 f(u f(u NOUN coo.31924059551022 186 5 ) ) PUNCT coo.31924059551022 186 6 = = PUNCT coo.31924059551022 187 1 a(u a(u PROPN coo.31924059551022 187 2 elu elu PROPN coo.31924059551022 187 3 ' ' PART coo.31924059551022 187 4 ^ ^ NOUN coo.31924059551022 187 5 ' ' PART coo.31924059551022 187 6 g(u)o(v g(u)o(v NOUN coo.31924059551022 187 7 ) ) PUNCT coo.31924059551022 187 8 again again ADV coo.31924059551022 187 9 = = PROPN coo.31924059551022 187 10 sl sl PROPN coo.31924059551022 187 11 ™ ™ PROPN coo.31924059551022 187 12 u u PROPN coo.31924059551022 187 13 ( ( PUNCT coo.31924059551022 187 14 b b NOUN coo.31924059551022 187 15 « « NUM coo.31924059551022 187 16 ) ) PUNCT coo.31924059551022 187 17 φ(β φ(β PROPN coo.31924059551022 187 18 ) ) PUNCT coo.31924059551022 187 19 = = NOUN coo.31924059551022 187 20 ( ( PUNCT coo.31924059551022 187 21 0 0 NUM coo.31924059551022 187 22 u)f(/)f(u u)f(/)f(u ADJ coo.31924059551022 187 23 * * PUNCT coo.31924059551022 187 24 ) ) PUNCT coo.31924059551022 187 25 and and CCONJ coo.31924059551022 187 26 developing develop VERB coo.31924059551022 187 27 f(u f(u NOUN coo.31924059551022 187 28 — — PUNCT coo.31924059551022 187 29 z z X coo.31924059551022 187 30 ) ) PUNCT coo.31924059551022 187 31 we we PRON coo.31924059551022 187 32 have have AUX coo.31924059551022 187 33 εηφ{ζ εηφ{ζ SPACE coo.31924059551022 187 34 ) ) PUNCT coo.31924059551022 187 35 = = PUNCT coo.31924059551022 187 36 — — PUNCT coo.31924059551022 187 37 f(u f(u NOUN coo.31924059551022 187 38 ) ) PUNCT coo.31924059551022 187 39 again again ADV coo.31924059551022 187 40 let let VERB coo.31924059551022 187 41 a a PRON coo.31924059551022 187 42 be be AUX coo.31924059551022 187 43 any any DET coo.31924059551022 187 44 pole pole NOUN coo.31924059551022 187 45 of of ADP coo.31924059551022 187 46 f(u f(u NOUN coo.31924059551022 187 47 ) ) PUNCT coo.31924059551022 187 48 in in ADP coo.31924059551022 187 49 which which DET coo.31924059551022 187 50 case case NOUN coo.31924059551022 187 51 , , PUNCT coo.31924059551022 187 52 developing develop VERB coo.31924059551022 187 53 by by ADP coo.31924059551022 187 54 the the DET coo.31924059551022 187 55 function function NOUN coo.31924059551022 187 56 theory theory NOUN coo.31924059551022 187 57 , , PUNCT coo.31924059551022 187 58 we we PRON coo.31924059551022 187 59 may may AUX coo.31924059551022 187 60 write write VERB coo.31924059551022 187 61 f(cl f(cl PROPN coo.31924059551022 187 62 4 4 NUM coo.31924059551022 187 63 " " PUNCT coo.31924059551022 187 64 í)e í)e SPACE coo.31924059551022 187 65 = = NOUN coo.31924059551022 187 66 o o X coo.31924059551022 187 67 = = NOUN coo.31924059551022 187 68 = = NOUN coo.31924059551022 187 69 = = PUNCT coo.31924059551022 187 70 as as ADP coo.31924059551022 187 71 1 1 NUM coo.31924059551022 187 72 4 4 NUM coo.31924059551022 187 73 " " PUNCT coo.31924059551022 187 74 a1des a1de VERB coo.31924059551022 187 75 1 1 NUM coo.31924059551022 187 76 4a^jdçs 4a^jdçs NUM coo.31924059551022 187 77 1 1 NUM coo.31924059551022 187 78 4 4 NUM coo.31924059551022 187 79 " " PUNCT coo.31924059551022 187 80 * * PUNCT coo.31924059551022 187 81 * * PUNCT coo.31924059551022 187 82 4 4 NUM coo.31924059551022 187 83 “ " PUNCT coo.31924059551022 187 84 ααό*ε~1 ααό*ε~1 PROPN coo.31924059551022 187 85 4 4 NUM coo.31924059551022 187 86 “ " PUNCT coo.31924059551022 187 87 ao ao ADP coo.31924059551022 187 88 “ " PUNCT coo.31924059551022 187 89 f f X coo.31924059551022 187 90 “ " PUNCT coo.31924059551022 187 91 aiε aiε ADJ coo.31924059551022 187 92 “ " PUNCT coo.31924059551022 187 93 1 1 NUM coo.31924059551022 187 94 ” " PUNCT coo.31924059551022 187 95 a2“h a2“h ADP coo.31924059551022 187 96 * * PUNCT coo.31924059551022 187 97 * * SYM coo.31924059551022 187 98 2 2 NUM coo.31924059551022 187 99 20 20 NUM coo.31924059551022 187 100 part part NOUN coo.31924059551022 187 101 ii ii PROPN coo.31924059551022 187 102 . . PROPN coo.31924059551022 187 103 and and CCONJ coo.31924059551022 187 104 f(u f(u PROPN coo.31924059551022 187 105 — — PUNCT coo.31924059551022 187 106 a a X coo.31924059551022 187 107 — — PUNCT coo.31924059551022 187 108 s s NOUN coo.31924059551022 187 109 ) ) PUNCT coo.31924059551022 187 110 = = PROPN coo.31924059551022 187 111 f(u f(u NOUN coo.31924059551022 187 112 — — PUNCT coo.31924059551022 187 113 d d X coo.31924059551022 187 114 ) ) PUNCT coo.31924059551022 187 115 — — PUNCT coo.31924059551022 187 116 jbuf(u jbuf(u PROPN coo.31924059551022 187 117 — — PUNCT coo.31924059551022 187 118 a a X coo.31924059551022 187 119 ) ) PUNCT coo.31924059551022 187 120 + + CCONJ coo.31924059551022 187 121 ~dlf(u ~dlf(u PUNCT coo.31924059551022 187 122 — — PUNCT coo.31924059551022 187 123 a)+ a)+ DET coo.31924059551022 187 124 r r NOUN coo.31924059551022 187 125 = = PROPN coo.31924059551022 187 126 i^wm i^wm PROPN coo.31924059551022 187 127 - - PUNCT coo.31924059551022 187 128 « « NOUN coo.31924059551022 187 129 ) ) PUNCT coo.31924059551022 187 130 + + CCONJ coo.31924059551022 187 131 · · PUNCT coo.31924059551022 187 132 · · PUNCT coo.31924059551022 187 133 where where SCONJ coo.31924059551022 187 134 we we PRON coo.31924059551022 187 135 have have VERB coo.31924059551022 187 136 then then ADV coo.31924059551022 187 137 kφ kφ PROPN coo.31924059551022 187 138 = = PROPN coo.31924059551022 187 139 , , PUNCT coo.31924059551022 187 140 ΐο£íke ΐο£íke NOUN coo.31924059551022 188 1 + + NUM coo.31924059551022 188 2 £ £ X coo.31924059551022 188 3 ) ) PUNCT coo.31924059551022 188 4 /(m /(m PUNCT coo.31924059551022 189 1 « « PUNCT coo.31924059551022 189 2 * * PUNCT coo.31924059551022 189 3 ) ) PUNCT coo.31924059551022 189 4 = = X coo.31924059551022 189 5 af(u af(u PUNCT coo.31924059551022 189 6 — — PUNCT coo.31924059551022 189 7 a a X coo.31924059551022 189 8 ) ) PUNCT coo.31924059551022 189 9 + + CCONJ coo.31924059551022 189 10 a^ufiu a^ufiu PROPN coo.31924059551022 189 11 — — PUNCT coo.31924059551022 189 12 a a X coo.31924059551022 189 13 ) ) PUNCT coo.31924059551022 189 14 + + CCONJ coo.31924059551022 189 15 a2d2uf(u a2d2uf(u NUM coo.31924059551022 189 16 — — PUNCT coo.31924059551022 189 17 a a X coo.31924059551022 189 18 ) ) PUNCT coo.31924059551022 189 19 + + PUNCT coo.31924059551022 189 20 · · PUNCT coo.31924059551022 190 1 * * PUNCT coo.31924059551022 190 2 * * PUNCT coo.31924059551022 190 3 + + PUNCT coo.31924059551022 190 4 aadlf(u aadlf(u ADJ coo.31924059551022 190 5 — — PUNCT coo.31924059551022 190 6 a a X coo.31924059551022 190 7 ) ) PUNCT coo.31924059551022 190 8 with with ADP coo.31924059551022 190 9 similar similar ADJ coo.31924059551022 190 10 expressions expression NOUN coo.31924059551022 190 11 for for ADP coo.31924059551022 190 12 ebj ebj PRON coo.31924059551022 190 13 ec ec PROPN coo.31924059551022 190 14 . . PUNCT coo.31924059551022 190 15 . . PUNCT coo.31924059551022 190 16 . . PUNCT coo.31924059551022 191 1 but but CCONJ coo.31924059551022 191 2 φ φ PROPN coo.31924059551022 191 3 being be AUX coo.31924059551022 191 4 a a DET coo.31924059551022 191 5 doubly doubly ADV coo.31924059551022 191 6 periodic periodic ADJ coo.31924059551022 191 7 function function NOUN coo.31924059551022 191 8 we we PRON coo.31924059551022 191 9 know know VERB coo.31924059551022 191 10 that that SCONJ coo.31924059551022 191 11 the the DET coo.31924059551022 191 12 sum sum NOUN coo.31924059551022 191 13 of of ADP coo.31924059551022 191 14 its its PRON coo.31924059551022 191 15 residuals residual NOUN coo.31924059551022 191 16 with with ADP coo.31924059551022 191 17 respect respect NOUN coo.31924059551022 191 18 to to ADP coo.31924059551022 191 19 u u PROPN coo.31924059551022 191 20 , , PUNCT coo.31924059551022 191 21 a a PRON coo.31924059551022 191 22 , , PUNCT coo.31924059551022 191 23 δ δ PROPN coo.31924059551022 191 24 . . PUNCT coo.31924059551022 191 25 . . PUNCT coo.31924059551022 192 1 equals equal VERB coo.31924059551022 192 2 zero zero NUM coo.31924059551022 192 3 whence whence NOUN coo.31924059551022 192 4 [ [ X coo.31924059551022 192 5 20 20 NUM coo.31924059551022 192 6 ] ] X coo.31924059551022 192 7 f(u f(u NOUN coo.31924059551022 192 8 ) ) PUNCT coo.31924059551022 192 9 = = PUNCT coo.31924059551022 193 1 [ [ X coo.31924059551022 193 2 .af(u .af(u X coo.31924059551022 193 3 — — PUNCT coo.31924059551022 193 4 et et PROPN coo.31924059551022 193 5 ) ) PUNCT coo.31924059551022 193 6 -ja1 -ja1 X coo.31924059551022 194 1 duf(u duf(u PROPN coo.31924059551022 194 2 — — PUNCT coo.31924059551022 194 3 cl cl NOUN coo.31924059551022 194 4 ) ) PUNCT coo.31924059551022 194 5 -fa2duf -fa2duf PROPN coo.31924059551022 194 6 ( ( PUNCT coo.31924059551022 194 7 it it PRON coo.31924059551022 194 8 — — PUNCT coo.31924059551022 194 9 ci ci PROPN coo.31924059551022 194 10 ) ) PUNCT coo.31924059551022 194 11 -f -f PUNCT coo.31924059551022 194 12 · · PUNCT coo.31924059551022 194 13 · · PUNCT coo.31924059551022 194 14 α α X coo.31924059551022 194 15 = = NOUN coo.31924059551022 194 16 α α PROPN coo.31924059551022 194 17 , , PUNCT coo.31924059551022 194 18 6 6 NUM coo.31924059551022 194 19 , , PUNCT coo.31924059551022 194 20 c c X coo.31924059551022 194 21 .. .. PUNCT coo.31924059551022 194 22 -f -f PUNCT coo.31924059551022 194 23 ” " PUNCT coo.31924059551022 194 24 aajduf{u aajduf{u PROPN coo.31924059551022 194 25 — — PUNCT coo.31924059551022 194 26 d)\ d)\ ADV coo.31924059551022 194 27 where where SCONJ coo.31924059551022 194 28 atis atis PROPN coo.31924059551022 194 29 determined determine VERB coo.31924059551022 194 30 from from ADP coo.31924059551022 194 31 the the DET coo.31924059551022 194 32 first first ADJ coo.31924059551022 194 33 development development NOUN coo.31924059551022 194 34 . . PUNCT coo.31924059551022 195 1 this this DET coo.31924059551022 195 2 important important ADJ coo.31924059551022 195 3 formula formula NOUN coo.31924059551022 195 4 still still ADV coo.31924059551022 195 5 further far ADV coo.31924059551022 195 6 narrows narrow VERB coo.31924059551022 195 7 our our PRON coo.31924059551022 195 8 problem problem NOUN coo.31924059551022 195 9 to to ADP coo.31924059551022 195 10 a a DET coo.31924059551022 195 11 consideration consideration NOUN coo.31924059551022 195 12 of of ADP coo.31924059551022 195 13 f(u f(u NOUN coo.31924059551022 195 14 ) ) PUNCT coo.31924059551022 195 15 in in ADP coo.31924059551022 195 16 terms term NOUN coo.31924059551022 195 17 of of ADP coo.31924059551022 195 18 which which PRON coo.31924059551022 195 19 and and CCONJ coo.31924059551022 195 20 its its PRON coo.31924059551022 195 21 derivatives derivative NOUN coo.31924059551022 195 22 under under ADP coo.31924059551022 195 23 conditions condition NOUN coo.31924059551022 195 24 to to PART coo.31924059551022 195 25 be be AUX coo.31924059551022 195 26 determined determine VERB coo.31924059551022 195 27 it it PRON coo.31924059551022 195 28 is be AUX coo.31924059551022 195 29 now now ADV coo.31924059551022 195 30 evident evident ADJ coo.31924059551022 195 31 that that SCONJ coo.31924059551022 195 32 y y PROPN coo.31924059551022 195 33 = = PROPN coo.31924059551022 195 34 f1 f1 PROPN coo.31924059551022 195 35 ( ( PUNCT coo.31924059551022 195 36 u u PROPN coo.31924059551022 195 37 ) ) PUNCT coo.31924059551022 195 38 may may AUX coo.31924059551022 195 39 be be AUX coo.31924059551022 195 40 expressed express VERB coo.31924059551022 195 41 . . PUNCT coo.31924059551022 196 1 transformation transformation NOUN coo.31924059551022 196 2 of of ADP coo.31924059551022 196 3 hermite hermite PROPN coo.31924059551022 196 4 ’s ’s PART coo.31924059551022 196 5 equation equation NOUN coo.31924059551022 196 6 . . PUNCT coo.31924059551022 197 1 we we PRON coo.31924059551022 197 2 have have AUX coo.31924059551022 197 3 written write VERB coo.31924059551022 197 4 hermite hermite PROPN coo.31924059551022 197 5 's 's PART coo.31924059551022 197 6 equation equation NOUN coo.31924059551022 197 7 in in ADP coo.31924059551022 197 8 its its PRON coo.31924059551022 197 9 original original ADJ coo.31924059551022 197 10 form form NOUN coo.31924059551022 197 11 [ [ PUNCT coo.31924059551022 197 12 21] 21] NUM coo.31924059551022 197 13 ............... ............... PUNCT coo.31924059551022 197 14 = = PUNCT coo.31924059551022 198 1 [ [ X coo.31924059551022 198 2 » » X coo.31924059551022 198 3 ( ( PUNCT coo.31924059551022 198 4 » » PUNCT coo.31924059551022 198 5 + + NUM coo.31924059551022 198 6 1)¿2 1)¿2 NUM coo.31924059551022 198 7 sri sri NOUN coo.31924059551022 198 8 * * X coo.31924059551022 198 9 x x PUNCT coo.31924059551022 199 1 + + PUNCT coo.31924059551022 199 2 / / PUNCT coo.31924059551022 199 3 * * PUNCT coo.31924059551022 199 4 ] ] X coo.31924059551022 199 5 . . PUNCT coo.31924059551022 200 1 that that SCONJ coo.31924059551022 200 2 this this PRON coo.31924059551022 200 3 is be AUX coo.31924059551022 200 4 however however ADV coo.31924059551022 200 5 but but CCONJ coo.31924059551022 200 6 a a DET coo.31924059551022 200 7 special special ADJ coo.31924059551022 200 8 case case NOUN coo.31924059551022 200 9 of of ADP coo.31924059551022 200 10 a a DET coo.31924059551022 200 11 more more ADV coo.31924059551022 200 12 general general ADJ coo.31924059551022 200 13 form form NOUN coo.31924059551022 200 14 is be AUX coo.31924059551022 200 15 seen see VERB coo.31924059551022 200 16 as as SCONJ coo.31924059551022 200 17 follows follow NOUN coo.31924059551022 200 18 . . PUNCT coo.31924059551022 201 1 take take VERB coo.31924059551022 201 2 the the DET coo.31924059551022 201 3 integral integral ADJ coo.31924059551022 201 4 r r X coo.31924059551022 201 5 dx dx X coo.31924059551022 201 6 x x PUNCT coo.31924059551022 201 7 — — PUNCT coo.31924059551022 201 8 i i PRON coo.31924059551022 201 9 = = VERB coo.31924059551022 201 10 1 1 NUM coo.31924059551022 201 11 rax rax NOUN coo.31924059551022 201 12 j j PROPN coo.31924059551022 201 13 1/(1 1/(1 NUM coo.31924059551022 201 14 — — PUNCT coo.31924059551022 201 15 * * SYM coo.31924059551022 201 16 2)(1 2)(1 NUM coo.31924059551022 201 17 jc*x2 jc*x2 PROPN coo.31924059551022 201 18 ) ) PUNCT coo.31924059551022 201 19 * * PUNCT coo.31924059551022 201 20 0 0 NUM coo.31924059551022 202 1 j j X coo.31924059551022 202 2 0 0 NUM coo.31924059551022 202 3 yi yi PROPN coo.31924059551022 202 4 we we PRON coo.31924059551022 202 5 have have VERB coo.31924059551022 202 6 dy dy PROPN coo.31924059551022 202 7 dy dy PROPN coo.31924059551022 202 8 don don PROPN coo.31924059551022 202 9 dy dy PROPN coo.31924059551022 202 10 dx dx X coo.31924059551022 202 11 dx dx X coo.31924059551022 202 12 dx dx X coo.31924059551022 202 13 dx dx X coo.31924059551022 202 14 1 1 NUM coo.31924059551022 202 15 y'a y'a PROPN coo.31924059551022 202 16 or or CCONJ coo.31924059551022 202 17 ^ ^ PUNCT coo.31924059551022 202 18 i i PRON coo.31924059551022 203 1 * * PUNCT coo.31924059551022 203 2 * * PUNCT coo.31924059551022 203 3 * * PROPN coo.31924059551022 203 4 1^ 1^ PROPN coo.31924059551022 203 5 ii ii PROPN coo.31924059551022 203 6 hermite hermite SPACE coo.31924059551022 203 7 ’s ’s PART coo.31924059551022 203 8 integral integral ADJ coo.31924059551022 203 9 as as ADP coo.31924059551022 203 10 a a DET coo.31924059551022 203 11 sum sum NOUN coo.31924059551022 203 12 . . PUNCT coo.31924059551022 204 1 21 21 NUM coo.31924059551022 204 2 whence whence NOUN coo.31924059551022 204 3 a?y a?y PROPN coo.31924059551022 204 4 dl dl PROPN coo.31924059551022 205 1 * * NOUN coo.31924059551022 205 2 or or CCONJ coo.31924059551022 205 3 d*y d*y ADV coo.31924059551022 205 4 dx2 dx2 PROPN coo.31924059551022 205 5 d2y d2y NOUN coo.31924059551022 205 6 1 1 NUM coo.31924059551022 206 1 i i PRON coo.31924059551022 206 2 λ λ X coo.31924059551022 206 3 ' ' PUNCT coo.31924059551022 206 4 dy dy NOUN coo.31924059551022 206 5 dx2 dx2 PROPN coo.31924059551022 206 6 λ λ PROPN coo.31924059551022 206 7 2 2 NUM coo.31924059551022 206 8 j^dx j^dx PROPN coo.31924059551022 206 9 yidx yidx NOUN coo.31924059551022 206 10 * * PUNCT coo.31924059551022 206 11 ^ ^ NOUN coo.31924059551022 207 1 dx dx PROPN coo.31924059551022 207 2 substituting substitute VERB coo.31924059551022 207 3 we we PRON coo.31924059551022 207 4 derive derive VERB coo.31924059551022 207 5 the the DET coo.31924059551022 207 6 ordinary ordinary ADJ coo.31924059551022 207 7 form form NOUN coo.31924059551022 207 8 of of ADP coo.31924059551022 207 9 lame lame PROPN coo.31924059551022 207 10 's 's PART coo.31924059551022 207 11 equation equation NOUN coo.31924059551022 207 12 [ [ X coo.31924059551022 207 13 22 22 NUM coo.31924059551022 207 14 ] ] PUNCT coo.31924059551022 207 15 . . PUNCT coo.31924059551022 207 16 . . PUNCT coo.31924059551022 207 17 . . PUNCT coo.31924059551022 208 1 · · PUNCT coo.31924059551022 208 2 λ λ NOUN coo.31924059551022 208 3 + + X coo.31924059551022 208 4 y y PROPN coo.31924059551022 208 5 gf gf PROPN coo.31924059551022 208 6 — — PUNCT coo.31924059551022 208 7 vn vn PROPN coo.31924059551022 208 8 ( ( PUNCT coo.31924059551022 208 9 n n X coo.31924059551022 208 10 + + CCONJ coo.31924059551022 208 11 1 1 NUM coo.31924059551022 208 12 ) ) PUNCT coo.31924059551022 208 13 k2sn2x k2sn2x NUM coo.31924059551022 208 14 + + SYM coo.31924059551022 208 15 h h X coo.31924059551022 208 16 ] ] X coo.31924059551022 208 17 = = X coo.31924059551022 208 18 0 0 NUM coo.31924059551022 208 19 . . PUNCT coo.31924059551022 208 20 * * PUNCT coo.31924059551022 208 21 ) ) PUNCT coo.31924059551022 209 1 the the DET coo.31924059551022 209 2 value value NOUN coo.31924059551022 209 3 of of ADP coo.31924059551022 209 4 a a DET coo.31924059551022 209 5 gives give NOUN coo.31924059551022 209 6 as as ADP coo.31924059551022 209 7 singular singular ADJ coo.31924059551022 209 8 points point NOUN coo.31924059551022 209 9 + + CCONJ coo.31924059551022 209 10 1 1 NUM coo.31924059551022 209 11 ; ; PUNCT coo.31924059551022 209 12 + + NUM coo.31924059551022 209 13 ~ ~ PUNCT coo.31924059551022 209 14 and and CCONJ coo.31924059551022 209 15 oo oo NOUN coo.31924059551022 209 16 . . PUNCT coo.31924059551022 210 1 for for ADP coo.31924059551022 210 2 our our PRON coo.31924059551022 210 3 present present ADJ coo.31924059551022 210 4 purpose purpose NOUN coo.31924059551022 210 5 however however ADV coo.31924059551022 210 6 we we PRON coo.31924059551022 210 7 need need VERB coo.31924059551022 210 8 the the DET coo.31924059551022 210 9 equation equation NOUN coo.31924059551022 210 10 expressed express VERB coo.31924059551022 210 11 in in ADP coo.31924059551022 210 12 terms term NOUN coo.31924059551022 210 13 of of ADP coo.31924059551022 210 14 u u PROPN coo.31924059551022 210 15 and and CCONJ coo.31924059551022 210 16 pu pu PROPN coo.31924059551022 210 17 which which PRON coo.31924059551022 210 18 is be AUX coo.31924059551022 210 19 derived derive VERB coo.31924059551022 210 20 from from ADP coo.31924059551022 210 21 ( ( PUNCT coo.31924059551022 210 22 21 21 NUM coo.31924059551022 210 23 ) ) PUNCT coo.31924059551022 210 24 by by ADP coo.31924059551022 210 25 means mean NOUN coo.31924059551022 210 26 of of ADP coo.31924059551022 210 27 the the DET coo.31924059551022 210 28 relations relation NOUN coo.31924059551022 210 29 ρ(ιή ρ(ιή PROPN coo.31924059551022 210 30 = = SYM coo.31924059551022 210 31 e3 e3 X coo.31924059551022 210 32 + + PUNCT coo.31924059551022 210 33 _ _ PUNCT coo.31924059551022 210 34 _ _ PUNCT coo.31924059551022 210 35 _ _ PUNCT coo.31924059551022 211 1 ei____?8 ei____?8 NOUN coo.31924059551022 211 2 _ _ PUNCT coo.31924059551022 211 3 _ _ PUNCT coo.31924059551022 211 4 _ _ PROPN coo.31924059551022 211 5 sn2u]/el sn2u]/el NOUN coo.31924059551022 211 6 — — PUNCT coo.31924059551022 211 7 e3 e3 PROPN coo.31924059551022 211 8 ’ ' PUNCT coo.31924059551022 211 9 k2sn2(u k2sn2(u VERB coo.31924059551022 211 10 + + CCONJ coo.31924059551022 211 11 ik ik PROPN coo.31924059551022 211 12 ' ' PUNCT coo.31924059551022 211 13 ) ) PUNCT coo.31924059551022 211 14 = = PUNCT coo.31924059551022 211 15 and and CCONJ coo.31924059551022 211 16 making make VERB coo.31924059551022 211 17 the the DET coo.31924059551022 211 18 substitutions substitution NOUN coo.31924059551022 211 19 : : PUNCT coo.31924059551022 211 20 x x PUNCT coo.31924059551022 211 21 — — PUNCT coo.31924059551022 211 22 u'\/el u'\/el PROPN coo.31924059551022 211 23 — — PUNCT coo.31924059551022 211 24 e3 e3 PROPN coo.31924059551022 211 25 u u X coo.31924059551022 211 26 oo oo INTJ coo.31924059551022 211 27 u u PROPN coo.31924059551022 211 28 -ji¥ -ji¥ PUNCT coo.31924059551022 211 29 we we PRON coo.31924059551022 211 30 obtain obtain VERB coo.31924059551022 211 31 : : PUNCT coo.31924059551022 211 32 d2y d2y NOUN coo.31924059551022 211 33 _ _ PUNCT coo.31924059551022 211 34 _ _ PUNCT coo.31924059551022 211 35 _ _ PUNCT coo.31924059551022 211 36 _ _ PUNCT coo.31924059551022 211 37 _ _ PUNCT coo.31924059551022 211 38 _ _ PUNCT coo.31924059551022 211 39 _ _ PUNCT coo.31924059551022 211 40 _ _ PUNCT coo.31924059551022 212 1 _ _ PUNCT coo.31924059551022 212 2 _ _ PUNCT coo.31924059551022 213 1 du2 du2 PRON coo.31924059551022 213 2 ( ( PUNCT coo.31924059551022 213 3 β β X coo.31924059551022 213 4 ! ! NUM coo.31924059551022 213 5 — — PUNCT coo.31924059551022 213 6 e3 e3 PROPN coo.31924059551022 213 7 ) ) PUNCT coo.31924059551022 213 8 dx2 dx2 NOUN coo.31924059551022 213 9 = = VERB coo.31924059551022 213 10 du2 du2 PRON coo.31924059551022 213 11 { { PUNCT coo.31924059551022 213 12 ex ex ADJ coo.31924059551022 213 13 — — PUNCT coo.31924059551022 213 14 f3 f3 NOUN coo.31924059551022 213 15 ) ) PUNCT coo.31924059551022 213 16 1 1 NUM coo.31924059551022 213 17 r r NOUN coo.31924059551022 213 18 .. .. PUNCT coo.31924059551022 213 19 / / SYM coo.31924059551022 213 20 „ „ PUNCT coo.31924059551022 213 21 i i PRON coo.31924059551022 213 22 * * PUNCT coo.31924059551022 213 23 \pu \pu PROPN coo.31924059551022 213 24 — — PUNCT coo.31924059551022 213 25 e3 e3 X coo.31924059551022 213 26 [ [ X coo.31924059551022 213 27 n(n n(n PROPN coo.31924059551022 213 28 + + CCONJ coo.31924059551022 213 29 1 1 X coo.31924059551022 213 30 ) ) PUNCT coo.31924059551022 213 31 ■ ■ PUNCT coo.31924059551022 213 32 + + CCONJ coo.31924059551022 213 33 * * PUNCT coo.31924059551022 213 34 ] ] X coo.31924059551022 213 35 ■ ■ PUNCT coo.31924059551022 213 36 define define VERB coo.31924059551022 213 37 [ [ X coo.31924059551022 213 38 23 23 NUM coo.31924059551022 213 39 ] ] PUNCT coo.31924059551022 213 40 ............. ............. PUNCT coo.31924059551022 214 1 b b X coo.31924059551022 214 2 = = X coo.31924059551022 214 3 h h PROPN coo.31924059551022 214 4 { { PUNCT coo.31924059551022 214 5 el el PROPN coo.31924059551022 214 6 — — PUNCT coo.31924059551022 214 7 e3 e3 PROPN coo.31924059551022 214 8 ) ) PUNCT coo.31924059551022 214 9 — — PUNCT coo.31924059551022 214 10 n(n n(n PROPN coo.31924059551022 214 11 + + CCONJ coo.31924059551022 214 12 1) > X coo.31924059551022 260 22 w w X coo.31924059551022 260 23 = = X coo.31924059551022 260 24 /‘(«)e<2+e /‘(«)e<2+e X coo.31924059551022 260 25 ' ' PUNCT coo.31924059551022 260 26 ) ) PUNCT coo.31924059551022 260 27 “ " PUNCT coo.31924059551022 260 28 = = PROPN coo.31924059551022 260 29 e e X coo.31924059551022 260 30 — — PUNCT coo.31924059551022 260 31 t t PROPN coo.31924059551022 260 32 ' ' PUNCT coo.31924059551022 260 33 we we PRON coo.31924059551022 260 34 have have VERB coo.31924059551022 260 35 : : PUNCT coo.31924059551022 260 36 d£u d£u PROPN coo.31924059551022 260 37 d d PROPN coo.31924059551022 260 38 qu qu PROPN coo.31924059551022 260 39 1 1 NUM coo.31924059551022 260 40 , , PUNCT coo.31924059551022 260 41 „ „ PUNCT coo.31924059551022 260 42 . . PUNCT coo.31924059551022 260 43 . . PUNCT coo.31924059551022 260 44 . . PUNCT coo.31924059551022 261 1 pu pu PROPN coo.31924059551022 261 2 — — PUNCT coo.31924059551022 261 3 du du PROPN coo.31924059551022 261 4 ~ ~ PROPN coo.31924059551022 261 5 du du PROPN coo.31924059551022 261 6 ' ' PUNCT coo.31924059551022 261 7 ou ou X coo.31924059551022 261 8 u u PROPN coo.31924059551022 261 9 ¿ ¿ PROPN coo.31924059551022 261 10 + + PUNCT coo.31924059551022 261 11 c1u c1u X coo.31924059551022 261 12 + + PUNCT coo.31924059551022 261 13 c2u c2u VERB coo.31924059551022 262 1 + + PUNCT coo.31924059551022 262 2 d d X coo.31924059551022 262 3 u u PROPN coo.31924059551022 262 4 qu qu PROPN coo.31924059551022 262 5 u u PROPN coo.31924059551022 262 6 ¿ ¿ PROPN coo.31924059551022 262 7 whence whence PROPN coo.31924059551022 262 8 gu gu PROPN coo.31924059551022 262 9 u u PROPN coo.31924059551022 262 10 3 3 NUM coo.31924059551022 262 11 ctu ctu PROPN coo.31924059551022 262 12 ° ° PROPN coo.31924059551022 262 13 — — PUNCT coo.31924059551022 262 14 jc2u jc2u NUM coo.31924059551022 262 15 ° ° X coo.31924059551022 262 16 — — PUNCT coo.31924059551022 262 17 -czu -czu NOUN coo.31924059551022 262 18 7 7 NUM coo.31924059551022 263 1 24 24 NUM coo.31924059551022 263 2 part part NOUN coo.31924059551022 263 3 il il PROPN coo.31924059551022 263 4 by by ADP coo.31924059551022 263 5 taylor taylor PROPN coo.31924059551022 263 6 ’s ’s PART coo.31924059551022 263 7 theorem theorem NOUN coo.31924059551022 263 8 : : PUNCT coo.31924059551022 263 9 / / PUNCT coo.31924059551022 263 10 , , PUNCT coo.31924059551022 263 11 d d X coo.31924059551022 263 12 — — PUNCT coo.31924059551022 263 13 ( ( PUNCT coo.31924059551022 263 14 * * NOUN coo.31924059551022 263 15 v v NOUN coo.31924059551022 263 16 ) ) PUNCT coo.31924059551022 263 17 i(w i(w PROPN coo.31924059551022 263 18 + + NUM coo.31924059551022 263 19 v v X coo.31924059551022 263 20 ) ) PUNCT coo.31924059551022 263 21 = = X coo.31924059551022 263 22 i.(v i.(v PROPN coo.31924059551022 263 23 ) ) PUNCT coo.31924059551022 263 24 + + CCONJ coo.31924059551022 263 25 m m NOUN coo.31924059551022 263 26 « « PUNCT coo.31924059551022 263 27 , , PUNCT coo.31924059551022 263 28 u u PROPN coo.31924059551022 263 29 * * PROPN coo.31924059551022 263 30 6 6 NUM coo.31924059551022 263 31 , , PUNCT coo.31924059551022 263 32 > > X coo.31924059551022 263 33 1.2 1.2 NUM coo.31924059551022 263 34 * * PUNCT coo.31924059551022 263 35 du du PROPN coo.31924059551022 263 36 1 1 NUM coo.31924059551022 263 37 1.2 1.2 NUM coo.31924059551022 263 38 du2 du2 DET coo.31924059551022 263 39 w2 w2 PROPN coo.31924059551022 263 40 , , PUNCT coo.31924059551022 263 41 / / SYM coo.31924059551022 263 42 n n CCONJ coo.31924059551022 263 43 w w X coo.31924059551022 263 44 * * X coo.31924059551022 263 45 = = ADJ coo.31924059551022 263 46 % % NOUN coo.31924059551022 263 47 « « PUNCT coo.31924059551022 263 48 « « PUNCT coo.31924059551022 263 49 1 1 NUM coo.31924059551022 263 50 » » PUNCT coo.31924059551022 263 51 m m VERB coo.31924059551022 263 52 -rtp'^)-riti -rtp'^)-riti X coo.31924059551022 263 53 p p PROPN coo.31924059551022 263 54 " " PUNCT coo.31924059551022 263 55 « « PUNCT coo.31924059551022 263 56 · · PUNCT coo.31924059551022 263 57 · · PUNCT coo.31924059551022 263 58 · · PUNCT coo.31924059551022 263 59 passing pass VERB coo.31924059551022 263 60 now now ADV coo.31924059551022 263 61 to to ADP coo.31924059551022 263 62 logarithms logarithm NOUN coo.31924059551022 263 63 we we PRON coo.31924059551022 263 64 derive derive VERB coo.31924059551022 263 65 : : PUNCT coo.31924059551022 263 66 1 1 NUM coo.31924059551022 263 67 / / SYM coo.31924059551022 263 68 v v NOUN coo.31924059551022 263 69 μ2 μ2 PROPN coo.31924059551022 263 70 , , PUNCT coo.31924059551022 263 71 , , PUNCT coo.31924059551022 263 72 v v ADP coo.31924059551022 263 73 m3 m3 PROPN coo.31924059551022 263 74 /p"(v /p"(v PUNCT coo.31924059551022 263 75 ) ) PUNCT coo.31924059551022 264 1 ολ ολ PROPN coo.31924059551022 264 2 = = NOUN coo.31924059551022 264 3 -í-«pw -í-«pw NOUN coo.31924059551022 264 4 - - PUNCT coo.31924059551022 264 5 tíw tíw NOUN coo.31924059551022 264 6 - - PUNCT coo.31924059551022 264 7 y(ir y(ir PROPN coo.31924059551022 264 8 - - PUNCT coo.31924059551022 264 9 i i NOUN coo.31924059551022 264 10 ) ) PUNCT coo.31924059551022 264 11 w4 w4 PROPN coo.31924059551022 264 12 fff fff PROPN coo.31924059551022 264 13 / / SYM coo.31924059551022 264 14 v v ADP coo.31924059551022 264 15 w3 w3 PROPN coo.31924059551022 264 16 γ γ PROPN coo.31924059551022 264 17 ffff ffff PROPN coo.31924059551022 264 18 / / SYM coo.31924059551022 264 19 v v PROPN coo.31924059551022 264 20 c21 c21 PROPN coo.31924059551022 264 21 ït^ ït^ PROPN coo.31924059551022 264 22 ( ( PUNCT coo.31924059551022 264 23 v)-5ib v)-5ib ADJ coo.31924059551022 264 24 w w NOUN coo.31924059551022 264 25 - - NOUN coo.31924059551022 264 26 ij ij NOUN coo.31924059551022 264 27 — — PUNCT coo.31924059551022 264 28 = = PROPN coo.31924059551022 264 29 \ \ X coo.31924059551022 264 30 + + X coo.31924059551022 264 31 au au X coo.31924059551022 264 32 + + PUNCT coo.31924059551022 264 33 ^ ^ NOUN coo.31924059551022 265 1 μ2 μ2 PROPN coo.31924059551022 265 2 + + CCONJ coo.31924059551022 265 3 jf jf INTJ coo.31924059551022 265 4 u3 u3 PROPN coo.31924059551022 265 5 44 44 NUM coo.31924059551022 265 6 2 2 NUM coo.31924059551022 265 7 ! ! PUNCT coo.31924059551022 266 1 integrating integrate VERB coo.31924059551022 266 2 we we PRON coo.31924059551022 266 3 have have VERB coo.31924059551022 266 4 : : PUNCT coo.31924059551022 266 5 log log VERB coo.31924059551022 266 6 φ φ X coo.31924059551022 266 7 = = PUNCT coo.31924059551022 266 8 — — PUNCT coo.31924059551022 266 9 log log VERB coo.31924059551022 266 10 íí íí X coo.31924059551022 266 11 + + CCONJ coo.31924059551022 266 12 λ λ NOUN coo.31924059551022 266 13 27 27 NUM coo.31924059551022 266 14 + + NUM coo.31924059551022 266 15 λ λ NOUN coo.31924059551022 266 16 * * PUNCT coo.31924059551022 266 17 7 7 NUM coo.31924059551022 266 18 + + PUNCT coo.31924059551022 266 19 λ λ X coo.31924059551022 266 20 jt jt PROPN coo.31924059551022 266 21 + + PROPN coo.31924059551022 266 22 3 3 NUM coo.31924059551022 266 23 ! ! SYM coo.31924059551022 266 24 4 4 NUM coo.31924059551022 266 25 ! ! PUNCT coo.31924059551022 267 1 whence whence INTJ coo.31924059551022 267 2 i i PRON coo.31924059551022 267 3 γ**ιπ+^!π+··ί γ**ιπ+^!π+··ί PUNCT coo.31924059551022 268 1 [ [ X coo.31924059551022 268 2 28]φ 28]φ NUM coo.31924059551022 268 3 = = SYM coo.31924059551022 268 4 ^βί21 ^βί21 ADP coo.31924059551022 268 5 31 31 NUM coo.31924059551022 268 6 j j NOUN coo.31924059551022 268 7 = = SYM coo.31924059551022 268 8 èt1 èt1 NUM coo.31924059551022 268 9 + + PROPN coo.31924059551022 268 10 ij+ ij+ PROPN coo.31924059551022 268 11 4 4 NUM coo.31924059551022 268 12 jr jr PROPN coo.31924059551022 269 1 + + PUNCT coo.31924059551022 269 2 · · PUNCT coo.31924059551022 269 3 · · PUNCT coo.31924059551022 269 4 ] ] X coo.31924059551022 270 1 + + CCONJ coo.31924059551022 270 2 i i PRON coo.31924059551022 271 1 [ [ X coo.31924059551022 271 2 λ λ NOUN coo.31924059551022 271 3 | | NOUN coo.31924059551022 271 4 ¡ ¡ PROPN coo.31924059551022 272 1 + + NUM coo.31924059551022 272 2 4 4 NUM coo.31924059551022 272 3 h h NOUN coo.31924059551022 272 4 + + PUNCT coo.31924059551022 272 5 · · PUNCT coo.31924059551022 272 6 · · PUNCT coo.31924059551022 272 7 ] ] X coo.31924059551022 272 8 h h NOUN coo.31924059551022 272 9 — — PUNCT coo.31924059551022 272 10 = = SYM coo.31924059551022 272 11 ¿ ¿ NUM coo.31924059551022 273 1 [ [ X coo.31924059551022 273 2 1+p*£+p3~+pi£+ 1+p*£+p3~+pi£+ NUM coo.31924059551022 273 3 · · SYM coo.31924059551022 273 4 · · PUNCT coo.31924059551022 273 5 · · PUNCT coo.31924059551022 273 6 ] ] X coo.31924059551022 273 7 where where SCONJ coo.31924059551022 273 8 p2 p2 PROPN coo.31924059551022 273 9 = = SYM coo.31924059551022 273 10 a2 a2 X coo.31924059551022 273 11 = = X coo.31924059551022 273 12 p(^ p(^ X coo.31924059551022 273 13 ) ) PUNCT coo.31924059551022 273 14 ; ; PUNCT coo.31924059551022 273 15 p3 p3 PROPN coo.31924059551022 273 16 = = PUNCT coo.31924059551022 273 17 -43 -43 PUNCT coo.31924059551022 274 1 = = PUNCT coo.31924059551022 274 2 = = X coo.31924059551022 274 3 p p NOUN coo.31924059551022 274 4 ( ( PUNCT coo.31924059551022 274 5 v v NOUN coo.31924059551022 274 6 ) ) PUNCT coo.31924059551022 274 7 ; ; PUNCT coo.31924059551022 274 8 p4 p4 PROPN coo.31924059551022 274 9 = = PUNCT coo.31924059551022 274 10 _ _ PUNCT coo.31924059551022 274 11 3 3 X coo.31924059551022 274 12 * * PUNCT coo.31924059551022 274 13 » » PUNCT coo.31924059551022 274 14 + + NUM coo.31924059551022 274 15 a,+ a,+ NUM coo.31924059551022 274 16 3λ2 3λ2 NUM coo.31924059551022 274 17 p5 p5 NOUN coo.31924059551022 274 18 = = PUNCT coo.31924059551022 274 19 — — PUNCT coo.31924059551022 274 20 3 3 NUM coo.31924059551022 274 21 pvp'v pvp'v VERB coo.31924059551022 274 22 = = PUNCT coo.31924059551022 274 23 + + NUM coo.31924059551022 274 24 10j42 10j42 NUM coo.31924059551022 274 25 ^ ^ NOUN coo.31924059551022 274 26 3 3 NUM coo.31924059551022 274 27 etc etc X coo.31924059551022 274 28 . . PUNCT coo.31924059551022 275 1 showing show VERB coo.31924059551022 275 2 that that SCONJ coo.31924059551022 275 3 the the DET coo.31924059551022 275 4 coefficients coefficient NOUN coo.31924059551022 275 5 pi pi NOUN coo.31924059551022 275 6 are be AUX coo.31924059551022 275 7 intire intire ADJ coo.31924059551022 275 8 functions function NOUN coo.31924059551022 275 9 of of ADP coo.31924059551022 275 10 pi/ pi/ PROPN coo.31924059551022 275 11 andp'i/. andp'i/. SPACE coo.31924059551022 275 12 * * PUNCT coo.31924059551022 275 13 ) ) PUNCT coo.31924059551022 275 14 * * PUNCT coo.31924059551022 275 15 ) ) PUNCT coo.31924059551022 276 1 the the DET coo.31924059551022 276 2 functions function NOUN coo.31924059551022 276 3 p p NOUN coo.31924059551022 276 4 » » PUNCT coo.31924059551022 276 5 correspond correspond VERB coo.31924059551022 276 6 to to ADP coo.31924059551022 276 7 the the DET coo.31924059551022 276 8 functions function NOUN coo.31924059551022 276 9 sí sí ADP coo.31924059551022 276 10 in in ADP coo.31924059551022 276 11 hermite hermite PROPN coo.31924059551022 276 12 ’s ’s PART coo.31924059551022 276 13 treatis treatis PROPN coo.31924059551022 276 14 , , PUNCT coo.31924059551022 276 15 for for ADP coo.31924059551022 276 16 example example NOUN coo.31924059551022 276 17 p2 p2 PROPN coo.31924059551022 276 18 = = SYM coo.31924059551022 276 19 — — PUNCT coo.31924059551022 276 20 p(v p(v PROPN coo.31924059551022 276 21 ) ) PUNCT coo.31924059551022 276 22 — — PUNCT coo.31924059551022 277 1 si si X coo.31924059551022 277 2 = = X coo.31924059551022 277 3 u2sn2u u2sn2u NUM coo.31924059551022 277 4 — — PUNCT coo.31924059551022 277 5 * * PUNCT coo.31924059551022 277 6 p3 p3 PROPN coo.31924059551022 277 7 = = PUNCT coo.31924059551022 277 8 — — PUNCT coo.31924059551022 277 9 p'w p'w NOUN coo.31924059551022 277 10 = = PUNCT coo.31924059551022 277 11 = = PUNCT coo.31924059551022 277 12 % % NOUN coo.31924059551022 277 13 2snu 2snu NUM coo.31924059551022 277 14 cnu cnu NOUN coo.31924059551022 277 15 dnu dnu PROPN coo.31924059551022 277 16 see see VERB coo.31924059551022 277 17 p. p. NOUN coo.31924059551022 277 18 126 126 NUM coo.31924059551022 277 19 development development NOUN coo.31924059551022 277 20 of of ADP coo.31924059551022 277 21 % % NOUN coo.31924059551022 277 22 . . PUNCT coo.31924059551022 278 1 25 25 NUM coo.31924059551022 278 2 herinite herinite NOUN coo.31924059551022 278 3 ’s ’s PART coo.31924059551022 278 4 integral integral ADJ coo.31924059551022 278 5 as as ADP coo.31924059551022 278 6 a a DET coo.31924059551022 278 7 sum sum NOUN coo.31924059551022 278 8 . . PUNCT coo.31924059551022 279 1 from from ADP coo.31924059551022 279 2 these these DET coo.31924059551022 279 3 forms form NOUN coo.31924059551022 279 4 we we PRON coo.31924059551022 279 5 pass pass VERB coo.31924059551022 279 6 immediately immediately ADV coo.31924059551022 279 7 to to ADP coo.31924059551022 279 8 [ [ PUNCT coo.31924059551022 279 9 29 29 NUM coo.31924059551022 279 10 ] ] X coo.31924059551022 279 11 f(u f(u NOUN coo.31924059551022 279 12 ) ) PUNCT coo.31924059551022 279 13 = = PUNCT coo.31924059551022 279 14 φ(ίί)^+^ φ(ίί)^+^ SPACE coo.31924059551022 279 15 ) ) PUNCT coo.31924059551022 279 16 “ " PUNCT coo.31924059551022 279 17 = = PRON coo.31924059551022 279 18 9(u)[l 9(u)[l NUM coo.31924059551022 279 19 + + NUM coo.31924059551022 279 20 ( ( PUNCT coo.31924059551022 279 21 λ λ X coo.31924059551022 279 22 + + NOUN coo.31924059551022 279 23 ξν ξν NOUN coo.31924059551022 279 24 ) ) PUNCT coo.31924059551022 279 25 + + CCONJ coo.31924059551022 279 26 ( ( PUNCT coo.31924059551022 279 27 λ λ NOUN coo.31924059551022 279 28 + + NOUN coo.31924059551022 279 29 ξν)^ ξν)^ ADJ coo.31924059551022 279 30 + + NOUN coo.31924059551022 279 31 · · PUNCT coo.31924059551022 279 32 · · PUNCT coo.31924059551022 279 33 ] ] X coo.31924059551022 279 34 = = X coo.31924059551022 279 35 ¿ ¿ X coo.31924059551022 279 36 { { PUNCT coo.31924059551022 279 37 [ [ X coo.31924059551022 279 38 i+α+%u)u+(ρ,+α+w i+α+%u)u+(ρ,+α+w NOUN coo.31924059551022 279 39 ) ) PUNCT coo.31924059551022 279 40 + + CCONJ coo.31924059551022 280 1 [ [ X coo.31924059551022 280 2 ps ps X coo.31924059551022 280 3 + + PROPN coo.31924059551022 280 4 3p2(λ 3p2(λ NUM coo.31924059551022 280 5 + + ADP coo.31924059551022 280 6 ζη ζη NOUN coo.31924059551022 280 7 ) ) PUNCT coo.31924059551022 280 8 + + CCONJ coo.31924059551022 280 9 ( ( PUNCT coo.31924059551022 280 10 a a DET coo.31924059551022 280 11 + + NOUN coo.31924059551022 280 12 tu tu NOUN coo.31924059551022 280 13 ) ) PUNCT coo.31924059551022 280 14 · · PUNCT coo.31924059551022 280 15 ] ] X coo.31924059551022 281 1 + + PUNCT coo.31924059551022 281 2 · · PUNCT coo.31924059551022 281 3 · · PUNCT coo.31924059551022 281 4 -1 -1 PUNCT coo.31924059551022 281 5 = = PUNCT coo.31924059551022 281 6 i i PRON coo.31924059551022 281 7 + + CCONJ coo.31924059551022 281 8 jç jç ADP coo.31924059551022 281 9 , , PUNCT coo.31924059551022 281 10 + + PROPN coo.31924059551022 281 11 fii fii PROPN coo.31924059551022 281 12 « « PUNCT coo.31924059551022 281 13 + + CCONJ coo.31924059551022 281 14 + + CCONJ coo.31924059551022 281 15 ρζ«8 ρζ«8 NUM coo.31924059551022 282 1 + + PUNCT coo.31924059551022 282 2 * * PUNCT coo.31924059551022 282 3 · · PUNCT coo.31924059551022 282 4 · · PUNCT coo.31924059551022 282 5 take take VERB coo.31924059551022 282 6 λ λ PROPN coo.31924059551022 282 7 = = NOUN coo.31924059551022 282 8 x x PUNCT coo.31924059551022 282 9 — — PUNCT coo.31924059551022 282 10 ξν ξν INTJ coo.31924059551022 282 11 whence whence NOUN coo.31924059551022 282 12 [ [ X coo.31924059551022 282 13 30 30 NUM coo.31924059551022 282 14 ] ] PUNCT coo.31924059551022 282 15 · · PUNCT coo.31924059551022 282 16 · · PUNCT coo.31924059551022 282 17 ƒ(*<)= ƒ(*<)= PROPN coo.31924059551022 282 18 ^±4 ^±4 PROPN coo.31924059551022 282 19 e(*-í e(*-í SPACE coo.31924059551022 282 20 * * PUNCT coo.31924059551022 282 21 > > X coo.31924059551022 282 22 « « X coo.31924059551022 282 23 l l X coo.31924059551022 282 24 j j PROPN coo.31924059551022 282 25 j j PROPN coo.31924059551022 282 26 6 6 NUM coo.31924059551022 282 27 ( ( PUNCT coo.31924059551022 282 28 u u PROPN coo.31924059551022 282 29 ) ) PUNCT coo.31924059551022 282 30 σ(ν σ(ν PROPN coo.31924059551022 282 31 ) ) PUNCT coo.31924059551022 282 32 = = PUNCT coo.31924059551022 283 1 i i PRON coo.31924059551022 283 2 + + CCONJ coo.31924059551022 283 3 * * PUNCT coo.31924059551022 284 1 + + PUNCT coo.31924059551022 284 2 ( ( PUNCT coo.31924059551022 284 3 * * PUNCT coo.31924059551022 284 4 s+p2)j s+p2)j NOUN coo.31924059551022 284 5 + + PRON coo.31924059551022 284 6 ( ( PUNCT coo.31924059551022 284 7 * * PUNCT coo.31924059551022 284 8 s s VERB coo.31924059551022 284 9 + + X coo.31924059551022 284 10 3p2 3p2 NUM coo.31924059551022 284 11 * * PUNCT coo.31924059551022 285 1 + + SYM coo.31924059551022 285 2 p3)^. p3)^. PROPN coo.31924059551022 285 3 + + CCONJ coo.31924059551022 285 4 ( ( PUNCT coo.31924059551022 285 5 s4 s4 PROPN coo.31924059551022 285 6 + + NUM coo.31924059551022 285 7 6 6 NUM coo.31924059551022 285 8 p2 p2 PROPN coo.31924059551022 285 9 z2 z2 PROPN coo.31924059551022 285 10 + + PROPN coo.31924059551022 285 11 4 4 NUM coo.31924059551022 285 12 p3 p3 X coo.31924059551022 285 13 * * PUNCT coo.31924059551022 285 14 + + PUNCT coo.31924059551022 285 15 p4 p4 ADJ coo.31924059551022 285 16 ) ) PUNCT coo.31924059551022 286 1 + + PUNCT coo.31924059551022 286 2 · · PUNCT coo.31924059551022 286 3 · · PUNCT coo.31924059551022 286 4 · · PUNCT coo.31924059551022 286 5 = = PUNCT coo.31924059551022 286 6 i i NOUN coo.31924059551022 286 7 + + CCONJ coo.31924059551022 286 8 p p NOUN coo.31924059551022 286 9 , , PUNCT coo.31924059551022 286 10 + + CCONJ coo.31924059551022 286 11 j3i j3i X coo.31924059551022 286 12 ( ( PUNCT coo.31924059551022 286 13 « « PROPN coo.31924059551022 286 14 ) ) PUNCT coo.31924059551022 287 1 + + CCONJ coo.31924059551022 287 2 h2 h2 PROPN coo.31924059551022 287 3 ( ( PUNCT coo.31924059551022 287 4 u u NOUN coo.31924059551022 287 5 ) ) PUNCT coo.31924059551022 287 6 * * PUNCT coo.31924059551022 288 1 + + NUM coo.31924059551022 288 2 # # NOUN coo.31924059551022 288 3 , , PUNCT coo.31924059551022 288 4 « « PUNCT coo.31924059551022 288 5 » » X coo.31924059551022 288 6 . . PUNCT coo.31924059551022 289 1 where where SCONJ coo.31924059551022 289 2 in in ADP coo.31924059551022 289 3 hermite hermite PROPN coo.31924059551022 289 4 ’s ’s PART coo.31924059551022 289 5 notation notation NOUN coo.31924059551022 289 6 ηϋ ηϋ NOUN coo.31924059551022 289 7 = = NOUN coo.31924059551022 289 8 χ χ PROPN coo.31924059551022 289 9 . . PROPN coo.31924059551022 289 10 fii fii PROPN coo.31924059551022 289 11 = = PROPN coo.31924059551022 289 12 l(*2 l(*2 PROPN coo.31924059551022 289 13 + + CCONJ coo.31924059551022 289 14 p2 p2 PROPN coo.31924059551022 289 15 ) ) PUNCT coo.31924059551022 290 1 [ [ X coo.31924059551022 290 2 31 31 NUM coo.31924059551022 290 3 ] ] PUNCT coo.31924059551022 290 4 ^2={(ít3 ^2={(ít3 NUM coo.31924059551022 290 5 + + NUM coo.31924059551022 290 6 3p2íc+p3 3p2íc+p3 NUM coo.31924059551022 290 7 ) ) PUNCT coo.31924059551022 290 8 p p PROPN coo.31924059551022 290 9 's 's PART coo.31924059551022 290 10 = = NOUN coo.31924059551022 290 11 ¿ ¿ NOUN coo.31924059551022 290 12 ( ( PUNCT coo.31924059551022 290 13 * * SYM coo.31924059551022 290 14 4 4 NUM coo.31924059551022 290 15 + + SYM coo.31924059551022 290 16 6 6 NUM coo.31924059551022 290 17 p,*8 p,*8 NOUN coo.31924059551022 290 18 + + NUM coo.31924059551022 290 19 4 4 NUM coo.31924059551022 290 20 ρ3ζ ρ3ζ NUM coo.31924059551022 290 21 + + NUM coo.31924059551022 290 22 p4 p4 NOUN coo.31924059551022 290 23 ) ) PUNCT coo.31924059551022 290 24 determination determination NOUN coo.31924059551022 290 25 of of ADP coo.31924059551022 290 26 the the DET coo.31924059551022 290 27 integral integral NOUN coo.31924059551022 290 28 . . PUNCT coo.31924059551022 291 1 we we PRON coo.31924059551022 291 2 are be AUX coo.31924059551022 291 3 now now ADV coo.31924059551022 291 4 enabled enable VERB coo.31924059551022 291 5 to to PART coo.31924059551022 291 6 determine determine VERB coo.31924059551022 291 7 the the DET coo.31924059551022 291 8 exact exact ADJ coo.31924059551022 291 9 expression expression NOUN coo.31924059551022 291 10 for for ADP coo.31924059551022 291 11 f(u f(u NOUN coo.31924059551022 291 12 ) ) PUNCT coo.31924059551022 291 13 and and CCONJ coo.31924059551022 291 14 the the DET coo.31924059551022 291 15 conditions condition NOUN coo.31924059551022 291 16 necessary necessary ADJ coo.31924059551022 291 17 that that SCONJ coo.31924059551022 291 18 it it PRON coo.31924059551022 291 19 become become VERB coo.31924059551022 291 20 equal equal ADJ coo.31924059551022 291 21 to to ADP coo.31924059551022 291 22 y y PROPN coo.31924059551022 291 23 by by ADP coo.31924059551022 291 24 a a DET coo.31924059551022 291 25 process process NOUN coo.31924059551022 291 26 of of ADP coo.31924059551022 291 27 comparison comparison NOUN coo.31924059551022 291 28 of of ADP coo.31924059551022 291 29 the the DET coo.31924059551022 291 30 several several ADJ coo.31924059551022 291 31 developments development NOUN coo.31924059551022 291 32 obtained obtain VERB coo.31924059551022 291 33 . . PUNCT coo.31924059551022 292 1 26 26 NUM coo.31924059551022 292 2 part part NOUN coo.31924059551022 292 3 il il PROPN coo.31924059551022 292 4 first first ADV coo.31924059551022 292 5 we we PRON coo.31924059551022 292 6 have have VERB coo.31924059551022 292 7 : : PUNCT coo.31924059551022 292 8 ƒ ƒ X coo.31924059551022 292 9 ( ( PUNCT coo.31924059551022 292 10 » » X coo.31924059551022 292 11 ) ) PUNCT coo.31924059551022 292 12 = = X coo.31924059551022 292 13 ¿ ¿ PUNCT coo.31924059551022 292 14 + + PUNCT coo.31924059551022 293 1 ho ho PROPN coo.31924059551022 293 2 + + CCONJ coo.31924059551022 293 3 ht ht NOUN coo.31924059551022 293 4 » » X coo.31924059551022 293 5 + + CCONJ coo.31924059551022 293 6 hìu hìu ADJ coo.31924059551022 293 7 * * PUNCT coo.31924059551022 294 1 + + PUNCT coo.31924059551022 294 2 · · PUNCT coo.31924059551022 294 3 + + CCONJ coo.31924059551022 294 4 η η NOUN coo.31924059551022 294 5 # # SYM coo.31924059551022 294 6 * * PUNCT coo.31924059551022 294 7 + + PUNCT coo.31924059551022 294 8 · · PUNCT coo.31924059551022 294 9 · · PUNCT coo.31924059551022 294 10 · · PUNCT coo.31924059551022 294 11 f f PROPN coo.31924059551022 294 12 ( ( PUNCT coo.31924059551022 294 13 m m NOUN coo.31924059551022 294 14 ) ) PUNCT coo.31924059551022 294 15 = = PUNCT coo.31924059551022 294 16 — — PUNCT coo.31924059551022 294 17 μ μ X coo.31924059551022 294 18 * * SYM coo.31924059551022 294 19 “ " PUNCT coo.31924059551022 294 20 f f X coo.31924059551022 294 21 “ " PUNCT coo.31924059551022 294 22 - - PUNCT coo.31924059551022 294 23 ® ® VERB coo.31924059551022 294 24 1 1 NUM coo.31924059551022 294 25 “ " PUNCT coo.31924059551022 294 26 f f X coo.31924059551022 294 27 " " PUNCT coo.31924059551022 294 28 2 2 NUM coo.31924059551022 294 29 hìu hìu NOUN coo.31924059551022 294 30 -{3 -{3 PUNCT coo.31924059551022 294 31 h h NOUN coo.31924059551022 294 32 ¡ ¡ NOUN coo.31924059551022 294 33 μ2 μ2 PROPN coo.31924059551022 294 34 + + CCONJ coo.31924059551022 294 35 · · PUNCT coo.31924059551022 294 36 · · PUNCT coo.31924059551022 294 37 · · PUNCT coo.31924059551022 294 38 + + PUNCT coo.31924059551022 295 1 ihi%l ihi%l PROPN coo.31924059551022 295 2 ~ ~ NOUN coo.31924059551022 295 3 x x SYM coo.31924059551022 295 4 -j -j PUNCT coo.31924059551022 295 5 · · PUNCT coo.31924059551022 295 6 · · PUNCT coo.31924059551022 295 7 · · PUNCT coo.31924059551022 295 8 γ0 γ0 PROPN coo.31924059551022 295 9 ) ) PUNCT coo.31924059551022 295 10 = = PROPN coo.31924059551022 295 11 + + PUNCT coo.31924059551022 295 12 ¿ ¿ NUM coo.31924059551022 295 13 + + PUNCT coo.31924059551022 295 14 2h 2h NOUN coo.31924059551022 295 15 + + CCONJ coo.31924059551022 295 16 2 2 NUM coo.31924059551022 295 17 · · PUNCT coo.31924059551022 295 18 3h3u 3h3u NOUN coo.31924059551022 295 19 + + PUNCT coo.31924059551022 295 20 . . PUNCT coo.31924059551022 295 21 · · PUNCT coo.31924059551022 295 22 · · PUNCT coo.31924059551022 295 23 + + CCONJ coo.31924059551022 295 24 i(i i(i X coo.31924059551022 295 25 γ γ NOUN coo.31924059551022 295 26 » » X coo.31924059551022 295 27 = = X coo.31924059551022 295 28 ÿ ÿ X coo.31924059551022 295 29 + + ADP coo.31924059551022 295 30 2 2 NUM coo.31924059551022 295 31 · · PUNCT coo.31924059551022 295 32 3ií 3ií PROPN coo.31924059551022 295 33 , , PUNCT coo.31924059551022 295 34 + + NOUN coo.31924059551022 295 35 · · PUNCT coo.31924059551022 295 36 · · PUNCT coo.31924059551022 295 37 · · PUNCT coo.31924059551022 295 38 + + PUNCT coo.31924059551022 295 39 * * PUNCT coo.31924059551022 295 40 ( ( PUNCT coo.31924059551022 295 41 » » PUNCT coo.31924059551022 295 42 — — PUNCT coo.31924059551022 295 43 1 1 X coo.31924059551022 295 44 ) ) PUNCT coo.31924059551022 295 45 ( ( PUNCT coo.31924059551022 295 46 » » PUNCT coo.31924059551022 295 47 — — PUNCT coo.31924059551022 295 48 2)si«i 2)si«i NUM coo.31924059551022 295 49 - - PUNCT coo.31924059551022 295 50 h----/ h----/ NOUN coo.31924059551022 295 51 ■ ■ NOUN coo.31924059551022 295 52 ((i ((i NOUN coo.31924059551022 295 53 ¡ ¡ NOUN coo.31924059551022 295 54 ¡ ¡ X coo.31924059551022 295 55 à à X coo.31924059551022 295 56 ! ! PUNCT coo.31924059551022 295 57 = = PUNCT coo.31924059551022 296 1 + + PUNCT coo.31924059551022 296 2 ^ ^ PUNCT coo.31924059551022 297 1 + + NUM coo.31924059551022 297 2 2.3 2.3 NUM coo.31924059551022 297 3 .. .. PUNCT coo.31924059551022 297 4 · · PUNCT coo.31924059551022 297 5 ( ( PUNCT coo.31924059551022 297 6 » » PUNCT coo.31924059551022 297 7 1 1 X coo.31924059551022 297 8 ) ) PUNCT coo.31924059551022 297 9 hn hn NOUN coo.31924059551022 297 10 _ _ PRON coo.31924059551022 297 11 x x PUNCT coo.31924059551022 298 1 + + CCONJ coo.31924059551022 298 2 · · PUNCT coo.31924059551022 298 3 · · PUNCT coo.31924059551022 298 4 · · PUNCT coo.31924059551022 298 5 + + CCONJ coo.31924059551022 298 6 i i PRON coo.31924059551022 298 7 ( ( PUNCT coo.31924059551022 298 8 i i NOUN coo.31924059551022 298 9 — — PUNCT coo.31924059551022 298 10 1 1 X coo.31924059551022 298 11 ) ) PUNCT coo.31924059551022 298 12 · · PUNCT coo.31924059551022 298 13 · · PUNCT coo.31924059551022 298 14 · · PUNCT coo.31924059551022 298 15 ( ( PUNCT coo.31924059551022 298 16 i i PRON coo.31924059551022 298 17 — — PUNCT coo.31924059551022 298 18 n n PROPN coo.31924059551022 298 19 -f1 -f1 PROPN coo.31924059551022 298 20 ) ) PUNCT coo.31924059551022 298 21 hiui hiui PROPN coo.31924059551022 298 22 ~ ~ PROPN coo.31924059551022 298 23 n+1 n+1 X coo.31924059551022 298 24 -fagain -fagain NOUN coo.31924059551022 298 25 1 1 NUM coo.31924059551022 298 26 \ \ X coo.31924059551022 298 27 hv___j hv___j PROPN coo.31924059551022 298 28 yn yn PROPN coo.31924059551022 298 29 = = SYM coo.31924059551022 298 30 2r 2r PUNCT coo.31924059551022 298 31 - - NOUN coo.31924059551022 298 32 l l NOUN coo.31924059551022 298 33 = = NOUN coo.31924059551022 298 34 = = X coo.31924059551022 298 35 ~2r ~2r PROPN coo.31924059551022 298 36 - - PROPN coo.31924059551022 298 37 l l NOUN coo.31924059551022 298 38 + + ADJ coo.31924059551022 298 39 2v—3 2v—3 NUM coo.31924059551022 299 1 + + CCONJ coo.31924059551022 299 2 * * PUNCT coo.31924059551022 299 3 · · PUNCT coo.31924059551022 299 4 · · PUNCT coo.31924059551022 299 5 “ " PUNCT coo.31924059551022 299 6 ) ) PUNCT coo.31924059551022 299 7 -----------h -----------h NOUN coo.31924059551022 299 8 ku ku PROPN coo.31924059551022 300 1 1 1 NUM coo.31924059551022 300 2 _ _ NOUN coo.31924059551022 300 3 ύν ύν INTJ coo.31924059551022 300 4 yn~2v yn~2v NUM coo.31924059551022 301 1 and and CCONJ coo.31924059551022 301 2 in in ADP coo.31924059551022 301 3 generai generai PROPN coo.31924059551022 301 4 y y PROPN coo.31924059551022 301 5 = = PROPN coo.31924059551022 301 6 fiu fiu INTJ coo.31924059551022 301 7 = = PROPN coo.31924059551022 301 8 aafw aafw PROPN coo.31924059551022 301 9 λι λι INTJ coo.31924059551022 301 10 k k INTJ coo.31924059551022 301 11 , , PUNCT coo.31924059551022 301 12 * * PUNCT coo.31924059551022 302 1 + + PUNCT coo.31924059551022 302 2 -5^ -5^ PUNCT coo.31924059551022 302 3 + + PUNCT coo.31924059551022 302 4 · · PUNCT coo.31924059551022 302 5 · · PUNCT coo.31924059551022 302 6 · · PUNCT coo.31924059551022 302 7 + + CCONJ coo.31924059551022 302 8 -^ -^ PUNCT coo.31924059551022 302 9 + + PUNCT coo.31924059551022 302 10 ^. ^. X coo.31924059551022 302 11 + + ADJ coo.31924059551022 303 1 + + PUNCT coo.31924059551022 303 2 · · PUNCT coo.31924059551022 303 3 · · PUNCT coo.31924059551022 304 1 + + NOUN coo.31924059551022 304 2 ƒ ƒ X coo.31924059551022 304 3 = = X coo.31924059551022 304 4 4 4 NUM coo.31924059551022 304 5 , , PUNCT coo.31924059551022 304 6 fi—1 fi—1 ADJ coo.31924059551022 304 7 ) ) PUNCT coo.31924059551022 304 8 + + CCONJ coo.31924059551022 304 9 h------h h------h PROPN coo.31924059551022 304 10 ƒ ƒ X coo.31924059551022 304 11 ( ( PUNCT coo.31924059551022 304 12 » » X coo.31924059551022 304 13 odd odd ADJ coo.31924059551022 304 14 ) ) PUNCT coo.31924059551022 304 15 . . PUNCT coo.31924059551022 305 1 now now ADV coo.31924059551022 305 2 substituting substitute VERB coo.31924059551022 305 3 tbe tbe NOUN coo.31924059551022 305 4 values value NOUN coo.31924059551022 305 5 ƒ ƒ X coo.31924059551022 305 6 < < X coo.31924059551022 305 7 * * PUNCT coo.31924059551022 305 8 > > X coo.31924059551022 305 9 found find VERB coo.31924059551022 305 10 above above ADV coo.31924059551022 305 11 and and CCONJ coo.31924059551022 305 12 ordering order VERB coo.31924059551022 305 13 the the DET coo.31924059551022 305 14 coefficients coefficient NOUN coo.31924059551022 305 15 so so SCONJ coo.31924059551022 305 16 that that SCONJ coo.31924059551022 305 17 the the DET coo.31924059551022 305 18 residual residual ADJ coo.31924059551022 305 19 with with ADP coo.31924059551022 305 20 respect respect NOUN coo.31924059551022 305 21 to to ADP coo.31924059551022 305 22 u u PROPN coo.31924059551022 305 23 will will AUX coo.31924059551022 305 24 be be AUX coo.31924059551022 305 25 unity unity NOUN coo.31924059551022 305 26 we we PRON coo.31924059551022 305 27 find find VERB coo.31924059551022 305 28 by by ADP coo.31924059551022 305 29 comparison comparison NOUN coo.31924059551022 305 30 that that SCONJ coo.31924059551022 305 31 we we PRON coo.31924059551022 305 32 may may AUX coo.31924059551022 305 33 write write VERB coo.31924059551022 305 34 [ [ X coo.31924059551022 305 35 32j 32j NUM coo.31924059551022 305 36 · · PUNCT coo.31924059551022 305 37 · · PUNCT coo.31924059551022 305 38 » » PUNCT coo.31924059551022 305 39 -* -* PROPN coo.31924059551022 305 40 ■ ■ NOUN coo.31924059551022 305 41 .( .( PROPN coo.31924059551022 305 42 ■ ■ PROPN coo.31924059551022 305 43 )çnhjï )çnhjï NUM coo.31924059551022 305 44 f"~ f"~ NOUN coo.31924059551022 305 45 " " PUNCT coo.31924059551022 305 46 + + PROPN coo.31924059551022 305 47 çrbn çrbn PROPN coo.31924059551022 305 48 ^ ^ PROPN coo.31924059551022 305 49 ( ( PUNCT coo.31924059551022 305 50 " " PUNCT coo.31924059551022 305 51 ’ ' PUNCT coo.31924059551022 305 52 > > X coo.31924059551022 306 1 + + PUNCT coo.31924059551022 306 2 · · PUNCT coo.31924059551022 306 3 · · PUNCT coo.31924059551022 306 4 * * PUNCT coo.31924059551022 306 5 .-./ .-./ X coo.31924059551022 306 6 ■ ■ NOUN coo.31924059551022 306 7 ( ( PUNCT coo.31924059551022 306 8 n n X coo.31924059551022 306 9 odd odd ADJ coo.31924059551022 306 10 and and CCONJ coo.31924059551022 306 11 = = PRON coo.31924059551022 306 12 2 2 NUM coo.31924059551022 306 13 v v NOUN coo.31924059551022 306 14 — — PUNCT coo.31924059551022 306 15 1 1 X coo.31924059551022 306 16 ) ) PUNCT coo.31924059551022 306 17 provided provide VERB coo.31924059551022 306 18 x x PROPN coo.31924059551022 306 19 and and CCONJ coo.31924059551022 306 20 v v PROPN coo.31924059551022 306 21 le le PROPN coo.31924059551022 306 22 so so ADV coo.31924059551022 306 23 taken take VERB coo.31924059551022 306 24 that that SCONJ coo.31924059551022 306 25 the the DET coo.31924059551022 306 26 constant constant ADJ coo.31924059551022 306 27 term term NOUN coo.31924059551022 306 28 equal equal ADJ coo.31924059551022 306 29 zero zero NUM coo.31924059551022 306 30 and and CCONJ coo.31924059551022 306 31 the the DET coo.31924059551022 306 32 coefficient coefficient NOUN coo.31924059551022 306 33 of of ADP coo.31924059551022 306 34 the the DET coo.31924059551022 306 35 next next ADJ coo.31924059551022 306 36 term term NOUN coo.31924059551022 306 37 equal equal ADJ coo.31924059551022 306 38 hv hv PROPN coo.31924059551022 306 39 and and CCONJ coo.31924059551022 306 40 roo roo INTJ coo.31924059551022 306 41 , , PUNCT coo.31924059551022 306 42 u u PROPN coo.31924059551022 306 43 = = NOUN coo.31924059551022 306 44 f9(u f9(u SPACE coo.31924059551022 306 45 ) ) PUNCT coo.31924059551022 306 46 — — PUNCT coo.31924059551022 306 47 _ _ PUNCT coo.31924059551022 306 48 _ _ PUNCT coo.31924059551022 306 49 _ _ PUNCT coo.31924059551022 306 50 _ _ PUNCT coo.31924059551022 307 1 _ _ PUNCT coo.31924059551022 308 1 1__f 1__f NUM coo.31924059551022 308 2 < < X coo.31924059551022 308 3 n n X coo.31924059551022 308 4 -1)_-a -1)_-a X coo.31924059551022 308 5 _ _ PUNCT coo.31924059551022 308 6 .. .. PUNCT coo.31924059551022 309 1 fin-3)__5 fin-3)__5 X coo.31924059551022 309 2 * * PUNCT coo.31924059551022 309 3 _ _ PUNCT coo.31924059551022 309 4 _ _ PUNCT coo.31924059551022 310 1 ƒ(n ƒ(n X coo.31924059551022 310 2 — — PUNCT coo.31924059551022 310 3 5 5 X coo.31924059551022 310 4 ) ) PUNCT coo.31924059551022 310 5 . . PUNCT coo.31924059551022 311 1 loo loo NOUN coo.31924059551022 311 2 ] ] X coo.31924059551022 311 3 v v NOUN coo.31924059551022 311 4 ( ( PUNCT coo.31924059551022 311 5 n n NOUN coo.31924059551022 311 6 - - NOUN coo.31924059551022 311 7 l)l l)l NOUN coo.31924059551022 311 8 ' ' PUNCT coo.31924059551022 311 9 ( ( PUNCT coo.31924059551022 311 10 n n NOUN coo.31924059551022 311 11 — — PUNCT coo.31924059551022 311 12 zyj zyj PROPN coo.31924059551022 311 13 ( ( PUNCT coo.31924059551022 311 14 n-6)1 n-6)1 PROPN coo.31924059551022 311 15 t t PROPN coo.31924059551022 311 16 -^ -^ PROPN coo.31924059551022 311 17 f f X coo.31924059551022 311 18 ' ' PUNCT coo.31924059551022 311 19 ( ( PUNCT coo.31924059551022 311 20 » » PUNCT coo.31924059551022 311 21 even even ADV coo.31924059551022 311 22 and and CCONJ coo.31924059551022 311 23 = = NUM coo.31924059551022 311 24 2r 2r NUM coo.31924059551022 311 25 ) ) PUNCT coo.31924059551022 311 26 provided provide VERB coo.31924059551022 311 27 x x PROPN coo.31924059551022 311 28 and and CCONJ coo.31924059551022 311 29 v v SCONJ coo.31924059551022 311 30 he he PRON coo.31924059551022 311 31 so so ADV coo.31924059551022 311 32 taken take VERB coo.31924059551022 311 33 that that SCONJ coo.31924059551022 311 34 the the DET coo.31924059551022 311 35 constant constant ADJ coo.31924059551022 311 36 term term NOUN coo.31924059551022 311 37 equal equal ADJ coo.31924059551022 311 38 hv hv PROPN coo.31924059551022 311 39 and and CCONJ coo.31924059551022 311 40 the the DET coo.31924059551022 311 41 coefficient coefficient NOUN coo.31924059551022 311 42 of of ADP coo.31924059551022 311 43 the the DET coo.31924059551022 311 44 next next ADJ coo.31924059551022 311 45 term term NOUN coo.31924059551022 311 46 equal equal ADJ coo.31924059551022 311 47 zero zero NUM coo.31924059551022 311 48 or or CCONJ coo.31924059551022 311 49 in in ADP coo.31924059551022 311 50 general general ADJ coo.31924059551022 311 51 [ [ X coo.31924059551022 311 52 34 34 NUM coo.31924059551022 311 53 ] ] PUNCT coo.31924059551022 311 54 ( ( PUNCT coo.31924059551022 311 55 + + CCONJ coo.31924059551022 311 56 + + CCONJ coo.31924059551022 311 57 ^v<.-8 ^v<.-8 NOUN coo.31924059551022 312 1 + + PUNCT coo.31924059551022 312 2 . . PUNCT coo.31924059551022 312 3 , , PUNCT coo.31924059551022 312 4 . . PUNCT coo.31924059551022 313 1 hermite hermite SPACE coo.31924059551022 313 2 ’s ’s PART coo.31924059551022 313 3 integral integral ADJ coo.31924059551022 313 4 as as ADP coo.31924059551022 313 5 a a DET coo.31924059551022 313 6 sum sum NOUN coo.31924059551022 313 7 . . PUNCT coo.31924059551022 314 1 27 27 NUM coo.31924059551022 314 2 where where SCONJ coo.31924059551022 314 3 the the DET coo.31924059551022 314 4 last last ADJ coo.31924059551022 314 5 terms term NOUN coo.31924059551022 314 6 are be AUX coo.31924059551022 314 7 obtained obtain VERB coo.31924059551022 314 8 to to ADP coo.31924059551022 314 9 accord accord NOUN coo.31924059551022 314 10 with with ADP coo.31924059551022 314 11 the the DET coo.31924059551022 314 12 above above ADJ coo.31924059551022 314 13 conditions condition NOUN coo.31924059551022 314 14 . . PUNCT coo.31924059551022 314 15 ’ ' PUNCT coo.31924059551022 315 1 substituting substitute VERB coo.31924059551022 315 2 the the DET coo.31924059551022 315 3 values value NOUN coo.31924059551022 315 4 fw fw PROPN coo.31924059551022 315 5 we we PRON coo.31924059551022 315 6 find find VERB coo.31924059551022 315 7 the the DET coo.31924059551022 315 8 conditions condition NOUN coo.31924059551022 315 9 to to PART coo.31924059551022 315 10 be be AUX coo.31924059551022 315 11 ( ( PUNCT coo.31924059551022 315 12 n n X coo.31924059551022 315 13 odd odd ADJ coo.31924059551022 315 14 ) ) PUNCT coo.31924059551022 316 1 [ [ X coo.31924059551022 316 2 35 35 NUM coo.31924059551022 316 3 ] ] PUNCT coo.31924059551022 316 4 h2v h2v NOUN coo.31924059551022 316 5 — — PUNCT coo.31924059551022 316 6 2 2 NUM coo.31924059551022 316 7 “ " PUNCT coo.31924059551022 316 8 t~ t~ NOUN coo.31924059551022 316 9 ihl^2r ihl^2r NUM coo.31924059551022 316 10 — — PUNCT coo.31924059551022 316 11 4 4 NUM coo.31924059551022 316 12 “ " PUNCT coo.31924059551022 316 13 1 1 NUM coo.31924059551022 316 14 “ " PUNCT coo.31924059551022 316 15 /^2s-2v /^2s-2v NUM coo.31924059551022 316 16 — — PUNCT coo.31924059551022 316 17 6 6 NUM coo.31924059551022 316 18 ” " PUNCT coo.31924059551022 316 19 f f X coo.31924059551022 316 20 * * PUNCT coo.31924059551022 316 21 * * PUNCT coo.31924059551022 316 22 * * PUNCT coo.31924059551022 317 1 * * PUNCT coo.31924059551022 318 1 “ " PUNCT coo.31924059551022 318 2 f f X coo.31924059551022 318 3 “ " PUNCT coo.31924059551022 318 4 hr hr NOUN coo.31924059551022 318 5 — — PUNCT coo.31924059551022 318 6 ihq ihq PROPN coo.31924059551022 318 7 = = PROPN coo.31924059551022 318 8 0 0 NUM coo.31924059551022 318 9 ( ( PUNCT coo.31924059551022 318 10 2v 2v NUM coo.31924059551022 318 11 — — PUNCT coo.31924059551022 318 12 1 1 X coo.31924059551022 318 13 ) ) PUNCT coo.31924059551022 318 14 h^v h^v NOUN coo.31924059551022 318 15 — — PUNCT coo.31924059551022 318 16 i i PRON coo.31924059551022 318 17 ( ( PUNCT coo.31924059551022 318 18 2v 2v NUM coo.31924059551022 318 19 — — PUNCT coo.31924059551022 319 1 ÿ)ji\s^v ÿ)ji\s^v ADV coo.31924059551022 319 2 ~ ~ X coo.31924059551022 319 3 z z SYM coo.31924059551022 319 4 “ " PUNCT coo.31924059551022 319 5 h h PROPN coo.31924059551022 319 6 ( ( PUNCT coo.31924059551022 319 7 2 2 NUM coo.31924059551022 319 8 v v NOUN coo.31924059551022 319 9 — — PUNCT coo.31924059551022 319 10 -)- -)- PUNCT coo.31924059551022 319 11 · · PUNCT coo.31924059551022 319 12 · · PUNCT coo.31924059551022 319 13 · · PUNCT coo.31924059551022 319 14 hv hv PROPN coo.31924059551022 319 15 - - PUNCT coo.31924059551022 319 16 ihi ihi PROPN coo.31924059551022 319 17 — — PUNCT coo.31924059551022 319 18 hv hv PROPN coo.31924059551022 319 19 = = NOUN coo.31924059551022 319 20 0 0 NUM coo.31924059551022 319 21 ( ( PUNCT coo.31924059551022 319 22 « « PUNCT coo.31924059551022 319 23 even even ADV coo.31924059551022 319 24 ) ) PUNCT coo.31924059551022 320 1 [ [ PUNCT coo.31924059551022 320 2 36 36 NUM coo.31924059551022 320 3 ] ] PUNCT coo.31924059551022 320 4 h^v h^v NOUN coo.31924059551022 320 5 — — PUNCT coo.31924059551022 320 6 i i PRON coo.31924059551022 320 7 " " PUNCT coo.31924059551022 320 8 4 4 NUM coo.31924059551022 320 9 “ " PUNCT coo.31924059551022 320 10 ^1 ^1 SYM coo.31924059551022 320 11 $ $ SYM coo.31924059551022 320 12 2v 2v NUM coo.31924059551022 320 13 — — PUNCT coo.31924059551022 320 14 3 3 NUM coo.31924059551022 320 15 “ " PUNCT coo.31924059551022 320 16 f f X coo.31924059551022 320 17 " " PUNCT coo.31924059551022 320 18 2v 2v NUM coo.31924059551022 320 19 — — PUNCT coo.31924059551022 320 20 b b X coo.31924059551022 320 21 -{-···- -{-···- SPACE coo.31924059551022 320 22 { { PUNCT coo.31924059551022 320 23 ” " PUNCT coo.31924059551022 320 24 hv-.ih1 hv-.ih1 PROPN coo.31924059551022 320 25 -jjlv -jjlv PROPN coo.31924059551022 320 26 = = NOUN coo.31924059551022 320 27 0 0 NUM coo.31924059551022 320 28 2vh2v~\~(%v 2vh2v~\~(%v NUM coo.31924059551022 320 29 2)/&χs2y 2)/&χs2y NUM coo.31924059551022 320 30 — — PUNCT coo.31924059551022 320 31 2 2 NUM coo.31924059551022 320 32 ( ( PUNCT coo.31924059551022 320 33 2 2 NUM coo.31924059551022 320 34 v v NOUN coo.31924059551022 320 35 — — PUNCT coo.31924059551022 320 36 4)/?2 4)/?2 PROPN coo.31924059551022 320 37 - - PUNCT coo.31924059551022 320 38 fi^2r fi^2r PUNCT coo.31924059551022 320 39 — — PUNCT coo.31924059551022 320 40 4 4 NUM coo.31924059551022 320 41 “ " PUNCT coo.31924059551022 320 42 -j -j PUNCT coo.31924059551022 320 43 ” " PUNCT coo.31924059551022 320 44 * * PUNCT coo.31924059551022 320 45 * * PUNCT coo.31924059551022 320 46 * * PUNCT coo.31924059551022 320 47 -f -f PUNCT coo.31924059551022 320 48 " " PUNCT coo.31924059551022 320 49 2/¿v 2/¿v NUM coo.31924059551022 320 50 — — PUNCT coo.31924059551022 320 51 1jt2 1jt2 NUM coo.31924059551022 320 52 = = NOUN coo.31924059551022 320 53 = = NOUN coo.31924059551022 320 54 s s VERB coo.31924059551022 320 55 0 0 NUM coo.31924059551022 320 56 . . PUNCT coo.31924059551022 321 1 these these DET coo.31924059551022 321 2 conditions condition NOUN coo.31924059551022 321 3 being be AUX coo.31924059551022 321 4 satisfied satisfied ADJ coo.31924059551022 321 5 y y PROPN coo.31924059551022 321 6 = = PUNCT coo.31924059551022 321 7 jf(m jf(m NUM coo.31924059551022 321 8 ) ) PUNCT coo.31924059551022 321 9 and and CCONJ coo.31924059551022 321 10 we we PRON coo.31924059551022 321 11 have have VERB coo.31924059551022 321 12 two two NUM coo.31924059551022 321 13 forms form NOUN coo.31924059551022 321 14 d d PROPN coo.31924059551022 321 15 * * PUNCT coo.31924059551022 321 16 jpt(m jpt(m PROPN coo.31924059551022 321 17 ) ) PUNCT coo.31924059551022 321 18 — — PUNCT coo.31924059551022 322 1 [ [ X coo.31924059551022 322 2 n n X coo.31924059551022 322 3 ( ( PUNCT coo.31924059551022 322 4 » » PUNCT coo.31924059551022 322 5 + + NUM coo.31924059551022 322 6 1)+ 1)+ NUM coo.31924059551022 322 7 e e NOUN coo.31924059551022 322 8 ] ] X coo.31924059551022 322 9 f(u f(u NOUN coo.31924059551022 322 10 ) ) PUNCT coo.31924059551022 322 11 = = PROPN coo.31924059551022 322 12 0 0 PUNCT coo.31924059551022 322 13 since since SCONJ coo.31924059551022 322 14 finite finite NOUN coo.31924059551022 322 15 for for SCONJ coo.31924059551022 322 16 u u PROPN coo.31924059551022 322 17 = = X coo.31924059551022 322 18 ik ik PROPN coo.31924059551022 322 19 ' ' PART coo.31924059551022 322 20 = = PRON coo.31924059551022 322 21 y y NOUN coo.31924059551022 322 22 · · PUNCT coo.31924059551022 322 23 a a DET coo.31924059551022 322 24 second second ADJ coo.31924059551022 322 25 solution solution NOUN coo.31924059551022 322 26 being be AUX coo.31924059551022 322 27 likewise likewise ADV coo.31924059551022 322 28 obtained obtain VERB coo.31924059551022 322 29 by by ADP coo.31924059551022 322 30 making make VERB coo.31924059551022 322 31 the the DET coo.31924059551022 322 32 substitution substitution NOUN coo.31924059551022 322 33 η η PROPN coo.31924059551022 322 34 ~ ~ PUNCT coo.31924059551022 322 35 — — PUNCT coo.31924059551022 322 36 n n CCONJ coo.31924059551022 322 37 the the DET coo.31924059551022 322 38 general general ADJ coo.31924059551022 322 39 integral integral NOUN coo.31924059551022 322 40 may may AUX coo.31924059551022 322 41 be be AUX coo.31924059551022 322 42 written write VERB coo.31924059551022 322 43 : : PUNCT coo.31924059551022 323 1 y y PROPN coo.31924059551022 323 2 = = PUNCT coo.31924059551022 323 3 cf(u cf(u NOUN coo.31924059551022 323 4 ) ) PUNCT coo.31924059551022 323 5 -jc -jc PUNCT coo.31924059551022 323 6 f f PROPN coo.31924059551022 323 7 ( ( PUNCT coo.31924059551022 323 8 — — PUNCT coo.31924059551022 323 9 u u PROPN coo.31924059551022 323 10 ) ) PUNCT coo.31924059551022 323 11 . . PUNCT coo.31924059551022 324 1 [ [ X coo.31924059551022 324 2 37 37 NUM coo.31924059551022 324 3 ] ] PUNCT coo.31924059551022 324 4 part part PROPN coo.31924059551022 324 5 iii iii PROPN coo.31924059551022 324 6 . . PUNCT coo.31924059551022 324 7 integral integral ADJ coo.31924059551022 324 8 as as ADP coo.31924059551022 324 9 a a DET coo.31924059551022 324 10 product product NOUN coo.31924059551022 324 11 . . PUNCT coo.31924059551022 325 1 indirect indirect ADJ coo.31924059551022 325 2 solution solution NOUN coo.31924059551022 325 3 . . PUNCT coo.31924059551022 326 1 it it PRON coo.31924059551022 326 2 will will AUX coo.31924059551022 326 3 be be AUX coo.31924059551022 326 4 shown show VERB coo.31924059551022 326 5 in in ADP coo.31924059551022 326 6 developing develop VERB coo.31924059551022 326 7 the the DET coo.31924059551022 326 8 forms form NOUN coo.31924059551022 326 9 for for ADP coo.31924059551022 326 10 the the DET coo.31924059551022 326 11 ease ease NOUN coo.31924059551022 326 12 n n ADP coo.31924059551022 326 13 = = SYM coo.31924059551022 326 14 3 3 NUM coo.31924059551022 326 15 that that SCONJ coo.31924059551022 326 16 the the DET coo.31924059551022 326 17 original original ADJ coo.31924059551022 326 18 solution solution NOUN coo.31924059551022 326 19 of of ADP coo.31924059551022 326 20 m. m. NOUN coo.31924059551022 326 21 hermite hermite PROPN coo.31924059551022 326 22 as as ADP coo.31924059551022 326 23 a a DET coo.31924059551022 326 24 sum sum NOUN coo.31924059551022 326 25 will will AUX coo.31924059551022 326 26 not not PART coo.31924059551022 326 27 be be AUX coo.31924059551022 326 28 applicable applicable ADJ coo.31924059551022 326 29 in in ADP coo.31924059551022 326 30 the the DET coo.31924059551022 326 31 forms form NOUN coo.31924059551022 326 32 given give VERB coo.31924059551022 326 33 in in ADP coo.31924059551022 326 34 the the DET coo.31924059551022 326 35 last last ADJ coo.31924059551022 326 36 chapter chapter NOUN coo.31924059551022 326 37 , , PUNCT coo.31924059551022 326 38 when when SCONJ coo.31924059551022 326 39 b b PROPN coo.31924059551022 326 40 is be AUX coo.31924059551022 326 41 so so ADV coo.31924059551022 326 42 taken take VERB coo.31924059551022 326 43 as as ADP coo.31924059551022 326 44 to to PART coo.31924059551022 326 45 give give VERB coo.31924059551022 326 46 a a DET coo.31924059551022 326 47 value value NOUN coo.31924059551022 326 48 , , PUNCT coo.31924059551022 326 49 v v ADP coo.31924059551022 326 50 equal equal ADJ coo.31924059551022 326 51 to to ADP coo.31924059551022 326 52 zero zero NUM coo.31924059551022 326 53 , , PUNCT coo.31924059551022 326 54 which which PRON coo.31924059551022 326 55 leads lead VERB coo.31924059551022 326 56 to to ADP coo.31924059551022 326 57 a a DET coo.31924059551022 326 58 second second ADJ coo.31924059551022 326 59 development development NOUN coo.31924059551022 326 60 in in ADP coo.31924059551022 326 61 the the DET coo.31924059551022 326 62 form form NOUN coo.31924059551022 326 63 of of ADP coo.31924059551022 326 64 a a DET coo.31924059551022 326 65 product product NOUN coo.31924059551022 326 66 , , PUNCT coo.31924059551022 326 67 the the DET coo.31924059551022 326 68 eliments eliment NOUN coo.31924059551022 326 69 being be AUX coo.31924059551022 326 70 as as ADP coo.31924059551022 326 71 in in ADP coo.31924059551022 326 72 the the DET coo.31924059551022 326 73 first first ADJ coo.31924059551022 326 74 case case NOUN coo.31924059551022 326 75 doubly doubly ADV coo.31924059551022 326 76 periodic periodic ADJ coo.31924059551022 326 77 functions function NOUN coo.31924059551022 326 78 of of ADP coo.31924059551022 326 79 the the DET coo.31924059551022 326 80 second second ADJ coo.31924059551022 326 81 species specie NOUN coo.31924059551022 326 82 . . PUNCT coo.31924059551022 327 1 assume assume VERB coo.31924059551022 327 2 that that SCONJ coo.31924059551022 327 3 [ [ PUNCT coo.31924059551022 327 4 38 38 NUM coo.31924059551022 327 5 ] ] PUNCT coo.31924059551022 327 6 y y PROPN coo.31924059551022 327 7 - - NOUN coo.31924059551022 327 8 fl fl PROPN coo.31924059551022 327 9 a a DET coo.31924059551022 327 10 = = NOUN coo.31924059551022 327 11 a'b a'b X coo.31924059551022 327 12 ‘ ' PUNCT coo.31924059551022 327 13 g g PROPN coo.31924059551022 327 14 ( ( PUNCT coo.31924059551022 327 15 u u NOUN coo.31924059551022 327 16 + + CCONJ coo.31924059551022 327 17 « « NOUN coo.31924059551022 327 18 ) ) PUNCT coo.31924059551022 327 19 ρ ρ VERB coo.31924059551022 327 20 - - ADJ coo.31924059551022 327 21 ηζα ηζα ADJ coo.31924059551022 327 22 a a DET coo.31924059551022 327 23 ( ( PUNCT coo.31924059551022 327 24 u u NOUN coo.31924059551022 327 25 ) ) PUNCT coo.31924059551022 327 26 6 6 NUM coo.31924059551022 327 27 ( ( PUNCT coo.31924059551022 327 28 a a X coo.31924059551022 327 29 ) ) PUNCT coo.31924059551022 327 30 7 7 NUM coo.31924059551022 327 31 where where SCONJ coo.31924059551022 327 32 the the DET coo.31924059551022 327 33 product product NOUN coo.31924059551022 327 34 is be AUX coo.31924059551022 327 35 composed compose VERB coo.31924059551022 327 36 of of ADP coo.31924059551022 327 37 n n CCONJ coo.31924059551022 327 38 factors factor NOUN coo.31924059551022 327 39 obtained obtain VERB coo.31924059551022 327 40 by by ADP coo.31924059551022 327 41 taking take VERB coo.31924059551022 327 42 α α PRON coo.31924059551022 327 43 , , PUNCT coo.31924059551022 327 44 b b NOUN coo.31924059551022 327 45 } } X coo.31924059551022 327 46 c c NOUN coo.31924059551022 327 47 in in ADP coo.31924059551022 327 48 place place NOUN coo.31924059551022 327 49 of of ADP coo.31924059551022 327 50 a. a. NOUN coo.31924059551022 327 51 the the DET coo.31924059551022 327 52 derivative derivative NOUN coo.31924059551022 327 53 of of ADP coo.31924059551022 327 54 the the DET coo.31924059551022 327 55 logarithm logarithm NOUN coo.31924059551022 327 56 is be AUX coo.31924059551022 328 1 y y PROPN coo.31924059551022 329 1 [ [ X coo.31924059551022 329 2 ξ ξ X coo.31924059551022 329 3 ( ( PUNCT coo.31924059551022 329 4 u u PROPN coo.31924059551022 329 5 + + CCONJ coo.31924059551022 329 6 a a X coo.31924059551022 329 7 ) ) PUNCT coo.31924059551022 329 8 — — PUNCT coo.31924059551022 329 9 ζ ζ NOUN coo.31924059551022 329 10 ( ( PUNCT coo.31924059551022 329 11 u u PROPN coo.31924059551022 329 12 ) ) PUNCT coo.31924059551022 329 13 -£ -£ PROPN coo.31924059551022 329 14 ( ( PUNCT coo.31924059551022 329 15 « « NOUN coo.31924059551022 329 16 ) ) PUNCT coo.31924059551022 329 17 ] ] PUNCT coo.31924059551022 330 1 = = PRON coo.31924059551022 330 2 21 21 NUM coo.31924059551022 330 3 p'u p'u ADV coo.31924059551022 330 4 — — PUNCT coo.31924059551022 330 5 pa pa PROPN coo.31924059551022 330 6 pu pu PROPN coo.31924059551022 330 7 — — PUNCT coo.31924059551022 330 8 pa pa PROPN coo.31924059551022 330 9 while while SCONJ coo.31924059551022 330 10 a a DET coo.31924059551022 330 11 second second ADJ coo.31924059551022 330 12 differentiation differentiation NOUN coo.31924059551022 330 13 gives give VERB coo.31924059551022 330 14 y y PROPN coo.31924059551022 330 15 ar-2[pu ar-2[pu PROPN coo.31924059551022 330 16 -p(u+ -p(u+ PROPN coo.31924059551022 330 17 « « PUNCT coo.31924059551022 330 18 ) ) PUNCT coo.31924059551022 330 19 ] ] X coo.31924059551022 330 20 · · PUNCT coo.31924059551022 330 21 from from ADP coo.31924059551022 330 22 the the DET coo.31924059551022 330 23 first first ADJ coo.31924059551022 330 24 equation equation NOUN coo.31924059551022 330 25 yί2= yί2= X coo.31924059551022 330 26 s s PROPN coo.31924059551022 330 27 ? ? PUNCT coo.31924059551022 331 1 _ _ X coo.31924059551022 331 2 1 1 NUM coo.31924059551022 332 1 _ _ PUNCT coo.31924059551022 332 2 /p'u /p'u PUNCT coo.31924059551022 333 1 — — PUNCT coo.31924059551022 333 2 p’g\2 p’g\2 INTJ coo.31924059551022 333 3 ■ ■ PUNCT coo.31924059551022 333 4 i i PRON coo.31924059551022 333 5 _ _ X coo.31924059551022 334 1 y y X coo.31924059551022 334 2 j j NOUN coo.31924059551022 334 3 4 4 NUM coo.31924059551022 334 4 \pu \pu PROPN coo.31924059551022 334 5 — — PUNCT coo.31924059551022 334 6 pa pa PROPN coo.31924059551022 334 7 ) ) PUNCT coo.31924059551022 334 8 2 2 NUM coo.31924059551022 334 9 p'u p'u ADV coo.31924059551022 334 10 — — PUNCT coo.31924059551022 334 11 pa pa PROPN coo.31924059551022 334 12 pu pu PROPN coo.31924059551022 334 13 — — PUNCT coo.31924059551022 334 14 pa pa PROPN coo.31924059551022 334 15 pu pu PROPN coo.31924059551022 334 16 — — PUNCT coo.31924059551022 334 17 p'b p'b ADV coo.31924059551022 334 18 pu pu PROPN coo.31924059551022 334 19 — — PUNCT coo.31924059551022 334 20 pb pb PROPN coo.31924059551022 334 21 but but CCONJ coo.31924059551022 334 22 the the DET coo.31924059551022 334 23 addition addition NOUN coo.31924059551022 334 24 theorem theorem NOUN coo.31924059551022 334 25 gives give VERB coo.31924059551022 334 26 : : PUNCT coo.31924059551022 334 27 whence whence PROPN coo.31924059551022 334 28 y y PROPN coo.31924059551022 334 29 _ _ X coo.31924059551022 335 1 y y PROPN coo.31924059551022 335 2 i i PRON coo.31924059551022 335 3 pu pu PROPN coo.31924059551022 335 4 — — PUNCT coo.31924059551022 335 5 pa pa PROPN coo.31924059551022 335 6 4 4 NUM coo.31924059551022 335 7 pu pu PROPN coo.31924059551022 335 8 — — PUNCT coo.31924059551022 335 9 pa pa PROPN coo.31924059551022 335 10 = = PROPN coo.31924059551022 335 11 p p PROPN coo.31924059551022 335 12 { { PUNCT coo.31924059551022 335 13 u u NOUN coo.31924059551022 335 14 + + CCONJ coo.31924059551022 335 15 a a PRON coo.31924059551022 335 16 ) ) PUNCT coo.31924059551022 335 17 + + PUNCT coo.31924059551022 336 1 pu pu PROPN coo.31924059551022 336 2 + + PROPN coo.31924059551022 336 3 pa pa PROPN coo.31924059551022 336 4 , , PUNCT coo.31924059551022 336 5 — — PUNCT coo.31924059551022 336 6 p'a p'a ADJ coo.31924059551022 336 7 pu pu X coo.31924059551022 336 8 — — PUNCT coo.31924059551022 336 9 pa pa PROPN coo.31924059551022 336 10 p'u p'u ADV coo.31924059551022 336 11 — — PUNCT coo.31924059551022 336 12 p'b p'b ADV coo.31924059551022 336 13 pu pu PROPN coo.31924059551022 336 14 — — PUNCT coo.31924059551022 336 15 pb pb PROPN coo.31924059551022 336 16 integral integral PROPN coo.31924059551022 336 17 as as ADP coo.31924059551022 336 18 a a DET coo.31924059551022 336 19 product product NOUN coo.31924059551022 336 20 . . PUNCT coo.31924059551022 337 1 29 29 NUM coo.31924059551022 337 2 in in ADP coo.31924059551022 337 3 order order NOUN coo.31924059551022 337 4 to to PART coo.31924059551022 337 5 decompose decompose VERB coo.31924059551022 337 6 the the DET coo.31924059551022 337 7 last last ADJ coo.31924059551022 337 8 term term NOUN coo.31924059551022 337 9 in in ADP coo.31924059551022 337 10 this this DET coo.31924059551022 337 11 expression expression NOUN coo.31924059551022 337 12 we we PRON coo.31924059551022 337 13 write write VERB coo.31924059551022 337 14 : : PUNCT coo.31924059551022 337 15 l l PROPN coo.31924059551022 337 16 pu pu PROPN coo.31924059551022 337 17 — — PUNCT coo.31924059551022 337 18 pa pa PROPN coo.31924059551022 337 19 p'u p'u ADV coo.31924059551022 337 20 — — PUNCT coo.31924059551022 337 21 p'b p'b ADV coo.31924059551022 337 22 . . PUNCT coo.31924059551022 337 23 . . PUNCT coo.31924059551022 338 1 x\ x\ X coo.31924059551022 339 1 £ £ X coo.31924059551022 339 2 ----r ----r SPACE coo.31924059551022 339 3 -- -- PUNCT coo.31924059551022 339 4 v-----= v-----= PROPN coo.31924059551022 339 5 2 2 NUM coo.31924059551022 339 6 ( ( PUNCT coo.31924059551022 339 7 pu pu PROPN coo.31924059551022 339 8 + + PROPN coo.31924059551022 339 9 pa pa PROPN coo.31924059551022 339 10 + + PRON coo.31924059551022 339 11 po po PROPN coo.31924059551022 339 12 ) ) PUNCT coo.31924059551022 340 1 * * PUNCT coo.31924059551022 340 2 pu pu PROPN coo.31924059551022 340 3 — — PUNCT coo.31924059551022 340 4 pa pa PROPN coo.31924059551022 340 5 pu pu PROPN coo.31924059551022 340 6 — — PUNCT coo.31924059551022 340 7 po po PROPN coo.31924059551022 340 8 κ κ PROPN coo.31924059551022 340 9 1 1 NUM coo.31924059551022 340 10 ^ ^ NUM coo.31924059551022 341 1 i i PRON coo.31924059551022 341 2 χ χ SPACE coo.31924059551022 341 3 ' ' PUNCT coo.31924059551022 341 4 / / PUNCT coo.31924059551022 342 1 + + CCONJ coo.31924059551022 342 2 -pa -pa PUNCT coo.31924059551022 343 1 -lb -lb PUNCT coo.31924059551022 343 2 kc kc PROPN coo.31924059551022 343 3 * * PUNCT coo.31924059551022 343 4 + + CCONJ coo.31924059551022 343 5 β β X coo.31924059551022 343 6 ) ) PUNCT coo.31924059551022 343 7 — — PUNCT coo.31924059551022 343 8 s s VERB coo.31924059551022 343 9 ( ( PUNCT coo.31924059551022 343 10 « « X coo.31924059551022 343 11 + + CCONJ coo.31924059551022 343 12 δ δ X coo.31924059551022 343 13 ) ) PUNCT coo.31924059551022 343 14 ε ε PROPN coo.31924059551022 343 15 « « PUNCT coo.31924059551022 343 16 + + CCONJ coo.31924059551022 343 17 δ δ PROPN coo.31924059551022 343 18 & & CCONJ coo.31924059551022 343 19 ] ] X coo.31924059551022 343 20 · · PUNCT coo.31924059551022 343 21 take take VERB coo.31924059551022 343 22 the the DET coo.31924059551022 343 23 value value NOUN coo.31924059551022 343 24 μ μ NOUN coo.31924059551022 343 25 = = NOUN coo.31924059551022 343 26 ( ( PUNCT coo.31924059551022 343 27 α α NOUN coo.31924059551022 343 28 + + PRON coo.31924059551022 343 29 δ δ PROPN coo.31924059551022 343 30 ) ) PUNCT coo.31924059551022 343 31 , , PUNCT coo.31924059551022 343 32 remembering remember VERB coo.31924059551022 343 33 the the DET coo.31924059551022 343 34 relations relation NOUN coo.31924059551022 343 35 ρ ρ PROPN coo.31924059551022 343 36 ( ( PUNCT coo.31924059551022 343 37 — — PUNCT coo.31924059551022 343 38 u u PROPN coo.31924059551022 343 39 ) ) PUNCT coo.31924059551022 343 40 = = PUNCT coo.31924059551022 344 1 + + PUNCT coo.31924059551022 344 2 ! ! PUNCT coo.31924059551022 344 3 > > X coo.31924059551022 345 1 « « PROPN coo.31924059551022 345 2 ; ; PUNCT coo.31924059551022 345 3 jp'(—«)—/ jp'(—«)—/ NUM coo.31924059551022 345 4 ( ( PUNCT coo.31924059551022 345 5 « « PUNCT coo.31924059551022 345 6 ) ) PUNCT coo.31924059551022 345 7 ; ; PUNCT coo.31924059551022 345 8 δ(—«)=---------δ δ(—«)=---------δ PROPN coo.31924059551022 345 9 ( ( PUNCT coo.31924059551022 345 10 « « NOUN coo.31924059551022 345 11 ) ) PUNCT coo.31924059551022 345 12 · · PUNCT coo.31924059551022 345 13 writing write VERB coo.31924059551022 345 14 then then ADV coo.31924059551022 345 15 ƒ ƒ X coo.31924059551022 345 16 ( ( PUNCT coo.31924059551022 345 17 α α NOUN coo.31924059551022 345 18 + + NUM coo.31924059551022 345 19 6 6 NUM coo.31924059551022 345 20 ) ) PUNCT coo.31924059551022 345 21 for for ADP coo.31924059551022 345 22 the the DET coo.31924059551022 345 23 right right ADJ coo.31924059551022 345 24 hand hand NOUN coo.31924059551022 345 25 member member NOUN coo.31924059551022 345 26 of of ADP coo.31924059551022 345 27 the the DET coo.31924059551022 345 28 above above ADJ coo.31924059551022 345 29 equation equation NOUN coo.31924059551022 345 30 under under ADP coo.31924059551022 345 31 these these DET coo.31924059551022 345 32 conditions condition NOUN coo.31924059551022 345 33 we we PRON coo.31924059551022 345 34 get get VERB coo.31924059551022 345 35 f(a f(a PROPN coo.31924059551022 345 36 + + CCONJ coo.31924059551022 345 37 b b X coo.31924059551022 345 38 ) ) PUNCT coo.31924059551022 345 39 = = SYM coo.31924059551022 345 40 2np 2np PROPN coo.31924059551022 345 41 ( ( PUNCT coo.31924059551022 345 42 a a DET coo.31924059551022 345 43 + + ADJ coo.31924059551022 345 44 b b NOUN coo.31924059551022 345 45 ) ) PUNCT coo.31924059551022 345 46 + + CCONJ coo.31924059551022 345 47 σρα σρα ADJ coo.31924059551022 345 48 + + PUNCT coo.31924059551022 345 49 2p 2p NOUN coo.31924059551022 345 50 ( ( PUNCT coo.31924059551022 345 51 a a DET coo.31924059551022 345 52 + + ADJ coo.31924059551022 345 53 b b NOUN coo.31924059551022 345 54 ) ) PUNCT coo.31924059551022 345 55 -fpa -fpa X coo.31924059551022 345 56 + + CCONJ coo.31924059551022 345 57 ph ph NOUN coo.31924059551022 345 58 = = SYM coo.31924059551022 345 59 2 2 NUM coo.31924059551022 345 60 ( ( PUNCT coo.31924059551022 345 61 » » PUNCT coo.31924059551022 345 62 + + CCONJ coo.31924059551022 345 63 l)jpw l)jpw PROPN coo.31924059551022 345 64 + + PROPN coo.31924059551022 345 65 227i»a 227i»a PROPN coo.31924059551022 345 66 . . PUNCT coo.31924059551022 346 1 from from ADP coo.31924059551022 346 2 which which PRON coo.31924059551022 346 3 we we PRON coo.31924059551022 346 4 see see VERB coo.31924059551022 346 5 that that SCONJ coo.31924059551022 346 6 in in ADP coo.31924059551022 346 7 general general ADJ coo.31924059551022 346 8 we we PRON coo.31924059551022 346 9 would would AUX coo.31924059551022 346 10 have have VERB coo.31924059551022 346 11 // // PUNCT coo.31924059551022 346 12 ^= ^= X coo.31924059551022 346 13 w w X coo.31924059551022 346 14 ( ( PUNCT coo.31924059551022 346 15 w w X coo.31924059551022 346 16 + + NOUN coo.31924059551022 346 17 l)_pw l)_pw NOUN coo.31924059551022 346 18 + + CCONJ coo.31924059551022 346 19 ( ( PUNCT coo.31924059551022 346 20 2w 2w NUM coo.31924059551022 346 21 — — PUNCT coo.31924059551022 346 22 1 1 X coo.31924059551022 346 23 ) ) PUNCT coo.31924059551022 346 24 σρα σρα NOUN coo.31924059551022 346 25 the the DET coo.31924059551022 346 26 quantity quantity NOUN coo.31924059551022 346 27 in in ADP coo.31924059551022 346 28 brackets bracket NOUN coo.31924059551022 346 29 being be AUX coo.31924059551022 346 30 equal equal ADJ coo.31924059551022 346 31 to to ADP coo.31924059551022 346 32 zero zero NUM coo.31924059551022 346 33 . . PUNCT coo.31924059551022 347 1 if if SCONJ coo.31924059551022 347 2 now now ADV coo.31924059551022 347 3 we we PRON coo.31924059551022 347 4 reunite reunite VERB coo.31924059551022 347 5 the the DET coo.31924059551022 347 6 terms term NOUN coo.31924059551022 347 7 ζ(η ζ(η PROPN coo.31924059551022 347 8 -fa -fa SPACE coo.31924059551022 347 9 ) ) PUNCT coo.31924059551022 347 10 — — PUNCT coo.31924059551022 347 11 ξα ξα NOUN coo.31924059551022 347 12 , , PUNCT coo.31924059551022 347 13 ξ(η ξ(η NOUN coo.31924059551022 347 14 + + CCONJ coo.31924059551022 347 15 b b X coo.31924059551022 347 16 ) ) PUNCT coo.31924059551022 347 17 — — PUNCT coo.31924059551022 347 18 ζό ζό PROPN coo.31924059551022 347 19 etc etc X coo.31924059551022 347 20 . . X coo.31924059551022 348 1 in in ADP coo.31924059551022 348 2 the the DET coo.31924059551022 348 3 general general ADJ coo.31924059551022 348 4 expression expression NOUN coo.31924059551022 348 5 and and CCONJ coo.31924059551022 348 6 make make VERB coo.31924059551022 348 7 equal equal ADJ coo.31924059551022 348 8 to to ADP coo.31924059551022 348 9 zero zero NUM coo.31924059551022 348 10 the the DET coo.31924059551022 348 11 sum sum NOUN coo.31924059551022 348 12 of of ADP coo.31924059551022 348 13 their their PRON coo.31924059551022 348 14 coefficients coefficient NOUN coo.31924059551022 348 15 we we PRON coo.31924059551022 348 16 obtain obtain VERB coo.31924059551022 348 17 n n ADP coo.31924059551022 348 18 equations equation NOUN coo.31924059551022 348 19 of of ADP coo.31924059551022 348 20 condition condition NOUN coo.31924059551022 348 21 , , PUNCT coo.31924059551022 348 22 namely namely ADV coo.31924059551022 348 23 , , PUNCT coo.31924059551022 348 24 writing write VERB coo.31924059551022 348 25 pa pa PROPN coo.31924059551022 348 26 = = PROPN coo.31924059551022 348 27 a\ a\ PROPN coo.31924059551022 348 28 pa pa PROPN coo.31924059551022 348 29 = = VERB coo.31924059551022 348 30 a a DET coo.31924059551022 348 31 ' ' NOUN coo.31924059551022 348 32 ; ; PUNCT coo.31924059551022 348 33 pl pl X coo.31924059551022 348 34 · · PUNCT coo.31924059551022 348 35 = = SYM coo.31924059551022 348 36 β β X coo.31924059551022 348 37 ; ; PUNCT coo.31924059551022 348 38 p'b p'b ADJ coo.31924059551022 348 39 = = NOUN coo.31924059551022 348 40 0 0 NUM coo.31924059551022 348 41 ' ' PUNCT coo.31924059551022 348 42 ; ; PUNCT coo.31924059551022 348 43 « « PUNCT coo.31924059551022 348 44 ' ' PUNCT coo.31924059551022 348 45 + + X coo.31924059551022 348 46 v v NOUN coo.31924059551022 348 47 ' ' PUNCT coo.31924059551022 348 48 . . PUNCT coo.31924059551022 349 1 < < X coo.31924059551022 349 2 * * PUNCT coo.31924059551022 349 3 ' ' PUNCT coo.31924059551022 350 1 + + CCONJ coo.31924059551022 350 2 y y NOUN coo.31924059551022 350 3 « « PUNCT coo.31924059551022 350 4 a a PRON coo.31924059551022 350 5 ' ' PUNCT coo.31924059551022 350 6 + + CCONJ coo.31924059551022 350 7 d d X coo.31924059551022 350 8 ' ' PUNCT coo.31924059551022 350 9 i i PRON coo.31924059551022 350 10 _ _ VERB coo.31924059551022 350 11 _ _ PUNCT coo.31924059551022 350 12 _ _ PUNCT coo.31924059551022 350 13 _ _ PUNCT coo.31924059551022 350 14 _ _ PUNCT coo.31924059551022 350 15 _ _ PUNCT coo.31924059551022 350 16 _ _ PUNCT coo.31924059551022 350 17 _ _ PUNCT coo.31924059551022 350 18 _ _ PUNCT coo.31924059551022 350 19 _ _ PUNCT coo.31924059551022 351 1 o o X coo.31924059551022 351 2 ■ ■ PUNCT coo.31924059551022 351 3 ^ ^ NOUN coo.31924059551022 351 4 — — PUNCT coo.31924059551022 351 5 « « PUNCT coo.31924059551022 351 6 * * PUNCT coo.31924059551022 351 7 a a X coo.31924059551022 351 8 — — PUNCT coo.31924059551022 351 9 d d NOUN coo.31924059551022 351 10 ' ' PUNCT coo.31924059551022 351 11 [ [ X coo.31924059551022 351 12 39 39 NUM coo.31924059551022 351 13 ] ] PUNCT coo.31924059551022 351 14 β β X coo.31924059551022 351 15 ■ ■ PUNCT coo.31924059551022 351 16 a a PRON coo.31924059551022 351 17 — — PUNCT coo.31924059551022 351 18 y y PROPN coo.31924059551022 351 19 f f X coo.31924059551022 352 1 + + CCONJ coo.31924059551022 352 2 < < X coo.31924059551022 352 3 * * PUNCT coo.31924059551022 352 4 ' ' PUNCT coo.31924059551022 352 5 _ _ PUNCT coo.31924059551022 352 6 j j X coo.31924059551022 352 7 _ _ X coo.31924059551022 352 8 p p NOUN coo.31924059551022 352 9 ' ' PUNCT coo.31924059551022 352 10 + + CCONJ coo.31924059551022 353 1 y y NOUN coo.31924059551022 353 2 ' ' PUNCT coo.31924059551022 353 3 i i PRON coo.31924059551022 353 4 + + CCONJ coo.31924059551022 353 5 i_λ i_λ PUNCT coo.31924059551022 353 6 f f X coo.31924059551022 353 7 ? ? PUNCT coo.31924059551022 353 8 — — PUNCT coo.31924059551022 353 9 a a DET coo.31924059551022 353 10 ‘ ' PUNCT coo.31924059551022 353 11 β β NOUN coo.31924059551022 353 12 - - PUNCT coo.31924059551022 353 13 γ'β γ'β PROPN coo.31924059551022 353 14 — — PUNCT coo.31924059551022 353 15 d d VERB coo.31924059551022 353 16 ' ' PUNCT coo.31924059551022 353 17 y'+ y'+ PROPN coo.31924059551022 353 18 i i PRON coo.31924059551022 353 19 r'+ r'+ PROPN coo.31924059551022 353 20 ft ft PROPN coo.31924059551022 353 21 ' ' PUNCT coo.31924059551022 353 22 i i PRON coo.31924059551022 353 23 y'+ y'+ PROPN coo.31924059551022 353 24 d d PROPN coo.31924059551022 353 25 , , PUNCT coo.31924059551022 353 26 y y PROPN coo.31924059551022 353 27 — — PUNCT coo.31924059551022 353 28 a a DET coo.31924059551022 353 29 y y NOUN coo.31924059551022 353 30 — — PUNCT coo.31924059551022 353 31 β β INTJ coo.31924059551022 353 32 " " PUNCT coo.31924059551022 353 33 * * ADJ coo.31924059551022 353 34 γ γ NOUN coo.31924059551022 353 35 — — PUNCT coo.31924059551022 353 36 d d NOUN coo.31924059551022 353 37 = = SYM coo.31924059551022 353 38 0 0 PUNCT coo.31924059551022 354 1 [ [ X coo.31924059551022 354 2 40 40 NUM coo.31924059551022 354 3 ] ] PUNCT coo.31924059551022 354 4 if if SCONJ coo.31924059551022 354 5 then then ADV coo.31924059551022 354 6 we we PRON coo.31924059551022 354 7 can can AUX coo.31924059551022 354 8 solve solve VERB coo.31924059551022 354 9 the the DET coo.31924059551022 354 10 equations equation NOUN coo.31924059551022 354 11 considered consider VERB coo.31924059551022 354 12 as as ADP coo.31924059551022 354 13 simultanious simultanious ADJ coo.31924059551022 354 14 « « PUNCT coo.31924059551022 354 15 ' ' NUM coo.31924059551022 354 16 2 2 NUM coo.31924059551022 354 17 = = SYM coo.31924059551022 354 18 4a3 4a3 NUM coo.31924059551022 354 19 — — PUNCT coo.31924059551022 354 20 g2a g2a PROPN coo.31924059551022 354 21 — — PUNCT coo.31924059551022 354 22 g3 g3 PROPN coo.31924059551022 354 23 γ γ NOUN coo.31924059551022 354 24 = = SYM coo.31924059551022 354 25 ^ ^ X coo.31924059551022 354 26 92β 92β X coo.31924059551022 355 1 gs gs X coo.31924059551022 355 2 together together ADV coo.31924059551022 355 3 with with ADP coo.31924059551022 355 4 the the DET coo.31924059551022 355 5 relation relation NOUN coo.31924059551022 355 6 ( ( PUNCT coo.31924059551022 355 7 2n 2n NUM coo.31924059551022 355 8 — — PUNCT coo.31924059551022 355 9 1 1 X coo.31924059551022 355 10 ) ) PUNCT coo.31924059551022 355 11 ( ( PUNCT coo.31924059551022 355 12 a a PRON coo.31924059551022 355 13 + + ADJ coo.31924059551022 355 14 β β NOUN coo.31924059551022 355 15 + + CCONJ coo.31924059551022 355 16 γ γ NOUN coo.31924059551022 355 17 η------- η------- SPACE coo.31924059551022 355 18 ) ) PUNCT coo.31924059551022 355 19 = = VERB coo.31924059551022 355 20 β β INTJ coo.31924059551022 355 21 we we PRON coo.31924059551022 355 22 will will AUX coo.31924059551022 355 23 satisfy satisfy VERB coo.31924059551022 355 24 the the DET coo.31924059551022 355 25 necessary necessary ADJ coo.31924059551022 355 26 conditions condition NOUN coo.31924059551022 355 27 to to PART coo.31924059551022 355 28 enable enable VERB coo.31924059551022 355 29 us we PRON coo.31924059551022 355 30 to to PART coo.31924059551022 355 31 write write VERB coo.31924059551022 355 32 : : PUNCT coo.31924059551022 355 33 v v X coo.31924059551022 355 34 — — PUNCT coo.31924059551022 355 35 = = PROPN coo.31924059551022 355 36 n(n n(n PROPN coo.31924059551022 355 37 -fl)pu -fl)pu PROPN coo.31924059551022 355 38 + + CCONJ coo.31924059551022 355 39 jb jb PROPN coo.31924059551022 355 40 . . PUNCT coo.31924059551022 355 41 30 30 SPACE coo.31924059551022 356 1 part part NOUN coo.31924059551022 356 2 iii iii ADJ coo.31924059551022 356 3 . . PUNCT coo.31924059551022 357 1 that that PRON coo.31924059551022 357 2 is be AUX coo.31924059551022 357 3 9 9 NUM coo.31924059551022 357 4 - - PUNCT coo.31924059551022 357 5 π π NOUN coo.31924059551022 357 6 a a DET coo.31924059551022 357 7 ( ( PUNCT coo.31924059551022 357 8 u u NOUN coo.31924059551022 357 9 + + CCONJ coo.31924059551022 357 10 a a PRON coo.31924059551022 357 11 ) ) PUNCT coo.31924059551022 357 12 6 6 NUM coo.31924059551022 357 13 ( ( PUNCT coo.31924059551022 357 14 u u PROPN coo.31924059551022 357 15 ) ) PUNCT coo.31924059551022 357 16 σ σ PROPN coo.31924059551022 357 17 ( ( PUNCT coo.31924059551022 357 18 a a NOUN coo.31924059551022 357 19 ) ) PUNCT coo.31924059551022 357 20 0 0 NUM coo.31924059551022 357 21 — — PUNCT coo.31924059551022 357 22 uta uta PROPN coo.31924059551022 357 23 is be AUX coo.31924059551022 357 24 a a DET coo.31924059551022 357 25 solution solution NOUN coo.31924059551022 357 26 of of ADP coo.31924059551022 357 27 hermite hermite PROPN coo.31924059551022 357 28 's 's PART coo.31924059551022 357 29 equation equation NOUN coo.31924059551022 357 30 whatever whatever PRON coo.31924059551022 357 31 be be VERB coo.31924059551022 357 32 the the DET coo.31924059551022 357 33 value value NOUN coo.31924059551022 357 34 of of ADP coo.31924059551022 357 35 b b NUM coo.31924059551022 357 36 , , PUNCT coo.31924059551022 357 37 provided provide VERB coo.31924059551022 357 38 a a PRON coo.31924059551022 357 39 , , PUNCT coo.31924059551022 357 40 l l NOUN coo.31924059551022 357 41 · · PUNCT coo.31924059551022 357 42 , , PUNCT coo.31924059551022 357 43 c c X coo.31924059551022 357 44 .. .. PUNCT coo.31924059551022 357 45 fulfil fulfil VERB coo.31924059551022 357 46 the the DET coo.31924059551022 357 47 above above ADJ coo.31924059551022 357 48 conditions condition NOUN coo.31924059551022 357 49 . . PUNCT coo.31924059551022 358 1 solutionrfor solutionrfor PROPN coo.31924059551022 358 2 n n CCONJ coo.31924059551022 358 3 = = X coo.31924059551022 358 4 2 2 X coo.31924059551022 358 5 . . X coo.31924059551022 359 1 it it PRON coo.31924059551022 359 2 is be AUX coo.31924059551022 359 3 clear clear ADJ coo.31924059551022 359 4 that that SCONJ coo.31924059551022 359 5 , , PUNCT coo.31924059551022 359 6 save save VERB coo.31924059551022 359 7 for for ADP coo.31924059551022 359 8 small small ADJ coo.31924059551022 359 9 values value NOUN coo.31924059551022 359 10 of of ADP coo.31924059551022 359 11 ny ny PROPN coo.31924059551022 359 12 an an DET coo.31924059551022 359 13 attempt attempt NOUN coo.31924059551022 359 14 to to PART coo.31924059551022 359 15 solve solve VERB coo.31924059551022 359 16 the the DET coo.31924059551022 359 17 above above ADJ coo.31924059551022 359 18 equations equation NOUN coo.31924059551022 359 19 by by ADP coo.31924059551022 359 20 the the DET coo.31924059551022 359 21 ordinary ordinary ADJ coo.31924059551022 359 22 methods method NOUN coo.31924059551022 359 23 would would AUX coo.31924059551022 359 24 give give VERB coo.31924059551022 359 25 rise rise NOUN coo.31924059551022 359 26 to to ADP coo.31924059551022 359 27 insurmountable insurmountable ADJ coo.31924059551022 359 28 difficulties difficulty NOUN coo.31924059551022 359 29 . . PUNCT coo.31924059551022 360 1 the the DET coo.31924059551022 360 2 case case NOUN coo.31924059551022 360 3 n n X coo.31924059551022 360 4 = = X coo.31924059551022 360 5 2 2 NUM coo.31924059551022 360 6 however however ADV coo.31924059551022 360 7 , , PUNCT coo.31924059551022 360 8 which which PRON coo.31924059551022 360 9 is be AUX coo.31924059551022 360 10 famous famous ADJ coo.31924059551022 360 11 as as ADP coo.31924059551022 360 12 affording afford VERB coo.31924059551022 360 13 a a DET coo.31924059551022 360 14 solution solution NOUN coo.31924059551022 360 15 to to ADP coo.31924059551022 360 16 the the DET coo.31924059551022 360 17 problem problem NOUN coo.31924059551022 360 18 of of ADP coo.31924059551022 360 19 a a DET coo.31924059551022 360 20 pendulum pendulum NOUN coo.31924059551022 360 21 , , PUNCT coo.31924059551022 360 22 constrained constrain VERB coo.31924059551022 360 23 to to PART coo.31924059551022 360 24 move move VERB coo.31924059551022 360 25 upon upon SCONJ coo.31924059551022 360 26 a a DET coo.31924059551022 360 27 sphere sphere NOUN coo.31924059551022 360 28 , , PUNCT coo.31924059551022 360 29 can can AUX coo.31924059551022 360 30 be be AUX coo.31924059551022 360 31 readily readily ADV coo.31924059551022 360 32 solved solve VERB coo.31924059551022 360 33 as as SCONJ coo.31924059551022 360 34 follows follow VERB coo.31924059551022 360 35 : : PUNCT coo.31924059551022 360 36 given give VERB coo.31924059551022 360 37 n n CCONJ coo.31924059551022 360 38 = = SYM coo.31924059551022 360 39 2 2 NUM coo.31924059551022 360 40 : : PUNCT coo.31924059551022 360 41 we we PRON coo.31924059551022 360 42 have have VERB coo.31924059551022 360 43 the the DET coo.31924059551022 360 44 conditions condition NOUN coo.31924059551022 360 45 « « PUNCT coo.31924059551022 360 46 ' ' NUM coo.31924059551022 360 47 2 2 NUM coo.31924059551022 360 48 = = NOUN coo.31924059551022 360 49 p'2a p'2a NOUN coo.31924059551022 360 50 = = SYM coo.31924059551022 360 51 4«3 4«3 NUM coo.31924059551022 360 52 — — PUNCT coo.31924059551022 360 53 g2a g2a PROPN coo.31924059551022 360 54 — — PUNCT coo.31924059551022 361 1 g3 g3 X coo.31924059551022 361 2 [ [ X coo.31924059551022 361 3 41 41 NUM coo.31924059551022 361 4 ] ] PUNCT coo.31924059551022 361 5 — — PUNCT coo.31924059551022 361 6 40s 40 NOUN coo.31924059551022 361 7 — — PUNCT coo.31924059551022 361 8 — — PUNCT coo.31924059551022 361 9 & & CCONJ coo.31924059551022 361 10 pa-\-pb pa-\-pb PROPN coo.31924059551022 361 11 = = PROPN coo.31924059551022 361 12 ~b ~b PROPN coo.31924059551022 361 13 or or CCONJ coo.31924059551022 361 14 a'2 a'2 ADJ coo.31924059551022 361 15 -jβ'2 -jβ'2 NOUN coo.31924059551022 361 16 = = SYM coo.31924059551022 361 17 0 0 NUM coo.31924059551022 361 18 . . PUNCT coo.31924059551022 361 19 observe observe VERB coo.31924059551022 361 20 that that SCONJ coo.31924059551022 361 21 by by ADP coo.31924059551022 361 22 designating designate VERB coo.31924059551022 361 23 pl pl X coo.31924059551022 361 24 · · PUNCT coo.31924059551022 361 25 by by ADP coo.31924059551022 361 26 — — PUNCT coo.31924059551022 361 27 β β NOUN coo.31924059551022 361 28 the the DET coo.31924059551022 361 29 above above ADJ coo.31924059551022 361 30 relations relation NOUN coo.31924059551022 361 31 remain remain VERB coo.31924059551022 361 32 unaltered unaltered ADJ coo.31924059551022 361 33 and and CCONJ coo.31924059551022 361 34 that that SCONJ coo.31924059551022 361 35 we we PRON coo.31924059551022 361 36 may may AUX coo.31924059551022 361 37 therefore therefore ADV coo.31924059551022 361 38 write write VERB coo.31924059551022 361 39 4«3 4«3 NUM coo.31924059551022 361 40 — — PUNCT coo.31924059551022 361 41 g2a g2a PROPN coo.31924059551022 361 42 — — PUNCT coo.31924059551022 361 43 g3 g3 X coo.31924059551022 361 44 = = PUNCT coo.31924059551022 361 45 — — PUNCT coo.31924059551022 361 46 403 403 NUM coo.31924059551022 362 1 + + DET coo.31924059551022 362 2 9ΐβ 9ΐβ ADJ coo.31924059551022 362 3 — — PUNCT coo.31924059551022 362 4 g3 g3 PROPN coo.31924059551022 362 5 or or CCONJ coo.31924059551022 362 6 4(«3 4(«3 NUM coo.31924059551022 362 7 + + NOUN coo.31924059551022 362 8 βά βά PROPN coo.31924059551022 362 9 ) ) PUNCT coo.31924059551022 362 10 — — PUNCT coo.31924059551022 362 11 g3(a g3(a PROPN coo.31924059551022 362 12 + + CCONJ coo.31924059551022 362 13 β β X coo.31924059551022 362 14 ) ) PUNCT coo.31924059551022 362 15 = = PUNCT coo.31924059551022 362 16 0 0 NUM coo.31924059551022 363 1 whence whence ADV coo.31924059551022 363 2 but but CCONJ coo.31924059551022 363 3 β=«-\β β=«-\β NOUN coo.31924059551022 364 1 whence whence ADP coo.31924059551022 364 2 the the DET coo.31924059551022 364 3 equation equation NOUN coo.31924059551022 364 4 that that PRON coo.31924059551022 364 5 determines determine VERB coo.31924059551022 364 6 the the DET coo.31924059551022 364 7 values value NOUN coo.31924059551022 364 8 of of ADP coo.31924059551022 364 9 b. b. PROPN coo.31924059551022 365 1 [ [ X coo.31924059551022 365 2 42 42 NUM coo.31924059551022 365 3 ] ] PUNCT coo.31924059551022 365 4 · · PUNCT coo.31924059551022 365 5 · · PUNCT coo.31924059551022 365 6 ■ ■ PUNCT coo.31924059551022 365 7 \b2-^ab \b2-^ab VERB coo.31924059551022 365 8 + + CCONJ coo.31924059551022 365 9 a2-\g3 a2-\g3 ADJ coo.31924059551022 365 10 = = NOUN coo.31924059551022 365 11 0 0 NUM coo.31924059551022 365 12 and and CCONJ coo.31924059551022 365 13 also also ADV coo.31924059551022 365 14 b b X coo.31924059551022 365 15 = = SYM coo.31924059551022 365 16 0 0 NUM coo.31924059551022 365 17 . . PUNCT coo.31924059551022 365 18 * * PUNCT coo.31924059551022 365 19 ) ) PUNCT coo.31924059551022 366 1 if if SCONJ coo.31924059551022 366 2 then then ADV coo.31924059551022 366 3 n n X coo.31924059551022 366 4 = = SYM coo.31924059551022 366 5 2 2 NUM coo.31924059551022 366 6 and and CCONJ coo.31924059551022 366 7 a a PRON coo.31924059551022 366 8 and and CCONJ coo.31924059551022 366 9 h h NOUN coo.31924059551022 366 10 , , PUNCT coo.31924059551022 366 11 the the DET coo.31924059551022 366 12 arguments argument NOUN coo.31924059551022 366 13 of of ADP coo.31924059551022 366 14 a a DET coo.31924059551022 366 15 = = NOUN coo.31924059551022 366 16 ( ( PUNCT coo.31924059551022 366 17 — — PUNCT coo.31924059551022 366 18 pa2 pa2 NOUN coo.31924059551022 366 19 ) ) PUNCT coo.31924059551022 366 20 , , PUNCT coo.31924059551022 366 21 are be AUX coo.31924059551022 366 22 so so ADV coo.31924059551022 366 23 taken take VERB coo.31924059551022 366 24 that that SCONJ coo.31924059551022 366 25 b b NOUN coo.31924059551022 366 26 shall shall AUX coo.31924059551022 366 27 have have VERB coo.31924059551022 366 28 the the DET coo.31924059551022 366 29 values value NOUN coo.31924059551022 366 30 of of ADP coo.31924059551022 366 31 the the DET coo.31924059551022 366 32 roots root NOUN coo.31924059551022 366 33 of of ADP coo.31924059551022 366 34 equation equation NOUN coo.31924059551022 366 35 ( ( PUNCT coo.31924059551022 366 36 42 42 NUM coo.31924059551022 366 37 ) ) PUNCT coo.31924059551022 366 38 hermite hermite PROPN coo.31924059551022 366 39 ’s ’s PART coo.31924059551022 366 40 equation equation NOUN coo.31924059551022 366 41 will will AUX coo.31924059551022 366 42 have have VERB coo.31924059551022 366 43 the the DET coo.31924059551022 366 44 solution solution NOUN coo.31924059551022 366 45 * * PUNCT coo.31924059551022 366 46 ) ) PUNCT coo.31924059551022 366 47 if if SCONJ coo.31924059551022 366 48 in in ADP coo.31924059551022 366 49 this this DET coo.31924059551022 366 50 result result NOUN coo.31924059551022 366 51 we we PRON coo.31924059551022 366 52 take take VERB coo.31924059551022 366 53 b b PROPN coo.31924059551022 366 54 = = SYM coo.31924059551022 366 55 £ £ NOUN coo.31924059551022 366 56 we we PRON coo.31924059551022 366 57 obtain obtain VERB coo.31924059551022 366 58 the the DET coo.31924059551022 366 59 formula formula NOUN coo.31924059551022 366 60 r r NOUN coo.31924059551022 366 61 - - NOUN coo.31924059551022 366 62 af af NOUN coo.31924059551022 366 63 + + CCONJ coo.31924059551022 366 64 « « SYM coo.31924059551022 366 65 8 8 NUM coo.31924059551022 366 66 - - PUNCT coo.31924059551022 366 67 jÿ2 jÿ2 NOUN coo.31924059551022 366 68 = = SYM coo.31924059551022 366 69 0 0 NUM coo.31924059551022 366 70 , , PUNCT coo.31924059551022 366 71 see see VERB coo.31924059551022 367 1 halphen halphen PROPN coo.31924059551022 367 2 ii ii PROPN coo.31924059551022 367 3 p. p. PROPN coo.31924059551022 367 4 131 131 NUM coo.31924059551022 367 5 . . PUNCT coo.31924059551022 368 1 integral integral PROPN coo.31924059551022 368 2 as as ADP coo.31924059551022 368 3 a a DET coo.31924059551022 368 4 product product NOUN coo.31924059551022 368 5 . . PUNCT coo.31924059551022 369 1 31 31 NUM coo.31924059551022 370 1 [ [ X coo.31924059551022 370 2 43 43 NUM coo.31924059551022 370 3 ] ] PUNCT coo.31924059551022 370 4 [ [ X coo.31924059551022 370 5 44 44 NUM coo.31924059551022 370 6 ] ] PUNCT coo.31924059551022 370 7 c c PROPN coo.31924059551022 370 8 ( ( PUNCT coo.31924059551022 370 9 u u PROPN coo.31924059551022 370 10 — — PUNCT coo.31924059551022 370 11 a a X coo.31924059551022 370 12 ) ) PUNCT coo.31924059551022 370 13 6 6 NUM coo.31924059551022 370 14 ( ( PUNCT coo.31924059551022 370 15 u u NOUN coo.31924059551022 370 16 + + CCONJ coo.31924059551022 370 17 b b NOUN coo.31924059551022 370 18 ) ) PUNCT coo.31924059551022 370 19 \ \ PROPN coo.31924059551022 370 20 v v ADP coo.31924059551022 370 21 = = PROPN coo.31924059551022 370 22 c c NOUN coo.31924059551022 370 23 — — PUNCT coo.31924059551022 370 24 -------\ -------\ ADJ coo.31924059551022 370 25 v v NOUN coo.31924059551022 370 26 1 1 NUM coo.31924059551022 370 27 - - PUNCT coo.31924059551022 370 28 --e(qa --e(qa PUNCT coo.31924059551022 370 29 — — PUNCT coo.31924059551022 370 30 i i PRON coo.31924059551022 370 31 , , PUNCT coo.31924059551022 370 32 b)u b)u ADJ coo.31924059551022 370 33 υ υ PROPN coo.31924059551022 370 34 ü2u ü2u PROPN coo.31924059551022 370 35 = = PROPN coo.31924059551022 370 36 c c NOUN coo.31924059551022 370 37 ’ ' PUNCT coo.31924059551022 370 38 — — PUNCT coo.31924059551022 370 39 fg(m fg(m X coo.31924059551022 370 40 ~ ~ PUNCT coo.31924059551022 370 41 α α NOUN coo.31924059551022 370 42 + + CCONJ coo.31924059551022 370 43 fc fc NOUN coo.31924059551022 370 44 ) ) PUNCT coo.31924059551022 370 45 icf«-c6 icf«-c6 PROPN coo.31924059551022 370 46 ) ) PUNCT coo.31924059551022 370 47 . . PUNCT coo.31924059551022 371 1 1 1 NUM coo.31924059551022 371 2 ( ( PUNCT coo.31924059551022 371 3 itt itt PROPN coo.31924059551022 371 4 l l PROPN coo.31924059551022 371 5 ( ( PUNCT coo.31924059551022 371 6 » » X coo.31924059551022 371 7 m m VERB coo.31924059551022 371 8 j j X coo.31924059551022 371 9 « « PUNCT coo.31924059551022 371 10 aiaa+a aiaa+a NOUN coo.31924059551022 371 11 dtt dtt NOUN coo.31924059551022 371 12 l l NOUN coo.31924059551022 371 13 ( ( PUNCT coo.31924059551022 371 14 » » X coo.31924059551022 371 15 w w X coo.31924059551022 371 16 j j PROPN coo.31924059551022 371 17 where where SCONJ coo.31924059551022 371 18 v v PROPN coo.31924059551022 371 19 — — PUNCT coo.31924059551022 371 20 a a DET coo.31924059551022 371 21 + + NOUN coo.31924059551022 371 22 & & NOUN coo.31924059551022 371 23 . . PUNCT coo.31924059551022 371 24 * * PUNCT coo.31924059551022 371 25 ) ) PUNCT coo.31924059551022 371 26 that that SCONJ coo.31924059551022 371 27 our our PRON coo.31924059551022 371 28 solution solution NOUN coo.31924059551022 371 29 given give VERB coo.31924059551022 371 30 above above ADV coo.31924059551022 371 31 be be AUX coo.31924059551022 371 32 complete complete ADJ coo.31924059551022 371 33 we we PRON coo.31924059551022 371 34 must must AUX coo.31924059551022 371 35 obtain obtain VERB coo.31924059551022 371 36 the the DET coo.31924059551022 371 37 corresponding corresponding ADJ coo.31924059551022 371 38 values value NOUN coo.31924059551022 371 39 of of ADP coo.31924059551022 371 40 x x SYM coo.31924059551022 371 41 and and CCONJ coo.31924059551022 371 42 v v NOUN coo.31924059551022 371 43 as as SCONJ coo.31924059551022 371 44 follows follow VERB coo.31924059551022 371 45 : : PUNCT coo.31924059551022 371 46 λ λ X coo.31924059551022 372 1 [ [ X coo.31924059551022 372 2 * * X coo.31924059551022 372 3 ( ( PUNCT coo.31924059551022 372 4 “ " PUNCT coo.31924059551022 372 5 + + CCONJ coo.31924059551022 372 6 . . PUNCT coo.31924059551022 372 7 * * PUNCT coo.31924059551022 372 8 ) ) PUNCT coo.31924059551022 372 9 e e NOUN coo.31924059551022 372 10 ( ( PUNCT coo.31924059551022 372 11 « « PUNCT coo.31924059551022 372 12 — — PUNCT coo.31924059551022 372 13 f»)a1 f»)a1 NUM coo.31924059551022 372 14 l l PROPN coo.31924059551022 372 15 gu gu PROPN coo.31924059551022 372 16 j j X coo.31924059551022 372 17 we we PRON coo.31924059551022 372 18 have have AUX coo.31924059551022 372 19 also also ADV coo.31924059551022 372 20 i i PRON coo.31924059551022 372 21 p’a p’a NOUN coo.31924059551022 373 1 + + CCONJ coo.31924059551022 374 1 p'b p'b ADJ coo.31924059551022 374 2 y y PROPN coo.31924059551022 374 3 - - PUNCT coo.31924059551022 374 4 du du PROPN coo.31924059551022 374 5 pv pv X coo.31924059551022 374 6 + + CCONJ coo.31924059551022 374 7 pa pa PROPN coo.31924059551022 374 8 + + X coo.31924059551022 374 9 pi pi NOUN coo.31924059551022 374 10 since since SCONJ coo.31924059551022 374 11 again again ADV coo.31924059551022 374 12 we we PRON coo.31924059551022 374 13 have have VERB coo.31924059551022 374 14 or or CCONJ coo.31924059551022 374 15 hence hence ADV coo.31924059551022 374 16 whence whence ADV coo.31924059551022 374 17 4 4 NUM coo.31924059551022 374 18 pa pa PROPN coo.31924059551022 374 19 — — PUNCT coo.31924059551022 374 20 pb pb PROPN coo.31924059551022 374 21 p'a p'a X coo.31924059551022 374 22 = = PUNCT coo.31924059551022 374 23 p'b p'b ADV coo.31924059551022 374 24 = = VERB coo.31924059551022 374 25 a a DET coo.31924059551022 374 26 ' ' NOUN coo.31924059551022 374 27 . . PUNCT coo.31924059551022 375 1 £ £ SYM coo.31924059551022 375 2 2 2 NUM coo.31924059551022 375 3 αξ αξ NOUN coo.31924059551022 375 4 + + NOUN coo.31924059551022 375 5 « « PUNCT coo.31924059551022 375 6 * * PUNCT coo.31924059551022 375 7 \gt \gt NOUN coo.31924059551022 375 8 = = SYM coo.31924059551022 375 9 0 0 NUM coo.31924059551022 375 10 £ £ NUM coo.31924059551022 375 11 — — PUNCT coo.31924059551022 375 12 f f PROPN coo.31924059551022 375 13 ± ± PROPN coo.31924059551022 375 14 t’kvs t’kvs PROPN coo.31924059551022 375 15 — — PUNCT coo.31924059551022 375 16 3«2 3«2 NUM coo.31924059551022 375 17 . . PUNCT coo.31924059551022 375 18 ! ! PUNCT coo.31924059551022 375 19 > > X coo.31924059551022 376 1 ( ( PUNCT coo.31924059551022 376 2 « « X coo.31924059551022 376 3 ) ) PUNCT coo.31924059551022 376 4 = = X coo.31924059551022 376 5 f f X coo.31924059551022 377 1 + + PUNCT coo.31924059551022 377 2 p(*0 p(*0 NOUN coo.31924059551022 377 3 = = PUNCT coo.31924059551022 377 4 / / PUNCT coo.31924059551022 377 5 jp jp INTJ coo.31924059551022 377 6 % % INTJ coo.31924059551022 378 1 \ \ X coo.31924059551022 378 2 \ρα \ρα PROPN coo.31924059551022 378 3 — — PUNCT coo.31924059551022 378 4 p6/ p6/ PROPN coo.31924059551022 378 5 pa pa PROPN coo.31924059551022 378 6 — — PUNCT coo.31924059551022 378 7 pl pl PROPN coo.31924059551022 378 8 = = NOUN coo.31924059551022 378 9 ÿg2 ÿg2 NUM coo.31924059551022 378 10 3 3 NUM coo.31924059551022 378 11 « « SYM coo.31924059551022 378 12 2 2 NUM coo.31924059551022 378 13 i i PRON coo.31924059551022 378 14 > > X coo.31924059551022 378 15 a a PRON coo.31924059551022 378 16 + + NOUN coo.31924059551022 378 17 = = ADJ coo.31924059551022 378 18 a a PRON coo.31924059551022 378 19 = = NOUN coo.31924059551022 378 20 — — PUNCT coo.31924059551022 378 21 4a3 4a3 NUM coo.31924059551022 378 22 + + NUM coo.31924059551022 378 23 # # SYM coo.31924059551022 378 24 2a 2a NUM coo.31924059551022 378 25 — — PUNCT coo.31924059551022 378 26 03 03 NUM coo.31924059551022 378 27 . . PUNCT coo.31924059551022 379 1 these these DET coo.31924059551022 379 2 values value NOUN coo.31924059551022 379 3 in in ADP coo.31924059551022 379 4 ( ( PUNCT coo.31924059551022 379 5 44 44 NUM coo.31924059551022 379 6 ) ) PUNCT coo.31924059551022 379 7 give give VERB coo.31924059551022 379 8 : : PUNCT coo.31924059551022 379 9 w w PROPN coo.31924059551022 379 10 ........... ........... INTJ coo.31924059551022 379 11 ιή ιή NOUN coo.31924059551022 379 12 - - PUNCT coo.31924059551022 379 13 α α PROPN coo.31924059551022 379 14 - - PUNCT coo.31924059551022 379 15 ιγ ιγ NOUN coo.31924059551022 379 16 ’ ' PUNCT coo.31924059551022 379 17 · · PRON coo.31924059551022 379 18 * * PUNCT coo.31924059551022 379 19 ) ) PUNCT coo.31924059551022 379 20 the the DET coo.31924059551022 379 21 last last ADJ coo.31924059551022 379 22 is be AUX coo.31924059551022 379 23 the the DET coo.31924059551022 379 24 form form NOUN coo.31924059551022 379 25 given give VERB coo.31924059551022 379 26 for for ADP coo.31924059551022 379 27 the the DET coo.31924059551022 379 28 expression expression NOUN coo.31924059551022 379 29 cos cos ADP coo.31924059551022 380 1 cx cx X coo.31924059551022 380 2 -f -f X coo.31924059551022 380 3 i i PRON coo.31924059551022 380 4 cos cos ADP coo.31924059551022 381 1 cy cy PROPN coo.31924059551022 381 2 in in ADP coo.31924059551022 381 3 the the DET coo.31924059551022 381 4 solution solution NOUN coo.31924059551022 381 5 of of ADP coo.31924059551022 381 6 the the DET coo.31924059551022 381 7 pendulum pendulum NOUN coo.31924059551022 381 8 problem problem NOUN coo.31924059551022 381 9 in in ADP coo.31924059551022 381 10 the the DET coo.31924059551022 381 11 direct direct ADJ coo.31924059551022 381 12 investigation investigation NOUN coo.31924059551022 381 13 of of ADP coo.31924059551022 381 14 which which PRON coo.31924059551022 381 15 one one PRON coo.31924059551022 381 16 arrives arrive VERB coo.31924059551022 381 17 at at ADP coo.31924059551022 381 18 the the DET coo.31924059551022 381 19 expressions expression NOUN coo.31924059551022 381 20 d2x d2x ADJ coo.31924059551022 381 21 dt2 dt2 DET coo.31924059551022 381 22 nx nx PROPN coo.31924059551022 381 23 ; ; PUNCT coo.31924059551022 381 24 d2y d2y VERB coo.31924059551022 381 25 dt2 dt2 NOUN coo.31924059551022 381 26 = = X coo.31924059551022 381 27 ny ny PROPN coo.31924059551022 381 28 ; ; PUNCT coo.31924059551022 381 29 d2z d2z INTJ coo.31924059551022 382 1 dt2 dt2 NOUN coo.31924059551022 382 2 = = X coo.31924059551022 382 3 nz nz PROPN coo.31924059551022 383 1 + + CCONJ coo.31924059551022 383 2 g g NOUN coo.31924059551022 383 3 where where SCONJ coo.31924059551022 383 4 n n PROPN coo.31924059551022 383 5 is be AUX coo.31924059551022 383 6 found find VERB coo.31924059551022 383 7 to to PART coo.31924059551022 383 8 be be AUX coo.31924059551022 383 9 3z2(2pu 3z2(2pu NUM coo.31924059551022 383 10 — — PUNCT coo.31924059551022 383 11 ρα2 ρα2 PROPN coo.31924059551022 383 12 ) ) PUNCT coo.31924059551022 383 13 which which PRON coo.31924059551022 383 14 causes cause VERB coo.31924059551022 383 15 the the DET coo.31924059551022 383 16 solution solution NOUN coo.31924059551022 383 17 to to PART coo.31924059551022 383 18 depend depend VERB coo.31924059551022 383 19 upon upon SCONJ coo.31924059551022 383 20 lame lame PROPN coo.31924059551022 383 21 ’s ’s PART coo.31924059551022 383 22 functions function NOUN coo.31924059551022 383 23 . . PUNCT coo.31924059551022 384 1 32 32 NUM coo.31924059551022 385 1 part part NOUN coo.31924059551022 385 2 iii iii NUM coo.31924059551022 385 3 . . PUNCT coo.31924059551022 386 1 if if SCONJ coo.31924059551022 386 2 we we PRON coo.31924059551022 386 3 take take VERB coo.31924059551022 386 4 a a PRON coo.31924059551022 386 5 — — PUNCT coo.31924059551022 386 6 2b 2b NOUN coo.31924059551022 386 7 we we PRON coo.31924059551022 386 8 have have VERB coo.31924059551022 386 9 [ [ PUNCT coo.31924059551022 386 10 46 46 NUM coo.31924059551022 386 11 ] ] PUNCT coo.31924059551022 386 12 p p PROPN coo.31924059551022 386 13 ( ( PUNCT coo.31924059551022 386 14 v v NOUN coo.31924059551022 386 15 ) ) PUNCT coo.31924059551022 386 16 = = X coo.31924059551022 386 17 8i3 8i3 NUM coo.31924059551022 386 18 + + CCONJ coo.31924059551022 386 19 & & CCONJ coo.31924059551022 386 20 12 12 NUM coo.31924059551022 386 21 62 62 NUM coo.31924059551022 386 22 — — PUNCT coo.31924059551022 386 23 g2 g2 PROPN coo.31924059551022 387 1 [ [ X coo.31924059551022 387 2 47 47 NUM coo.31924059551022 387 3 ] ] PUNCT coo.31924059551022 387 4 where where SCONJ coo.31924059551022 387 5 φ φ X coo.31924059551022 387 6 = = SYM coo.31924059551022 387 7 4 4 NUM coo.31924059551022 387 8 δ3 δ3 PROPN coo.31924059551022 387 9 — — PUNCT coo.31924059551022 387 10 g.2b g.2b NOUN coo.31924059551022 387 11 for for ADP coo.31924059551022 387 12 x x PUNCT coo.31924059551022 387 13 we we PRON coo.31924059551022 387 14 have have VERB coo.31924059551022 387 15 : : PUNCT coo.31924059551022 387 16 x x PUNCT coo.31924059551022 387 17 = = X coo.31924059551022 387 18 ξ(α ξ(α NUM coo.31924059551022 387 19 — — PUNCT coo.31924059551022 387 20 v v NOUN coo.31924059551022 387 21 ) ) PUNCT coo.31924059551022 387 22 -f -f PUNCT coo.31924059551022 387 23 % % INTJ coo.31924059551022 387 24 a a PRON coo.31924059551022 387 25 _ _ PUNCT coo.31924059551022 387 26 _ _ PUNCT coo.31924059551022 387 27 £ £ X coo.31924059551022 387 28 ρ'φ ρ'φ PROPN coo.31924059551022 387 29 — — PUNCT coo.31924059551022 387 30 α α X coo.31924059551022 387 31 ) ) PUNCT coo.31924059551022 387 32 — — PUNCT coo.31924059551022 387 33 p'(a p'(a PROPN coo.31924059551022 387 34 ) ) PUNCT coo.31924059551022 387 35 p p NOUN coo.31924059551022 387 36 ( ( PUNCT coo.31924059551022 387 37 h h PROPN coo.31924059551022 387 38 — — PUNCT coo.31924059551022 387 39 a a X coo.31924059551022 387 40 ) ) PUNCT coo.31924059551022 387 41 -fff'fr -fff'fr X coo.31924059551022 387 42 — — PUNCT coo.31924059551022 387 43 p'a p'a ADJ coo.31924059551022 387 44 2 2 NUM coo.31924059551022 387 45 p p NOUN coo.31924059551022 387 46 ( ( PUNCT coo.31924059551022 387 47 6 6 NUM coo.31924059551022 387 48 — — PUNCT coo.31924059551022 387 49 a a X coo.31924059551022 387 50 ) ) PUNCT coo.31924059551022 387 51 — — PUNCT coo.31924059551022 387 52 p p NOUN coo.31924059551022 387 53 ( ( PUNCT coo.31924059551022 387 54 a a NOUN coo.31924059551022 387 55 ) ) PUNCT coo.31924059551022 387 56 2p(b 2p(b NUM coo.31924059551022 387 57 — — PUNCT coo.31924059551022 387 58 a a X coo.31924059551022 387 59 ) ) PUNCT coo.31924059551022 387 60 — — PUNCT coo.31924059551022 387 61 pi pi NOUN coo.31924059551022 387 62 ) ) PUNCT coo.31924059551022 387 63 — — PUNCT coo.31924059551022 387 64 pa pa PROPN coo.31924059551022 387 65 9z 9z PROPN coo.31924059551022 387 66 and and CCONJ coo.31924059551022 387 67 < < NOUN coo.31924059551022 387 68 p'= p'= NUM coo.31924059551022 388 1 12b2 12b2 NUM coo.31924059551022 388 2 — — PUNCT coo.31924059551022 388 3 g2 g2 PROPN coo.31924059551022 388 4 tb tb PROPN coo.31924059551022 388 5 = = X coo.31924059551022 388 6 1 1 NUM coo.31924059551022 388 7 p p NOUN coo.31924059551022 388 8 ( ( PUNCT coo.31924059551022 388 9 ~h ~h X coo.31924059551022 388 10 ~ ~ PUNCT coo.31924059551022 388 11 + + PROPN coo.31924059551022 388 12 ì*'6 ì*'6 PROPN coo.31924059551022 388 13 * * SYM coo.31924059551022 388 14 2 2 NUM coo.31924059551022 388 15 pq pq NOUN coo.31924059551022 388 16 > > X coo.31924059551022 388 17 — — PUNCT coo.31924059551022 388 18 a a X coo.31924059551022 388 19 ) ) PUNCT coo.31924059551022 388 20 — — PUNCT coo.31924059551022 388 21 p p PROPN coo.31924059551022 388 22 & & CCONJ coo.31924059551022 388 23 p p PROPN coo.31924059551022 388 24 v v PROPN coo.31924059551022 388 25 2pv 2pv PROPN coo.31924059551022 388 26 — — PUNCT coo.31924059551022 388 27 a a DET coo.31924059551022 388 28 since since SCONJ coo.31924059551022 388 29 — — PUNCT coo.31924059551022 388 30 y y NOUN coo.31924059551022 388 31 p'a p'a INTJ coo.31924059551022 388 32 — — PUNCT coo.31924059551022 388 33 ρ'δ ρ'δ PROPN coo.31924059551022 388 34 = = PUNCT coo.31924059551022 388 35 0 0 NUM coo.31924059551022 388 36 pa pa PROPN coo.31924059551022 388 37 -f -f PUNCT coo.31924059551022 388 38 - - PUNCT coo.31924059551022 388 39 ρδ ρδ X coo.31924059551022 388 40 = = NOUN coo.31924059551022 388 41 a. a. NOUN coo.31924059551022 388 42 combining combine VERB coo.31924059551022 388 43 these these DET coo.31924059551022 388 44 relations relation NOUN coo.31924059551022 388 45 we we PRON coo.31924059551022 388 46 obtain obtain VERB coo.31924059551022 388 47 : : PUNCT coo.31924059551022 388 48 p'v p'v PROPN coo.31924059551022 388 49 i i PRON coo.31924059551022 388 50 τ τ PROPN coo.31924059551022 388 51 ^+pv ^+pv PROPN coo.31924059551022 388 52 = = PROPN coo.31924059551022 388 53 b b PROPN coo.31924059551022 388 54 and and CCONJ coo.31924059551022 388 55 i)v i)v PROPN coo.31924059551022 388 56 = = NOUN coo.31924059551022 388 57 2(6 2(6 NUM coo.31924059551022 388 58 -pv -pv ADV coo.31924059551022 388 59 ) ) PUNCT coo.31924059551022 388 60 = = PROPN coo.31924059551022 388 61 2 2 NUM coo.31924059551022 388 62 ( ( PUNCT coo.31924059551022 388 63 6 6 NUM coo.31924059551022 388 64 ] ] PUNCT coo.31924059551022 388 65 /3lÿ^ /3lÿ^ NOUN coo.31924059551022 389 1 = = PROPN coo.31924059551022 389 2 1/3 1/3 NUM coo.31924059551022 389 3 fe fe X coo.31924059551022 389 4 φ φ X coo.31924059551022 389 5 ' ' PUNCT coo.31924059551022 389 6 φ φ X coo.31924059551022 389 7 φ φ X coo.31924059551022 389 8 ' ' PUNCT coo.31924059551022 389 9 r r NOUN coo.31924059551022 389 10 φ φ X coo.31924059551022 389 11 ' ' PUNCT coo.31924059551022 389 12 ' ' PUNCT coo.31924059551022 389 13 finally finally ADV coo.31924059551022 389 14 we we PRON coo.31924059551022 389 15 observe observe VERB coo.31924059551022 389 16 that that SCONJ coo.31924059551022 389 17 if if SCONJ coo.31924059551022 389 18 — — PUNCT coo.31924059551022 389 19 u u PROPN coo.31924059551022 389 20 is be AUX coo.31924059551022 389 21 substituted substitute VERB coo.31924059551022 389 22 for for ADP coo.31924059551022 389 23 u u PROPN coo.31924059551022 389 24 in in ADP coo.31924059551022 389 25 hermite hermite PROPN coo.31924059551022 389 26 ’s ’s PART coo.31924059551022 389 27 equation equation NOUN coo.31924059551022 389 28 it it PRON coo.31924059551022 389 29 remains remain VERB coo.31924059551022 389 30 unaltered unaltered ADJ coo.31924059551022 389 31 which which PRON coo.31924059551022 389 32 gives give VERB coo.31924059551022 389 33 us we PRON coo.31924059551022 389 34 the the DET coo.31924059551022 389 35 second second ADJ coo.31924059551022 389 36 solution solution NOUN coo.31924059551022 389 37 , , PUNCT coo.31924059551022 389 38 namely namely ADV coo.31924059551022 389 39 [ [ X coo.31924059551022 389 40 48] 48] NUM coo.31924059551022 389 41 ................. ................. NUM coo.31924059551022 389 42 3 3 NUM coo.31924059551022 389 43 = = X coo.31924059551022 389 44 jj\ jj\ X coo.31924059551022 389 45 ( ( PUNCT coo.31924059551022 389 46 a a DET coo.31924059551022 389 47 6 6 NUM coo.31924059551022 389 48 { { PUNCT coo.31924059551022 389 49 a a NOUN coo.31924059551022 389 50 ) ) PUNCT coo.31924059551022 389 51 6 6 NUM coo.31924059551022 389 52 ( ( PUNCT coo.31924059551022 389 53 u u PROPN coo.31924059551022 389 54 ) ) PUNCT coo.31924059551022 389 55 gii gii PROPN coo.31924059551022 389 56 l l PROPN coo.31924059551022 389 57 , , PUNCT coo.31924059551022 389 58 a a PRON coo.31924059551022 389 59 x x PUNCT coo.31924059551022 389 60 and and CCONJ coo.31924059551022 389 61 v v NOUN coo.31924059551022 389 62 remaining remain VERB coo.31924059551022 389 63 as as ADP coo.31924059551022 389 64 before before ADV coo.31924059551022 389 65 . . PUNCT coo.31924059551022 390 1 product product NOUN coo.31924059551022 390 2 of of ADP coo.31924059551022 390 3 the the DET coo.31924059551022 390 4 two two NUM coo.31924059551022 390 5 solutions solution NOUN coo.31924059551022 390 6 . . PUNCT coo.31924059551022 391 1 it it PRON coo.31924059551022 391 2 becomes become VERB coo.31924059551022 391 3 evident evident ADJ coo.31924059551022 391 4 from from ADP coo.31924059551022 391 5 the the DET coo.31924059551022 391 6 illustration illustration NOUN coo.31924059551022 391 7 in in ADP coo.31924059551022 391 8 the the DET coo.31924059551022 391 9 previous previous ADJ coo.31924059551022 391 10 paragraph paragraph NOUN coo.31924059551022 391 11 that that SCONJ coo.31924059551022 391 12 while while SCONJ coo.31924059551022 391 13 in in ADP coo.31924059551022 391 14 general general ADJ coo.31924059551022 391 15 the the DET coo.31924059551022 391 16 theory theory NOUN coo.31924059551022 391 17 involved involve VERB coo.31924059551022 391 18 in in ADP coo.31924059551022 391 19 the the DET coo.31924059551022 391 20 solution solution NOUN coo.31924059551022 391 21 just just ADV coo.31924059551022 391 22 given give VERB coo.31924059551022 391 23 holds hold VERB coo.31924059551022 391 24 it it PRON coo.31924059551022 391 25 is be AUX coo.31924059551022 391 26 practically practically ADV coo.31924059551022 391 27 inapplicable inapplicable ADJ coo.31924059551022 391 28 for for ADP coo.31924059551022 391 29 other other ADJ coo.31924059551022 391 30 values value NOUN coo.31924059551022 391 31 of of ADP coo.31924059551022 391 32 n n NOUN coo.31924059551022 391 33 than than ADP coo.31924059551022 391 34 two two NUM coo.31924059551022 391 35 or or CCONJ coo.31924059551022 391 36 at at ADP coo.31924059551022 391 37 most most ADV coo.31924059551022 391 38 three three NUM coo.31924059551022 391 39 whence whence NOUN coo.31924059551022 391 40 one one NUM coo.31924059551022 391 41 is be AUX coo.31924059551022 391 42 led lead VERB coo.31924059551022 391 43 to to ADP coo.31924059551022 391 44 a a DET coo.31924059551022 391 45 study study NOUN coo.31924059551022 391 46 of of ADP coo.31924059551022 391 47 functions function NOUN coo.31924059551022 391 48 of of ADP coo.31924059551022 391 49 the the DET coo.31924059551022 391 50 integral integral NOUN coo.31924059551022 391 51 in in ADP coo.31924059551022 391 52 the the DET coo.31924059551022 391 53 hope hope NOUN coo.31924059551022 391 54 of of ADP coo.31924059551022 391 55 discovering discover VERB coo.31924059551022 391 56 inherent inherent ADJ coo.31924059551022 391 57 properties property NOUN coo.31924059551022 391 58 * * PUNCT coo.31924059551022 391 59 ) ) PUNCT coo.31924059551022 391 60 compair compair NOUN coo.31924059551022 391 61 results result NOUN coo.31924059551022 391 62 obtained obtain VERB coo.31924059551022 391 63 by by ADP coo.31924059551022 391 64 m. m. NOUN coo.31924059551022 391 65 halphen halphen ADV coo.31924059551022 391 66 and and CCONJ coo.31924059551022 391 67 obtained obtain VERB coo.31924059551022 391 68 in in ADP coo.31924059551022 391 69 a a DET coo.31924059551022 391 70 different different ADJ coo.31924059551022 391 71 manner manner NOUN coo.31924059551022 391 72 , , PUNCT coo.31924059551022 391 73 ii ii PROPN coo.31924059551022 391 74 p. p. NOUN coo.31924059551022 391 75 131 131 NUM coo.31924059551022 391 76 and and CCONJ coo.31924059551022 391 77 527 527 NUM coo.31924059551022 391 78 . . PUNCT coo.31924059551022 391 79 integral integral PROPN coo.31924059551022 391 80 as as ADP coo.31924059551022 391 81 a a DET coo.31924059551022 391 82 product product NOUN coo.31924059551022 391 83 . . PUNCT coo.31924059551022 392 1 33 33 NUM coo.31924059551022 392 2 that that PRON coo.31924059551022 392 3 will will AUX coo.31924059551022 392 4 lead lead VERB coo.31924059551022 392 5 to to ADP coo.31924059551022 392 6 a a DET coo.31924059551022 392 7 more more ADV coo.31924059551022 392 8 practical practical ADJ coo.31924059551022 392 9 result result NOUN coo.31924059551022 392 10 . . PUNCT coo.31924059551022 393 1 the the DET coo.31924059551022 393 2 first first ADJ coo.31924059551022 393 3 of of ADP coo.31924059551022 393 4 such such ADJ coo.31924059551022 393 5 functions function NOUN coo.31924059551022 393 6 to to PART coo.31924059551022 393 7 command command VERB coo.31924059551022 393 8 attention attention NOUN coo.31924059551022 393 9 would would AUX coo.31924059551022 393 10 be be AUX coo.31924059551022 393 11 the the DET coo.31924059551022 393 12 product product NOUN coo.31924059551022 393 13 of of ADP coo.31924059551022 393 14 the the DET coo.31924059551022 393 15 two two NUM coo.31924059551022 393 16 integrals integral NOUN coo.31924059551022 393 17 [ [ PUNCT coo.31924059551022 393 18 49] 49] NUM coo.31924059551022 393 19 ................................ ................................ PUNCT coo.31924059551022 393 20 y y PROPN coo.31924059551022 393 21 = = NOUN coo.31924059551022 393 22 ye ye X coo.31924059551022 393 23 which which PRON coo.31924059551022 393 24 we we PRON coo.31924059551022 393 25 will will AUX coo.31924059551022 393 26 proceed proceed VERB coo.31924059551022 393 27 to to PART coo.31924059551022 393 28 develop develop VERB coo.31924059551022 393 29 as as SCONJ coo.31924059551022 393 30 follows follow VERB coo.31924059551022 393 31 : : PUNCT coo.31924059551022 393 32 we we PRON coo.31924059551022 393 33 would would AUX coo.31924059551022 393 34 find find VERB coo.31924059551022 393 35 from from ADP coo.31924059551022 393 36 the the DET coo.31924059551022 393 37 integral integral ADJ coo.31924059551022 393 38 s s NOUN coo.31924059551022 393 39 as as ADP coo.31924059551022 393 40 in in ADP coo.31924059551022 393 41 the the DET coo.31924059551022 393 42 case case NOUN coo.31924059551022 393 43 of of ADP coo.31924059551022 393 44 y y PROPN coo.31924059551022 393 45 = = SYM coo.31924059551022 393 46 σ^ σ^ NOUN coo.31924059551022 393 47 ( ( PUNCT coo.31924059551022 393 48 β β X coo.31924059551022 393 49 — — PUNCT coo.31924059551022 393 50 u u PROPN coo.31924059551022 393 51 ) ) PUNCT coo.31924059551022 393 52 — — PUNCT coo.31924059551022 394 1 % % INTJ coo.31924059551022 394 2 u u INTJ coo.31924059551022 394 3 + + CCONJ coo.31924059551022 394 4 ζά\ ζά\ VERB coo.31924059551022 394 5 and and CCONJ coo.31924059551022 394 6 combining combine VERB coo.31924059551022 394 7 with with ADP coo.31924059551022 394 8 ΐγ=2τ[ξ(α ΐγ=2τ[ξ(α PROPN coo.31924059551022 394 9 + + PROPN coo.31924059551022 394 10 ω)_ξ(μ)~ξα ω)_ξ(μ)~ξα ADP coo.31924059551022 394 11 ] ] PUNCT coo.31924059551022 394 12 we we PRON coo.31924059551022 394 13 obtain obtain VERB coo.31924059551022 394 14 y y PROPN coo.31924059551022 394 15 7 7 NUM coo.31924059551022 395 1 + + CCONJ coo.31924059551022 395 2 α α X coo.31924059551022 395 3 ) ) PUNCT coo.31924059551022 395 4 50 50 NUM coo.31924059551022 395 5 “ " PUNCT coo.31924059551022 395 6 α α X coo.31924059551022 395 7 ) ) PUNCT coo.31924059551022 395 8 = = X coo.31924059551022 396 1 ~σ^¥~α ~σ^¥~α PUNCT coo.31924059551022 397 1 but but CCONJ coo.31924059551022 397 2 β β PRON coo.31924059551022 397 3 ( ( PUNCT coo.31924059551022 397 4 a a PRON coo.31924059551022 397 5 + + ADJ coo.31924059551022 397 6 u u ADJ coo.31924059551022 397 7 ) ) PUNCT coo.31924059551022 397 8 g g NOUN coo.31924059551022 397 9 ( ( PUNCT coo.31924059551022 397 10 a a DET coo.31924059551022 397 11 — — PUNCT coo.31924059551022 397 12 u u NOUN coo.31924059551022 397 13 ) ) PUNCT coo.31924059551022 397 14 whence whence NOUN coo.31924059551022 397 15 or or CCONJ coo.31924059551022 397 16 y y PROPN coo.31924059551022 397 17 = = PROPN coo.31924059551022 397 18 17 17 NUM coo.31924059551022 397 19 ' ' PUNCT coo.31924059551022 397 20 ' ' PUNCT coo.31924059551022 397 21 p p NOUN coo.31924059551022 397 22 a a DET coo.31924059551022 397 23 yz yz X coo.31924059551022 397 24 — — PUNCT coo.31924059551022 397 25 zy zy INTJ coo.31924059551022 397 26 = = X coo.31924059551022 397 27 > > X coo.31924059551022 397 28 — — PUNCT coo.31924059551022 397 29 --------- --------- PUNCT coo.31924059551022 397 30 · · PUNCT coo.31924059551022 397 31 j j PROPN coo.31924059551022 397 32 σ σ PROPN coo.31924059551022 397 33 ¿ ¿ NUM coo.31924059551022 397 34 mipu mipu NOUN coo.31924059551022 397 35 — — PUNCT coo.31924059551022 397 36 pa pa PROPN coo.31924059551022 397 37 =] =] PROPN coo.31924059551022 397 38 γ γ PROPN coo.31924059551022 397 39 [ [ PUNCT coo.31924059551022 397 40 ( ( PUNCT coo.31924059551022 397 41 pu pu PROPN coo.31924059551022 397 42 — — PUNCT coo.31924059551022 397 43 ρα)- ρα)- SPACE coo.31924059551022 397 44 * * NOUN coo.31924059551022 397 45 ) ) PUNCT coo.31924059551022 397 46 yz yz PROPN coo.31924059551022 397 47 -σ^ίγα -σ^ίγα PUNCT coo.31924059551022 397 48 -tl -tl SPACE coo.31924059551022 397 49 · · PUNCT coo.31924059551022 397 50 * * PUNCT coo.31924059551022 397 51 " " PUNCT coo.31924059551022 397 52 * * PUNCT coo.31924059551022 397 53 β β X coo.31924059551022 397 54 ) ) PUNCT coo.31924059551022 397 55 = = PROPN coo.31924059551022 397 56 2c 2c NUM coo.31924059551022 397 57 2 2 NUM coo.31924059551022 397 58 g g NOUN coo.31924059551022 397 59 pa pa PROPN coo.31924059551022 397 60 _ _ PUNCT coo.31924059551022 397 61 _ _ PUNCT coo.31924059551022 398 1 _ _ PUNCT coo.31924059551022 398 2 _ _ PUNCT coo.31924059551022 399 1 pu pu PROPN coo.31924059551022 399 2 — — PUNCT coo.31924059551022 399 3 pa pa PROPN coo.31924059551022 399 4 π π PROPN coo.31924059551022 399 5 ( ( PUNCT coo.31924059551022 399 6 pu pu PROPN coo.31924059551022 399 7 — — PUNCT coo.31924059551022 399 8 pa pa PROPN coo.31924059551022 399 9 ) ) PUNCT coo.31924059551022 400 1 * * PUNCT coo.31924059551022 401 1 g g ADP coo.31924059551022 401 2 being be AUX coo.31924059551022 401 3 a a DET coo.31924059551022 401 4 constant constant ADJ coo.31924059551022 401 5 or or CCONJ coo.31924059551022 401 6 expanding expand VERB coo.31924059551022 401 7 and and CCONJ coo.31924059551022 401 8 writing write VERB coo.31924059551022 401 9 t t PROPN coo.31924059551022 402 1 = = PROPN coo.31924059551022 402 2 pu pu ADV coo.31924059551022 402 3 we we PRON coo.31924059551022 402 4 have have VERB coo.31924059551022 402 5 [ [ X coo.31924059551022 402 6 50 50 NUM coo.31924059551022 402 7 ] ] PUNCT coo.31924059551022 403 1 + + NUM coo.31924059551022 403 2 + + PUNCT coo.31924059551022 403 3 + + PUNCT coo.31924059551022 403 4 = = SYM coo.31924059551022 403 5 2 2 NUM coo.31924059551022 403 6 g g NOUN coo.31924059551022 403 7 t t NOUN coo.31924059551022 403 8 — — PUNCT coo.31924059551022 403 9 a a DET coo.31924059551022 403 10 1 1 NUM coo.31924059551022 403 11 t t PROPN coo.31924059551022 403 12 — — PUNCT coo.31924059551022 403 13 β β PROPN coo.31924059551022 403 14 1 1 NUM coo.31924059551022 403 15 t t PROPN coo.31924059551022 403 16 — — PUNCT coo.31924059551022 403 17 y y PROPN coo.31924059551022 403 18 1 1 NUM coo.31924059551022 403 19 ( ( PUNCT coo.31924059551022 403 20 t t NOUN coo.31924059551022 403 21 — — PUNCT coo.31924059551022 403 22 a a X coo.31924059551022 403 23 ) ) PUNCT coo.31924059551022 403 24 ( ( PUNCT coo.31924059551022 403 25 t t PROPN coo.31924059551022 403 26 — — PUNCT coo.31924059551022 403 27 β β PROPN coo.31924059551022 403 28 ) ) PUNCT coo.31924059551022 403 29 ( ( PUNCT coo.31924059551022 403 30 t t PROPN coo.31924059551022 403 31 — — PUNCT coo.31924059551022 403 32 y y PROPN coo.31924059551022 403 33 ) ) PUNCT coo.31924059551022 403 34 . . PUNCT coo.31924059551022 403 35 .. .. PUNCT coo.31924059551022 404 1 an an DET coo.31924059551022 404 2 identity identity NOUN coo.31924059551022 404 3 independant independant NOUN coo.31924059551022 404 4 of of ADP coo.31924059551022 404 5 the the DET coo.31924059551022 404 6 value value NOUN coo.31924059551022 404 7 of of ADP coo.31924059551022 404 8 t. t. PROPN coo.31924059551022 404 9 to to PART coo.31924059551022 404 10 determine determine VERB coo.31924059551022 404 11 a\ a\ PROPN coo.31924059551022 404 12 β β NOUN coo.31924059551022 404 13 ' ' NOUN coo.31924059551022 404 14 .. .. PUNCT coo.31924059551022 404 15 . . PUNCT coo.31924059551022 405 1 multiply multiply ADJ coo.31924059551022 405 2 both both DET coo.31924059551022 405 3 members member NOUN coo.31924059551022 405 4 by by ADP coo.31924059551022 405 5 ( ( PUNCT coo.31924059551022 405 6 t t NOUN coo.31924059551022 405 7 — — PUNCT coo.31924059551022 405 8 a a X coo.31924059551022 405 9 ) ) PUNCT coo.31924059551022 405 10 , , PUNCT coo.31924059551022 405 11 ( ( PUNCT coo.31924059551022 405 12 t t PROPN coo.31924059551022 405 13 — — PUNCT coo.31924059551022 405 14 β β PROPN coo.31924059551022 405 15 ) ) PUNCT coo.31924059551022 405 16 ... ... PUNCT coo.31924059551022 405 17 and and CCONJ coo.31924059551022 405 18 take take VERB coo.31924059551022 405 19 t t PROPN coo.31924059551022 406 1 = = PROPN coo.31924059551022 406 2 a7 a7 PROPN coo.31924059551022 406 3 β β INTJ coo.31924059551022 406 4 ... ... PUNCT coo.31924059551022 406 5 for for ADP coo.31924059551022 406 6 example example NOUN coo.31924059551022 406 7 ' ' PUNCT coo.31924059551022 406 8 i i PRON coo.31924059551022 406 9 β β X coo.31924059551022 406 10 ’ ' PUNCT coo.31924059551022 406 11 ( ( PUNCT coo.31924059551022 406 12 t t PROPN coo.31924059551022 406 13 — — PUNCT coo.31924059551022 406 14 « « PROPN coo.31924059551022 406 15 ) ) PUNCT coo.31924059551022 406 16 , , PUNCT coo.31924059551022 406 17 νίβ νίβ PROPN coo.31924059551022 406 18 — — PUNCT coo.31924059551022 406 19 < < X coo.31924059551022 406 20 * * PUNCT coo.31924059551022 406 21 ) ) PUNCT coo.31924059551022 406 22 , , PUNCT coo.31924059551022 406 23 _ _ PUNCT coo.31924059551022 406 24 _ _ PUNCT coo.31924059551022 406 25 _ _ PUNCT coo.31924059551022 407 1 _ _ PUNCT coo.31924059551022 407 2 _ _ PUNCT coo.31924059551022 408 1 _ _ PUNCT coo.31924059551022 408 2 _ _ PUNCT coo.31924059551022 409 1 20 20 NUM coo.31924059551022 409 2 ■ ■ NOUN coo.31924059551022 409 3 r r NOUN coo.31924059551022 409 4 ( ( PUNCT coo.31924059551022 409 5 ί_β ί_β SPACE coo.31924059551022 409 6 ) ) PUNCT coo.31924059551022 409 7 -r -r X coo.31924059551022 410 1 t__y t__y PROPN coo.31924059551022 410 2 -r -r PUNCT coo.31924059551022 410 3 · · PUNCT coo.31924059551022 410 4 · · PUNCT coo.31924059551022 410 5 · · PUNCT coo.31924059551022 410 6 { { PUNCT coo.31924059551022 410 7 t t NOUN coo.31924059551022 410 8 _ _ PRON coo.31924059551022 410 9 β β X coo.31924059551022 410 10 ) ) PUNCT coo.31924059551022 410 11 { { PUNCT coo.31924059551022 410 12 t_y t_y PROPN coo.31924059551022 410 13 ) ) PUNCT coo.31924059551022 410 14 _ _ NOUN coo.31924059551022 411 1 whence whence NOUN coo.31924059551022 411 2 making make VERB coo.31924059551022 411 3 t t NOUN coo.31924059551022 411 4 = = NOUN coo.31924059551022 411 5 a a PRON coo.31924059551022 411 6 we we PRON coo.31924059551022 411 7 have have VERB coo.31924059551022 411 8 [ [ X coo.31924059551022 411 9 51 51 NUM coo.31924059551022 411 10 ] ] PUNCT coo.31924059551022 411 11 2 2 NUM coo.31924059551022 411 12 c c NOUN coo.31924059551022 411 13 ( ( PUNCT coo.31924059551022 411 14 α α PROPN coo.31924059551022 411 15 — — PUNCT coo.31924059551022 411 16 ( ( PUNCT coo.31924059551022 411 17 3 3 X coo.31924059551022 411 18 ) ) PUNCT coo.31924059551022 411 19 ( ( PUNCT coo.31924059551022 411 20 a a DET coo.31924059551022 411 21 — — PUNCT coo.31924059551022 411 22 y y PROPN coo.31924059551022 411 23 ) ) PUNCT coo.31924059551022 411 24 . . PUNCT coo.31924059551022 412 1 .. .. PUNCT coo.31924059551022 412 2 and and CCONJ coo.31924059551022 412 3 in in ADP coo.31924059551022 412 4 a a DET coo.31924059551022 412 5 similar similar ADJ coo.31924059551022 412 6 manner manner NOUN coo.31924059551022 412 7 we we PRON coo.31924059551022 412 8 find find VERB coo.31924059551022 412 9 2 2 NUM coo.31924059551022 412 10 c c NOUN coo.31924059551022 412 11 ( ( PUNCT coo.31924059551022 412 12 β β X coo.31924059551022 412 13 — — PUNCT coo.31924059551022 412 14 « « PUNCT coo.31924059551022 412 15 ) ) PUNCT coo.31924059551022 412 16 ( ( PUNCT coo.31924059551022 412 17 β β X coo.31924059551022 412 18 — — PUNCT coo.31924059551022 412 19 y y PROPN coo.31924059551022 412 20 ) ) PUNCT coo.31924059551022 412 21 ■ ■ PUNCT coo.31924059551022 412 22 ■ ■ PUNCT coo.31924059551022 412 23 ■ ■ PUNCT coo.31924059551022 412 24 * * PUNCT coo.31924059551022 412 25 ) ) PUNCT coo.31924059551022 412 26 see see VERB coo.31924059551022 412 27 theory theory NOUN coo.31924059551022 412 28 of of ADP coo.31924059551022 412 29 p p PROPN coo.31924059551022 412 30 and and CCONJ coo.31924059551022 412 31 g g PROPN coo.31924059551022 412 32 functions function NOUN coo.31924059551022 412 33 . . PUNCT coo.31924059551022 413 1 3 3 NUM coo.31924059551022 413 2 34 34 NUM coo.31924059551022 413 3 part part NOUN coo.31924059551022 413 4 iti iti PROPN coo.31924059551022 413 5 . . PUNCT coo.31924059551022 414 1 these these DET coo.31924059551022 414 2 values value NOUN coo.31924059551022 414 3 of of ADP coo.31924059551022 414 4 a a PRON coo.31924059551022 414 5 and and CCONJ coo.31924059551022 414 6 β β X coo.31924059551022 414 7 ' ' NUM coo.31924059551022 414 8 ... ... PUNCT coo.31924059551022 414 9 determine determine VERB coo.31924059551022 414 10 the the DET coo.31924059551022 414 11 constants constant NOUN coo.31924059551022 414 12 a a DET coo.31924059551022 414 13 , , PUNCT coo.31924059551022 414 14 b b X coo.31924059551022 414 15 ... ... PUNCT coo.31924059551022 414 16 provided provide VERB coo.31924059551022 414 17 we we PRON coo.31924059551022 414 18 can can AUX coo.31924059551022 414 19 find find VERB coo.31924059551022 414 20 the the DET coo.31924059551022 414 21 value value NOUN coo.31924059551022 414 22 of of ADP coo.31924059551022 414 23 the the DET coo.31924059551022 414 24 constant constant ADJ coo.31924059551022 414 25 c. c. NOUN coo.31924059551022 414 26 it it PRON coo.31924059551022 414 27 is be AUX coo.31924059551022 414 28 also also ADV coo.31924059551022 414 29 clear clear ADJ coo.31924059551022 414 30 that that SCONJ coo.31924059551022 414 31 c c X coo.31924059551022 414 32 muet muet X coo.31924059551022 414 33 be be AUX coo.31924059551022 414 34 a a DET coo.31924059551022 414 35 constant constant NOUN coo.31924059551022 414 36 involved involve VERB coo.31924059551022 414 37 in in ADP coo.31924059551022 414 38 the the DET coo.31924059551022 414 39 relation relation PROPN coo.31924059551022 414 40 y y PROPN coo.31924059551022 415 1 = = PROPN coo.31924059551022 415 2 f f PROPN coo.31924059551022 416 1 and and CCONJ coo.31924059551022 416 2 we we PRON coo.31924059551022 416 3 are be AUX coo.31924059551022 416 4 thus thus ADV coo.31924059551022 416 5 led lead VERB coo.31924059551022 416 6 first first ADV coo.31924059551022 416 7 to to ADP coo.31924059551022 416 8 a a DET coo.31924059551022 416 9 development development NOUN coo.31924059551022 416 10 of of ADP coo.31924059551022 416 11 y y PROPN coo.31924059551022 416 12 according accord VERB coo.31924059551022 416 13 to to ADP coo.31924059551022 416 14 the the DET coo.31924059551022 416 15 powers power NOUN coo.31924059551022 416 16 of of ADP coo.31924059551022 416 17 t t NOUN coo.31924059551022 416 18 and and CCONJ coo.31924059551022 416 19 to to ADP coo.31924059551022 416 20 the the DET coo.31924059551022 416 21 finding finding NOUN coo.31924059551022 416 22 of of ADP coo.31924059551022 416 23 the the DET coo.31924059551022 416 24 relation relation NOUN coo.31924059551022 416 25 between between ADP coo.31924059551022 416 26 the the DET coo.31924059551022 416 27 coefficients coefficient NOUN coo.31924059551022 416 28 . . PUNCT coo.31924059551022 417 1 thus thus ADV coo.31924059551022 417 2 y y PROPN coo.31924059551022 417 3 becomes become VERB coo.31924059551022 417 4 available available ADJ coo.31924059551022 417 5 in in ADP coo.31924059551022 417 6 a a DET coo.31924059551022 417 7 practical practical ADJ coo.31924059551022 417 8 form form NOUN coo.31924059551022 417 9 and and CCONJ coo.31924059551022 417 10 c c NOUN coo.31924059551022 417 11 being be AUX coo.31924059551022 417 12 determined determine VERB coo.31924059551022 417 13 as as ADP coo.31924059551022 417 14 a a DET coo.31924059551022 417 15 function function NOUN coo.31924059551022 417 16 of of ADP coo.31924059551022 417 17 y y PROPN coo.31924059551022 417 18 and and CCONJ coo.31924059551022 417 19 its its PRON coo.31924059551022 417 20 derivatives derivative NOUN coo.31924059551022 417 21 we we PRON coo.31924059551022 417 22 have have VERB coo.31924059551022 417 23 our our PRON coo.31924059551022 417 24 relation relation NOUN coo.31924059551022 417 25 in in ADP coo.31924059551022 417 26 a a DET coo.31924059551022 417 27 new new ADJ coo.31924059551022 417 28 form form NOUN coo.31924059551022 417 29 [ [ PUNCT coo.31924059551022 417 30 52 52 NUM coo.31924059551022 417 31 ] ] PUNCT coo.31924059551022 417 32 ...................... ...................... PUNCT coo.31924059551022 418 1 y y PROPN coo.31924059551022 418 2 = = PROPN coo.31924059551022 418 3 ±ϋτ ±ϋτ PROPN coo.31924059551022 418 4 . . PUNCT coo.31924059551022 419 1 i i PRON coo.31924059551022 419 2 expand expand VERB coo.31924059551022 419 3 these these DET coo.31924059551022 419 4 principles principle NOUN coo.31924059551022 419 5 of of ADP coo.31924059551022 419 6 m. m. NOUN coo.31924059551022 419 7 hermite hermite PROPN coo.31924059551022 419 8 * * PUNCT coo.31924059551022 419 9 ) ) PUNCT coo.31924059551022 419 10 ( ( PUNCT coo.31924059551022 419 11 annali annali PROPN coo.31924059551022 419 12 di di X coo.31924059551022 419 13 math math PROPN coo.31924059551022 419 14 . . PUNCT coo.31924059551022 419 15 ) ) PUNCT coo.31924059551022 420 1 and and CCONJ coo.31924059551022 420 2 halphen halphen ADV coo.31924059551022 420 3 * * SYM coo.31924059551022 420 4 * * PUNCT coo.31924059551022 420 5 ) ) PUNCT coo.31924059551022 420 6 as as SCONJ coo.31924059551022 420 7 follows follow VERB coo.31924059551022 420 8 : : PUNCT coo.31924059551022 420 9 lame lame PROPN coo.31924059551022 420 10 's 's PART coo.31924059551022 420 11 equation equation NOUN coo.31924059551022 420 12 may may AUX coo.31924059551022 420 13 be be AUX coo.31924059551022 420 14 written write VERB coo.31924059551022 420 15 [ [ PUNCT coo.31924059551022 420 16 53 53 NUM coo.31924059551022 420 17 ] ] PUNCT coo.31924059551022 420 18 ................... ................... PUNCT coo.31924059551022 420 19 y"= y"= X coo.31924059551022 420 20 py py PROPN coo.31924059551022 421 1 where where SCONJ coo.31924059551022 421 2 _ _ PROPN coo.31924059551022 421 3 p p NOUN coo.31924059551022 421 4 = = X coo.31924059551022 421 5 n n NOUN coo.31924059551022 421 6 ( ( PUNCT coo.31924059551022 421 7 n n X coo.31924059551022 421 8 + + CCONJ coo.31924059551022 421 9 l)pu l)pu PUNCT coo.31924059551022 421 10 + + PUNCT coo.31924059551022 421 11 b b PROPN coo.31924059551022 421 12 and and CCONJ coo.31924059551022 421 13 y y PROPN coo.31924059551022 421 14 = = NOUN coo.31924059551022 421 15 ÿy ÿy NOUN coo.31924059551022 421 16 . . PUNCT coo.31924059551022 421 17 seeking seek VERB coo.31924059551022 421 18 the the DET coo.31924059551022 421 19 equation equation NOUN coo.31924059551022 421 20 in in ADP coo.31924059551022 421 21 terms term NOUN coo.31924059551022 421 22 of of ADP coo.31924059551022 421 23 y y PROPN coo.31924059551022 421 24 we we PRON coo.31924059551022 421 25 write write VERB coo.31924059551022 421 26 whence whence NOUN coo.31924059551022 421 27 y'= y'= NOUN coo.31924059551022 422 1 2 2 NUM coo.31924059551022 423 1 yy yy INTJ coo.31924059551022 423 2 y y PROPN coo.31924059551022 423 3 " " PUNCT coo.31924059551022 423 4 = = NOUN coo.31924059551022 423 5 2y'2 2y'2 NUM coo.31924059551022 423 6 + + NUM coo.31924059551022 423 7 2yy"= 2yy"= NUM coo.31924059551022 423 8 2y2 2y2 NUM coo.31924059551022 423 9 + + NUM coo.31924059551022 423 10 2pif2*/'2+.2ργ 2pif2*/'2+.2ργ NUM coo.31924059551022 423 11 , , PUNCT coo.31924059551022 423 12 also also ADV coo.31924059551022 423 13 ( ( PUNCT coo.31924059551022 423 14 y'f-2p y'f-2p NOUN coo.31924059551022 423 15 y y PROPN coo.31924059551022 423 16 ) ) PUNCT coo.31924059551022 423 17 ' ' PUNCT coo.31924059551022 423 18 — — PUNCT coo.31924059551022 423 19 4y'y"= 4y'y"= NUM coo.31924059551022 423 20 4pyy'= 4pyy'= NUM coo.31924059551022 424 1 2py 2py NOUN coo.31924059551022 425 1 whence whence NOUN coo.31924059551022 425 2 [ [ X coo.31924059551022 425 3 54 54 NUM coo.31924059551022 425 4 ] ] PUNCT coo.31924059551022 425 5 ................ ................ PUNCT coo.31924059551022 425 6 r"4pr r"4pr NUM coo.31924059551022 425 7 — — PUNCT coo.31924059551022 425 8 2ρ'γ 2ρ'γ NUM coo.31924059551022 425 9 = = SYM coo.31924059551022 425 10 0 0 PUNCT coo.31924059551022 426 1 [ [ X coo.31924059551022 426 2 55 55 NUM coo.31924059551022 426 3 ] ] PUNCT coo.31924059551022 426 4 a a DET coo.31924059551022 426 5 linear linear ADJ coo.31924059551022 426 6 differential differential ADJ coo.31924059551022 426 7 equation equation NOUN coo.31924059551022 426 8 in in ADP coo.31924059551022 426 9 y y PROPN coo.31924059551022 426 10 of of ADP coo.31924059551022 426 11 the the DET coo.31924059551022 426 12 third third ADJ coo.31924059551022 426 13 order order NOUN coo.31924059551022 426 14 . . PUNCT coo.31924059551022 427 1 from from ADP coo.31924059551022 427 2 the the DET coo.31924059551022 427 3 theory theory NOUN coo.31924059551022 427 4 of of ADP coo.31924059551022 427 5 the the DET coo.31924059551022 427 6 linear linear ADJ coo.31924059551022 427 7 differential differential ADJ coo.31924059551022 427 8 equation equation NOUN coo.31924059551022 427 9 , , PUNCT coo.31924059551022 427 10 if if SCONJ coo.31924059551022 427 11 y y PROPN coo.31924059551022 427 12 and and CCONJ coo.31924059551022 427 13 z z PROPN coo.31924059551022 427 14 are be AUX coo.31924059551022 427 15 solutions solution NOUN coo.31924059551022 427 16 of of ADP coo.31924059551022 427 17 ( ( PUNCT coo.31924059551022 427 18 53 53 NUM coo.31924059551022 427 19 ) ) PUNCT coo.31924059551022 428 1 yy yy INTJ coo.31924059551022 428 2 + + CCONJ coo.31924059551022 428 3 qz qz INTJ coo.31924059551022 428 4 will will AUX coo.31924059551022 428 5 also also ADV coo.31924059551022 428 6 be be AUX coo.31924059551022 428 7 a a DET coo.31924059551022 428 8 solution solution NOUN coo.31924059551022 428 9 y y PROPN coo.31924059551022 428 10 and and CCONJ coo.31924059551022 428 11 q q X coo.31924059551022 428 12 being be AUX coo.31924059551022 428 13 arbitrary arbitrary ADJ coo.31924059551022 428 14 constants constant NOUN coo.31924059551022 428 15 , , PUNCT coo.31924059551022 428 16 and and CCONJ coo.31924059551022 428 17 we we PRON coo.31924059551022 428 18 derive derive VERB coo.31924059551022 428 19 also also ADV coo.31924059551022 428 20 as as ADP coo.31924059551022 428 21 distinct distinct ADJ coo.31924059551022 428 22 solutions solution NOUN coo.31924059551022 428 23 of of ADP coo.31924059551022 428 24 the the DET coo.31924059551022 428 25 transformed transformed ADJ coo.31924059551022 428 26 ( ( PUNCT coo.31924059551022 428 27 54 54 NUM coo.31924059551022 428 28 ) ) PUNCT coo.31924059551022 428 29 t/2 t/2 NOUN coo.31924059551022 428 30 , , PUNCT coo.31924059551022 428 31 y$ y$ X coo.31924059551022 428 32 and and CCONJ coo.31924059551022 428 33 z2 z2 PROPN coo.31924059551022 428 34 obtained obtain VERB coo.31924059551022 428 35 from from ADP coo.31924059551022 428 36 the the DET coo.31924059551022 428 37 complex complex ADJ coo.31924059551022 428 38 form form NOUN coo.31924059551022 428 39 ( ( PUNCT coo.31924059551022 428 40 yy yy INTJ coo.31924059551022 428 41 + + CCONJ coo.31924059551022 428 42 qz)2 qz)2 NOUN coo.31924059551022 428 43 , , PUNCT coo.31924059551022 428 44 p p NOUN coo.31924059551022 428 45 = = SYM coo.31924059551022 428 46 n(n n(n PROPN coo.31924059551022 428 47 + + CCONJ coo.31924059551022 428 48 l)l l)l ADJ coo.31924059551022 428 49 ? ? PUNCT coo.31924059551022 429 1 u u PROPN coo.31924059551022 429 2 and and CCONJ coo.31924059551022 429 3 the the DET coo.31924059551022 429 4 transformed transformed NOUN coo.31924059551022 429 5 may may AUX coo.31924059551022 429 6 be be AUX coo.31924059551022 429 7 written write VERB coo.31924059551022 429 8 : : PUNCT coo.31924059551022 429 9 • • SYM coo.31924059551022 429 10 · · PUNCT coo.31924059551022 429 11 f"4[n(n f"4[n(n X coo.31924059551022 429 12 + + NUM coo.31924059551022 429 13 1 1 X coo.31924059551022 429 14 ) ) PUNCT coo.31924059551022 429 15 pu pu PROPN coo.31924059551022 429 16 + + PROPN coo.31924059551022 429 17 b b X coo.31924059551022 429 18 ] ] X coo.31924059551022 429 19 t t PROPN coo.31924059551022 429 20 — — PUNCT coo.31924059551022 429 21 2n(n+ 2n(n+ NUM coo.31924059551022 429 22 1 1 NUM coo.31924059551022 429 23 ) ) PUNCT coo.31924059551022 429 24 p'uy= p'uy= PROPN coo.31924059551022 429 25 0 0 NUM coo.31924059551022 429 26 where where SCONJ coo.31924059551022 429 27 this this DET coo.31924059551022 429 28 value value NOUN coo.31924059551022 429 29 indicates indicate VERB coo.31924059551022 429 30 that that SCONJ coo.31924059551022 429 31 ( ( PUNCT coo.31924059551022 429 32 55 55 NUM coo.31924059551022 429 33 ) ) PUNCT coo.31924059551022 429 34 has have VERB coo.31924059551022 429 35 n n PRON coo.31924059551022 429 36 solutions solution NOUN coo.31924059551022 429 37 in in ADP coo.31924059551022 429 38 terms term NOUN coo.31924059551022 429 39 of of ADP coo.31924059551022 429 40 p p NOUN coo.31924059551022 429 41 ( ( PUNCT coo.31924059551022 429 42 « « NOUN coo.31924059551022 429 43 ) ) PUNCT coo.31924059551022 429 44 * * PUNCT coo.31924059551022 429 45 ) ) PUNCT coo.31924059551022 429 46 bd bd PROPN coo.31924059551022 429 47 . . PROPN coo.31924059551022 429 48 π π PROPN coo.31924059551022 429 49 . . PUNCT coo.31924059551022 430 1 p. p. NOUN coo.31924059551022 430 2 498 498 NUM coo.31924059551022 430 3 . . PUNCT coo.31924059551022 431 1 * * PUNCT coo.31924059551022 431 2 * * PUNCT coo.31924059551022 431 3 ) ) PUNCT coo.31924059551022 431 4 bd bd PROPN coo.31924059551022 431 5 . . PROPN coo.31924059551022 431 6 ii ii PROPN coo.31924059551022 431 7 . . PUNCT coo.31924059551022 432 1 p. p. NOUN coo.31924059551022 432 2 498 498 NUM coo.31924059551022 432 3 . . PUNCT coo.31924059551022 433 1 integral integral PROPN coo.31924059551022 433 2 as as ADP coo.31924059551022 433 3 a a DET coo.31924059551022 433 4 product product NOUN coo.31924059551022 433 5 . . PUNCT coo.31924059551022 434 1 35 35 NUM coo.31924059551022 434 2 from from ADP coo.31924059551022 434 3 which which PRON coo.31924059551022 434 4 it it PRON coo.31924059551022 434 5 follows follow VERB coo.31924059551022 434 6 also also ADV coo.31924059551022 434 7 that that SCONJ coo.31924059551022 434 8 y y PROPN coo.31924059551022 434 9 may may AUX coo.31924059551022 434 10 be be AUX coo.31924059551022 434 11 written write VERB coo.31924059551022 434 12 as as ADP coo.31924059551022 434 13 an an DET coo.31924059551022 434 14 intire intire ADJ coo.31924059551022 434 15 polynomial polynomial NOUN coo.31924059551022 434 16 of of ADP coo.31924059551022 434 17 the the DET coo.31924059551022 434 18 nth nth NOUN coo.31924059551022 434 19 degree degree NOUN coo.31924059551022 434 20 in in ADP coo.31924059551022 434 21 t t PROPN coo.31924059551022 434 22 = = PROPN coo.31924059551022 434 23 pu pu PROPN coo.31924059551022 434 24 . . PUNCT coo.31924059551022 435 1 that that PRON coo.31924059551022 435 2 is be AUX coo.31924059551022 435 3 [ [ X coo.31924059551022 435 4 56 56 NUM coo.31924059551022 435 5 ] ] PUNCT coo.31924059551022 435 6 · · PUNCT coo.31924059551022 435 7 · · PUNCT coo.31924059551022 435 8 · · PUNCT coo.31924059551022 435 9 · · PUNCT coo.31924059551022 435 10 f= f= PROPN coo.31924059551022 435 11 ¿ ¿ NUM coo.31924059551022 435 12 ” " PUNCT coo.31924059551022 435 13 + + CCONJ coo.31924059551022 435 14 + + CCONJ coo.31924059551022 435 15 a2tn~2 a2tn~2 ADJ coo.31924059551022 435 16 h-------h h-------h PROPN coo.31924059551022 435 17 1 1 NUM coo.31924059551022 435 18 < < X coo.31924059551022 435 19 + + CCONJ coo.31924059551022 435 20 an an PRON coo.31924059551022 435 21 . . PUNCT coo.31924059551022 435 22 equation equation NOUN coo.31924059551022 436 1 [ [ X coo.31924059551022 436 2 55 55 NUM coo.31924059551022 436 3 ] ] PUNCT coo.31924059551022 436 4 is be AUX coo.31924059551022 436 5 written write VERB coo.31924059551022 436 6 in in ADP coo.31924059551022 436 7 terms term NOUN coo.31924059551022 436 8 of of ADP coo.31924059551022 436 9 derivatives derivative NOUN coo.31924059551022 436 10 with with ADP coo.31924059551022 436 11 respect respect NOUN coo.31924059551022 436 12 to to ADP coo.31924059551022 436 13 u u PROPN coo.31924059551022 436 14 whence whence NOUN coo.31924059551022 436 15 to to PART coo.31924059551022 436 16 determine determine VERB coo.31924059551022 436 17 the the DET coo.31924059551022 436 18 coefficients coefficient NOUN coo.31924059551022 436 19 in in ADP coo.31924059551022 436 20 ( ( PUNCT coo.31924059551022 436 21 56 56 NUM coo.31924059551022 436 22 ) ) PUNCT coo.31924059551022 436 23 we we PRON coo.31924059551022 436 24 must must AUX coo.31924059551022 436 25 express express VERB coo.31924059551022 436 26 ( ( PUNCT coo.31924059551022 436 27 55 55 NUM coo.31924059551022 436 28 ) ) PUNCT coo.31924059551022 436 29 also also ADV coo.31924059551022 436 30 in in ADP coo.31924059551022 436 31 terms term NOUN coo.31924059551022 436 32 of of ADP coo.31924059551022 436 33 derivatives derivative NOUN coo.31924059551022 436 34 of of ADP coo.31924059551022 436 35 t t PROPN coo.31924059551022 436 36 — — PUNCT coo.31924059551022 436 37 pu pu PROPN coo.31924059551022 436 38 and and CCONJ coo.31924059551022 436 39 equate equate VERB coo.31924059551022 436 40 the the DET coo.31924059551022 436 41 coefficients coefficient NOUN coo.31924059551022 436 42 of of ADP coo.31924059551022 436 43 like like ADJ coo.31924059551022 436 44 powers power NOUN coo.31924059551022 436 45 in in ADP coo.31924059551022 436 46 the the DET coo.31924059551022 436 47 two two NUM coo.31924059551022 436 48 identities identity NOUN coo.31924059551022 436 49 thus thus ADV coo.31924059551022 436 50 obtained obtain VERB coo.31924059551022 436 51 . . PUNCT coo.31924059551022 437 1 take take VERB coo.31924059551022 437 2 whence whence NOUN coo.31924059551022 437 3 φ φ X coo.31924059551022 437 4 = = NOUN coo.31924059551022 437 5 φ(β φ(β SPACE coo.31924059551022 437 6 ) ) PUNCT coo.31924059551022 437 7 = = NOUN coo.31924059551022 437 8 4¿3 4¿3 NUM coo.31924059551022 437 9 — — PUNCT coo.31924059551022 437 10 g2 g2 PROPN coo.31924059551022 437 11 t t NOUN coo.31924059551022 437 12 — — PUNCT coo.31924059551022 437 13 gs gs PROPN coo.31924059551022 437 14 = = PROPN coo.31924059551022 437 15 p'¡u p'¡u PROPN coo.31924059551022 437 16 di di X coo.31924059551022 437 17 u u X coo.31924059551022 437 18 = = X coo.31924059551022 437 19 φ φ PROPN coo.31924059551022 437 20 and and CCONJ coo.31924059551022 437 21 dtu dtu PROPN coo.31924059551022 437 22 = = PUNCT coo.31924059551022 437 23 — — PUNCT coo.31924059551022 437 24 · · PUNCT coo.31924059551022 437 25 -φ -φ PUNCT coo.31924059551022 437 26 2 2 NUM coo.31924059551022 437 27 φ φ X coo.31924059551022 437 28 ' ' NUM coo.31924059551022 437 29 ; ; PUNCT coo.31924059551022 437 30 d d PROPN coo.31924059551022 437 31 ¡ ¡ X coo.31924059551022 437 32 u u NOUN coo.31924059551022 437 33 = = VERB coo.31924059551022 437 34 3 3 NUM coo.31924059551022 437 35 4 4 NUM coo.31924059551022 437 36 < < X coo.31924059551022 437 37 p p PROPN coo.31924059551022 437 38 2φ'2 2φ'2 NUM coo.31924059551022 437 39 — — PUNCT coo.31924059551022 437 40 φ φ X coo.31924059551022 437 41 ‘ ' PUNCT coo.31924059551022 437 42 φ φ PROPN coo.31924059551022 437 43 duy duy PROPN coo.31924059551022 437 44 = = SYM coo.31924059551022 437 45 d d PROPN coo.31924059551022 437 46 ( ( PUNCT coo.31924059551022 437 47 ydu ydu PROPN coo.31924059551022 437 48 t t PROPN coo.31924059551022 437 49 9>*d 9>*d SPACE coo.31924059551022 437 50 « « PUNCT coo.31924059551022 437 51 di di X coo.31924059551022 437 52 y y PROPN coo.31924059551022 437 53 = = SYM coo.31924059551022 437 54 dtutfy dtutfy PROPN coo.31924059551022 437 55 dtyd]u dtyd]u PROPN coo.31924059551022 437 56 ( ( PUNCT coo.31924059551022 437 57 dtuf dtuf X coo.31924059551022 437 58 rf rf PROPN coo.31924059551022 437 59 v v PROPN coo.31924059551022 437 60 ( ( PUNCT coo.31924059551022 437 61 τ)*ητ τ)*ητ NUM coo.31924059551022 437 62 df df PROPN coo.31924059551022 437 63 y y PROPN coo.31924059551022 437 64 i i PROPN coo.31924059551022 437 65 ) ) PUNCT coo.31924059551022 437 66 ( ( PUNCT coo.31924059551022 437 67 u u PROPN coo.31924059551022 437 68 ΐή ΐή PROPN coo.31924059551022 437 69 wijty wijty PROPN coo.31924059551022 437 70 sd(udluoty+ sd(udluoty+ PROPN coo.31924059551022 437 71 s(d*uy s(d*uy PROPN coo.31924059551022 437 72 dty dty PROPN coo.31924059551022 437 73 u u PROPN coo.31924059551022 437 74 ' ' PART coo.31924059551022 437 75 φ,*γ~ φ,*γ~ ADJ coo.31924059551022 437 76 = = SYM coo.31924059551022 437 77 φ·σζ φ·σζ PRON coo.31924059551022 438 1 y y PROPN coo.31924059551022 438 2 + + CCONJ coo.31924059551022 438 3 } } PUNCT coo.31924059551022 438 4 φ'31 φ'31 X coo.31924059551022 439 1 yjφ"dt yjφ"dt VERB coo.31924059551022 439 2 y y PROPN coo.31924059551022 439 3 these these DET coo.31924059551022 439 4 substitutions substitution NOUN coo.31924059551022 439 5 give give VERB coo.31924059551022 439 6 : : PUNCT coo.31924059551022 439 7 [ [ X coo.31924059551022 439 8 57 57 NUM coo.31924059551022 439 9 ] ] PUNCT coo.31924059551022 439 10 ( ( PUNCT coo.31924059551022 439 11 4ί3λί 4ί3λί NUM coo.31924059551022 439 12 - - SYM coo.31924059551022 439 13 λ λ NOUN coo.31924059551022 439 14 ) ) PUNCT coo.31924059551022 439 15 ~ ~ PUNCT coo.31924059551022 439 16 + + NUM coo.31924059551022 439 17 3 3 NUM coo.31924059551022 439 18 ( ( PUNCT coo.31924059551022 439 19 w-}g2 w-}g2 PROPN coo.31924059551022 439 20 ) ) PUNCT coo.31924059551022 439 21 ~ ~ PUNCT coo.31924059551022 439 22 4 4 NUM coo.31924059551022 439 23 l(w2 l(w2 NOUN coo.31924059551022 439 24 - - PUNCT coo.31924059551022 439 25 fn fn NOUN coo.31924059551022 439 26 3 3 NUM coo.31924059551022 439 27 ) ) PUNCT coo.31924059551022 439 28 t t PROPN coo.31924059551022 439 29 + + SYM coo.31924059551022 439 30 b b NOUN coo.31924059551022 439 31 ] ] X coo.31924059551022 439 32 ^ ^ NOUN coo.31924059551022 439 33 — — PUNCT coo.31924059551022 439 34 2«(w 2«(w NUM coo.31924059551022 439 35 + + CCONJ coo.31924059551022 439 36 l)t=0 l)t=0 SPACE coo.31924059551022 439 37 . . PUNCT coo.31924059551022 439 38 from from ADP coo.31924059551022 439 39 [ [ X coo.31924059551022 439 40 56 56 NUM coo.31924059551022 439 41 ] ] PUNCT coo.31924059551022 439 42 we we PRON coo.31924059551022 439 43 obtain obtain VERB coo.31924059551022 439 44 the the DET coo.31924059551022 439 45 values value NOUN coo.31924059551022 439 46 of of ADP coo.31924059551022 439 47 these these DET coo.31924059551022 439 48 derivatives derivative NOUN coo.31924059551022 439 49 , , PUNCT coo.31924059551022 439 50 namely namely ADV coo.31924059551022 439 51 = = X coo.31924059551022 439 52 ntn~1 ntn~1 PROPN coo.31924059551022 439 53 -f«j -f«j PROPN coo.31924059551022 439 54 ( ( PUNCT coo.31924059551022 439 55 » » PUNCT coo.31924059551022 439 56 — — PUNCT coo.31924059551022 439 57 l)ib~2 l)ib~2 ADJ coo.31924059551022 439 58 + + CCONJ coo.31924059551022 439 59 a2 a2 X coo.31924059551022 439 60 ( ( PUNCT coo.31924059551022 439 61 w w PROPN coo.31924059551022 439 62 — — PUNCT coo.31924059551022 439 63 2 2 X coo.31924059551022 439 64 ) ) PUNCT coo.31924059551022 439 65 tn~3 tn~3 NOUN coo.31924059551022 440 1 + + CCONJ coo.31924059551022 440 2 ab ab NOUN coo.31924059551022 440 3 ( ( PUNCT coo.31924059551022 440 4 n n NOUN coo.31924059551022 440 5 — — PUNCT coo.31924059551022 440 6 3 3 X coo.31924059551022 440 7 ) ) PUNCT coo.31924059551022 440 8 t"-4 t"-4 PUNCT coo.31924059551022 441 1 + + PUNCT coo.31924059551022 441 2 aa aa NOUN coo.31924059551022 441 3 ( ( PUNCT coo.31924059551022 441 4 n n NOUN coo.31924059551022 441 5 — — PUNCT coo.31924059551022 441 6 4 4 X coo.31924059551022 441 7 ) ) PUNCT coo.31924059551022 441 8 tn~6 tn~6 PROPN coo.31924059551022 442 1 + + CCONJ coo.31924059551022 442 2 · · PUNCT coo.31924059551022 442 3 · · PUNCT coo.31924059551022 442 4 · · PUNCT coo.31924059551022 442 5 da da PROPN coo.31924059551022 442 6 y y INTJ coo.31924059551022 442 7 _ _ PUNCT coo.31924059551022 442 8 = = X coo.31924059551022 442 9 η η PROPN coo.31924059551022 442 10 ( ( PUNCT coo.31924059551022 442 11 η η PROPN coo.31924059551022 442 12 — — PUNCT coo.31924059551022 442 13 1 1 NUM coo.31924059551022 442 14 ) ) PUNCT coo.31924059551022 442 15 t”-2 t”-2 NOUN coo.31924059551022 443 1 + + CCONJ coo.31924059551022 443 2 oj oj INTJ coo.31924059551022 444 1 ( ( PUNCT coo.31924059551022 444 2 » » PUNCT coo.31924059551022 444 3 — — PUNCT coo.31924059551022 444 4 1 1 X coo.31924059551022 444 5 ) ) PUNCT coo.31924059551022 444 6 ( ( PUNCT coo.31924059551022 444 7 « « PUNCT coo.31924059551022 444 8 — — PUNCT coo.31924059551022 444 9 2 2 X coo.31924059551022 444 10 ) ) PUNCT coo.31924059551022 444 11 tn~3-\a2(n—^)(w tn~3-\a2(n—^)(w NUM coo.31924059551022 444 12 — — PUNCT coo.31924059551022 444 13 3)t*-4 3)t*-4 NUM coo.31924059551022 444 14 + + NUM coo.31924059551022 444 15 α3 α3 PROPN coo.31924059551022 444 16 ( ( PUNCT coo.31924059551022 444 17 ή ή X coo.31924059551022 444 18 — — PUNCT coo.31924059551022 444 19 3 3 X coo.31924059551022 444 20 ) ) PUNCT coo.31924059551022 444 21 ( ( PUNCT coo.31924059551022 444 22 w w PROPN coo.31924059551022 444 23 — — PUNCT coo.31924059551022 444 24 4 4 X coo.31924059551022 444 25 ) ) PUNCT coo.31924059551022 444 26 ί*-5 ί*-5 PROPN coo.31924059551022 444 27 -|-------------------d*y -|-------------------d*y X coo.31924059551022 444 28 — — PUNCT coo.31924059551022 444 29 = = PROPN coo.31924059551022 444 30 n(n n(n PROPN coo.31924059551022 444 31 — — PUNCT coo.31924059551022 444 32 1 1 X coo.31924059551022 444 33 ) ) PUNCT coo.31924059551022 444 34 ( ( PUNCT coo.31924059551022 444 35 « « PUNCT coo.31924059551022 444 36 — — PUNCT coo.31924059551022 444 37 2 2 X coo.31924059551022 444 38 ) ) PUNCT coo.31924059551022 444 39 < < X coo.31924059551022 444 40 b-3 b-3 PROPN coo.31924059551022 444 41 + + NUM coo.31924059551022 444 42 ax ax NOUN coo.31924059551022 444 43 ( ( PUNCT coo.31924059551022 444 44 n n NOUN coo.31924059551022 444 45 — — PUNCT coo.31924059551022 444 46 1 1 X coo.31924059551022 444 47 ) ) PUNCT coo.31924059551022 444 48 ( ( PUNCT coo.31924059551022 444 49 » » PUNCT coo.31924059551022 444 50 — — PUNCT coo.31924059551022 444 51 2 2 X coo.31924059551022 444 52 ) ) PUNCT coo.31924059551022 444 53 ( ( PUNCT coo.31924059551022 444 54 n n NOUN coo.31924059551022 444 55 — — PUNCT coo.31924059551022 444 56 3 3 X coo.31924059551022 444 57 ) ) PUNCT coo.31924059551022 444 58 i»-4 i»-4 PROPN coo.31924059551022 444 59 + + CCONJ coo.31924059551022 444 60 a2 a2 PROPN coo.31924059551022 444 61 ( ( PUNCT coo.31924059551022 444 62 w w PROPN coo.31924059551022 444 63 — — PUNCT coo.31924059551022 444 64 2 2 X coo.31924059551022 444 65 ) ) PUNCT coo.31924059551022 444 66 ( ( PUNCT coo.31924059551022 444 67 w w PROPN coo.31924059551022 444 68 — — PUNCT coo.31924059551022 444 69 3 3 X coo.31924059551022 444 70 ) ) PUNCT coo.31924059551022 444 71 ( ( PUNCT coo.31924059551022 444 72 n n NOUN coo.31924059551022 444 73 — — PUNCT coo.31924059551022 444 74 4 4 X coo.31924059551022 444 75 ) ) PUNCT coo.31924059551022 444 76 tn~’j tn~’j VERB coo.31924059551022 445 1 4and 4and NUM coo.31924059551022 445 2 equating equate VERB coo.31924059551022 445 3 the the DET coo.31924059551022 445 4 coefficients coefficient NOUN coo.31924059551022 445 5 to to ADP coo.31924059551022 445 6 zero zero NUM coo.31924059551022 445 7 we we PRON coo.31924059551022 445 8 have have VERB coo.31924059551022 445 9 : : PUNCT coo.31924059551022 445 10 3 3 NUM coo.31924059551022 445 11 36 36 NUM coo.31924059551022 445 12 part part NOUN coo.31924059551022 445 13 iîl iîl PROPN coo.31924059551022 445 14 η η PROPN coo.31924059551022 445 15 — — PUNCT coo.31924059551022 445 16 3 3 NUM coo.31924059551022 445 17 : : SYM coo.31924059551022 445 18 4α3 4α3 NUM coo.31924059551022 446 1 ( ( PUNCT coo.31924059551022 446 2 « « PUNCT coo.31924059551022 446 3 — — PUNCT coo.31924059551022 446 4 3 3 X coo.31924059551022 446 5 ) ) PUNCT coo.31924059551022 446 6 ( ( PUNCT coo.31924059551022 446 7 « « PUNCT coo.31924059551022 446 8 — — PUNCT coo.31924059551022 446 9 4 4 X coo.31924059551022 446 10 ) ) PUNCT coo.31924059551022 446 11 { { PUNCT coo.31924059551022 446 12 η η PROPN coo.31924059551022 446 13 — — PUNCT coo.31924059551022 446 14 5 5 NUM coo.31924059551022 446 15 ) ) PUNCT coo.31924059551022 446 16 — — PUNCT coo.31924059551022 446 17 ( ( PUNCT coo.31924059551022 446 18 ra ra PROPN coo.31924059551022 446 19 — — PUNCT coo.31924059551022 446 20 1 1 X coo.31924059551022 446 21 ) ) PUNCT coo.31924059551022 446 22 ( ( PUNCT coo.31924059551022 446 23 ra ra PROPN coo.31924059551022 446 24 — — PUNCT coo.31924059551022 446 25 2 2 X coo.31924059551022 446 26 ) ) PUNCT coo.31924059551022 446 27 ( ( PUNCT coo.31924059551022 446 28 ra ra PROPN coo.31924059551022 446 29 — — PUNCT coo.31924059551022 446 30 3 3 X coo.31924059551022 446 31 ) ) PUNCT coo.31924059551022 446 32 ÿ3w(ra ÿ3w(ra NUM coo.31924059551022 446 33 — — PUNCT coo.31924059551022 446 34 1 1 X coo.31924059551022 446 35 ) ) PUNCT coo.31924059551022 446 36 ( ( PUNCT coo.31924059551022 446 37 » » PUNCT coo.31924059551022 446 38 — — PUNCT coo.31924059551022 446 39 2 2 X coo.31924059551022 446 40 ) ) PUNCT coo.31924059551022 446 41 + + NUM coo.31924059551022 446 42 18α3 18α3 NUM coo.31924059551022 446 43 ( ( PUNCT coo.31924059551022 446 44 μ μ NOUN coo.31924059551022 446 45 — — PUNCT coo.31924059551022 446 46 3 3 X coo.31924059551022 446 47 ) ) PUNCT coo.31924059551022 446 48 ( ( PUNCT coo.31924059551022 446 49 η η PROPN coo.31924059551022 446 50 — — PUNCT coo.31924059551022 446 51 4 4 NUM coo.31924059551022 446 52 ) ) PUNCT coo.31924059551022 446 53 — — PUNCT coo.31924059551022 446 54 1 1 NUM coo.31924059551022 446 55 & & CCONJ coo.31924059551022 446 56 « « PUNCT coo.31924059551022 446 57 1 1 NUM coo.31924059551022 446 58 ( ( PUNCT coo.31924059551022 446 59 w w NOUN coo.31924059551022 446 60 — — PUNCT coo.31924059551022 446 61 1 1 X coo.31924059551022 446 62 ) ) PUNCT coo.31924059551022 446 63 ( ( PUNCT coo.31924059551022 446 64 ra ra PROPN coo.31924059551022 446 65 — — PUNCT coo.31924059551022 446 66 2 2 X coo.31924059551022 446 67 ) ) PUNCT coo.31924059551022 446 68 — — PUNCT coo.31924059551022 446 69 4 4 NUM coo.31924059551022 446 70 ( ( PUNCT coo.31924059551022 446 71 η+ η+ PUNCT coo.31924059551022 446 72 » » PUNCT coo.31924059551022 446 73 — — PUNCT coo.31924059551022 446 74 3 3 X coo.31924059551022 446 75 ) ) PUNCT coo.31924059551022 446 76 ( ( PUNCT coo.31924059551022 446 77 η η PROPN coo.31924059551022 446 78 — — PUNCT coo.31924059551022 446 79 3 3 NUM coo.31924059551022 446 80 ) ) PUNCT coo.31924059551022 446 81 α3 α3 PROPN coo.31924059551022 446 82 — — PUNCT coo.31924059551022 446 83 4 4 NUM coo.31924059551022 446 84 - - PUNCT coo.31924059551022 446 85 β«2 β«2 NOUN coo.31924059551022 446 86 ( ( PUNCT coo.31924059551022 446 87 μ μ NOUN coo.31924059551022 446 88 — — PUNCT coo.31924059551022 446 89 2 2 X coo.31924059551022 446 90 ) ) PUNCT coo.31924059551022 446 91 — — PUNCT coo.31924059551022 447 1 2 2 X coo.31924059551022 447 2 « « PUNCT coo.31924059551022 447 3 ( ( PUNCT coo.31924059551022 447 4 ra ra PROPN coo.31924059551022 447 5 -f1 -f1 PROPN coo.31924059551022 447 6 ) ) PUNCT coo.31924059551022 447 7 α3 α3 PROPN coo.31924059551022 447 8 = = SYM coo.31924059551022 447 9 ο ο PROPN coo.31924059551022 447 10 η η NOUN coo.31924059551022 447 11 — — PUNCT coo.31924059551022 447 12 4 4 NUM coo.31924059551022 447 13 : : SYM coo.31924059551022 447 14 4α 4α NUM coo.31924059551022 447 15 ( ( PUNCT coo.31924059551022 447 16 μ μ NOUN coo.31924059551022 447 17 — — PUNCT coo.31924059551022 447 18 3 3 X coo.31924059551022 447 19 ) ) PUNCT coo.31924059551022 447 20 ( ( PUNCT coo.31924059551022 447 21 η η PROPN coo.31924059551022 447 22 — — PUNCT coo.31924059551022 447 23 4 4 NUM coo.31924059551022 447 24 ) ) PUNCT coo.31924059551022 447 25 ( ( PUNCT coo.31924059551022 447 26 η η PROPN coo.31924059551022 447 27 — — PUNCT coo.31924059551022 447 28 5 5 NUM coo.31924059551022 447 29 ) ) PUNCT coo.31924059551022 447 30 — — PUNCT coo.31924059551022 447 31 g2a2{n g2a2{n NOUN coo.31924059551022 447 32 — — PUNCT coo.31924059551022 447 33 2 2 X coo.31924059551022 447 34 ) ) PUNCT coo.31924059551022 447 35 ( ( PUNCT coo.31924059551022 447 36 ra ra PROPN coo.31924059551022 447 37 — — PUNCT coo.31924059551022 447 38 3 3 X coo.31924059551022 447 39 ) ) PUNCT coo.31924059551022 447 40 ( ( PUNCT coo.31924059551022 447 41 « « PUNCT coo.31924059551022 447 42 — — PUNCT coo.31924059551022 447 43 4 4 X coo.31924059551022 447 44 ) ) PUNCT coo.31924059551022 447 45 — — PUNCT coo.31924059551022 447 46 9ζαι 9ζαι NUM coo.31924059551022 447 47 ( ( PUNCT coo.31924059551022 447 48 w w NOUN coo.31924059551022 447 49 — — PUNCT coo.31924059551022 447 50 1 1 X coo.31924059551022 447 51 ) ) PUNCT coo.31924059551022 447 52 ( ( PUNCT coo.31924059551022 447 53 w w PROPN coo.31924059551022 447 54 — — PUNCT coo.31924059551022 447 55 2 2 X coo.31924059551022 447 56 ) ) PUNCT coo.31924059551022 447 57 ( ( PUNCT coo.31924059551022 447 58 ra ra PROPN coo.31924059551022 447 59 — — PUNCT coo.31924059551022 447 60 3 3 X coo.31924059551022 447 61 ) ) PUNCT coo.31924059551022 447 62 -f -f PUNCT coo.31924059551022 447 63 · · NUM coo.31924059551022 447 64 18α4 18α4 NUM coo.31924059551022 447 65 ( ( PUNCT coo.31924059551022 447 66 ra ra PROPN coo.31924059551022 447 67 — — PUNCT coo.31924059551022 447 68 4)(w 4)(w NUM coo.31924059551022 447 69 — — PUNCT coo.31924059551022 447 70 5 5 NUM coo.31924059551022 447 71 ) ) PUNCT coo.31924059551022 447 72 ---12 ---12 SPACE coo.31924059551022 447 73 ) ) PUNCT coo.31924059551022 447 74 ( ( PUNCT coo.31924059551022 447 75 μ μ PROPN coo.31924059551022 447 76 b b PROPN coo.31924059551022 447 77 ) ) PUNCT coo.31924059551022 447 78 — — PUNCT coo.31924059551022 447 79 4 4 NUM coo.31924059551022 447 80 ( ( PUNCT coo.31924059551022 447 81 w2 w2 PROPN coo.31924059551022 447 82 -(w -(w PUNCT coo.31924059551022 447 83 — — PUNCT coo.31924059551022 447 84 3 3 X coo.31924059551022 447 85 ) ) PUNCT coo.31924059551022 447 86 ( ( PUNCT coo.31924059551022 447 87 w w PROPN coo.31924059551022 447 88 4 4 X coo.31924059551022 447 89 ) ) PUNCT coo.31924059551022 447 90 α4 α4 PROPN coo.31924059551022 447 91 — — PUNCT coo.31924059551022 447 92 42 42 NUM coo.31924059551022 447 93 ? ? PUNCT coo.31924059551022 448 1 ( ( PUNCT coo.31924059551022 448 2 w w NOUN coo.31924059551022 448 3 — — PUNCT coo.31924059551022 448 4 3 3 X coo.31924059551022 448 5 ) ) PUNCT coo.31924059551022 448 6 α3 α3 PROPN coo.31924059551022 448 7 — — PUNCT coo.31924059551022 448 8 2η 2η NUM coo.31924059551022 448 9 ( ( PUNCT coo.31924059551022 448 10 η η PROPN coo.31924059551022 448 11 -f1 -f1 PROPN coo.31924059551022 448 12 ) ) PUNCT coo.31924059551022 448 13 α4 α4 PROPN coo.31924059551022 448 14 = = SYM coo.31924059551022 448 15 ο ο PROPN coo.31924059551022 448 16 η η NOUN coo.31924059551022 448 17 · · PUNCT coo.31924059551022 448 18 — — PUNCT coo.31924059551022 448 19 k k X coo.31924059551022 448 20 : : PUNCT coo.31924059551022 448 21 4α 4α NUM coo.31924059551022 448 22 * * PUNCT coo.31924059551022 448 23 ( ( PUNCT coo.31924059551022 448 24 η η PROPN coo.31924059551022 448 25 — — PUNCT coo.31924059551022 448 26 k k PROPN coo.31924059551022 448 27 ) ) PUNCT coo.31924059551022 448 28 ( ( PUNCT coo.31924059551022 448 29 η η PROPN coo.31924059551022 448 30 — — PUNCT coo.31924059551022 448 31 k k PROPN coo.31924059551022 448 32 — — PUNCT coo.31924059551022 448 33 1 1 X coo.31924059551022 448 34 ) ) PUNCT coo.31924059551022 448 35 ( ( PUNCT coo.31924059551022 448 36 η η PROPN coo.31924059551022 448 37 — — PUNCT coo.31924059551022 448 38 k k PROPN coo.31924059551022 448 39 — — PUNCT coo.31924059551022 448 40 2 2 X coo.31924059551022 448 41 ) ) PUNCT coo.31924059551022 448 42 — — PUNCT coo.31924059551022 448 43 gÿak-2 gÿak-2 PROPN coo.31924059551022 448 44 ( ( PUNCT coo.31924059551022 448 45 η η PROPN coo.31924059551022 448 46 — — PUNCT coo.31924059551022 448 47 k k PROPN coo.31924059551022 448 48 + + PROPN coo.31924059551022 448 49 2 2 X coo.31924059551022 448 50 ) ) PUNCT coo.31924059551022 448 51 ( ( PUNCT coo.31924059551022 448 52 η η PROPN coo.31924059551022 448 53 — — PUNCT coo.31924059551022 448 54 k k PROPN coo.31924059551022 448 55 + + PROPN coo.31924059551022 448 56 1 1 X coo.31924059551022 448 57 ) ) PUNCT coo.31924059551022 448 58 ( ( PUNCT coo.31924059551022 448 59 w w PROPN coo.31924059551022 448 60 — — PUNCT coo.31924059551022 448 61 — — PUNCT coo.31924059551022 448 62 gsak-3(η gsak-3(η NOUN coo.31924059551022 448 63 — — PUNCT coo.31924059551022 448 64 k k PROPN coo.31924059551022 448 65 + + PROPN coo.31924059551022 448 66 3 3 X coo.31924059551022 448 67 ) ) PUNCT coo.31924059551022 448 68 ( ( PUNCT coo.31924059551022 448 69 ra ra PROPN coo.31924059551022 448 70 — — PUNCT coo.31924059551022 448 71 k k X coo.31924059551022 448 72 -f -f SYM coo.31924059551022 448 73 2)(ra 2)(ra NUM coo.31924059551022 448 74 — — PUNCT coo.31924059551022 448 75 + + NUM coo.31924059551022 448 76 1 1 X coo.31924059551022 448 77 ) ) PUNCT coo.31924059551022 448 78 + + NUM coo.31924059551022 448 79 18a 18a NUM coo.31924059551022 448 80 * * PUNCT coo.31924059551022 448 81 ( ( PUNCT coo.31924059551022 448 82 w w NOUN coo.31924059551022 448 83 — — PUNCT coo.31924059551022 448 84 k)(n k)(n PROPN coo.31924059551022 448 85 — — PUNCT coo.31924059551022 448 86 k—1 k—1 PROPN coo.31924059551022 448 87 ) ) PUNCT coo.31924059551022 448 88 — — PUNCT coo.31924059551022 448 89 i i PRON coo.31924059551022 448 90 g^-t g^-t PROPN coo.31924059551022 448 91 ( ( PUNCT coo.31924059551022 448 92 n n NOUN coo.31924059551022 448 93 — — PUNCT coo.31924059551022 448 94 k k PROPN coo.31924059551022 448 95 -f -f SYM coo.31924059551022 448 96 2 2 NUM coo.31924059551022 448 97 ) ) PUNCT coo.31924059551022 448 98 ( ( PUNCT coo.31924059551022 448 99 n n NOUN coo.31924059551022 448 100 — — PUNCT coo.31924059551022 448 101 k k PROPN coo.31924059551022 448 102 + + PROPN coo.31924059551022 448 103 1 1 NUM coo.31924059551022 448 104 ) ) PUNCT coo.31924059551022 448 105 — — PUNCT coo.31924059551022 448 106 4 4 NUM coo.31924059551022 448 107 ( ( PUNCT coo.31924059551022 448 108 n2 n2 PROPN coo.31924059551022 448 109 -fn -fn PUNCT coo.31924059551022 448 110 — — PUNCT coo.31924059551022 448 111 3 3 X coo.31924059551022 448 112 ) ) PUNCT coo.31924059551022 448 113 ( ( PUNCT coo.31924059551022 448 114 n n NOUN coo.31924059551022 448 115 — — PUNCT coo.31924059551022 448 116 / / SYM coo.31924059551022 448 117 , , PUNCT coo.31924059551022 448 118 · · PUNCT coo.31924059551022 448 119 ) ) PUNCT coo.31924059551022 448 120 « « PUNCT coo.31924059551022 448 121 * * PUNCT coo.31924059551022 448 122 — — PUNCT coo.31924059551022 448 123 41 41 NUM coo.31924059551022 448 124 ! ! PUNCT coo.31924059551022 449 1 ( ( PUNCT coo.31924059551022 449 2 n n X coo.31924059551022 449 3 — — PUNCT coo.31924059551022 449 4 k k PROPN coo.31924059551022 449 5 -f-1 -f-1 PUNCT coo.31924059551022 449 6 ) ) PUNCT coo.31924059551022 450 1 a*_i a*_i PROPN coo.31924059551022 450 2 — — PUNCT coo.31924059551022 450 3 2n 2n NUM coo.31924059551022 450 4 ( ( PUNCT coo.31924059551022 450 5 n n PROPN coo.31924059551022 450 6 -f1 -f1 PROPN coo.31924059551022 450 7 ) ) PUNCT coo.31924059551022 450 8 a a PRON coo.31924059551022 450 9 * * PUNCT coo.31924059551022 450 10 = = SYM coo.31924059551022 450 11 0 0 NUM coo.31924059551022 450 12 . . PUNCT coo.31924059551022 451 1 from from ADP coo.31924059551022 451 2 the the DET coo.31924059551022 451 3 last last ADJ coo.31924059551022 451 4 value value NOUN coo.31924059551022 451 5 we we PRON coo.31924059551022 451 6 pass pass VERB coo.31924059551022 451 7 to to ADP coo.31924059551022 451 8 the the DET coo.31924059551022 451 9 ratil ratil NOUN coo.31924059551022 451 10 by by ADP coo.31924059551022 451 11 writing write VERB coo.31924059551022 451 12 k k PROPN coo.31924059551022 451 13 = = X coo.31924059551022 451 14 n n X coo.31924059551022 451 15 — — PUNCT coo.31924059551022 451 16 μ μ NUM coo.31924059551022 451 17 % % NOUN coo.31924059551022 451 18 whence whence ADP coo.31924059551022 451 19 the the DET coo.31924059551022 451 20 recurring recur VERB coo.31924059551022 451 21 formula formula NOUN coo.31924059551022 451 22 : : PUNCT coo.31924059551022 452 1 [ [ X coo.31924059551022 452 2 58 58 NUM coo.31924059551022 452 3 ] ] PUNCT coo.31924059551022 452 4 2 2 NUM coo.31924059551022 452 5 ( ( PUNCT coo.31924059551022 452 6 n n X coo.31924059551022 452 7 — — PUNCT coo.31924059551022 452 8 μ μ X coo.31924059551022 452 9 ) ) PUNCT coo.31924059551022 452 10 ( ( PUNCT coo.31924059551022 452 11 2 2 NUM coo.31924059551022 452 12 μ μ NOUN coo.31924059551022 452 13 + + NUM coo.31924059551022 452 14 1 1 NUM coo.31924059551022 452 15 ) ) PUNCT coo.31924059551022 452 16 ( ( PUNCT coo.31924059551022 452 17 f f X coo.31924059551022 452 18 * * X coo.31924059551022 452 19 h h PROPN coo.31924059551022 452 20 ” " PUNCT coo.31924059551022 452 21 w w X coo.31924059551022 452 22 η η PROPN coo.31924059551022 452 23 * * NOUN coo.31924059551022 452 24 * * PROPN coo.31924059551022 452 25 1 1 X coo.31924059551022 452 26 ) ) PUNCT coo.31924059551022 452 27 αη αη NOUN coo.31924059551022 452 28 — — PUNCT coo.31924059551022 452 29 μ μ NOUN coo.31924059551022 452 30 -f4 -f4 PUNCT coo.31924059551022 452 31 ( ( PUNCT coo.31924059551022 452 32 μ μ PROPN coo.31924059551022 452 33 -f1 -f1 PROPN coo.31924059551022 452 34 ) ) PUNCT coo.31924059551022 452 35 βαη βαη PROPN coo.31924059551022 452 36 — — PUNCT coo.31924059551022 452 37 μ—\ μ—\ PROPN coo.31924059551022 452 38 + + CCONJ coo.31924059551022 452 39 7 7 NUM coo.31924059551022 452 40 λ λ NOUN coo.31924059551022 452 41 ( ( PUNCT coo.31924059551022 452 42 " " PUNCT coo.31924059551022 452 43 + + CCONJ coo.31924059551022 452 44 ^ ^ X coo.31924059551022 452 45 ( ( PUNCT coo.31924059551022 452 46 * * PUNCT coo.31924059551022 452 47 * * PUNCT coo.31924059551022 452 48 + + NUM coo.31924059551022 452 49 2 2 X coo.31924059551022 452 50 ) ) PUNCT coo.31924059551022 452 51 ( ( PUNCT coo.31924059551022 452 52 2 2 NUM coo.31924059551022 452 53 μ μ NOUN coo.31924059551022 452 54 + + NUM coo.31924059551022 452 55 3 3 NUM coo.31924059551022 452 56 ) ) PUNCT coo.31924059551022 452 57 + + CCONJ coo.31924059551022 452 58 # # SYM coo.31924059551022 452 59 3 3 NUM coo.31924059551022 452 60 ( ( PUNCT coo.31924059551022 452 61 f f X coo.31924059551022 452 62 * * PUNCT coo.31924059551022 452 63 + + NUM coo.31924059551022 452 64 1 1 X coo.31924059551022 452 65 ) ) PUNCT coo.31924059551022 452 66 ( ( PUNCT coo.31924059551022 452 67 f4 f4 X coo.31924059551022 452 68 + + PROPN coo.31924059551022 452 69 2 2 X coo.31924059551022 452 70 ) ) PUNCT coo.31924059551022 452 71 ( ( PUNCT coo.31924059551022 452 72 μ μ PROPN coo.31924059551022 452 73 + + NUM coo.31924059551022 452 74 3 3 NUM coo.31924059551022 452 75 ) ) PUNCT coo.31924059551022 452 76 αη_μ_3 αη_μ_3 X coo.31924059551022 452 77 = = NOUN coo.31924059551022 452 78 0 0 NUM coo.31924059551022 452 79 from from ADP coo.31924059551022 452 80 which which PRON coo.31924059551022 452 81 equation equation NOUN coo.31924059551022 452 82 we we PRON coo.31924059551022 452 83 find find VERB coo.31924059551022 452 84 the the DET coo.31924059551022 452 85 unknown unknown ADJ coo.31924059551022 452 86 coefficients coefficient NOUN coo.31924059551022 452 87 by by ADP coo.31924059551022 452 88 making make VERB coo.31924059551022 452 89 μ μ NOUN coo.31924059551022 452 90 * * PUNCT coo.31924059551022 452 91 = = X coo.31924059551022 452 92 > > X coo.31924059551022 452 93 n n X coo.31924059551022 452 94 — — PUNCT coo.31924059551022 452 95 1 1 NUM coo.31924059551022 452 96 , , PUNCT coo.31924059551022 452 97 w w NOUN coo.31924059551022 452 98 — — PUNCT coo.31924059551022 452 99 2 2 NUM coo.31924059551022 452 100 , , PUNCT coo.31924059551022 452 101 ... ... PUNCT coo.31924059551022 452 102 or or CCONJ coo.31924059551022 452 103 k= k= VERB coo.31924059551022 452 104 1.2 1.2 NUM coo.31924059551022 452 105 ... ... PUNCT coo.31924059551022 453 1 these these DET coo.31924059551022 453 2 results result NOUN coo.31924059551022 453 3 are be AUX coo.31924059551022 453 4 simplified simplify VERB coo.31924059551022 453 5 by by ADP coo.31924059551022 453 6 employing employ VERB coo.31924059551022 453 7 the the DET coo.31924059551022 453 8 notation notation NOUN coo.31924059551022 453 9 introduced introduce VERB coo.31924059551022 453 10 by by ADP coo.31924059551022 453 11 brioschi brioschi PROPN coo.31924059551022 453 12 , , PUNCT coo.31924059551022 453 13 namely namely ADV coo.31924059551022 453 14 : : PUNCT coo.31924059551022 453 15 8 8 NUM coo.31924059551022 453 16 = = SYM coo.31924059551022 453 17 t t PROPN coo.31924059551022 453 18 — — PUNCT coo.31924059551022 453 19 b b NOUN coo.31924059551022 453 20 : : PUNCT coo.31924059551022 453 21 — — PUNCT coo.31924059551022 453 22 < < X coo.31924059551022 453 23 p(t p(t CCONJ coo.31924059551022 453 24 ) ) PUNCT coo.31924059551022 453 25 = = X coo.31924059551022 453 26 4t3 4t3 SPACE coo.31924059551022 453 27 — — PUNCT coo.31924059551022 453 28 g g PROPN coo.31924059551022 453 29 , , PUNCT coo.31924059551022 453 30 t t PROPN coo.31924059551022 453 31 — — PUNCT coo.31924059551022 453 32 g?i g?i NOUN coo.31924059551022 453 33 = = X coo.31924059551022 453 34 < < X coo.31924059551022 454 1 p. p. NOUN coo.31924059551022 454 2 t t PROPN coo.31924059551022 454 3 = = PROPN coo.31924059551022 454 4 pu pu PROPN coo.31924059551022 454 5 , , PUNCT coo.31924059551022 454 6 by by ADP coo.31924059551022 454 7 means mean NOUN coo.31924059551022 454 8 of of ADP coo.31924059551022 454 9 which which PRON coo.31924059551022 454 10 the the DET coo.31924059551022 454 11 above above ADJ coo.31924059551022 454 12 forms form NOUN coo.31924059551022 454 13 are be AUX coo.31924059551022 454 14 expressed express VERB coo.31924059551022 454 15 as as SCONJ coo.31924059551022 454 16 follows follow VERB coo.31924059551022 454 17 : : PUNCT coo.31924059551022 455 1 [ [ X coo.31924059551022 455 2 59 59 NUM coo.31924059551022 455 3 ] ] PUNCT coo.31924059551022 455 4 [ [ X coo.31924059551022 455 5 4£8 4£8 NUM coo.31924059551022 455 6 + + CCONJ coo.31924059551022 455 7 i i PRON coo.31924059551022 455 8 φ φ X coo.31924059551022 455 9 " " PUNCT coo.31924059551022 455 10 s2 s2 PROPN coo.31924059551022 455 11 + + CCONJ coo.31924059551022 455 12 φ’β φ’β PROPN coo.31924059551022 456 1 + + CCONJ coo.31924059551022 456 2 * * PUNCT coo.31924059551022 456 3 > > X coo.31924059551022 456 4 ] ] X coo.31924059551022 456 5 g g NOUN coo.31924059551022 457 1 + + X coo.31924059551022 457 2 ( ( PUNCT coo.31924059551022 457 3 l8s2 l8s2 PROPN coo.31924059551022 457 4 + + X coo.31924059551022 457 5 ± ± NOUN coo.31924059551022 457 6 φ φ NOUN coo.31924059551022 457 7 " " PUNCT coo.31924059551022 457 8 8 8 NUM coo.31924059551022 457 9 + + CCONJ coo.31924059551022 457 10 i i NOUN coo.31924059551022 457 11 ψ ψ X coo.31924059551022 457 12 ' ' PUNCT coo.31924059551022 457 13 ) ) PUNCT coo.31924059551022 457 14 § § X coo.31924059551022 457 15 £ £ SYM coo.31924059551022 457 16 ~[402 ~[402 X coo.31924059551022 457 17 + + CCONJ coo.31924059551022 457 18 « « PUNCT coo.31924059551022 457 19 — — PUNCT coo.31924059551022 457 20 3 3 X coo.31924059551022 457 21 ) ) PUNCT coo.31924059551022 457 22 8 8 NUM coo.31924059551022 457 23 + + CCONJ coo.31924059551022 457 24 ψ ψ PUNCT coo.31924059551022 458 1 " " PUNCT coo.31924059551022 458 2 ] ] X coo.31924059551022 458 3 g g X coo.31924059551022 458 4 — — PUNCT coo.31924059551022 458 5 2ra(ra 2ra(ra NUM coo.31924059551022 458 6 + + NUM coo.31924059551022 458 7 1 1 NUM coo.31924059551022 458 8 ) ) PUNCT coo.31924059551022 458 9 f f PROPN coo.31924059551022 458 10 = = PUNCT coo.31924059551022 458 11 0 0 PUNCT coo.31924059551022 459 1 [ [ X coo.31924059551022 459 2 60 60 NUM coo.31924059551022 459 3 ] ] PUNCT coo.31924059551022 459 4 f f X coo.31924059551022 459 5 — — PUNCT coo.31924059551022 459 6 s s NOUN coo.31924059551022 459 7 * * PUNCT coo.31924059551022 459 8 + + PUNCT coo.31924059551022 459 9 + + PUNCT coo.31924059551022 459 10 assn~ assn~ PROPN coo.31924059551022 459 11 * * PUNCT coo.31924059551022 459 12 + + PROPN coo.31924059551022 459 13 -+a -+a X coo.31924059551022 459 14 „ „ PUNCT coo.31924059551022 459 15 integral integral PROPN coo.31924059551022 459 16 as as ADP coo.31924059551022 459 17 a a DET coo.31924059551022 459 18 product product NOUN coo.31924059551022 459 19 . . PUNCT coo.31924059551022 460 1 37 37 NUM coo.31924059551022 461 1 [ [ X coo.31924059551022 461 2 61 61 NUM coo.31924059551022 461 3 ] ] PUNCT coo.31924059551022 461 4 2 2 NUM coo.31924059551022 461 5 ( ( PUNCT coo.31924059551022 461 6 n n X coo.31924059551022 461 7 — — PUNCT coo.31924059551022 461 8 μ μ X coo.31924059551022 461 9 ) ) PUNCT coo.31924059551022 461 10 ( ( PUNCT coo.31924059551022 461 11 2 2 NUM coo.31924059551022 461 12 μ μ NOUN coo.31924059551022 461 13 -f1 -f1 PROPN coo.31924059551022 461 14 ) ) PUNCT coo.31924059551022 461 15 { { PUNCT coo.31924059551022 461 16 μ μ PROPN coo.31924059551022 461 17 + + PROPN coo.31924059551022 461 18 w w PROPN coo.31924059551022 461 19 -f1 -f1 PROPN coo.31924059551022 461 20 ) ) PUNCT coo.31924059551022 461 21 αη αη ADP coo.31924059551022 461 22 — — PUNCT coo.31924059551022 461 23 μ μ NOUN coo.31924059551022 461 24 = = SYM coo.31924059551022 461 25 12 12 NUM coo.31924059551022 461 26 ( ( PUNCT coo.31924059551022 461 27 ft ft NOUN coo.31924059551022 461 28 + + NUM coo.31924059551022 461 29 1 1 NUM coo.31924059551022 461 30 ) ) PUNCT coo.31924059551022 461 31 ( ( PUNCT coo.31924059551022 461 32 μ μ NOUN coo.31924059551022 461 33 + + NOUN coo.31924059551022 461 34 1 1 NUM coo.31924059551022 461 35 — — PUNCT coo.31924059551022 461 36 n n CCONJ coo.31924059551022 461 37 ) ) PUNCT coo.31924059551022 461 38 ( ( PUNCT coo.31924059551022 461 39 ft ft PROPN coo.31924059551022 461 40 + + NOUN coo.31924059551022 461 41 1 1 NUM coo.31924059551022 461 42 + + CCONJ coo.31924059551022 461 43 η η X coo.31924059551022 461 44 ) ) PUNCT coo.31924059551022 461 45 ban ban NOUN coo.31924059551022 461 46 - - PUNCT coo.31924059551022 461 47 fli fli NOUN coo.31924059551022 461 48 + + PUNCT coo.31924059551022 461 49 y y NOUN coo.31924059551022 462 1 ( ( PUNCT coo.31924059551022 462 2 f4 f4 X coo.31924059551022 462 3 + + PROPN coo.31924059551022 462 4 1 1 X coo.31924059551022 462 5 ) ) PUNCT coo.31924059551022 462 6 ( ( PUNCT coo.31924059551022 462 7 ƒ ƒ X coo.31924059551022 462 8 * * PUNCT coo.31924059551022 462 9 + + NUM coo.31924059551022 462 10 2 2 X coo.31924059551022 462 11 ) ) PUNCT coo.31924059551022 462 12 ( ( PUNCT coo.31924059551022 462 13 2μ 2μ NUM coo.31924059551022 462 14 + + PRON coo.31924059551022 462 15 3 3 X coo.31924059551022 462 16 ) ) PUNCT coo.31924059551022 462 17 φ φ NOUN coo.31924059551022 462 18 ' ' PUNCT coo.31924059551022 462 19 ( ( PUNCT coo.31924059551022 462 20 6 6 NUM coo.31924059551022 462 21 ) ) PUNCT coo.31924059551022 462 22 an an DET coo.31924059551022 462 23 — — PUNCT coo.31924059551022 462 24 μ—2 μ—2 NOUN coo.31924059551022 462 25 + + CCONJ coo.31924059551022 462 26 ( ( PUNCT coo.31924059551022 462 27 f f X coo.31924059551022 462 28 * * X coo.31924059551022 462 29 + + NUM coo.31924059551022 462 30 1 1 NUM coo.31924059551022 462 31 ) ) PUNCT coo.31924059551022 462 32 0 0 NUM coo.31924059551022 462 33 * * PUNCT coo.31924059551022 462 34 + + NUM coo.31924059551022 462 35 2 2 X coo.31924059551022 462 36 ) ) PUNCT coo.31924059551022 462 37 ( ( PUNCT coo.31924059551022 462 38 f f X coo.31924059551022 462 39 * * PUNCT coo.31924059551022 462 40 + + NUM coo.31924059551022 462 41 3 3 X coo.31924059551022 462 42 ) ) PUNCT coo.31924059551022 462 43 φ φ NOUN coo.31924059551022 462 44 ( ( PUNCT coo.31924059551022 462 45 6 6 X coo.31924059551022 462 46 ) ) PUNCT coo.31924059551022 462 47 αη αη PROPN coo.31924059551022 462 48 - - PUNCT coo.31924059551022 462 49 μ μ PROPN coo.31924059551022 462 50 - - PUNCT coo.31924059551022 462 51 ί ί NOUN coo.31924059551022 462 52 . . PROPN coo.31924059551022 462 53 taking take VERB coo.31924059551022 462 54 μ μ NOUN coo.31924059551022 462 55 = = SYM coo.31924059551022 462 56 n n PROPN coo.31924059551022 462 57 — — PUNCT coo.31924059551022 462 58 1 1 NUM coo.31924059551022 462 59 we we PRON coo.31924059551022 462 60 find find VERB coo.31924059551022 462 61 al al PROPN coo.31924059551022 462 62 = = NOUN coo.31924059551022 462 63 0 0 NUM coo.31924059551022 462 64 μ μ NOUN coo.31924059551022 462 65 = = SYM coo.31924059551022 462 66 n n CCONJ coo.31924059551022 462 67 — — PUNCT coo.31924059551022 462 68 2 2 NUM coo.31924059551022 462 69 : : PUNCT coo.31924059551022 462 70 a0 a0 NOUN coo.31924059551022 462 71 = = SYM coo.31924059551022 462 72 w w PROPN coo.31924059551022 462 73 ( ( PUNCT coo.31924059551022 462 74 w w PROPN coo.31924059551022 462 75 1 1 NUM coo.31924059551022 462 76 ) ) PUNCT coo.31924059551022 462 77 ( ( PUNCT coo.31924059551022 462 78 δ δ PROPN coo.31924059551022 462 79 ) ) PUNCT coo.31924059551022 462 80 8 8 NUM coo.31924059551022 462 81 ( ( PUNCT coo.31924059551022 462 82 2 2 NUM coo.31924059551022 462 83 η η NOUN coo.31924059551022 462 84 — — PUNCT coo.31924059551022 462 85 3 3 X coo.31924059551022 462 86 ) ) PUNCT coo.31924059551022 462 87 μ μ NOUN coo.31924059551022 462 88 = = NOUN coo.31924059551022 462 89 ηη ηη ADP coo.31924059551022 462 90 ( ( PUNCT coo.31924059551022 462 91 η η PROPN coo.31924059551022 462 92 — — PUNCT coo.31924059551022 462 93 2 2 NUM coo.31924059551022 462 94 / / SYM coo.31924059551022 462 95 , , PUNCT coo.31924059551022 462 96 x x SYM coo.31924059551022 462 97 12 12 NUM coo.31924059551022 462 98 ( ( PUNCT coo.31924059551022 462 99 2 2 NUM coo.31924059551022 462 100 « « SYM coo.31924059551022 462 101 — — PUNCT coo.31924059551022 462 102 5 5 X coo.31924059551022 462 103 ) ) PUNCT coo.31924059551022 462 104 μ μ PROPN coo.31924059551022 462 105 ( ( PUNCT coo.31924059551022 462 106 η η PROPN coo.31924059551022 462 107 — — PUNCT coo.31924059551022 462 108 1 1 X coo.31924059551022 462 109 ) ) PUNCT coo.31924059551022 462 110 ( ( PUNCT coo.31924059551022 462 111 « « PUNCT coo.31924059551022 462 112 — — PUNCT coo.31924059551022 462 113 2 2 X coo.31924059551022 462 114 ) ) PUNCT coo.31924059551022 462 115 2 2 NUM coo.31924059551022 462 116 ( ( PUNCT coo.31924059551022 462 117 2 2 NUM coo.31924059551022 462 118 μ μ NOUN coo.31924059551022 462 119 — — PUNCT coo.31924059551022 462 120 3 3 X coo.31924059551022 462 121 ) ) PUNCT coo.31924059551022 462 122 ( ( PUNCT coo.31924059551022 462 123 2 2 NUM coo.31924059551022 462 124 η η NOUN coo.31924059551022 462 125 — — PUNCT coo.31924059551022 462 126 5 5 NUM coo.31924059551022 462 127 ) ) PUNCT coo.31924059551022 462 128 0φ'(6 0φ'(6 NUM coo.31924059551022 462 129 ) ) PUNCT coo.31924059551022 462 130 . . PUNCT coo.31924059551022 463 1 and and CCONJ coo.31924059551022 463 2 the the DET coo.31924059551022 463 3 term term NOUN coo.31924059551022 463 4 containing contain VERB coo.31924059551022 463 5 the the DET coo.31924059551022 463 6 highest high ADJ coo.31924059551022 463 7 power power NOUN coo.31924059551022 463 8 of of ADP coo.31924059551022 463 9 b b PROPN coo.31924059551022 463 10 is be AUX coo.31924059551022 463 11 obtained obtain VERB coo.31924059551022 463 12 as as SCONJ coo.31924059551022 463 13 follows follow VERB coo.31924059551022 463 14 : : PUNCT coo.31924059551022 463 15 μ μ NOUN coo.31924059551022 463 16 = = SYM coo.31924059551022 463 17 η η PROPN coo.31924059551022 463 18 — — PUNCT coo.31924059551022 463 19 2 2 NUM coo.31924059551022 463 20 : : SYM coo.31924059551022 463 21 2 2 NUM coo.31924059551022 463 22 - - SYM coo.31924059551022 463 23 2 2 NUM coo.31924059551022 463 24 ( ( PUNCT coo.31924059551022 463 25 2n 2n NUM coo.31924059551022 463 26 — — PUNCT coo.31924059551022 463 27 3 3 X coo.31924059551022 463 28 ) ) PUNCT coo.31924059551022 463 29 ( ( PUNCT coo.31924059551022 463 30 2w 2w NUM coo.31924059551022 463 31 — — PUNCT coo.31924059551022 463 32 1 1 X coo.31924059551022 463 33 ) ) PUNCT coo.31924059551022 463 34 a2 a2 X coo.31924059551022 463 35 = = PUNCT coo.31924059551022 463 36 — — PUNCT coo.31924059551022 463 37 4 4 NUM coo.31924059551022 463 38 ( ( PUNCT coo.31924059551022 463 39 η η PROPN coo.31924059551022 463 40 — — PUNCT coo.31924059551022 463 41 1 1 X coo.31924059551022 463 42 ) ) PUNCT coo.31924059551022 463 43 b b NOUN coo.31924059551022 463 44 _ _ PUNCT coo.31924059551022 463 45 _ _ PUNCT coo.31924059551022 463 46 ( ( PUNCT coo.31924059551022 463 47 η η PROPN coo.31924059551022 463 48 — — PUNCT coo.31924059551022 463 49 1 1 X coo.31924059551022 463 50 ) ) PUNCT coo.31924059551022 463 51 i i NOUN coo.31924059551022 463 52 ? ? PUNCT coo.31924059551022 464 1 0r 0r PROPN coo.31924059551022 464 2 ( ( PUNCT coo.31924059551022 464 3 2 2 NUM coo.31924059551022 464 4 η η NOUN coo.31924059551022 464 5 — — PUNCT coo.31924059551022 464 6 1 1 X coo.31924059551022 464 7 ) ) PUNCT coo.31924059551022 464 8 ( ( PUNCT coo.31924059551022 464 9 2w 2w NUM coo.31924059551022 464 10 — — PUNCT coo.31924059551022 464 11 3 3 NUM coo.31924059551022 464 12 ) ) PUNCT coo.31924059551022 464 13 0 0 NUM coo.31924059551022 465 1 ( ( PUNCT coo.31924059551022 465 2 w w NOUN coo.31924059551022 465 3 — — PUNCT coo.31924059551022 465 4 2 2 X coo.31924059551022 465 5 ) ) PUNCT coo.31924059551022 465 6 b2 b2 PROPN coo.31924059551022 465 7 ( ( PUNCT coo.31924059551022 465 8 l l NOUN coo.31924059551022 465 9 — — PUNCT coo.31924059551022 465 10 n n X coo.31924059551022 465 11 3 3 NUM coo.31924059551022 465 12 : : PUNCT coo.31924059551022 465 13 tt3 tt3 NUM coo.31924059551022 465 14 — — PUNCT coo.31924059551022 465 15 3 3 NUM coo.31924059551022 465 16 ( ( PUNCT coo.31924059551022 465 17 2 2 NUM coo.31924059551022 465 18 * * NOUN coo.31924059551022 465 19 _ _ NOUN coo.31924059551022 465 20 1 1 X coo.31924059551022 465 21 ) ) PUNCT coo.31924059551022 465 22 ( ( PUNCT coo.31924059551022 465 23 2w 2w NOUN coo.31924059551022 465 24 _ _ PRON coo.31924059551022 465 25 5 5 X coo.31924059551022 465 26 ) ) PUNCT coo.31924059551022 465 27 u u PROPN coo.31924059551022 465 28 = = X coo.31924059551022 465 29 n n CCONJ coo.31924059551022 465 30 — — PUNCT coo.31924059551022 465 31 4 4 X coo.31924059551022 465 32 · · PUNCT coo.31924059551022 465 33 ( ( PUNCT coo.31924059551022 465 34 w w PROPN coo.31924059551022 465 35 2 2 X coo.31924059551022 465 36 ) ) PUNCT coo.31924059551022 465 37 ( ( PUNCT coo.31924059551022 465 38 w w PROPN coo.31924059551022 465 39 — — PUNCT coo.31924059551022 465 40 3 3 NUM coo.31924059551022 465 41 ) ) PUNCT coo.31924059551022 465 42 jb3 jb3 PROPN coo.31924059551022 465 43 _ _ PUNCT coo.31924059551022 465 44 _ _ PUNCT coo.31924059551022 465 45 _ _ PUNCT coo.31924059551022 465 46 _ _ PUNCT coo.31924059551022 465 47 _ _ PUNCT coo.31924059551022 465 48 _ _ PUNCT coo.31924059551022 465 49 _ _ PUNCT coo.31924059551022 465 50 . . PUNCT coo.31924059551022 466 1 ... ... PUNCT coo.31924059551022 467 1 ft ft NOUN coo.31924059551022 467 2 at at ADP coo.31924059551022 467 3 ■ ■ NOUN coo.31924059551022 467 4 * * NOUN coo.31924059551022 467 5 . . PUNCT coo.31924059551022 467 6 it4 it4 X coo.31924059551022 467 7 2 2 NUM coo.31924059551022 467 8 · · SYM coo.31924059551022 467 9 3·(2 3·(2 NUM coo.31924059551022 467 10 » » PUNCT coo.31924059551022 467 11 — — PUNCT coo.31924059551022 467 12 l)(2w l)(2w PROPN coo.31924059551022 467 13 — — PUNCT coo.31924059551022 467 14 3)(2w 3)(2w NUM coo.31924059551022 467 15 — — PUNCT coo.31924059551022 467 16 5)(2 5)(2 NUM coo.31924059551022 467 17 « « PUNCT coo.31924059551022 467 18 — — PUNCT coo.31924059551022 467 19 7 7 X coo.31924059551022 467 20 ) ) PUNCT coo.31924059551022 467 21 ' ' PUNCT coo.31924059551022 467 22 ( ( PUNCT coo.31924059551022 467 23 n n X coo.31924059551022 467 24 — — PUNCT coo.31924059551022 467 25 3 3 X coo.31924059551022 467 26 ) ) PUNCT coo.31924059551022 467 27 ( ( PUNCT coo.31924059551022 467 28 n n NOUN coo.31924059551022 467 29 — — PUNCT coo.31924059551022 467 30 4 4 X coo.31924059551022 467 31 ) ) PUNCT coo.31924059551022 467 32 b b NOUN coo.31924059551022 467 33 * * PUNCT coo.31924059551022 467 34 . . PUNCT coo.31924059551022 467 35 ^ ^ X coo.31924059551022 468 1 = = PUNCT coo.31924059551022 468 2 n n CCONJ coo.31924059551022 468 3 0 0 NUM coo.31924059551022 468 4 : : PUNCT coo.31924059551022 468 5 ® ® NUM coo.31924059551022 468 6 5 5 NUM coo.31924059551022 468 7 — — PUNCT coo.31924059551022 468 8 2 2 NUM coo.31924059551022 468 9 · · SYM coo.31924059551022 468 10 3 3 NUM coo.31924059551022 468 11 ■ ■ SYM coo.31924059551022 468 12 5(2n 5(2n NUM coo.31924059551022 468 13 — — PUNCT coo.31924059551022 468 14 1 1 X coo.31924059551022 468 15 ) ) PUNCT coo.31924059551022 468 16 ( ( PUNCT coo.31924059551022 468 17 2 2 NUM coo.31924059551022 468 18 « « SYM coo.31924059551022 468 19 — — PUNCT coo.31924059551022 468 20 3 3 X coo.31924059551022 468 21 ) ) PUNCT coo.31924059551022 468 22 ( ( PUNCT coo.31924059551022 468 23 2w 2w NUM coo.31924059551022 468 24 — — PUNCT coo.31924059551022 468 25 5)(2n7)(2w 5)(2n7)(2w NUM coo.31924059551022 468 26 — — PUNCT coo.31924059551022 468 27 9 9 X coo.31924059551022 468 28 ) ) PUNCT coo.31924059551022 468 29 ■ ■ NOUN coo.31924059551022 468 30 rtíoi rtíoi NOUN coo.31924059551022 468 31 1 1 NUM coo.31924059551022 468 32 · · PUNCT coo.31924059551022 468 33 ( ( PUNCT coo.31924059551022 468 34 l l NOUN coo.31924059551022 468 35 ) ) PUNCT coo.31924059551022 468 36 ’ ' PUNCT coo.31924059551022 468 37 * * PUNCT coo.31924059551022 468 38 · · PUNCT coo.31924059551022 468 39 » » PUNCT coo.31924059551022 468 40 * * PUNCT coo.31924059551022 468 41 i i PRON coo.31924059551022 468 42 [ [ X coo.31924059551022 468 43 62j 62j NOUN coo.31924059551022 468 44 ft ft NOUN coo.31924059551022 468 45 = = SYM coo.31924059551022 468 46 1 1 NUM coo.31924059551022 468 47 : : PUNCT coo.31924059551022 468 48 α»-ι=[3.5·7···2«-ΐτ α»-ι=[3.5·7···2«-ΐτ PROPN coo.31924059551022 468 49 + + CCONJ coo.31924059551022 468 50 · · PUNCT coo.31924059551022 468 51 ' ' NUM coo.31924059551022 468 52 · · PUNCT coo.31924059551022 468 53 direct direct ADJ coo.31924059551022 468 54 solution solution NOUN coo.31924059551022 468 55 . . PUNCT coo.31924059551022 469 1 having have VERB coo.31924059551022 469 2 y y PROPN coo.31924059551022 469 3 = = PROPN coo.31924059551022 469 4 yg yg PROPN coo.31924059551022 469 5 , , PUNCT coo.31924059551022 469 6 we we PRON coo.31924059551022 469 7 are be AUX coo.31924059551022 469 8 enabled enable VERB coo.31924059551022 469 9 to to PART coo.31924059551022 469 10 obtain obtain VERB coo.31924059551022 469 11 a a DET coo.31924059551022 469 12 rigid rigid ADJ coo.31924059551022 469 13 and and CCONJ coo.31924059551022 469 14 direct direct ADJ coo.31924059551022 469 15 solution solution NOUN coo.31924059551022 469 16 of of ADP coo.31924059551022 469 17 hermite hermite PROPN coo.31924059551022 469 18 ’s ’s PART coo.31924059551022 469 19 equation equation NOUN coo.31924059551022 469 20 in in ADP coo.31924059551022 469 21 the the DET coo.31924059551022 469 22 form form NOUN coo.31924059551022 469 23 of of ADP coo.31924059551022 469 24 a a DET coo.31924059551022 469 25 product product NOUN coo.31924059551022 469 26 as as SCONJ coo.31924059551022 469 27 follows follow VERB coo.31924059551022 469 28 : : PUNCT coo.31924059551022 469 29 in in ADP coo.31924059551022 469 30 addition addition NOUN coo.31924059551022 469 31 to to ADP coo.31924059551022 469 32 y y PROPN coo.31924059551022 469 33 we we PRON coo.31924059551022 469 34 have have VERB coo.31924059551022 469 35 : : PUNCT coo.31924059551022 469 36 y y PROPN coo.31924059551022 469 37 ' ' PUNCT coo.31924059551022 469 38 = = PROPN coo.31924059551022 470 1 y y PROPN coo.31924059551022 470 2 s s NOUN coo.31924059551022 470 3 ' ' PUNCT coo.31924059551022 470 4 + + NOUN coo.31924059551022 470 5 sy sy PROPN coo.31924059551022 470 6 ' ' PUNCT coo.31924059551022 470 7 and and CCONJ coo.31924059551022 470 8 yg yg PROPN coo.31924059551022 470 9 — — PUNCT coo.31924059551022 470 10 = = PROPN coo.31924059551022 470 11 2(7 2(7 NUM coo.31924059551022 470 12 . . PUNCT coo.31924059551022 471 1 whence whence ADP coo.31924059551022 471 2 2 2 NUM coo.31924059551022 471 3 ys’^= ys’^= PROPN coo.31924059551022 471 4 20 20 NUM coo.31924059551022 471 5 + + NUM coo.31924059551022 471 6 f f PROPN coo.31924059551022 471 7 , , PUNCT coo.31924059551022 471 8 0 0 NUM coo.31924059551022 471 9 ' ' NUM coo.31924059551022 471 10 20 20 NUM coo.31924059551022 471 11 + + NUM coo.31924059551022 471 12 y y NOUN coo.31924059551022 471 13 ' ' PUNCT coo.31924059551022 471 14 0r 0r NOUN coo.31924059551022 471 15 2= 2= NUM coo.31924059551022 471 16 27 27 NUM coo.31924059551022 471 17 and and CCONJ coo.31924059551022 471 18 — — PUNCT coo.31924059551022 471 19 2sy'=2c 2sy'=2c NUM coo.31924059551022 471 20 ~ ~ PROPN coo.31924059551022 471 21 t t PROPN coo.31924059551022 471 22 , , PUNCT coo.31924059551022 471 23 y y PROPN coo.31924059551022 471 24 · · PUNCT coo.31924059551022 471 25 y'—2c y'—2c PROPN coo.31924059551022 471 26 or or CCONJ coo.31924059551022 471 27 2f 2f NUM coo.31924059551022 471 28 whence whence ADV coo.31924059551022 471 29 yy"—y'2_y'i yy"—y'2_y'i PROPN coo.31924059551022 471 30 / / SYM coo.31924059551022 472 1 2/'\2 2/'\2 PROPN coo.31924059551022 472 2 υγy2 υγy2 NOUN coo.31924059551022 472 3 y y X coo.31924059551022 472 4 ‘ ' PUNCT coo.31924059551022 472 5 y y PROPN coo.31924059551022 472 6 ' ' PUNCT coo.31924059551022 472 7 .y .y PROPN coo.31924059551022 472 8 ) ) PUNCT coo.31924059551022 473 1 ~~ ~~ NUM coo.31924059551022 473 2 2p 2p NOUN coo.31924059551022 473 3 or or CCONJ coo.31924059551022 473 4 y y PROPN coo.31924059551022 473 5 " " PUNCT coo.31924059551022 473 6 2 2 NUM coo.31924059551022 473 7 yy"r,2 yy"r,2 PROPN coo.31924059551022 473 8 + + NUM coo.31924059551022 473 9 4c2 4c2 NUM coo.31924059551022 473 10 y y PROPN coo.31924059551022 473 11 4 4 NUM coo.31924059551022 473 12 y2 y2 PROPN coo.31924059551022 473 13 38 38 NUM coo.31924059551022 473 14 part part NOUN coo.31924059551022 473 15 iii iii ADJ coo.31924059551022 473 16 . . PUNCT coo.31924059551022 474 1 this this DET coo.31924059551022 474 2 value value NOUN coo.31924059551022 474 3 in in ADP coo.31924059551022 474 4 hermite hermite PROPN coo.31924059551022 474 5 ’s ’s PART coo.31924059551022 474 6 equation equation NOUN coo.31924059551022 474 7 gives give VERB coo.31924059551022 474 8 : : PUNCT coo.31924059551022 474 9 [ [ X coo.31924059551022 474 10 63j 63j NOUN coo.31924059551022 474 11 .... .... PUNCT coo.31924059551022 474 12 2 2 NUM coo.31924059551022 474 13 yy"~ yy"~ NOUN coo.31924059551022 474 14 f2 f2 PROPN coo.31924059551022 475 1 + + CCONJ coo.31924059551022 475 2 4c2 4c2 NUM coo.31924059551022 475 3 = = PUNCT coo.31924059551022 476 1 [ [ X coo.31924059551022 476 2 n(n n(n X coo.31924059551022 476 3 + + CCONJ coo.31924059551022 476 4 1 1 NUM coo.31924059551022 476 5 ) ) PUNCT coo.31924059551022 476 6 pu pu PROPN coo.31924059551022 476 7 + + PROPN coo.31924059551022 476 8 b b NOUN coo.31924059551022 476 9 ] ] X coo.31924059551022 476 10 4 4 NUM coo.31924059551022 476 11 y2 y2 PROPN coo.31924059551022 476 12 . . PUNCT coo.31924059551022 477 1 whence whence ADV coo.31924059551022 477 2 we we PRON coo.31924059551022 477 3 derive derive VERB coo.31924059551022 477 4 the the DET coo.31924059551022 477 5 value value NOUN coo.31924059551022 477 6 of of ADP coo.31924059551022 477 7 g g PROPN coo.31924059551022 477 8 sought seek VERB coo.31924059551022 477 9 , , PUNCT coo.31924059551022 477 10 namely namely ADV coo.31924059551022 477 11 [ [ PUNCT coo.31924059551022 477 12 64 64 NUM coo.31924059551022 477 13 ] ] PUNCT coo.31924059551022 477 14 . . PUNCT coo.31924059551022 478 1 4(72= 4(72= NUM coo.31924059551022 478 2 f2 f2 PROPN coo.31924059551022 478 3 2 2 NUM coo.31924059551022 478 4 γγ+ γγ+ ADJ coo.31924059551022 478 5 4[n(n 4[n(n NUM coo.31924059551022 478 6 + + NUM coo.31924059551022 478 7 1 1 NUM coo.31924059551022 478 8 ) ) PUNCT coo.31924059551022 478 9 pu pu PROPN coo.31924059551022 478 10 + + PROPN coo.31924059551022 478 11 b b ADP coo.31924059551022 478 12 ] ] X coo.31924059551022 478 13 γ2 γ2 NOUN coo.31924059551022 478 14 . . PUNCT coo.31924059551022 478 15 let let VERB coo.31924059551022 478 16 a a PRON coo.31924059551022 478 17 , , PUNCT coo.31924059551022 478 18 β β X coo.31924059551022 478 19 , , PUNCT coo.31924059551022 478 20 γ γ NOUN coo.31924059551022 478 21 · · PUNCT coo.31924059551022 478 22 * * PUNCT coo.31924059551022 478 23 · · PUNCT coo.31924059551022 478 24 = = PROPN coo.31924059551022 478 25 pa pa PROPN coo.31924059551022 478 26 , , PUNCT coo.31924059551022 478 27 pb pb PROPN coo.31924059551022 478 28 , , PUNCT coo.31924059551022 478 29 py py PROPN coo.31924059551022 478 30 · · PUNCT coo.31924059551022 478 31 · · PUNCT coo.31924059551022 478 32 · · PUNCT coo.31924059551022 478 33 be be AUX coo.31924059551022 478 34 roots root NOUN coo.31924059551022 478 35 of of ADP coo.31924059551022 478 36 y. y. PROPN coo.31924059551022 479 1 then then ADV coo.31924059551022 479 2 yu yu PROPN coo.31924059551022 479 3 = = PROPN coo.31924059551022 479 4 a a PROPN coo.31924059551022 479 5 · · PUNCT coo.31924059551022 479 6 6 6 NUM coo.31924059551022 479 7 · · SYM coo.31924059551022 479 8 · · PUNCT coo.31924059551022 479 9 = = PUNCT coo.31924059551022 479 10 tn tn PROPN coo.31924059551022 479 11 -(a1tri~~1 -(a1tri~~1 NOUN coo.31924059551022 479 12 0 0 NUM coo.31924059551022 480 1 κ κ NOUN coo.31924059551022 480 2 = = PUNCT coo.31924059551022 480 3 β·6 β·6 ADP coo.31924059551022 480 4 .. .. PUNCT coo.31924059551022 480 5 = = PUNCT coo.31924059551022 480 6 -1)£λ”2ί'+ -1)£λ”2ί'+ NOUN coo.31924059551022 480 7 · · PUNCT coo.31924059551022 480 8 · · PUNCT coo.31924059551022 480 9 · · PUNCT coo.31924059551022 480 10 = = SYM coo.31924059551022 480 11 0 0 NUM coo.31924059551022 480 12 or or CCONJ coo.31924059551022 480 13 whence whence NOUN coo.31924059551022 480 14 and and CCONJ coo.31924059551022 480 15 dt dt PROPN coo.31924059551022 480 16 du du PROPN coo.31924059551022 480 17 v v PROPN coo.31924059551022 480 18 , , PUNCT coo.31924059551022 480 19 , , PUNCT coo.31924059551022 480 20 ár ár PROPN coo.31924059551022 480 21 4c>-/ 4c>-/ NUM coo.31924059551022 480 22 > > X coo.31924059551022 480 23 ( ( PUNCT coo.31924059551022 480 24 « « NOUN coo.31924059551022 480 25 ) ) PUNCT coo.31924059551022 481 1 [ [ X coo.31924059551022 481 2 i£-l„r i£-l„r X coo.31924059551022 481 3 . . PUNCT coo.31924059551022 482 1 * * PUNCT coo.31924059551022 482 2 > > X coo.31924059551022 482 3 · · PUNCT coo.31924059551022 482 4 · · PUNCT coo.31924059551022 482 5 · · PUNCT coo.31924059551022 482 6 but but CCONJ coo.31924059551022 482 7 from from ADP coo.31924059551022 482 8 algebra algebra NOUN coo.31924059551022 482 9 we we PRON coo.31924059551022 482 10 have have VERB coo.31924059551022 482 11 [ [ X coo.31924059551022 482 12 s= s= SPACE coo.31924059551022 482 13 * * PROPN coo.31924059551022 482 14 ~ ~ PROPN coo.31924059551022 482 15 r r X coo.31924059551022 482 16 ) ) PUNCT coo.31924059551022 482 17 · · PUNCT coo.31924059551022 482 18 · · PUNCT coo.31924059551022 482 19 · · PUNCT coo.31924059551022 482 20 whence whence ADP coo.31924059551022 482 21 [ [ X coo.31924059551022 482 22 65] 65] NUM coo.31924059551022 482 23 ............... ............... SYM coo.31924059551022 482 24 2c 2c NUM coo.31924059551022 482 25 = = X coo.31924059551022 482 26 cc cc PROPN coo.31924059551022 482 27 ' ' PUNCT coo.31924059551022 482 28 ( ( PUNCT coo.31924059551022 482 29 a a DET coo.31924059551022 482 30 — — PUNCT coo.31924059551022 482 31 β β X coo.31924059551022 482 32 ) ) PUNCT coo.31924059551022 482 33 ( ( PUNCT coo.31924059551022 482 34 cc cc PROPN coo.31924059551022 482 35 γ γ PROPN coo.31924059551022 482 36 ) ) PUNCT coo.31924059551022 482 37 . . PUNCT coo.31924059551022 482 38 . . PUNCT coo.31924059551022 482 39 . . PUNCT coo.31924059551022 483 1 with with ADP coo.31924059551022 483 2 like like INTJ coo.31924059551022 483 3 expressions expression NOUN coo.31924059551022 483 4 for for ADP coo.31924059551022 483 5 the the DET coo.31924059551022 483 6 other other ADJ coo.31924059551022 483 7 roots root NOUN coo.31924059551022 483 8 which which PRON coo.31924059551022 483 9 we we PRON coo.31924059551022 483 10 observe observe VERB coo.31924059551022 483 11 are be AUX coo.31924059551022 483 12 the the DET coo.31924059551022 483 13 values value NOUN coo.31924059551022 483 14 obtain obtain VERB coo.31924059551022 483 15 before before ADV coo.31924059551022 483 16 ( ( PUNCT coo.31924059551022 483 17 see see VERB coo.31924059551022 483 18 [ [ X coo.31924059551022 483 19 51 51 NUM coo.31924059551022 483 20 ] ] PUNCT coo.31924059551022 483 21 ) ) PUNCT coo.31924059551022 483 22 , , PUNCT coo.31924059551022 483 23 namely namely ADV coo.31924059551022 483 24 2 2 NUM coo.31924059551022 483 25 g g NOUN coo.31924059551022 483 26 a a PRON coo.31924059551022 483 27 — — PUNCT coo.31924059551022 483 28 β β NOUN coo.31924059551022 483 29 ' ' PUNCT coo.31924059551022 483 30 = = X coo.31924059551022 483 31 ( ( PUNCT coo.31924059551022 483 32 « « PUNCT coo.31924059551022 483 33 — — PUNCT coo.31924059551022 483 34 p p NOUN coo.31924059551022 483 35 ) ) PUNCT coo.31924059551022 483 36 ( ( PUNCT coo.31924059551022 483 37 cc cc PROPN coo.31924059551022 483 38 — — PUNCT coo.31924059551022 483 39 y y PROPN coo.31924059551022 483 40 ) ) PUNCT coo.31924059551022 483 41 . . PUNCT coo.31924059551022 483 42 . . PUNCT coo.31924059551022 483 43 . . PUNCT coo.31924059551022 484 1 _ _ PUNCT coo.31924059551022 484 2 _ _ PUNCT coo.31924059551022 484 3 _ _ PUNCT coo.31924059551022 484 4 _ _ PUNCT coo.31924059551022 485 1 _ _ PUNCT coo.31924059551022 485 2 _ _ PUNCT coo.31924059551022 486 1 _ _ PUNCT coo.31924059551022 486 2 _ _ PUNCT coo.31924059551022 487 1 _ _ PUNCT coo.31924059551022 487 2 _ _ PUNCT coo.31924059551022 488 1 _ _ PUNCT coo.31924059551022 488 2 _ _ PUNCT coo.31924059551022 489 1 _ _ PUNCT coo.31924059551022 489 2 2 2 NUM coo.31924059551022 489 3 g g NOUN coo.31924059551022 489 4 ( ( PUNCT coo.31924059551022 489 5 β β NOUN coo.31924059551022 489 6 — — PUNCT coo.31924059551022 489 7 α α X coo.31924059551022 489 8 ) ) PUNCT coo.31924059551022 489 9 ( ( PUNCT coo.31924059551022 489 10 β β PROPN coo.31924059551022 489 11 -t -t X coo.31924059551022 489 12 y y PROPN coo.31924059551022 489 13 ) ) PUNCT coo.31924059551022 489 14 . . PUNCT coo.31924059551022 489 15 . . PUNCT coo.31924059551022 489 16 . . PUNCT coo.31924059551022 490 1 to to PART coo.31924059551022 490 2 obtain obtain VERB coo.31924059551022 490 3 y y PROPN coo.31924059551022 490 4 we we PRON coo.31924059551022 490 5 have have VERB coo.31924059551022 490 6 : : PUNCT coo.31924059551022 490 7 2 2 NUM coo.31924059551022 490 8 g g NOUN coo.31924059551022 490 9 = = PUNCT coo.31924059551022 490 10 y'a= y'a= PROPN coo.31924059551022 490 11 y'b y'b PROPN coo.31924059551022 490 12 — — PUNCT coo.31924059551022 490 13 y'c y'c PRON coo.31924059551022 490 14 = = PUNCT coo.31924059551022 490 15 · · PUNCT coo.31924059551022 490 16 ‘ ' PUNCT coo.31924059551022 490 17 . . PUNCT coo.31924059551022 491 1 + + CCONJ coo.31924059551022 491 2 a a DET coo.31924059551022 491 3 , , PUNCT coo.31924059551022 491 4 +6 +6 X coo.31924059551022 491 5 , , PUNCT coo.31924059551022 491 6 + + X coo.31924059551022 491 7 c c ADP coo.31924059551022 491 8 being be AUX coo.31924059551022 491 9 the the DET coo.31924059551022 491 10 roots root NOUN coo.31924059551022 491 11 of of ADP coo.31924059551022 491 12 y y PROPN coo.31924059551022 491 13 = = PROPN coo.31924059551022 491 14 f(u f(u PROPN coo.31924059551022 491 15 ) ) PUNCT coo.31924059551022 491 16 . . PUNCT coo.31924059551022 492 1 we we PRON coo.31924059551022 492 2 have have VERB coo.31924059551022 492 3 also also ADV coo.31924059551022 492 4 : : PUNCT coo.31924059551022 492 5 2c 2c NUM coo.31924059551022 492 6 = = X coo.31924059551022 492 7 yz yz X coo.31924059551022 492 8 — — PUNCT coo.31924059551022 492 9 £ £ SYM coo.31924059551022 492 10 ? ? PUNCT coo.31924059551022 492 11 / / SYM coo.31924059551022 492 12 ' ' PUNCT coo.31924059551022 492 13 = = PRON coo.31924059551022 492 14 y y PROPN coo.31924059551022 492 15 , , PUNCT coo.31924059551022 492 16 ù(u ù(u PROPN coo.31924059551022 492 17 + + CCONJ coo.31924059551022 492 18 « « PUNCT coo.31924059551022 492 19 ) ) PUNCT coo.31924059551022 492 20 ’ ' PUNCT coo.31924059551022 492 21 — — PUNCT coo.31924059551022 492 22 so so ADV coo.31924059551022 492 23 — — PUNCT coo.31924059551022 492 24 « « PUNCT coo.31924059551022 492 25 ) ) PUNCT coo.31924059551022 492 26 2£(a)]ys 2£(a)]ys NUM coo.31924059551022 492 27 or or CCONJ coo.31924059551022 492 28 2a 2a NUM coo.31924059551022 492 29 r r NOUN coo.31924059551022 492 30 = = X coo.31924059551022 492 31 ^[sq ^[sq PUNCT coo.31924059551022 492 32 + + PUNCT coo.31924059551022 492 33 « « PUNCT coo.31924059551022 492 34 ) ) PUNCT coo.31924059551022 492 35 — — PUNCT coo.31924059551022 492 36 so so ADV coo.31924059551022 492 37 — — PUNCT coo.31924059551022 492 38 a a X coo.31924059551022 492 39 ) ) PUNCT coo.31924059551022 492 40 — — PUNCT coo.31924059551022 492 41 2 2 NUM coo.31924059551022 492 42 g g NOUN coo.31924059551022 492 43 ( ( PUNCT coo.31924059551022 492 44 a a X coo.31924059551022 492 45 ) ) PUNCT coo.31924059551022 492 46 ] ] PUNCT coo.31924059551022 492 47 . . PUNCT coo.31924059551022 493 1 2 2 NUM coo.31924059551022 493 2 ( ( PUNCT coo.31924059551022 493 3 pu pu PROPN coo.31924059551022 493 4 pa pa PROPN coo.31924059551022 493 5 ) ) PUNCT coo.31924059551022 493 6 “ " PUNCT coo.31924059551022 493 7 t t PROPN coo.31924059551022 493 8 [ [ X coo.31924059551022 493 9 £ £ X coo.31924059551022 493 10 ( ( PUNCT coo.31924059551022 493 11 « « PUNCT coo.31924059551022 493 12 + + CCONJ coo.31924059551022 493 13 « « PUNCT coo.31924059551022 493 14 ) ) PUNCT coo.31924059551022 494 1 + + CCONJ coo.31924059551022 494 2 é é X coo.31924059551022 494 3 ( ( PUNCT coo.31924059551022 494 4 « « PUNCT coo.31924059551022 494 5 — — PUNCT coo.31924059551022 494 6 « « PUNCT coo.31924059551022 494 7 ) ) PUNCT coo.31924059551022 494 8 2 2 NUM coo.31924059551022 494 9 ga ga NOUN coo.31924059551022 494 10 ] ] X coo.31924059551022 494 11 but but CCONJ coo.31924059551022 494 12 integral integral PROPN coo.31924059551022 494 13 as as ADP coo.31924059551022 494 14 a a DET coo.31924059551022 494 15 product product NOUN coo.31924059551022 494 16 . . PUNCT coo.31924059551022 495 1 39 39 NUM coo.31924059551022 495 2 whence whence NOUN coo.31924059551022 495 3 t t NOUN coo.31924059551022 495 4 = = SYM coo.31924059551022 495 5 2ΐξ(μ 2ΐξ(μ NUM coo.31924059551022 495 6 + + SYM coo.31924059551022 495 7 ® ® NUM coo.31924059551022 495 8 ) ) PUNCT coo.31924059551022 496 1 2{pu^-pàj 2{pu^-pàj NUM coo.31924059551022 496 2 h h NOUN coo.31924059551022 496 3 = = X coo.31924059551022 496 4 ƒ^[logg(w ƒ^[logg(w X coo.31924059551022 496 5 + + CCONJ coo.31924059551022 496 6 a a X coo.31924059551022 496 7 ) ) PUNCT coo.31924059551022 496 8 — — PUNCT coo.31924059551022 496 9 log log VERB coo.31924059551022 496 10 |/pw |/pw PROPN coo.31924059551022 496 11 — — PUNCT coo.31924059551022 496 12 pa pa PROPN coo.31924059551022 496 13 — — PUNCT coo.31924059551022 496 14 log log PROPN coo.31924059551022 496 15 eu eu PROPN coo.31924059551022 496 16 — — PUNCT coo.31924059551022 496 17 wg wg PROPN coo.31924059551022 496 18 « « PUNCT coo.31924059551022 496 19 ] ] PUNCT coo.31924059551022 496 20 = = NOUN coo.31924059551022 496 21 ¿ ¿ X coo.31924059551022 496 22 log]7 log]7 NOUN coo.31924059551022 496 23 = = PUNCT coo.31924059551022 496 24 æ æ X coo.31924059551022 497 1 1ο%πα 1ο%πα NUM coo.31924059551022 497 2 a(u a(u PROPN coo.31924059551022 497 3 + + CCONJ coo.31924059551022 497 4 a a X coo.31924059551022 497 5 ) ) PUNCT coo.31924059551022 497 6 c_mí c_mí NOUN coo.31924059551022 497 7 : : PUNCT coo.31924059551022 497 8 a a PRON coo.31924059551022 497 9 ] ] X coo.31924059551022 497 10 /pw /pw PUNCT coo.31924059551022 497 11 — — PUNCT coo.31924059551022 497 12 pa pa PROPN coo.31924059551022 497 13 ■ ■ PUNCT coo.31924059551022 497 14 cu cu PROPN coo.31924059551022 497 15 + + CCONJ coo.31924059551022 497 16 « « NOUN coo.31924059551022 497 17 ) ) PUNCT coo.31924059551022 497 18 g g NOUN coo.31924059551022 497 19 - - PUNCT coo.31924059551022 497 20 κζα_______íl κζα_______íl X coo.31924059551022 497 21 σΐί σΐί PROPN coo.31924059551022 497 22 d d NOUN coo.31924059551022 497 23 ft ft PROPN coo.31924059551022 497 24 l l PROPN coo.31924059551022 497 25 ° ° PROPN coo.31924059551022 497 26 g]7 g]7 PROPN coo.31924059551022 497 27 — — PUNCT coo.31924059551022 497 28 pa pa PROPN coo.31924059551022 497 29 . . PUNCT coo.31924059551022 498 1 but but CCONJ coo.31924059551022 498 2 1 1 NUM coo.31924059551022 498 3 2 2 NUM coo.31924059551022 498 4 a a DET coo.31924059551022 498 5 y y PROPN coo.31924059551022 498 6 j^jypu j^jypu PROPN coo.31924059551022 498 7 — — PUNCT coo.31924059551022 498 8 pa pa PROPN coo.31924059551022 498 9 = = PUNCT coo.31924059551022 498 10 y2z y2z PROPN coo.31924059551022 498 11 ; ; PUNCT coo.31924059551022 498 12 lü«j7 lü«j7 X coo.31924059551022 498 13 0 0 X coo.31924059551022 498 14 ( ( PUNCT coo.31924059551022 498 15 m m PROPN coo.31924059551022 498 16 “ " PUNCT coo.31924059551022 498 17 4 4 NUM coo.31924059551022 498 18 “ " PUNCT coo.31924059551022 498 19 öt öt NOUN coo.31924059551022 498 20 ) ) PUNCT coo.31924059551022 498 21 £ £ SYM coo.31924059551022 498 22 2 2 NUM coo.31924059551022 498 23 55 55 NUM coo.31924059551022 498 24 ke ke NOUN coo.31924059551022 498 25 » » VERB coo.31924059551022 498 26 * * PROPN coo.31924059551022 498 27 * * NOUN coo.31924059551022 498 28 whence whence NOUN coo.31924059551022 498 29 = = X coo.31924059551022 498 30 — — PUNCT coo.31924059551022 498 31 + + CCONJ coo.31924059551022 498 32 ¿ ¿ NUM coo.31924059551022 498 33 logjf7 logjf7 PROPN coo.31924059551022 499 1 + + CCONJ coo.31924059551022 499 2 « « NOUN coo.31924059551022 499 3 ) ) PUNCT coo.31924059551022 499 4 ¿ ¿ NUM coo.31924059551022 499 5 -«ça -«ça INTJ coo.31924059551022 499 6 _ _ NOUN coo.31924059551022 499 7 1 1 NUM coo.31924059551022 499 8 ^ ^ NOUN coo.31924059551022 499 9 ' ' PUNCT coo.31924059551022 500 1 + + CCONJ coo.31924059551022 500 2 ^ ^ NOUN coo.31924059551022 500 3 ' ' PART coo.31924059551022 500 4 σ σ PROPN coo.31924059551022 500 5 ( ( PUNCT coo.31924059551022 500 6 w w NOUN coo.31924059551022 500 7 4 4 NUM coo.31924059551022 500 8 " " PUNCT coo.31924059551022 500 9 λ λ PROPN coo.31924059551022 500 10 ) ) PUNCT coo.31924059551022 500 11 dft dft PROPN coo.31924059551022 500 12 ƒ ƒ X coo.31924059551022 501 1 i i PRON coo.31924059551022 501 2 au au X coo.31924059551022 501 3 e e X coo.31924059551022 501 4 % % INTJ coo.31924059551022 501 5 yz yz X coo.31924059551022 501 6 2c 2c NOUN coo.31924059551022 501 7 2 2 NUM coo.31924059551022 501 8 y y PROPN coo.31924059551022 501 9 2 2 NUM coo.31924059551022 501 10 y y PROPN coo.31924059551022 501 11 2/ 2/ NUM coo.31924059551022 501 12 dft dft NOUN coo.31924059551022 501 13 a a DET coo.31924059551022 501 14 dft dft NOUN coo.31924059551022 501 15 g g PROPN coo.31924059551022 501 16 — — PUNCT coo.31924059551022 501 17 uça uça NOUN coo.31924059551022 501 18 ' ' PUNCT coo.31924059551022 501 19 g(u g(u PROPN coo.31924059551022 501 20 ) ) PUNCT coo.31924059551022 501 21 l0*ij—,e- l0*ij—,e- PROPN coo.31924059551022 501 22 · · PUNCT coo.31924059551022 501 23 ! ! PUNCT coo.31924059551022 501 24 " " PUNCT coo.31924059551022 502 1 or or CCONJ coo.31924059551022 502 2 log log VERB coo.31924059551022 502 3 y y PROPN coo.31924059551022 502 4 = = PROPN coo.31924059551022 502 5 logjj^ logjj^ VERB coo.31924059551022 502 6 “ " PUNCT coo.31924059551022 502 7 los los PROPN coo.31924059551022 502 8 c c PROPN coo.31924059551022 502 9 0 0 PUNCT coo.31924059551022 502 10 = = PUNCT coo.31924059551022 502 11 /7σα /7σα PUNCT coo.31924059551022 502 12 . . PUNCT coo.31924059551022 503 1 whence whence SCONJ coo.31924059551022 503 2 the the DET coo.31924059551022 503 3 value value NOUN coo.31924059551022 503 4 of of ADP coo.31924059551022 503 5 « « VERB coo.31924059551022 503 6 / / SYM coo.31924059551022 503 7 is be AUX coo.31924059551022 503 8 obtained obtain VERB coo.31924059551022 503 9 directly directly ADV coo.31924059551022 503 10 , , PUNCT coo.31924059551022 503 11 namely namely ADV coo.31924059551022 503 12 [ [ X coo.31924059551022 503 13 661 661 NUM coo.31924059551022 503 14 · · PUNCT coo.31924059551022 503 15 · · PUNCT coo.31924059551022 503 16 · · PUNCT coo.31924059551022 503 17 . . PUNCT coo.31924059551022 503 18 · · PUNCT coo.31924059551022 503 19 · · PUNCT coo.31924059551022 503 20 · · PUNCT coo.31924059551022 503 21 · · PUNCT coo.31924059551022 503 22 · · PUNCT coo.31924059551022 504 1 y y PROPN coo.31924059551022 504 2 < < X coo.31924059551022 504 3 r“te r“te X coo.31924059551022 504 4 · · PUNCT coo.31924059551022 504 5 the the DET coo.31924059551022 504 6 third third ADJ coo.31924059551022 504 7 method method NOUN coo.31924059551022 504 8 of of ADP coo.31924059551022 504 9 integration integration NOUN coo.31924059551022 504 10 is be AUX coo.31924059551022 504 11 then then ADV coo.31924059551022 504 12 the the DET coo.31924059551022 504 13 following follow VERB coo.31924059551022 504 14 : : PUNCT coo.31924059551022 504 15 calculate calculate VERB coo.31924059551022 504 16 the the DET coo.31924059551022 504 17 polynomial polynomial ADJ coo.31924059551022 504 18 y y NOUN coo.31924059551022 504 19 by by ADP coo.31924059551022 504 20 the the DET coo.31924059551022 504 21 aid aid NOUN coo.31924059551022 504 22 of of ADP coo.31924059551022 504 23 the the DET coo.31924059551022 504 24 relation relation NOUN coo.31924059551022 504 25 [ [ X coo.31924059551022 504 26 58 58 NUM coo.31924059551022 504 27 ] ] PUNCT coo.31924059551022 504 28 or or CCONJ coo.31924059551022 504 29 [ [ X coo.31924059551022 504 30 61 61 NUM coo.31924059551022 504 31 ] ] PUNCT coo.31924059551022 504 32 from from ADP coo.31924059551022 504 33 which which PRON coo.31924059551022 504 34 derive derive VERB coo.31924059551022 504 35 the the DET coo.31924059551022 504 36 constant constant ADJ coo.31924059551022 504 37 c2 c2 NOUN coo.31924059551022 504 38 by by ADP coo.31924059551022 504 39 means mean NOUN coo.31924059551022 504 40 of of ADP coo.31924059551022 504 41 equation equation NOUN coo.31924059551022 504 42 [ [ X coo.31924059551022 504 43 64 64 NUM coo.31924059551022 504 44 ] ] PUNCT coo.31924059551022 504 45 extracting extract VERB coo.31924059551022 504 46 the the DET coo.31924059551022 504 47 square square ADJ coo.31924059551022 504 48 root root NOUN coo.31924059551022 504 49 to to PART coo.31924059551022 504 50 obtain obtain VERB coo.31924059551022 504 51 c c PROPN coo.31924059551022 504 52 and and CCONJ coo.31924059551022 504 53 finally finally ADV coo.31924059551022 504 54 obtain obtain VERB coo.31924059551022 504 55 the the DET coo.31924059551022 504 56 constants constants ADJ coo.31924059551022 504 57 2 2 NUM coo.31924059551022 504 58 c c NOUN coo.31924059551022 504 59 , , PUNCT coo.31924059551022 504 60 7 7 NUM coo.31924059551022 504 61 2 2 NUM coo.31924059551022 504 62 g g NOUN coo.31924059551022 504 63 p p NOUN coo.31924059551022 504 64 a a PRON coo.31924059551022 504 65 — — PUNCT coo.31924059551022 504 66 p'b p'b ADJ coo.31924059551022 504 67 = = X coo.31924059551022 504 68 ( ( PUNCT coo.31924059551022 504 69 oc oc PROPN coo.31924059551022 504 70 — — PUNCT coo.31924059551022 504 71 β β PROPN coo.31924059551022 504 72 ) ) PUNCT coo.31924059551022 504 73 ( ( PUNCT coo.31924059551022 504 74 cc cc PROPN coo.31924059551022 504 75 — — PUNCT coo.31924059551022 504 76 y y PROPN coo.31924059551022 504 77 ) ) PUNCT coo.31924059551022 504 78 · · PUNCT coo.31924059551022 504 79 . . PUNCT coo.31924059551022 504 80 · · PUNCT coo.31924059551022 504 81 ’ ' PUNCT coo.31924059551022 504 82 ^ ^ X coo.31924059551022 504 83 " " PUNCT coo.31924059551022 505 1 _ _ PRON coo.31924059551022 505 2 ( ( PUNCT coo.31924059551022 505 3 β β X coo.31924059551022 505 4 — — PUNCT coo.31924059551022 505 5 cc cc PROPN coo.31924059551022 505 6 ) ) PUNCT coo.31924059551022 505 7 β β PROPN coo.31924059551022 505 8 — — PUNCT coo.31924059551022 505 9 y y PROPN coo.31924059551022 505 10 ) ) PUNCT coo.31924059551022 505 11 ' ' PUNCT coo.31924059551022 505 12 · · PUNCT coo.31924059551022 505 13 wheat wheat NOUN coo.31924059551022 505 14 a a DET coo.31924059551022 505 15 = = NOUN coo.31924059551022 505 16 γα γα PROPN coo.31924059551022 505 17 , , PUNCT coo.31924059551022 505 18 b b PROPN coo.31924059551022 505 19 — — PUNCT coo.31924059551022 505 20 yb yb PROPN coo.31924059551022 505 21 . . PUNCT coo.31924059551022 505 22 . . PUNCT coo.31924059551022 505 23 . . PUNCT coo.31924059551022 506 1 are be AUX coo.31924059551022 506 2 ¿ ¿ NUM coo.31924059551022 506 3 ae ae PROPN coo.31924059551022 506 4 roofe roofe PROPN coo.31924059551022 506 5 of of ADP coo.31924059551022 506 6 y. y. PROPN coo.31924059551022 507 1 these these DET coo.31924059551022 507 2 relations relation NOUN coo.31924059551022 507 3 determine determine VERB coo.31924059551022 507 4 the the DET coo.31924059551022 507 5 arguments argument NOUN coo.31924059551022 507 6 a a DET coo.31924059551022 507 7 b b NOUN coo.31924059551022 507 8 · · PUNCT coo.31924059551022 507 9 c c X coo.31924059551022 507 10 ... ... PUNCT coo.31924059551022 507 11 , , PUNCT coo.31924059551022 507 12 having have VERB coo.31924059551022 507 13 which which PRON coo.31924059551022 507 14 the the DET coo.31924059551022 507 15 solution solution NOUN coo.31924059551022 507 16 is be AUX coo.31924059551022 507 17 y y PROPN coo.31924059551022 507 18 = = X coo.31924059551022 508 1 j j X coo.31924059551022 508 2 jf jf X coo.31924059551022 508 3 ° ° X coo.31924059551022 508 4 — — PUNCT coo.31924059551022 508 5 e~~m e~~m NOUN coo.31924059551022 508 6 a a NOUN coo.31924059551022 508 7 if if SCONJ coo.31924059551022 508 8 we we PRON coo.31924059551022 508 9 take take VERB coo.31924059551022 508 10 the the DET coo.31924059551022 508 11 second second ADJ coo.31924059551022 508 12 root root NOUN coo.31924059551022 508 13 of of ADP coo.31924059551022 508 14 c2 c2 PROPN coo.31924059551022 508 15 we we PRON coo.31924059551022 508 16 obtain obtain VERB coo.31924059551022 508 17 the the DET coo.31924059551022 508 18 integral integral ADJ coo.31924059551022 508 19 & & CCONJ coo.31924059551022 508 20 obtained obtain VERB coo.31924059551022 508 21 also also ADV coo.31924059551022 508 22 from from ADP coo.31924059551022 508 23 y y PROPN coo.31924059551022 508 24 by by ADP coo.31924059551022 508 25 changing change VERB coo.31924059551022 508 26 u u PROPN coo.31924059551022 508 27 into into ADP coo.31924059551022 508 28 — — PUNCT coo.31924059551022 508 29 ft ft NOUN coo.31924059551022 508 30 . . NOUN coo.31924059551022 508 31 40 40 SPACE coo.31924059551022 508 32 part part PROPN coo.31924059551022 508 33 iii iii PROPN coo.31924059551022 508 34 . . PUNCT coo.31924059551022 509 1 determination determination NOUN coo.31924059551022 509 2 of of ADP coo.31924059551022 509 3 y y PROPN coo.31924059551022 509 4 for for ADP coo.31924059551022 509 5 n n CCONJ coo.31924059551022 509 6 = = SYM coo.31924059551022 509 7 3 3 X coo.31924059551022 509 8 . . PUNCT coo.31924059551022 510 1 the the DET coo.31924059551022 510 2 foregoing forego VERB coo.31924059551022 510 3 solution solution NOUN coo.31924059551022 510 4 while while SCONJ coo.31924059551022 510 5 complete complete ADJ coo.31924059551022 510 6 and and CCONJ coo.31924059551022 510 7 rigid rigid ADJ coo.31924059551022 510 8 from from ADP coo.31924059551022 510 9 a a DET coo.31924059551022 510 10 theoretical theoretical ADJ coo.31924059551022 510 11 standpoint standpoint NOUN coo.31924059551022 510 12 needs need VERB coo.31924059551022 510 13 to to PART coo.31924059551022 510 14 be be AUX coo.31924059551022 510 15 greatly greatly ADV coo.31924059551022 510 16 perfected perfect VERB coo.31924059551022 510 17 before before SCONJ coo.31924059551022 510 18 it it PRON coo.31924059551022 510 19 becomes become VERB coo.31924059551022 510 20 practically practically ADV coo.31924059551022 510 21 applicable applicable ADJ coo.31924059551022 510 22 . . PUNCT coo.31924059551022 511 1 it it PRON coo.31924059551022 511 2 is be AUX coo.31924059551022 511 3 indeed indeed ADV coo.31924059551022 511 4 but but CCONJ coo.31924059551022 511 5 another another DET coo.31924059551022 511 6 example example NOUN coo.31924059551022 511 7 , , PUNCT coo.31924059551022 511 8 the the DET coo.31924059551022 511 9 invariant invariant ADJ coo.31924059551022 511 10 theory theory NOUN coo.31924059551022 511 11 being be AUX coo.31924059551022 511 12 a a DET coo.31924059551022 511 13 second second NOUN coo.31924059551022 511 14 of of ADP coo.31924059551022 511 15 the the DET coo.31924059551022 511 16 fact fact NOUN coo.31924059551022 511 17 that that SCONJ coo.31924059551022 511 18 it it PRON coo.31924059551022 511 19 is be AUX coo.31924059551022 511 20 often often ADV coo.31924059551022 511 21 an an DET coo.31924059551022 511 22 easier easy ADJ coo.31924059551022 511 23 task task NOUN coo.31924059551022 511 24 to to PART coo.31924059551022 511 25 obtain obtain VERB coo.31924059551022 511 26 a a DET coo.31924059551022 511 27 general general NOUN coo.31924059551022 511 28 than than ADP coo.31924059551022 511 29 an an DET coo.31924059551022 511 30 explicit explicit ADJ coo.31924059551022 511 31 form form NOUN coo.31924059551022 511 32 . . PUNCT coo.31924059551022 512 1 having having AUX coo.31924059551022 512 2 determined determine VERB coo.31924059551022 512 3 the the DET coo.31924059551022 512 4 explicit explicit ADJ coo.31924059551022 512 5 forms form NOUN coo.31924059551022 512 6 for for ADP coo.31924059551022 512 7 n n X coo.31924059551022 512 8 2 2 NUM coo.31924059551022 512 9 let let VERB coo.31924059551022 512 10 us we PRON coo.31924059551022 512 11 attempt attempt VERB coo.31924059551022 512 12 to to PART coo.31924059551022 512 13 apply apply VERB coo.31924059551022 512 14 the the DET coo.31924059551022 512 15 above above ADJ coo.31924059551022 512 16 rule rule NOUN coo.31924059551022 512 17 to to ADP coo.31924059551022 512 18 the the DET coo.31924059551022 512 19 next next ADJ coo.31924059551022 512 20 case case NOUN coo.31924059551022 512 21 n n X coo.31924059551022 512 22 = = X coo.31924059551022 512 23 3 3 NUM coo.31924059551022 512 24 . . PUNCT coo.31924059551022 512 25 from from ADP coo.31924059551022 512 26 ( ( PUNCT coo.31924059551022 512 27 60 60 NUM coo.31924059551022 512 28 ) ) PUNCT coo.31924059551022 512 29 and and CCONJ coo.31924059551022 512 30 ( ( PUNCT coo.31924059551022 512 31 61 61 X coo.31924059551022 512 32 ) ) PUNCT coo.31924059551022 512 33 we we PRON coo.31924059551022 512 34 obtain obtain VERB coo.31924059551022 512 35 . . PUNCT coo.31924059551022 513 1 given give VERB coo.31924059551022 513 2 n n CCONJ coo.31924059551022 513 3 = = SYM coo.31924059551022 513 4 3 3 NUM coo.31924059551022 513 5 fw fw NOUN coo.31924059551022 513 6 = = PUNCT coo.31924059551022 513 7 3 3 NUM coo.31924059551022 513 8 = = SYM coo.31924059551022 513 9 “ " PUNCT coo.31924059551022 513 10 f f PROPN coo.31924059551022 513 11 * * SYM coo.31924059551022 513 12 -ags -ag NOUN coo.31924059551022 513 13 a3 a3 NOUN coo.31924059551022 513 14 where where SCONJ coo.31924059551022 513 15 a2 a2 PROPN coo.31924059551022 513 16 a3 a3 PROPN coo.31924059551022 513 17 n(n n(n PROPN coo.31924059551022 513 18 — — PUNCT coo.31924059551022 513 19 1 1 X coo.31924059551022 513 20 ) ) PUNCT coo.31924059551022 513 21 8(2 8(2 NUM coo.31924059551022 513 22 n n CCONJ coo.31924059551022 513 23 — — PUNCT coo.31924059551022 513 24 3 3 X coo.31924059551022 513 25 ) ) PUNCT coo.31924059551022 513 26 < < X coo.31924059551022 513 27 p'(v p'(v X coo.31924059551022 513 28 ) ) PUNCT coo.31924059551022 513 29 — — PUNCT coo.31924059551022 513 30 t t PROPN coo.31924059551022 513 31 9>'0 9>'0 PROPN coo.31924059551022 513 32 ) ) PUNCT coo.31924059551022 513 33 — — PUNCT coo.31924059551022 513 34 t t PROPN coo.31924059551022 513 35 ( ( PUNCT coo.31924059551022 513 36 12&2 12&2 NUM coo.31924059551022 513 37 — — PUNCT coo.31924059551022 513 38 t t PROPN coo.31924059551022 513 39 ft ft PROPN coo.31924059551022 513 40 ) ) PUNCT coo.31924059551022 513 41 n(n n(n PROPN coo.31924059551022 513 42 — — PUNCT coo.31924059551022 513 43 2 2 X coo.31924059551022 513 44 ) ) PUNCT coo.31924059551022 513 45 12 12 NUM coo.31924059551022 513 46 ( ( PUNCT coo.31924059551022 513 47 2 2 NUM coo.31924059551022 513 48 n n CCONJ coo.31924059551022 513 49 — — PUNCT coo.31924059551022 513 50 5 5 X coo.31924059551022 513 51 ) ) PUNCT coo.31924059551022 513 52 ψφ)~ ψφ)~ PROPN coo.31924059551022 513 53 n{n n{n NOUN coo.31924059551022 513 54 — — PUNCT coo.31924059551022 513 55 1 1 X coo.31924059551022 513 56 ) ) PUNCT coo.31924059551022 513 57 ( ( PUNCT coo.31924059551022 513 58 n n NOUN coo.31924059551022 513 59 — — PUNCT coo.31924059551022 513 60 2 2 X coo.31924059551022 513 61 ) ) PUNCT coo.31924059551022 513 62 2(2n 2(2n NUM coo.31924059551022 513 63 — — PUNCT coo.31924059551022 513 64 3 3 X coo.31924059551022 513 65 ) ) PUNCT coo.31924059551022 513 66 ( ( PUNCT coo.31924059551022 513 67 2n 2n NUM coo.31924059551022 513 68 — — PUNCT coo.31924059551022 513 69 ~5 ~5 X coo.31924059551022 513 70 ) ) PUNCT coo.31924059551022 513 71 btp'b btp'b ADJ coo.31924059551022 513 72 = = NOUN coo.31924059551022 513 73 ~φ(ί ~φ(ί NOUN coo.31924059551022 513 74 > > X coo.31924059551022 513 75 ) ) PUNCT coo.31924059551022 513 76 — — PUNCT coo.31924059551022 513 77 bq)'b bq)'b PROPN coo.31924059551022 513 78 -τ(44δ3 -τ(44δ3 SPACE coo.31924059551022 513 79 - - PROPN coo.31924059551022 513 80 3^δ 3^δ NUM coo.31924059551022 513 81 + + PUNCT coo.31924059551022 513 82 ^. ^. VERB coo.31924059551022 513 83 again again ADV coo.31924059551022 513 84 8 8 NUM coo.31924059551022 513 85 — — PUNCT coo.31924059551022 513 86 t t NOUN coo.31924059551022 513 87 — — PUNCT coo.31924059551022 513 88 b b X coo.31924059551022 513 89 . . PUNCT coo.31924059551022 513 90 · · PUNCT coo.31924059551022 513 91 . . PUNCT coo.31924059551022 513 92 φ(ί φ(ί X coo.31924059551022 513 93 ) ) PUNCT coo.31924059551022 514 1 = = PROPN coo.31924059551022 514 2 4 4 NUM coo.31924059551022 514 3 ( ( PUNCT coo.31924059551022 514 4 £ £ SYM coo.31924059551022 514 5 + + CCONJ coo.31924059551022 514 6 δ)3 δ)3 PROPN coo.31924059551022 514 7 & & CCONJ coo.31924059551022 514 8 ( ( PUNCT coo.31924059551022 514 9 s s PROPN coo.31924059551022 514 10 + + PROPN coo.31924059551022 514 11 δ δ NOUN coo.31924059551022 514 12 } } X coo.31924059551022 514 13 ÿ ÿ NOUN coo.31924059551022 514 14 , , PUNCT coo.31924059551022 514 15 · · PUNCT coo.31924059551022 514 16 = = PRON coo.31924059551022 514 17 4s3 4s3 NUM coo.31924059551022 514 18 + + NUM coo.31924059551022 514 19 12δ32 12δ32 NUM coo.31924059551022 514 20 + + NUM coo.31924059551022 514 21 12δ2 12δ2 NUM coo.31924059551022 514 22 £ £ SYM coo.31924059551022 514 23 + + NUM coo.31924059551022 514 24 4δ3 4δ3 NUM coo.31924059551022 514 25 — — PUNCT coo.31924059551022 514 26 g2 g2 PROPN coo.31924059551022 514 27 s s PART coo.31924059551022 514 28 bg bg PROPN coo.31924059551022 514 29 , , PUNCT coo.31924059551022 514 30 — — PUNCT coo.31924059551022 514 31 g3 g3 X coo.31924059551022 514 32 = = X coo.31924059551022 514 33 4ss 4ss PROPN coo.31924059551022 515 1 + + NUM coo.31924059551022 515 2 12bs2 12bs2 NUM coo.31924059551022 516 1 + + NUM coo.31924059551022 516 2 ( ( PUNCT coo.31924059551022 516 3 12δ2 12δ2 NUM coo.31924059551022 516 4 gt gt NOUN coo.31924059551022 516 5 ) ) PUNCT coo.31924059551022 516 6 s s PROPN coo.31924059551022 516 7 + + PROPN coo.31924059551022 516 8 4δ3 4δ3 NUM coo.31924059551022 516 9 hg2 hg2 NOUN coo.31924059551022 516 10 g3 g3 NOUN coo.31924059551022 516 11 = = NOUN coo.31924059551022 516 12 4 4 NUM coo.31924059551022 516 13 s3 s3 PROPN coo.31924059551022 516 14 + + NUM coo.31924059551022 516 15 12bs2 12bs2 NUM coo.31924059551022 516 16 + + CCONJ coo.31924059551022 516 17 φ’8 φ’8 ADJ coo.31924059551022 517 1 + + CCONJ coo.31924059551022 518 1 φ φ X coo.31924059551022 518 2 . . PUNCT coo.31924059551022 518 3 · · PUNCT coo.31924059551022 518 4 · · PUNCT coo.31924059551022 518 5 · · PUNCT coo.31924059551022 518 6 s s X coo.31924059551022 518 7 ’ ' PUNCT coo.31924059551022 518 8 t t PROPN coo.31924059551022 518 9 * * PUNCT coo.31924059551022 518 10 ( ( PUNCT coo.31924059551022 518 11 < < X coo.31924059551022 518 12 ) ) PUNCT coo.31924059551022 518 13 36s 36s X coo.31924059551022 518 14 * * PUNCT coo.31924059551022 518 15 ! ! PUNCT coo.31924059551022 519 1 φ'-s φ'-s PROPN coo.31924059551022 519 2 - - PUNCT coo.31924059551022 519 3 i i PRON coo.31924059551022 519 4 φ φ PROPN coo.31924059551022 519 5 . . PUNCT coo.31924059551022 520 1 hence hence ADV coo.31924059551022 520 2 [ [ X coo.31924059551022 520 3 67j 67j NUM coo.31924059551022 520 4 · · PUNCT coo.31924059551022 520 5 ■ ■ PUNCT coo.31924059551022 520 6 în în PROPN coo.31924059551022 520 7 = = PROPN coo.31924059551022 520 8 z==s z==s X coo.31924059551022 520 9 * * PROPN coo.31924059551022 520 10 + + CCONJ coo.31924059551022 520 11 a2s+as a2s+as PROPN coo.31924059551022 520 12 = = SYM coo.31924059551022 520 13 s3 s3 PROPN coo.31924059551022 521 1 + + PROPN coo.31924059551022 521 2 jg jg PROPN coo.31924059551022 521 3 / / SYM coo.31924059551022 521 4 s s NOUN coo.31924059551022 521 5 + + CCONJ coo.31924059551022 521 6 \φ-1φ \φ-1φ NOUN coo.31924059551022 521 7 ' ' PUNCT coo.31924059551022 521 8 * * NOUN coo.31924059551022 521 9 = = SYM coo.31924059551022 521 10 s3 s3 PROPN coo.31924059551022 521 11 + + CCONJ coo.31924059551022 521 12 ( ( PUNCT coo.31924059551022 521 13 3δ2 3δ2 NUM coo.31924059551022 521 14 ¿ ¿ NUM coo.31924059551022 521 15 < < X coo.31924059551022 521 16 /2 /2 NOUN coo.31924059551022 521 17 ) ) PUNCT coo.31924059551022 521 18 8(44 8(44 NUM coo.31924059551022 521 19 δ3 δ3 PROPN coo.31924059551022 521 20 3 3 NUM coo.31924059551022 521 21 ft ft NOUN coo.31924059551022 521 22 δ δ PROPN coo.31924059551022 521 23 + + CCONJ coo.31924059551022 521 24 λ λ PROPN coo.31924059551022 521 25 ) ) PUNCT coo.31924059551022 521 26 = = PROPN coo.31924059551022 521 27 1φ(ί)_δ(φ 1φ(ί)_δ(φ NUM coo.31924059551022 521 28 ' ' PUNCT coo.31924059551022 521 29 + + CCONJ coo.31924059551022 521 30 3«2 3«2 NUM coo.31924059551022 521 31 ) ) PUNCT coo.31924059551022 521 32 = = NOUN coo.31924059551022 522 1 χ?>(0 χ?>(0 NOUN coo.31924059551022 522 2 ~ ~ PUNCT coo.31924059551022 522 3 + + NUM coo.31924059551022 522 4 3(ί 3(ί NUM coo.31924059551022 522 5 — — PUNCT coo.31924059551022 522 6 δ)2 δ)2 PROPN coo.31924059551022 522 7 ] ] X coo.31924059551022 522 8 = = PUNCT coo.31924059551022 522 9 * * PUNCT coo.31924059551022 522 10 3 3 NUM coo.31924059551022 522 11 3δί2 3δί2 NUM coo.31924059551022 522 12 + + NUM coo.31924059551022 522 13 ( ( PUNCT coo.31924059551022 522 14 6δ2 6δ2 NUM coo.31924059551022 522 15 t t NOUN coo.31924059551022 522 16 ( ( PUNCT coo.31924059551022 522 17 ι5δ3 ι5δ3 PUNCT coo.31924059551022 522 18 λδ λδ PROPN coo.31924059551022 522 19 + + PROPN coo.31924059551022 522 20 \g3 \g3 PROPN coo.31924059551022 522 21 ) ) PUNCT coo.31924059551022 522 22 . . PUNCT coo.31924059551022 523 1 whence whence ADV coo.31924059551022 523 2 γ'=3£2 γ'=3£2 NUM coo.31924059551022 523 3 + + NUM coo.31924059551022 523 4 λ λ PROPN coo.31924059551022 523 5 , , PUNCT coo.31924059551022 523 6 γ"=6 γ"=6 NOUN coo.31924059551022 523 7 £ £ NOUN coo.31924059551022 523 8 , , PUNCT coo.31924059551022 523 9 2 2 NUM coo.31924059551022 523 10 υυ"= υυ"= NUM coo.31924059551022 523 11 128(83 128(83 NUM coo.31924059551022 523 12 + + NUM coo.31924059551022 523 13 α28+α3 α28+α3 NUM coo.31924059551022 523 14 ) ) PUNCT coo.31924059551022 523 15 and and CCONJ coo.31924059551022 523 16 substituting substitute VERB coo.31924059551022 523 17 in in ADP coo.31924059551022 523 18 ( ( PUNCT coo.31924059551022 523 19 64 64 NUM coo.31924059551022 523 20 ) ) PUNCT coo.31924059551022 523 21 we we PRON coo.31924059551022 523 22 have have VERB coo.31924059551022 523 23 [ [ X coo.31924059551022 523 24 68 68 NUM coo.31924059551022 523 25 ] ] PUNCT coo.31924059551022 523 26 .... .... PUNCT coo.31924059551022 524 1 c2 c2 PROPN coo.31924059551022 524 2 = = PROPN coo.31924059551022 524 3 ì(3 ì(3 PROPN coo.31924059551022 524 4 / / SYM coo.31924059551022 524 5 s2 s2 PROPN coo.31924059551022 524 6 + + SYM coo.31924059551022 524 7 ¿ ¿ NUM coo.31924059551022 524 8 2)2 2)2 NUM coo.31924059551022 524 9 3 3 NUM coo.31924059551022 524 10 / / SYM coo.31924059551022 524 11 s(/s3 s(/s3 X coo.31924059551022 525 1 + + NUM coo.31924059551022 525 2 λ λ NOUN coo.31924059551022 525 3 £ £ SYM coo.31924059551022 525 4 + + CCONJ coo.31924059551022 525 5 a a PRON coo.31924059551022 525 6 , , PUNCT coo.31924059551022 525 7 ) ) PUNCT coo.31924059551022 525 8 + + CCONJ coo.31924059551022 526 1 3(4s-+ 3(4s-+ NUM coo.31924059551022 526 2 3δ)(δ’3 3δ)(δ’3 NUM coo.31924059551022 526 3 + + PUNCT coo.31924059551022 526 4 λ^+λ)2 λ^+λ)2 ADP coo.31924059551022 526 5 · · PUNCT coo.31924059551022 526 6 integral integral PROPN coo.31924059551022 526 7 as as ADP coo.31924059551022 526 8 a a DET coo.31924059551022 526 9 product product NOUN coo.31924059551022 526 10 . . PUNCT coo.31924059551022 527 1 41 41 NUM coo.31924059551022 527 2 to to PART coo.31924059551022 527 3 attempt attempt VERB coo.31924059551022 527 4 to to PART coo.31924059551022 527 5 extract extract VERB coo.31924059551022 527 6 the the DET coo.31924059551022 527 7 square square ADJ coo.31924059551022 527 8 roots root NOUN coo.31924059551022 527 9 of of ADP coo.31924059551022 527 10 this this DET coo.31924059551022 527 11 equation equation NOUN coo.31924059551022 527 12 in in ADP coo.31924059551022 527 13 accordance accordance NOUN coo.31924059551022 527 14 with with ADP coo.31924059551022 527 15 the the DET coo.31924059551022 527 16 theory theory NOUN coo.31924059551022 527 17 , , PUNCT coo.31924059551022 527 18 g2 g2 PROPN coo.31924059551022 527 19 being be AUX coo.31924059551022 527 20 expressed express VERB coo.31924059551022 527 21 as as ADP coo.31924059551022 527 22 an an DET coo.31924059551022 527 23 equation equation NOUN coo.31924059551022 527 24 of of ADP coo.31924059551022 527 25 the the DET coo.31924059551022 527 26 7th 7th ADJ coo.31924059551022 527 27 degree degree NOUN coo.31924059551022 527 28 in in ADP coo.31924059551022 527 29 s s PROPN coo.31924059551022 527 30 or or CCONJ coo.31924059551022 527 31 t t PROPN coo.31924059551022 527 32 were be AUX coo.31924059551022 527 33 clearly clearly ADV coo.31924059551022 527 34 impossible impossible ADJ coo.31924059551022 527 35 without without SCONJ coo.31924059551022 527 36 some some DET coo.31924059551022 527 37 further further ADJ coo.31924059551022 527 38 knowledge knowledge NOUN coo.31924059551022 527 39 of of ADP coo.31924059551022 527 40 the the DET coo.31924059551022 527 41 properties property NOUN coo.31924059551022 527 42 of of ADP coo.31924059551022 527 43 c. c. PROPN coo.31924059551022 527 44 to to PART coo.31924059551022 527 45 arrive arrive VERB coo.31924059551022 527 46 at at ADP coo.31924059551022 527 47 such such ADJ coo.31924059551022 527 48 knowledge knowledge NOUN coo.31924059551022 527 49 we we PRON coo.31924059551022 527 50 are be AUX coo.31924059551022 527 51 led lead VERB coo.31924059551022 527 52 ultimately ultimately ADV coo.31924059551022 527 53 back back ADV coo.31924059551022 527 54 to to ADP coo.31924059551022 527 55 a a DET coo.31924059551022 527 56 study study NOUN coo.31924059551022 527 57 of of ADP coo.31924059551022 527 58 the the DET coo.31924059551022 527 59 special special ADJ coo.31924059551022 527 60 functions function NOUN coo.31924059551022 527 61 of of ADP coo.31924059551022 527 62 lamé lamé NOUN coo.31924059551022 527 63 . . PUNCT coo.31924059551022 528 1 part part X coo.31924059551022 528 2 iy iy PROPN coo.31924059551022 528 3 . . PUNCT coo.31924059551022 529 1 the the DET coo.31924059551022 529 2 special special ADJ coo.31924059551022 529 3 fan fan NOUN coo.31924059551022 529 4 étions étion NOUN coo.31924059551022 529 5 of of ADP coo.31924059551022 529 6 lamé lamé NOUN coo.31924059551022 529 7 . . PUNCT coo.31924059551022 530 1 functions function NOUN coo.31924059551022 530 2 of of ADP coo.31924059551022 530 3 the the DET coo.31924059551022 530 4 first first ADJ coo.31924059551022 530 5 sort sort NOUN coo.31924059551022 530 6 . . PUNCT coo.31924059551022 531 1 lamé lamé NOUN coo.31924059551022 531 2 derived derive VERB coo.31924059551022 531 3 originally originally ADV coo.31924059551022 531 4 functions function NOUN coo.31924059551022 531 5 of of ADP coo.31924059551022 531 6 three three NUM coo.31924059551022 531 7 different different ADJ coo.31924059551022 531 8 sorts sort NOUN coo.31924059551022 531 9 , , PUNCT coo.31924059551022 531 10 values value NOUN coo.31924059551022 531 11 for for ADP coo.31924059551022 531 12 y7 y7 NOUN coo.31924059551022 531 13 depending depend VERB coo.31924059551022 531 14 on on ADP coo.31924059551022 531 15 the the DET coo.31924059551022 531 16 value value NOUN coo.31924059551022 531 17 of of ADP coo.31924059551022 531 18 n n NOUN coo.31924059551022 531 19 and and CCONJ coo.31924059551022 531 20 corresponding corresponding ADJ coo.31924059551022 531 21 ‘ ' PUNCT coo.31924059551022 531 22 in in ADP coo.31924059551022 531 23 each each DET coo.31924059551022 531 24 case case NOUN coo.31924059551022 531 25 to to ADP coo.31924059551022 531 26 a a DET coo.31924059551022 531 27 specific specific ADJ coo.31924059551022 531 28 value value NOUN coo.31924059551022 531 29 of of ADP coo.31924059551022 531 30 b7 b7 PROPN coo.31924059551022 531 31 the the DET coo.31924059551022 531 32 chief chief ADJ coo.31924059551022 531 33 peculiarity peculiarity NOUN coo.31924059551022 531 34 being be AUX coo.31924059551022 531 35 that that SCONJ coo.31924059551022 531 36 for for ADP coo.31924059551022 531 37 these these DET coo.31924059551022 531 38 values value NOUN coo.31924059551022 531 39 y y PROPN coo.31924059551022 531 40 is be AUX coo.31924059551022 531 41 doubly doubly ADV coo.31924059551022 531 42 periodic periodic ADJ coo.31924059551022 531 43 . . PUNCT coo.31924059551022 532 1 the the DET coo.31924059551022 532 2 functions function NOUN coo.31924059551022 532 3 of of ADP coo.31924059551022 532 4 the the DET coo.31924059551022 532 5 first first ADJ coo.31924059551022 532 6 class class NOUN coo.31924059551022 532 7 are be AUX coo.31924059551022 532 8 characterized characterize VERB coo.31924059551022 532 9 as as ADP coo.31924059551022 532 10 developable developable ADJ coo.31924059551022 532 11 in in ADP coo.31924059551022 532 12 the the DET coo.31924059551022 532 13 form form NOUN coo.31924059551022 532 14 [ [ X coo.31924059551022 532 15 69 69 NUM coo.31924059551022 532 16 ] ] PUNCT coo.31924059551022 532 17 .... .... PUNCT coo.31924059551022 533 1 y y PROPN coo.31924059551022 533 2 = = PROPN coo.31924059551022 533 3 p(n—2 p(n—2 PROPN coo.31924059551022 533 4 ) ) PUNCT coo.31924059551022 533 5 -f—4 -f—4 SPACE coo.31924059551022 533 6 ) ) PUNCT coo.31924059551022 533 7 a2p(rl a2p(rl SPACE coo.31924059551022 533 8 ~ ~ PUNCT coo.31924059551022 533 9 g g X coo.31924059551022 533 10 ) ) PUNCT coo.31924059551022 533 11 + + CCONJ coo.31924059551022 533 12 · · PUNCT coo.31924059551022 534 1 ■ ■ PUNCT coo.31924059551022 534 2 · · PUNCT coo.31924059551022 534 3 and and CCONJ coo.31924059551022 534 4 that that SCONJ coo.31924059551022 534 5 such such DET coo.31924059551022 534 6 an an DET coo.31924059551022 534 7 integral integral ADJ coo.31924059551022 534 8 may may AUX coo.31924059551022 534 9 exist exist VERB coo.31924059551022 534 10 is be AUX coo.31924059551022 534 11 seen see VERB coo.31924059551022 534 12 from from ADP coo.31924059551022 534 13 the the DET coo.31924059551022 534 14 following follow VERB coo.31924059551022 534 15 : : PUNCT coo.31924059551022 534 16 writing write VERB coo.31924059551022 534 17 the the DET coo.31924059551022 534 18 corresponding corresponding ADJ coo.31924059551022 534 19 function function NOUN coo.31924059551022 534 20 of of ADP coo.31924059551022 534 21 the the DET coo.31924059551022 534 22 same same ADJ coo.31924059551022 534 23 sort sort NOUN coo.31924059551022 534 24 y y PROPN coo.31924059551022 534 25 - - PUNCT coo.31924059551022 534 26 p(u p(u PROPN coo.31924059551022 534 27 ) ) PUNCT coo.31924059551022 534 28 we we PRON coo.31924059551022 534 29 have have VERB coo.31924059551022 534 30 n(n n(n PROPN coo.31924059551022 534 31 + + CCONJ coo.31924059551022 534 32 1 1 NUM coo.31924059551022 534 33 ) ) PUNCT coo.31924059551022 534 34 yp(u yp(u PROPN coo.31924059551022 534 35 ) ) PUNCT coo.31924059551022 534 36 = = NOUN coo.31924059551022 534 37 pin pin NOUN coo.31924059551022 534 38 ) ) PUNCT coo.31924059551022 534 39 + + CCONJ coo.31924059551022 534 40 ^ip(*“2 ^ip(*“2 SPACE coo.31924059551022 534 41 ) ) PUNCT coo.31924059551022 534 42 + + NUM coo.31924059551022 535 1 a2p^n-^ a2p^n-^ PUNCT coo.31924059551022 536 1 + + PUNCT coo.31924059551022 536 2 · · PUNCT coo.31924059551022 536 3 · · PUNCT coo.31924059551022 536 4 * * PUNCT coo.31924059551022 536 5 whence whence ADP coo.31924059551022 536 6 by by ADP coo.31924059551022 536 7 subtraction subtraction NOUN coo.31924059551022 536 8 y y NOUN coo.31924059551022 536 9 " " PUNCT coo.31924059551022 536 10 — — PUNCT coo.31924059551022 536 11 n(n n(n PROPN coo.31924059551022 536 12 + + CCONJ coo.31924059551022 536 13 1 1 NUM coo.31924059551022 536 14 ) ) PUNCT coo.31924059551022 536 15 yp yp PROPN coo.31924059551022 536 16 = = PROPN coo.31924059551022 536 17 ( ( PUNCT coo.31924059551022 536 18 at at ADP coo.31924059551022 536 19 — — PUNCT coo.31924059551022 536 20 ajp^- ajp^- SPACE coo.31924059551022 536 21 ® ® NOUN coo.31924059551022 536 22 + + CCONJ coo.31924059551022 536 23 ( ( PUNCT coo.31924059551022 536 24 a2 a2 X coo.31924059551022 536 25 — — PUNCT coo.31924059551022 536 26 a^p^-^ a^p^-^ NOUN coo.31924059551022 536 27 + + CCONJ coo.31924059551022 536 28 · · PUNCT coo.31924059551022 536 29 · · PUNCT coo.31924059551022 536 30 = = VERB coo.31924059551022 536 31 by by ADP coo.31924059551022 536 32 that that PRON coo.31924059551022 536 33 is be AUX coo.31924059551022 536 34 a a DET coo.31924059551022 536 35 function function NOUN coo.31924059551022 536 36 of of ADP coo.31924059551022 536 37 the the DET coo.31924059551022 536 38 first first ADJ coo.31924059551022 536 39 sort sort NOUN coo.31924059551022 536 40 will will AUX coo.31924059551022 536 41 be be AUX coo.31924059551022 536 42 a a DET coo.31924059551022 536 43 root root NOUN coo.31924059551022 536 44 of of ADP coo.31924059551022 536 45 hermite hermite NOUN coo.31924059551022 536 46 ’s ’s PART coo.31924059551022 536 47 equation equation NOUN coo.31924059551022 536 48 provided provide VERB coo.31924059551022 536 49 at at ADP coo.31924059551022 536 50 — — PUNCT coo.31924059551022 536 51 at at ADP coo.31924059551022 536 52 = = SYM coo.31924059551022 536 53 b b NOUN coo.31924059551022 536 54 : : PUNCT coo.31924059551022 536 55 a2 a2 X coo.31924059551022 536 56 — — PUNCT coo.31924059551022 536 57 a2 a2 X coo.31924059551022 536 58 = = X coo.31924059551022 536 59 bax bax NOUN coo.31924059551022 536 60 : : PUNCT coo.31924059551022 536 61 a3 a3 NOUN coo.31924059551022 536 62 — — PUNCT coo.31924059551022 536 63 a3 a3 NOUN coo.31924059551022 536 64 = = PUNCT coo.31924059551022 536 65 ba2 ba2 PRON coo.31924059551022 536 66 etc etc X coo.31924059551022 536 67 . . X coo.31924059551022 536 68 where where SCONJ coo.31924059551022 536 69 the the DET coo.31924059551022 536 70 quantities quantity NOUN coo.31924059551022 536 71 ( ( PUNCT coo.31924059551022 536 72 a a X coo.31924059551022 536 73 ) ) PUNCT coo.31924059551022 536 74 are be AUX coo.31924059551022 536 75 linear linear ADJ coo.31924059551022 536 76 functions function NOUN coo.31924059551022 536 77 of of ADP coo.31924059551022 536 78 the the DET coo.31924059551022 536 79 quantities quantity NOUN coo.31924059551022 536 80 ( ( PUNCT coo.31924059551022 536 81 a a X coo.31924059551022 536 82 ) ) PUNCT coo.31924059551022 536 83 . . PUNCT coo.31924059551022 537 1 but but CCONJ coo.31924059551022 537 2 since since SCONJ coo.31924059551022 537 3 the the DET coo.31924059551022 537 4 number number NOUN coo.31924059551022 537 5 of of ADP coo.31924059551022 537 6 these these DET coo.31924059551022 537 7 condition condition NOUN coo.31924059551022 537 8 equations equation NOUN coo.31924059551022 537 9 is be AUX coo.31924059551022 537 10 greater great ADJ coo.31924059551022 537 11 by by ADP coo.31924059551022 537 12 unity unity NOUN coo.31924059551022 537 13 than than ADP coo.31924059551022 537 14 the the DET coo.31924059551022 537 15 number number NOUN coo.31924059551022 537 16 of of ADP coo.31924059551022 537 17 unknown unknown ADJ coo.31924059551022 537 18 ( ( PUNCT coo.31924059551022 537 19 a a X coo.31924059551022 537 20 ) ) PUNCT coo.31924059551022 537 21 it it PRON coo.31924059551022 537 22 follows follow VERB coo.31924059551022 537 23 that that SCONJ coo.31924059551022 537 24 upon upon SCONJ coo.31924059551022 537 25 their their PRON coo.31924059551022 537 26 ellimination ellimination NOUN coo.31924059551022 537 27 we we PRON coo.31924059551022 537 28 obtain obtain VERB coo.31924059551022 537 29 an an DET coo.31924059551022 537 30 equation equation NOUN coo.31924059551022 537 31 in in ADP coo.31924059551022 537 32 b b PROPN coo.31924059551022 537 33 whose whose DET coo.31924059551022 537 34 degree degree NOUN coo.31924059551022 537 35 will will AUX coo.31924059551022 537 36 equal equal VERB coo.31924059551022 537 37 the the DET coo.31924059551022 537 38 number number NOUN coo.31924059551022 537 39 of of ADP coo.31924059551022 537 40 equations equation NOUN coo.31924059551022 537 41 , , PUNCT coo.31924059551022 537 42 that that PRON coo.31924059551022 537 43 is be AUX coo.31924059551022 537 44 γη γη PROPN coo.31924059551022 537 45 + + NUM coo.31924059551022 537 46 1 1 NUM coo.31924059551022 538 1 if if SCONJ coo.31924059551022 538 2 w w NOUN coo.31924059551022 538 3 is be AUX coo.31924059551022 538 4 even even ADV coo.31924059551022 538 5 and and CCONJ coo.31924059551022 538 6 γ(η γ(η NUM coo.31924059551022 538 7 — — PUNCT coo.31924059551022 538 8 1 1 X coo.31924059551022 538 9 ) ) PUNCT coo.31924059551022 538 10 if if SCONJ coo.31924059551022 538 11 n n ADV coo.31924059551022 538 12 is be AUX coo.31924059551022 538 13 uneven uneven ADJ coo.31924059551022 538 14 : : PUNCT coo.31924059551022 538 15 for for ADP coo.31924059551022 538 16 example example NOUN coo.31924059551022 538 17 take take VERB coo.31924059551022 538 18 n n CCONJ coo.31924059551022 538 19 = = SYM coo.31924059551022 538 20 2 2 NUM coo.31924059551022 538 21 , , PUNCT coo.31924059551022 538 22 whence whence ADP coo.31924059551022 538 23 y y PROPN coo.31924059551022 538 24 = = X coo.31924059551022 538 25 p p PROPN coo.31924059551022 538 26 -fat -fat PUNCT coo.31924059551022 538 27 and and CCONJ coo.31924059551022 538 28 y"= y"= VERB coo.31924059551022 538 29 p p NOUN coo.31924059551022 538 30 ” " PUNCT coo.31924059551022 538 31 and and CCONJ coo.31924059551022 538 32 we we PRON coo.31924059551022 538 33 derive derive VERB coo.31924059551022 538 34 p p NOUN coo.31924059551022 538 35 ” " PUNCT coo.31924059551022 538 36 — — PUNCT coo.31924059551022 539 1 6(p 6(p NUM coo.31924059551022 539 2 + + CCONJ coo.31924059551022 539 3 < < X coo.31924059551022 539 4 ^i)p ^i)p PROPN coo.31924059551022 539 5 — — PUNCT coo.31924059551022 539 6 bp bp PROPN coo.31924059551022 539 7 — — PUNCT coo.31924059551022 539 8 or or CCONJ coo.31924059551022 539 9 bax bax PROPN coo.31924059551022 539 10 -f -f PUNCT coo.31924059551022 539 11 \g2 \g2 ADJ coo.31924059551022 539 12 = = NOUN coo.31924059551022 539 13 0 0 NUM coo.31924059551022 539 14 , , PUNCT coo.31924059551022 539 15 also also ADV coo.31924059551022 539 16 6^ 6^ NUM coo.31924059551022 539 17 -fb -fb PUNCT coo.31924059551022 539 18 = = SYM coo.31924059551022 539 19 0 0 NUM coo.31924059551022 539 20 the the DET coo.31924059551022 539 21 special special ADJ coo.31924059551022 539 22 functions function NOUN coo.31924059551022 539 23 of of ADP coo.31924059551022 539 24 lamé lamé NOUN coo.31924059551022 539 25 . . PUNCT coo.31924059551022 540 1 • • PUNCT coo.31924059551022 540 2 43 43 NUM coo.31924059551022 540 3 whence whence ADV coo.31924059551022 541 1 and and CCONJ coo.31924059551022 541 2 we we PRON coo.31924059551022 541 3 find find VERB coo.31924059551022 541 4 y y PROPN coo.31924059551022 541 5 — — PUNCT coo.31924059551022 541 6 p p PROPN coo.31924059551022 541 7 — — PUNCT coo.31924059551022 541 8 j j PROPN coo.31924059551022 541 9 b b NOUN coo.31924059551022 541 10 where where SCONJ coo.31924059551022 541 11 p2 p2 PROPN coo.31924059551022 541 12 — — PUNCT coo.31924059551022 541 13 3¿/2 3¿/2 NUM coo.31924059551022 541 14 = = SYM coo.31924059551022 541 15 0 0 NUM coo.31924059551022 541 16 . . PUNCT coo.31924059551022 541 17 again again ADV coo.31924059551022 541 18 let let VERB coo.31924059551022 541 19 n n CCONJ coo.31924059551022 541 20 = = X coo.31924059551022 541 21 3 3 NUM coo.31924059551022 541 22 in in ADP coo.31924059551022 541 23 which which DET coo.31924059551022 541 24 case case NOUN coo.31924059551022 541 25 the the DET coo.31924059551022 541 26 equation equation NOUN coo.31924059551022 541 27 in in ADP coo.31924059551022 541 28 b b PROPN coo.31924059551022 541 29 would would AUX coo.31924059551022 541 30 be be AUX coo.31924059551022 541 31 of of ADP coo.31924059551022 541 32 degree degree NOUN coo.31924059551022 541 33 y y PROPN coo.31924059551022 541 34 ( ( PUNCT coo.31924059551022 541 35 n n NOUN coo.31924059551022 541 36 — — PUNCT coo.31924059551022 541 37 1 1 X coo.31924059551022 541 38 ) ) PUNCT coo.31924059551022 541 39 = = PROPN coo.31924059551022 541 40 1 1 NUM coo.31924059551022 541 41 , , PUNCT coo.31924059551022 541 42 that that PRON coo.31924059551022 541 43 is be AUX coo.31924059551022 541 44 b b PROPN coo.31924059551022 541 45 = = NOUN coo.31924059551022 541 46 0 0 NUM coo.31924059551022 541 47 , , PUNCT coo.31924059551022 541 48 for for ADP coo.31924059551022 541 49 which which DET coo.31924059551022 541 50 value value NOUN coo.31924059551022 541 51 we we PRON coo.31924059551022 541 52 have have VERB coo.31924059551022 541 53 at at ADP coo.31924059551022 541 54 once once ADV coo.31924059551022 541 55 y==p'(u y==p'(u PROPN coo.31924059551022 541 56 ) ) PUNCT coo.31924059551022 541 57 . . PUNCT coo.31924059551022 542 1 substituting substitute VERB coo.31924059551022 542 2 indeed indeed ADV coo.31924059551022 542 3 this this DET coo.31924059551022 542 4 value value NOUN coo.31924059551022 542 5 in in ADP coo.31924059551022 542 6 hermite hermite PROPN coo.31924059551022 542 7 ’s ’s PART coo.31924059551022 542 8 equation equation NOUN coo.31924059551022 542 9 for for ADP coo.31924059551022 542 10 n n NOUN coo.31924059551022 542 11 — — PUNCT coo.31924059551022 542 12 3 3 NUM coo.31924059551022 542 13 we we PRON coo.31924059551022 542 14 derive derive VERB coo.31924059551022 542 15 at at ADP coo.31924059551022 542 16 once once ADV coo.31924059551022 542 17 p p NOUN coo.31924059551022 542 18 " " PUNCT coo.31924059551022 542 19 — — PUNCT coo.31924059551022 542 20 12 12 NUM coo.31924059551022 542 21 pp pp NOUN coo.31924059551022 542 22 = = SYM coo.31924059551022 542 23 0 0 NUM coo.31924059551022 542 24 a a DET coo.31924059551022 542 25 well well ADV coo.31924059551022 542 26 known know VERB coo.31924059551022 542 27 identity identity NOUN coo.31924059551022 542 28 . . PUNCT coo.31924059551022 543 1 define define VERB coo.31924059551022 543 2 ( ( PUNCT coo.31924059551022 543 3 p p NOUN coo.31924059551022 543 4 = = SYM coo.31924059551022 543 5 0 0 NUM coo.31924059551022 543 6 ) ) PUNCT coo.31924059551022 543 7 equal equal ADJ coo.31924059551022 543 8 to to ADP coo.31924059551022 543 9 the the DET coo.31924059551022 543 10 equation equation NOUN coo.31924059551022 543 11 in in ADP coo.31924059551022 543 12 b b PROPN coo.31924059551022 543 13 of of ADP coo.31924059551022 543 14 degree degree PROPN coo.31924059551022 543 15 y y PROPN coo.31924059551022 543 16 ( ( PUNCT coo.31924059551022 543 17 n n NOUN coo.31924059551022 543 18 — — PUNCT coo.31924059551022 543 19 1 1 X coo.31924059551022 543 20 ) ) PUNCT coo.31924059551022 543 21 that that SCONJ coo.31924059551022 543 22 in in ADP coo.31924059551022 543 23 any any DET coo.31924059551022 543 24 case case NOUN coo.31924059551022 543 25 determines determine VERB coo.31924059551022 543 26 the the DET coo.31924059551022 543 27 values value NOUN coo.31924059551022 543 28 of of ADP coo.31924059551022 543 29 b b PRON coo.31924059551022 543 30 giving giving NOUN coo.31924059551022 543 31 rise rise NOUN coo.31924059551022 543 32 to to ADP coo.31924059551022 543 33 an an DET coo.31924059551022 543 34 integral integral NOUN coo.31924059551022 543 35 of of ADP coo.31924059551022 543 36 the the DET coo.31924059551022 543 37 first first ADJ coo.31924059551022 543 38 sort sort NOUN coo.31924059551022 543 39 . . PUNCT coo.31924059551022 544 1 we we PRON coo.31924059551022 544 2 have have VERB coo.31924059551022 544 3 then then ADV coo.31924059551022 544 4 that that SCONJ coo.31924059551022 544 5 when when SCONJ coo.31924059551022 544 6 p= p= ADJ coo.31924059551022 544 7 0 0 NUM coo.31924059551022 544 8 the the DET coo.31924059551022 544 9 general general ADJ coo.31924059551022 544 10 solution solution NOUN coo.31924059551022 544 11 of of ADP coo.31924059551022 544 12 hermite hermite NOUN coo.31924059551022 544 13 as as ADP coo.31924059551022 544 14 a a DET coo.31924059551022 544 15 sum sum NOUN coo.31924059551022 544 16 has have VERB coo.31924059551022 544 17 in in ADP coo.31924059551022 544 18 place place NOUN coo.31924059551022 544 19 of of ADP coo.31924059551022 544 20 f(u f(u NOUN coo.31924059551022 544 21 ) ) PUNCT coo.31924059551022 544 22 the the DET coo.31924059551022 544 23 p(u p(u PROPN coo.31924059551022 544 24 ) ) PUNCT coo.31924059551022 544 25 and and CCONJ coo.31924059551022 544 26 may may AUX coo.31924059551022 544 27 be be AUX coo.31924059551022 544 28 written write VERB coo.31924059551022 544 29 [ [ PUNCT coo.31924059551022 544 30 70 70 NUM coo.31924059551022 544 31 ] ] PUNCT coo.31924059551022 544 32 · · PUNCT coo.31924059551022 544 33 · · PUNCT coo.31924059551022 544 34 · · PUNCT coo.31924059551022 544 35 ( ( PUNCT coo.31924059551022 544 36 — — PUNCT coo.31924059551022 544 37 l)’y l)’y NUM coo.31924059551022 544 38 — — PUNCT coo.31924059551022 544 39 fft fft NOUN coo.31924059551022 544 40 , , PUNCT coo.31924059551022 544 41 ƒ< ƒ< SPACE coo.31924059551022 544 42 ■ ■ NOUN coo.31924059551022 544 43 - - NOUN coo.31924059551022 544 44 » » NOUN coo.31924059551022 544 45 ( ( PUNCT coo.31924059551022 544 46 » » X coo.31924059551022 544 47 ) ) PUNCT coo.31924059551022 544 48 + + CCONJ coo.31924059551022 544 49 fn fn NOUN coo.31924059551022 544 50 : : PUNCT coo.31924059551022 544 51 i)1 i)1 NOUN coo.31924059551022 544 52 the the DET coo.31924059551022 544 53 coefficients coefficient NOUN coo.31924059551022 544 54 being be AUX coo.31924059551022 544 55 the the DET coo.31924059551022 544 56 same same ADJ coo.31924059551022 544 57 as as ADP coo.31924059551022 544 58 in in ADP coo.31924059551022 544 59 the the DET coo.31924059551022 544 60 corresponding corresponding ADJ coo.31924059551022 544 61 general general ADJ coo.31924059551022 544 62 development development NOUN coo.31924059551022 544 63 . . PUNCT coo.31924059551022 544 64 * * SYM coo.31924059551022 544 65 ) ) PUNCT coo.31924059551022 544 66 functions function NOUN coo.31924059551022 544 67 of of ADP coo.31924059551022 544 68 the the DET coo.31924059551022 544 69 second second ADJ coo.31924059551022 544 70 sort sort NOUN coo.31924059551022 544 71 . . PUNCT coo.31924059551022 545 1 to to PART coo.31924059551022 545 2 attain attain VERB coo.31924059551022 545 3 a a DET coo.31924059551022 545 4 function function NOUN coo.31924059551022 545 5 of of ADP coo.31924059551022 545 6 the the DET coo.31924059551022 545 7 second second ADJ coo.31924059551022 545 8 sort sort NOUN coo.31924059551022 545 9 assume assume VERB coo.31924059551022 545 10 that that SCONJ coo.31924059551022 545 11 n n CCONJ coo.31924059551022 545 12 is be AUX coo.31924059551022 545 13 odd odd ADJ coo.31924059551022 545 14 and and CCONJ coo.31924059551022 545 15 that that SCONJ coo.31924059551022 545 16 the the DET coo.31924059551022 545 17 solution solution NOUN coo.31924059551022 545 18 has have VERB coo.31924059551022 545 19 the the DET coo.31924059551022 545 20 form form NOUN coo.31924059551022 545 21 [ [ PUNCT coo.31924059551022 545 22 71] 71] NUM coo.31924059551022 545 23 .......................... .......................... PUNCT coo.31924059551022 545 24 y y NOUN coo.31924059551022 545 25 = = PUNCT coo.31924059551022 545 26 # # ADP coo.31924059551022 545 27 ÿpu ÿpu NOUN coo.31924059551022 545 28 — — PUNCT coo.31924059551022 545 29 ea ea X coo.31924059551022 545 30 « « SYM coo.31924059551022 545 31 = = SYM coo.31924059551022 545 32 1.2.3 1.2.3 NUM coo.31924059551022 545 33 where where SCONJ coo.31924059551022 545 34 z z PROPN coo.31924059551022 545 35 may may AUX coo.31924059551022 545 36 be be AUX coo.31924059551022 545 37 developed develop VERB coo.31924059551022 545 38 in in ADP coo.31924059551022 545 39 the the DET coo.31924059551022 545 40 form form NOUN coo.31924059551022 545 41 z z PROPN coo.31924059551022 545 42 = = PROPN coo.31924059551022 545 43 p(n p(n PROPN coo.31924059551022 545 44 — — PUNCT coo.31924059551022 545 45 s s PROPN coo.31924059551022 545 46 ) ) PUNCT coo.31924059551022 545 47 -f+ -f+ PROPN coo.31924059551022 545 48 a2p^a~~7 a2p^a~~7 PROPN coo.31924059551022 545 49 ) ) PUNCT coo.31924059551022 545 50 an an DET coo.31924059551022 545 51 equation equation NOUN coo.31924059551022 545 52 in in ADP coo.31924059551022 545 53 p p PROPN coo.31924059551022 545 54 differing differ VERB coo.31924059551022 545 55 from from ADP coo.31924059551022 545 56 ( ( PUNCT coo.31924059551022 545 57 70 70 NUM coo.31924059551022 545 58 ) ) PUNCT coo.31924059551022 545 59 in in ADP coo.31924059551022 545 60 the the DET coo.31924059551022 545 61 degree degree NOUN coo.31924059551022 545 62 of of ADP coo.31924059551022 545 63 the the DET coo.31924059551022 545 64 derivatives derivative NOUN coo.31924059551022 545 65 only only ADV coo.31924059551022 545 66 . . PUNCT coo.31924059551022 546 1 proceeding proceed VERB coo.31924059551022 546 2 as as ADP coo.31924059551022 546 3 in in ADP coo.31924059551022 546 4 the the DET coo.31924059551022 546 5 former former ADJ coo.31924059551022 546 6 case case NOUN coo.31924059551022 546 7 by by ADP coo.31924059551022 546 8 substituting substitute VERB coo.31924059551022 546 9 in in ADP coo.31924059551022 546 10 hermite hermite PROPN coo.31924059551022 546 11 ’s ’s PART coo.31924059551022 546 12 equation equation NOUN coo.31924059551022 546 13 one one PRON coo.31924059551022 546 14 finds find VERB coo.31924059551022 546 15 that that SCONJ coo.31924059551022 546 16 the the DET coo.31924059551022 546 17 solution solution NOUN coo.31924059551022 546 18 holds holds AUX coo.31924059551022 546 19 provided provide VERB coo.31924059551022 546 20 b b ADP coo.31924059551022 546 21 be be AUX coo.31924059551022 546 22 now now ADV coo.31924059551022 546 23 taken take VERB coo.31924059551022 546 24 equal equal ADJ coo.31924059551022 546 25 to to ADP coo.31924059551022 546 26 any any DET coo.31924059551022 546 27 one one NUM coo.31924059551022 546 28 of of ADP coo.31924059551022 546 29 the the DET coo.31924059551022 546 30 roots root NOUN coo.31924059551022 546 31 of of ADP coo.31924059551022 546 32 a a DET coo.31924059551022 546 33 perfectly perfectly ADV coo.31924059551022 546 34 determined determined ADJ coo.31924059551022 546 35 equation equation NOUN coo.31924059551022 546 36 of of ADP coo.31924059551022 546 37 degree degree NOUN coo.31924059551022 546 38 y(w+ y(w+ PROPN coo.31924059551022 546 39 1 1 NUM coo.31924059551022 546 40 ) ) PUNCT coo.31924059551022 546 41 , , PUNCT coo.31924059551022 546 42 the the DET coo.31924059551022 546 43 right right ADJ coo.31924059551022 546 44 hand hand NOUN coo.31924059551022 546 45 member member NOUN coo.31924059551022 546 46 of of ADP coo.31924059551022 546 47 which which PRON coo.31924059551022 546 48 we we PRON coo.31924059551022 546 49 will will AUX coo.31924059551022 546 50 define define VERB coo.31924059551022 546 51 as as ADP coo.31924059551022 546 52 qa qa PROPN coo.31924059551022 546 53 which which PRON coo.31924059551022 546 54 is be AUX coo.31924059551022 546 55 equal equal ADJ coo.31924059551022 546 56 to to ADP coo.31924059551022 546 57 zero zero NUM coo.31924059551022 546 58 . . PUNCT coo.31924059551022 547 1 * * PUNCT coo.31924059551022 547 2 ) ) PUNCT coo.31924059551022 547 3 see see VERB coo.31924059551022 547 4 ( ( PUNCT coo.31924059551022 547 5 34 34 NUM coo.31924059551022 547 6 ) ) PUNCT coo.31924059551022 547 7 and and CCONJ coo.31924059551022 547 8 ( ( PUNCT coo.31924059551022 547 9 26 26 NUM coo.31924059551022 547 10 ) ) PUNCT coo.31924059551022 547 11 . . PUNCT coo.31924059551022 548 1 44 44 X coo.31924059551022 548 2 · · PUNCT coo.31924059551022 548 3 part part NOUN coo.31924059551022 548 4 iv iv PROPN coo.31924059551022 548 5 . . PUNCT coo.31924059551022 549 1 the the DET coo.31924059551022 549 2 special special ADJ coo.31924059551022 549 3 functions function NOUN coo.31924059551022 549 4 of of ADP coo.31924059551022 549 5 lamé lamé NOUN coo.31924059551022 549 6 . . PUNCT coo.31924059551022 550 1 writing write VERB coo.31924059551022 550 2 for for ADP coo.31924059551022 550 3 convenience convenience NOUN coo.31924059551022 550 4 hermite hermite NOUN coo.31924059551022 550 5 's 's PART coo.31924059551022 550 6 equation equation NOUN coo.31924059551022 550 7 in in ADP coo.31924059551022 550 8 terms term NOUN coo.31924059551022 550 9 of of ADP coo.31924059551022 550 10 the the DET coo.31924059551022 550 11 derivatives derivative NOUN coo.31924059551022 550 12 of of ADP coo.31924059551022 550 13 z z PROPN coo.31924059551022 550 14 with with ADP coo.31924059551022 550 15 respect respect NOUN coo.31924059551022 550 16 to to ADP coo.31924059551022 550 17 pu pu PROPN coo.31924059551022 550 18 by by ADP coo.31924059551022 550 19 aid aid NOUN coo.31924059551022 550 20 of of ADP coo.31924059551022 550 21 the the DET coo.31924059551022 550 22 identity identity NOUN coo.31924059551022 550 23 i i PRON coo.31924059551022 550 24 > > X coo.31924059551022 550 25 * * PUNCT coo.31924059551022 550 26 = = SYM coo.31924059551022 550 27 4p3 4p3 NUM coo.31924059551022 550 28 — — PUNCT coo.31924059551022 550 29 9sp 9sp NOUN coo.31924059551022 550 30 — — PUNCT coo.31924059551022 550 31 9s 9s NUM coo.31924059551022 550 32 we we PRON coo.31924059551022 550 33 fiave fiave VERB coo.31924059551022 550 34 * * PUNCT coo.31924059551022 550 35 ) ) PUNCT coo.31924059551022 551 1 [ [ X coo.31924059551022 551 2 72 72 NUM coo.31924059551022 551 3 ] ] PUNCT coo.31924059551022 551 4 · · PUNCT coo.31924059551022 551 5 · · PUNCT coo.31924059551022 551 6 ( ( PUNCT coo.31924059551022 551 7 4pb 4pb PROPN coo.31924059551022 551 8 — — PUNCT coo.31924059551022 551 9 < < X coo.31924059551022 551 10 jtp jtp PROPN coo.31924059551022 551 11 — — PUNCT coo.31924059551022 551 12 ga ga PROPN coo.31924059551022 551 13 ) ) PUNCT coo.31924059551022 551 14 ddy ddy PROPN coo.31924059551022 551 15 + + CCONJ coo.31924059551022 551 16 ( ( PUNCT coo.31924059551022 551 17 lop2 lop2 PROPN coo.31924059551022 551 18 + + PROPN coo.31924059551022 551 19 4 4 NUM coo.31924059551022 551 20 eap eap NOUN coo.31924059551022 551 21 + + CCONJ coo.31924059551022 551 22 4e2 4e2 NUM coo.31924059551022 551 23 f f PROPN coo.31924059551022 551 24 & & CCONJ coo.31924059551022 551 25 ) ) PUNCT coo.31924059551022 551 26 ^ ^ X coo.31924059551022 552 1 * * PUNCT coo.31924059551022 552 2 =[ =[ X coo.31924059551022 552 3 ( ( PUNCT coo.31924059551022 552 4 » » PUNCT coo.31924059551022 552 5 — — PUNCT coo.31924059551022 552 6 1 1 X coo.31924059551022 552 7 ) ) PUNCT coo.31924059551022 552 8 ( ( PUNCT coo.31924059551022 552 9 » » PUNCT coo.31924059551022 552 10 + + NUM coo.31924059551022 552 11 2)p 2)p NUM coo.31924059551022 552 12 -f -f PUNCT coo.31924059551022 552 13 b b X coo.31924059551022 552 14 — — PUNCT coo.31924059551022 552 15 ea ea X coo.31924059551022 552 16 ] ] X coo.31924059551022 552 17 λ λ NOUN coo.31924059551022 552 18 take take VERB coo.31924059551022 552 19 now now ADV coo.31924059551022 552 20 for for ADP coo.31924059551022 552 21 example example NOUN coo.31924059551022 552 22 w w NOUN coo.31924059551022 552 23 = = SYM coo.31924059551022 552 24 3 3 NUM coo.31924059551022 552 25 . . PUNCT coo.31924059551022 553 1 whence whence ADV coo.31924059551022 553 2 .'“ .'“ PROPN coo.31924059551022 554 1 ■ ■ PROPN coo.31924059551022 554 2 p p NOUN coo.31924059551022 554 3 + + CCONJ coo.31924059551022 554 4 ® ® NOUN coo.31924059551022 554 5 jÿ-1 jÿ-1 X coo.31924059551022 554 6 ^ ^ X coo.31924059551022 554 7 = = PUNCT coo.31924059551022 554 8 ° ° PROPN coo.31924059551022 554 9 and and CCONJ coo.31924059551022 554 10 ( ( PUNCT coo.31924059551022 554 11 72 72 NUM coo.31924059551022 554 12 ) ) PUNCT coo.31924059551022 554 13 becomes become VERB coo.31924059551022 554 14 lop2 lop2 PROPN coo.31924059551022 554 15 + + PROPN coo.31924059551022 554 16 4e«| 4e«| NUM coo.31924059551022 554 17 ) ) PUNCT coo.31924059551022 554 18 + + CCONJ coo.31924059551022 554 19 4e2 4e2 NUM coo.31924059551022 554 20 — — PUNCT coo.31924059551022 554 21 \g2 \g2 NOUN coo.31924059551022 554 22 = = NOUN coo.31924059551022 554 23 ( ( PUNCT coo.31924059551022 554 24 10ji 10ji PROPN coo.31924059551022 554 25 + + CCONJ coo.31924059551022 554 26 b b X coo.31924059551022 554 27 — — PUNCT coo.31924059551022 554 28 ea ea PROPN coo.31924059551022 554 29 ) ) PUNCT coo.31924059551022 554 30 ( ( PUNCT coo.31924059551022 554 31 p p NOUN coo.31924059551022 554 32 + + CCONJ coo.31924059551022 554 33 « « PUNCT coo.31924059551022 554 34 j j X coo.31924059551022 554 35 and and CCONJ coo.31924059551022 554 36 differentiating differentiate VERB coo.31924059551022 554 37 we we PRON coo.31924059551022 554 38 have have VERB coo.31924059551022 554 39 4βα 4βα NOUN coo.31924059551022 554 40 = = SYM coo.31924059551022 554 41 10 10 NUM coo.31924059551022 554 42 öq öq ADP coo.31924059551022 554 43 “ " PUNCT coo.31924059551022 554 44 jb jb PROPN coo.31924059551022 554 45 — — PUNCT coo.31924059551022 554 46 ea ea NOUN coo.31924059551022 554 47 or or CCONJ coo.31924059551022 554 48 whence whence NOUN coo.31924059551022 554 49 and and CCONJ coo.31924059551022 554 50 1 1 NUM coo.31924059551022 554 51 1 1 NUM coo.31924059551022 554 52 t t PROPN coo.31924059551022 554 53 ) ) PUNCT coo.31924059551022 554 54 « « PUNCT coo.31924059551022 554 55 i i PRON coo.31924059551022 554 56 = = X coo.31924059551022 554 57 te te X coo.31924059551022 554 58 « « PUNCT coo.31924059551022 554 59 ϊ0ΰ ϊ0ΰ PROPN coo.31924059551022 554 60 p p NOUN coo.31924059551022 554 61 + + NOUN coo.31924059551022 554 62 t«e t«e ADJ coo.31924059551022 554 63 — — PUNCT coo.31924059551022 554 64 [ [ X coo.31924059551022 554 65 73 73 NUM coo.31924059551022 554 66 ] ] PUNCT coo.31924059551022 554 67 .... .... PUNCT coo.31924059551022 554 68 qa==b2 qa==b2 X coo.31924059551022 554 69 _ _ PROPN coo.31924059551022 554 70 6eab 6eab NUM coo.31924059551022 554 71 + + NUM coo.31924059551022 554 72 45e2 45e2 NUM coo.31924059551022 554 73 15 15 NUM coo.31924059551022 554 74 & & CCONJ coo.31924059551022 554 75 = = SYM coo.31924059551022 554 76 0 0 NUM coo.31924059551022 554 77 an an DET coo.31924059551022 554 78 equation equation NOUN coo.31924059551022 554 79 whose whose DET coo.31924059551022 554 80 degree degree NOUN coo.31924059551022 554 81 is be AUX coo.31924059551022 554 82 γ(η γ(η PROPN coo.31924059551022 554 83 + + CCONJ coo.31924059551022 554 84 1 1 X coo.31924059551022 554 85 ) ) PUNCT coo.31924059551022 554 86 = = VERB coo.31924059551022 554 87 2 2 X coo.31924059551022 554 88 ? ? PUNCT coo.31924059551022 555 1 and and CCONJ coo.31924059551022 555 2 as as ADP coo.31924059551022 555 3 a a PRON coo.31924059551022 555 4 may may AUX coo.31924059551022 555 5 have have VERB coo.31924059551022 555 6 the the DET coo.31924059551022 555 7 values value NOUN coo.31924059551022 555 8 1 1 NUM coo.31924059551022 555 9 , , PUNCT coo.31924059551022 555 10 2 2 NUM coo.31924059551022 555 11 or or CCONJ coo.31924059551022 555 12 3 3 NUM coo.31924059551022 555 13 we we PRON coo.31924059551022 555 14 have have VERB coo.31924059551022 555 15 in in ADP coo.31924059551022 555 16 all all DET coo.31924059551022 555 17 six six NUM coo.31924059551022 555 18 values value NOUN coo.31924059551022 555 19 of of ADP coo.31924059551022 555 20 b b NOUN coo.31924059551022 555 21 giving give VERB coo.31924059551022 555 22 a a DET coo.31924059551022 555 23 doubly doubly ADV coo.31924059551022 555 24 periodic periodic ADJ coo.31924059551022 555 25 solution solution NOUN coo.31924059551022 555 26 of of ADP coo.31924059551022 555 27 the the DET coo.31924059551022 555 28 second second ADJ coo.31924059551022 555 29 sort sort NOUN coo.31924059551022 555 30 and and CCONJ coo.31924059551022 555 31 determined determine VERB coo.31924059551022 555 32 by by ADP coo.31924059551022 555 33 an an DET coo.31924059551022 555 34 equation equation NOUN coo.31924059551022 555 35 of of ADP coo.31924059551022 555 36 the the DET coo.31924059551022 555 37 sixth sixth ADJ coo.31924059551022 555 38 degree degree NOUN coo.31924059551022 555 39 defined define VERB coo.31924059551022 555 40 as as ADP coo.31924059551022 555 41 [ [ X coo.31924059551022 555 42 ^4] ^4] NUM coo.31924059551022 555 43 ......................... ......................... SYM coo.31924059551022 555 44 q q X coo.31924059551022 555 45 — — PUNCT coo.31924059551022 555 46 φ1φ2φ3 φ1φ2φ3 SPACE coo.31924059551022 555 47 · · PUNCT coo.31924059551022 555 48 * * PUNCT coo.31924059551022 555 49 functions function NOUN coo.31924059551022 555 50 of of ADP coo.31924059551022 555 51 the the DET coo.31924059551022 555 52 third third ADJ coo.31924059551022 555 53 sort sort NOUN coo.31924059551022 555 54 . . PUNCT coo.31924059551022 556 1 we we PRON coo.31924059551022 556 2 have have VERB coo.31924059551022 556 3 finally finally ADV coo.31924059551022 556 4 solutions solution NOUN coo.31924059551022 556 5 that that PRON coo.31924059551022 556 6 are be AUX coo.31924059551022 556 7 doubly doubly ADV coo.31924059551022 556 8 periodic periodic ADJ coo.31924059551022 556 9 of of ADP coo.31924059551022 556 10 a a DET coo.31924059551022 556 11 third third ADJ coo.31924059551022 556 12 sort sort NOUN coo.31924059551022 556 13 the the DET coo.31924059551022 556 14 integral integral ADJ coo.31924059551022 556 15 being be AUX coo.31924059551022 556 16 written write VERB coo.31924059551022 556 17 in in ADP coo.31924059551022 556 18 the the DET coo.31924059551022 556 19 form form NOUN coo.31924059551022 556 20 : : PUNCT coo.31924059551022 556 21 [ [ X coo.31924059551022 556 22 75 75 NUM coo.31924059551022 556 23 ] ] PUNCT coo.31924059551022 556 24 ................... ................... PUNCT coo.31924059551022 557 1 y y PROPN coo.31924059551022 557 2 = = PUNCT coo.31924059551022 557 3 ey(pu ey(pu VERB coo.31924059551022 557 4 — — PUNCT coo.31924059551022 557 5 efi)(pn efi)(pn NOUN coo.31924059551022 557 6 — — PUNCT coo.31924059551022 557 7 ett ett PROPN coo.31924059551022 557 8 ) ) PUNCT coo.31924059551022 557 9 where where SCONJ coo.31924059551022 557 10 n n PROPN coo.31924059551022 557 11 is be AUX coo.31924059551022 557 12 restricted restrict VERB coo.31924059551022 557 13 to to ADP coo.31924059551022 557 14 an an DET coo.31924059551022 557 15 even even ADV coo.31924059551022 557 16 member member NOUN coo.31924059551022 557 17 and and CCONJ coo.31924059551022 557 18 s s PRON coo.31924059551022 557 19 has have VERB coo.31924059551022 557 20 the the DET coo.31924059551022 557 21 form form NOUN coo.31924059551022 557 22 s s PART coo.31924059551022 557 23 = = NOUN coo.31924059551022 557 24 = = X coo.31924059551022 557 25 jp(»—4 jp(»—4 NOUN coo.31924059551022 557 26 ) ) PUNCT coo.31924059551022 557 27 ¿ ¿ NUM coo.31924059551022 557 28 y)(»-6 y)(»-6 PROPN coo.31924059551022 557 29 > > SYM coo.31924059551022 557 30 4 4 NUM coo.31924059551022 557 31 + + NUM coo.31924059551022 557 32 · · PUNCT coo.31924059551022 557 33 ‘ ' PUNCT coo.31924059551022 557 34 · · PUNCT coo.31924059551022 557 35 and and CCONJ coo.31924059551022 557 36 a a DET coo.31924059551022 557 37 similar similar ADJ coo.31924059551022 557 38 analysis analysis NOUN coo.31924059551022 557 39 to to ADP coo.31924059551022 557 40 the the DET coo.31924059551022 557 41 former former ADJ coo.31924059551022 557 42 cases case NOUN coo.31924059551022 557 43 shows show VERB coo.31924059551022 557 44 that that SCONJ coo.31924059551022 557 45 this this DET coo.31924059551022 557 46 solution solution NOUN coo.31924059551022 557 47 holds hold VERB coo.31924059551022 557 48 when when SCONJ coo.31924059551022 557 49 b b PROPN coo.31924059551022 557 50 is be AUX coo.31924059551022 557 51 the the DET coo.31924059551022 557 52 root root NOUN coo.31924059551022 557 53 of of ADP coo.31924059551022 557 54 a a DET coo.31924059551022 557 55 determinate determinate ADJ coo.31924059551022 557 56 equation equation NOUN coo.31924059551022 557 57 whose whose DET coo.31924059551022 557 58 degree degree NOUN coo.31924059551022 557 59 is be AUX coo.31924059551022 557 60 4 4 NUM coo.31924059551022 557 61 - - PUNCT coo.31924059551022 557 62 w. w. NOUN coo.31924059551022 557 63 * * NOUN coo.31924059551022 557 64 ) ) PUNCT coo.31924059551022 557 65 compair compair NOUN coo.31924059551022 557 66 transformation transformation NOUN coo.31924059551022 557 67 p. p. NOUN coo.31924059551022 557 68 35 35 NUM coo.31924059551022 557 69 . . PUNCT coo.31924059551022 558 1 part part X coo.31924059551022 558 2 v. v. ADP coo.31924059551022 558 3 reduction reduction NOUN coo.31924059551022 558 4 of of ADP coo.31924059551022 558 5 the the DET coo.31924059551022 558 6 forms form NOUN coo.31924059551022 558 7 when when SCONJ coo.31924059551022 558 8 n n SYM coo.31924059551022 558 9 equals equal VERB coo.31924059551022 558 10 three three NUM coo.31924059551022 558 11 . . PUNCT coo.31924059551022 559 1 identity identity NOUN coo.31924059551022 559 2 of of ADP coo.31924059551022 559 3 solutions solution NOUN coo.31924059551022 559 4 . . PUNCT coo.31924059551022 560 1 having having AUX coo.31924059551022 560 2 developed develop VERB coo.31924059551022 560 3 in in ADP coo.31924059551022 560 4 the the DET coo.31924059551022 560 5 foregoing forego VERB coo.31924059551022 560 6 the the DET coo.31924059551022 560 7 necessary necessary ADJ coo.31924059551022 560 8 underlying underlying ADJ coo.31924059551022 560 9 principles principle NOUN coo.31924059551022 560 10 we we PRON coo.31924059551022 560 11 return return VERB coo.31924059551022 560 12 to to ADP coo.31924059551022 560 13 the the DET coo.31924059551022 560 14 case case NOUN coo.31924059551022 560 15 where where SCONJ coo.31924059551022 560 16 n n CCONJ coo.31924059551022 560 17 equals equal VERB coo.31924059551022 560 18 three three NUM coo.31924059551022 560 19 , , PUNCT coo.31924059551022 560 20 that that PRON coo.31924059551022 560 21 is be AUX coo.31924059551022 560 22 to to ADP coo.31924059551022 560 23 a a DET coo.31924059551022 560 24 determination determination NOUN coo.31924059551022 560 25 of of ADP coo.31924059551022 560 26 the the DET coo.31924059551022 560 27 integral integral NOUN coo.31924059551022 560 28 of of ADP coo.31924059551022 560 29 the the DET coo.31924059551022 560 30 equation equation NOUN coo.31924059551022 560 31 [ [ X coo.31924059551022 560 32 76 76 NUM coo.31924059551022 560 33 ] ] PUNCT coo.31924059551022 560 34 · · PUNCT coo.31924059551022 560 35 .................. .................. NUM coo.31924059551022 560 36 y''=[12p(u y''=[12p(u X coo.31924059551022 560 37 ) ) PUNCT coo.31924059551022 561 1 + + CCONJ coo.31924059551022 562 1 b}y b}y INTJ coo.31924059551022 562 2 where where SCONJ coo.31924059551022 562 3 b b NOUN coo.31924059551022 562 4 is be AUX coo.31924059551022 562 5 to to PART coo.31924059551022 562 6 be be AUX coo.31924059551022 562 7 arbitrarily arbitrarily ADV coo.31924059551022 562 8 chosen choose VERB coo.31924059551022 562 9 . . PUNCT coo.31924059551022 563 1 the the DET coo.31924059551022 563 2 first first ADJ coo.31924059551022 563 3 form form NOUN coo.31924059551022 563 4 obtain obtain VERB coo.31924059551022 563 5 from from ADP coo.31924059551022 563 6 ( ( PUNCT coo.31924059551022 563 7 32 32 NUM coo.31924059551022 563 8 ) ) PUNCT coo.31924059551022 563 9 is be AUX coo.31924059551022 563 10 y y PROPN coo.31924059551022 563 11 = = X coo.31924059551022 563 12 jf jf INTJ coo.31924059551022 563 13 " " PUNCT coo.31924059551022 563 14 + + CCONJ coo.31924059551022 563 15 and and CCONJ coo.31924059551022 563 16 from from ADP coo.31924059551022 563 17 the the DET coo.31924059551022 563 18 first first ADJ coo.31924059551022 563 19 of of ADP coo.31924059551022 563 20 equations equation NOUN coo.31924059551022 563 21 ( ( PUNCT coo.31924059551022 563 22 26 26 NUM coo.31924059551022 563 23 ) ) PUNCT coo.31924059551022 563 24 we we PRON coo.31924059551022 563 25 have have VERB coo.31924059551022 563 26 ■ ■ SPACE coo.31924059551022 563 27 β β NOUN coo.31924059551022 563 28 . . PUNCT coo.31924059551022 564 1 ht ht INTJ coo.31924059551022 564 2 — — PUNCT coo.31924059551022 564 3 — — PUNCT coo.31924059551022 564 4 tq tq X coo.31924059551022 564 5 ’ ' PUNCT coo.31924059551022 564 6 where where SCONJ coo.31924059551022 564 7 b b PROPN coo.31924059551022 564 8 = = PROPN coo.31924059551022 564 9 156 156 NUM coo.31924059551022 564 10 hence hence ADV coo.31924059551022 564 11 disregarding disregard VERB coo.31924059551022 564 12 the the DET coo.31924059551022 564 13 constant constant ADJ coo.31924059551022 564 14 the the DET coo.31924059551022 564 15 integral integral NOUN coo.31924059551022 564 16 is be AUX coo.31924059551022 564 17 [ [ X coo.31924059551022 564 18 77] 77] NUM coo.31924059551022 564 19 ........................ ........................ SYM coo.31924059551022 564 20 y^f'-sbf y^f'-sbf ADJ coo.31924059551022 564 21 where where SCONJ coo.31924059551022 564 22 ' ' VERB coo.31924059551022 564 23 6{μ)α{ν 6{μ)α{ν NUM coo.31924059551022 564 24 ) ) PUNCT coo.31924059551022 564 25 and and CCONJ coo.31924059551022 564 26 x x PUNCT coo.31924059551022 565 1 and and CCONJ coo.31924059551022 565 2 v v ADP coo.31924059551022 565 3 satisfy satisfy VERB coo.31924059551022 565 4 the the DET coo.31924059551022 565 5 conditions condition NOUN coo.31924059551022 565 6 ( ( PUNCT coo.31924059551022 565 7 35 35 NUM coo.31924059551022 565 8 ) ) PUNCT coo.31924059551022 565 9 jtf2 jtf2 PROPN coo.31924059551022 565 10 + + CCONJ coo.31924059551022 565 11 k k PROPN coo.31924059551022 565 12 = = PUNCT coo.31924059551022 566 1 where where SCONJ coo.31924059551022 566 2 x x PUNCT coo.31924059551022 567 1 = = X coo.31924059551022 567 2 ξν ξν VERB coo.31924059551022 567 3 — — PUNCT coo.31924059551022 567 4 ξα ξα INTJ coo.31924059551022 567 5 — — PUNCT coo.31924059551022 567 6 ξό ξό INTJ coo.31924059551022 567 7 — — PUNCT coo.31924059551022 567 8 ξο ξο ADP coo.31924059551022 567 9 v v ADP coo.31924059551022 567 10 = = NOUN coo.31924059551022 567 11 = = PROPN coo.31924059551022 567 12 ci ci NOUN coo.31924059551022 567 13 -jb -jb PUNCT coo.31924059551022 567 14 -fc -fc PUNCT coo.31924059551022 567 15 . . PUNCT coo.31924059551022 568 1 ( ( PUNCT coo.31924059551022 568 2 p. p. NOUN coo.31924059551022 568 3 17 17 NUM coo.31924059551022 568 4 and and CCONJ coo.31924059551022 568 5 p. p. NOUN coo.31924059551022 568 6 16 16 NUM coo.31924059551022 568 7 . . PUNCT coo.31924059551022 568 8 ) ) PUNCT coo.31924059551022 569 1 ist ist ADJ coo.31924059551022 569 2 solution solution NOUN coo.31924059551022 569 3 . . PUNCT coo.31924059551022 570 1 46 46 NUM coo.31924059551022 570 2 part part NOUN coo.31924059551022 570 3 v. v. ADP coo.31924059551022 570 4 the the DET coo.31924059551022 570 5 second second ADJ coo.31924059551022 570 6 form form NOUN coo.31924059551022 570 7 .obtained .obtaine VERB coo.31924059551022 570 8 from from ADP coo.31924059551022 570 9 ( ( PUNCT coo.31924059551022 570 10 66 66 NUM coo.31924059551022 570 11 ) ) PUNCT coo.31924059551022 570 12 is be AUX coo.31924059551022 570 13 [ [ X coo.31924059551022 570 14 79 79 NUM coo.31924059551022 570 15 ] ] PUNCT coo.31924059551022 570 16 » » PUNCT coo.31924059551022 570 17 = = X coo.31924059551022 570 18 γτσ γτσ NOUN coo.31924059551022 570 19 ( ( PUNCT coo.31924059551022 570 20 ’ ' PUNCT coo.31924059551022 570 21 * * PUNCT coo.31924059551022 570 22 + + CCONJ coo.31924059551022 570 23 α α X coo.31924059551022 570 24 ) ) PUNCT coo.31924059551022 570 25 e e NOUN coo.31924059551022 570 26 « « PUNCT coo.31924059551022 570 27 t t PROPN coo.31924059551022 570 28 « « PUNCT coo.31924059551022 570 29 = = X coo.31924059551022 570 30 γ7 γ7 PROPN coo.31924059551022 570 31 ° ° PROPN coo.31924059551022 570 32 ---ç ---ç X coo.31924059551022 570 33 « « PUNCT coo.31924059551022 570 34 ^ ^ X coo.31924059551022 571 1 jl jl PROPN coo.31924059551022 571 2 1 1 NUM coo.31924059551022 571 3 6a 6a NUM coo.31924059551022 571 4 au au ADP coo.31924059551022 571 5 χ χ NOUN coo.31924059551022 571 6 x x PUNCT coo.31924059551022 571 7 ~'-a ~'-a PUNCT coo.31924059551022 571 8 e e NOUN coo.31924059551022 571 9 where where SCONJ coo.31924059551022 571 10 and and CCONJ coo.31924059551022 571 11 « « PUNCT coo.31924059551022 571 12 ( ( PUNCT coo.31924059551022 571 13 < < X coo.31924059551022 571 14 * * PUNCT coo.31924059551022 571 15 ) ) PUNCT coo.31924059551022 571 16 e e NOUN coo.31924059551022 571 17 ( ( PUNCT coo.31924059551022 571 18 « « NOUN coo.31924059551022 571 19 ) ) PUNCT coo.31924059551022 571 20 gfr gfr PROPN coo.31924059551022 571 21 a a X coo.31924059551022 571 22 ) ) PUNCT coo.31924059551022 571 23 c)^8 c)^8 PROPN coo.31924059551022 571 24 + + CCONJ coo.31924059551022 571 25 tt+c tt+c PROPN coo.31924059551022 571 26 ® ® NOUN coo.31924059551022 571 27 ( ( PUNCT coo.31924059551022 571 28 a a PRON coo.31924059551022 571 29 ) ) PUNCT coo.31924059551022 571 30 e(6 e(6 PROPN coo.31924059551022 571 31 ) ) PUNCT coo.31924059551022 571 32 < < X coo.31924059551022 571 33 r(c r(c SPACE coo.31924059551022 571 34 ) ) PUNCT coo.31924059551022 571 35 σ3α σ3α PROPN coo.31924059551022 571 36 > > X coo.31924059551022 571 37 a a PRON coo.31924059551022 571 38 ' ' PUNCT coo.31924059551022 571 39 = = NOUN coo.31924059551022 571 40 p’(a p’(a PROPN coo.31924059551022 571 41 ) ) PUNCT coo.31924059551022 571 42 — — PUNCT coo.31924059551022 571 43 2c 2c NUM coo.31924059551022 571 44 * * SYM coo.31924059551022 571 45 0 0 NOUN coo.31924059551022 571 46 ' ' PUNCT coo.31924059551022 571 47 = = NOUN coo.31924059551022 571 48 ρ'(δ ρ'(δ X coo.31924059551022 571 49 ) ) PUNCT coo.31924059551022 571 50 = = PROPN coo.31924059551022 571 51 y y PROPN coo.31924059551022 571 52 — — PUNCT coo.31924059551022 571 53 p p NOUN coo.31924059551022 571 54 ( ( PUNCT coo.31924059551022 571 55 c c NOUN coo.31924059551022 571 56 ) ) PUNCT coo.31924059551022 571 57 — — PUNCT coo.31924059551022 571 58 ( ( PUNCT coo.31924059551022 571 59 y y PROPN coo.31924059551022 571 60 _ _ PUNCT coo.31924059551022 571 61 tt tt PROPN coo.31924059551022 571 62 ) ) PUNCT coo.31924059551022 571 63 ( ( PUNCT coo.31924059551022 571 64 γ^~β γ^~β PROPN coo.31924059551022 571 65 ) ) PUNCT coo.31924059551022 571 66 c=±vt c=±vt ADP coo.31924059551022 571 67 · · PUNCT coo.31924059551022 571 68 , , PUNCT coo.31924059551022 571 69 γ=53+λ γ=53+λ SPACE coo.31924059551022 571 70 « « PUNCT coo.31924059551022 571 71 + + CCONJ coo.31924059551022 571 72 λ λ NOUN coo.31924059551022 571 73 ( ( PUNCT coo.31924059551022 571 74 a a DET coo.31924059551022 571 75 — — PUNCT coo.31924059551022 571 76 β β X coo.31924059551022 571 77 ) ) PUNCT coo.31924059551022 571 78 ' ' PUNCT coo.31924059551022 571 79 ( ( PUNCT coo.31924059551022 571 80 a a DET coo.31924059551022 571 81 — — PUNCT coo.31924059551022 571 82 y y PROPN coo.31924059551022 571 83 ) ) PUNCT coo.31924059551022 571 84 2 2 NUM coo.31924059551022 572 1 c c NOUN coo.31924059551022 572 2 ^ ^ NOUN coo.31924059551022 572 3 ( ( PUNCT coo.31924059551022 572 4 β β PROPN coo.31924059551022 572 5 a a X coo.31924059551022 572 6 ) ) PUNCT coo.31924059551022 572 7 ( ( PUNCT coo.31924059551022 572 8 β β X coo.31924059551022 572 9 — — PUNCT coo.31924059551022 572 10 y y PROPN coo.31924059551022 572 11 ) ) PUNCT coo.31924059551022 572 12 2(7 2(7 NOUN coo.31924059551022 572 13 ( ( PUNCT coo.31924059551022 572 14 p. p. NOUN coo.31924059551022 572 15 40 40 NUM coo.31924059551022 572 16 . . PUNCT coo.31924059551022 572 17 ) ) PUNCT coo.31924059551022 572 18 ^ ^ X coo.31924059551022 573 1 = = X coo.31924059551022 573 2 ί ί X coo.31924059551022 573 3 — — PUNCT coo.31924059551022 573 4 δ δ PROPN coo.31924059551022 573 5 ; ; PUNCT coo.31924059551022 573 6 λ λ NOUN coo.31924059551022 573 7 = = X coo.31924059551022 573 8 t t PROPN coo.31924059551022 573 9 ( ( PUNCT coo.31924059551022 573 10 126 126 NUM coo.31924059551022 573 11 ‘ ' PUNCT coo.31924059551022 573 12 ¿ ¿ NUM coo.31924059551022 573 13 t t PROPN coo.31924059551022 573 14 & & CCONJ coo.31924059551022 573 15 ) ) PUNCT coo.31924059551022 573 16 ; ; PUNCT coo.31924059551022 573 17 λ λ X coo.31924059551022 573 18 = = SYM coo.31924059551022 573 19 7 7 NUM coo.31924059551022 573 20 ( ( PUNCT coo.31924059551022 573 21 44δ3 44δ3 NUM coo.31924059551022 573 22 — — PUNCT coo.31924059551022 573 23 3&δ 3&δ NUM coo.31924059551022 573 24 + + NUM coo.31924059551022 573 25 the the DET coo.31924059551022 573 26 transformation transformation NOUN coo.31924059551022 573 27 of of ADP coo.31924059551022 573 28 form form NOUN coo.31924059551022 573 29 ( ( PUNCT coo.31924059551022 573 30 79 79 NUM coo.31924059551022 573 31 ) ) PUNCT coo.31924059551022 573 32 to to PART coo.31924059551022 573 33 form form VERB coo.31924059551022 573 34 ( ( PUNCT coo.31924059551022 573 35 77 77 NUM coo.31924059551022 573 36 ) ) PUNCT coo.31924059551022 573 37 may may AUX coo.31924059551022 573 38 be be AUX coo.31924059551022 573 39 accomplished accomplish VERB coo.31924059551022 573 40 as as SCONJ coo.31924059551022 573 41 follows follow NOUN coo.31924059551022 573 42 . . PUNCT coo.31924059551022 574 1 taking take VERB coo.31924059551022 574 2 the the DET coo.31924059551022 574 3 eliments eliment NOUN coo.31924059551022 574 4 we we PRON coo.31924059551022 574 5 have have VERB coo.31924059551022 574 6 g(m g(m VERB coo.31924059551022 574 7 + + ADJ coo.31924059551022 574 8 < < X coo.31924059551022 574 9 * * PUNCT coo.31924059551022 574 10 ) ) PUNCT coo.31924059551022 574 11 r r PROPN coo.31924059551022 574 12 - - PUNCT coo.31924059551022 574 13 uta uta PROPN coo.31924059551022 574 14 au au PROPN coo.31924059551022 574 15 aa aa PROPN coo.31924059551022 574 16 u u PROPN coo.31924059551022 575 1 y y PROPN coo.31924059551022 575 2 pa pa PROPN coo.31924059551022 575 3 4whence 4whence PROPN coo.31924059551022 575 4 y y PROPN coo.31924059551022 575 5 ■ ■ NOUN coo.31924059551022 575 6 ■ ■ NOUN coo.31924059551022 575 7 6j^±3 6j^±3 NUM coo.31924059551022 575 8 e e NOUN coo.31924059551022 575 9 - - VERB coo.31924059551022 575 10 utb_±._!lnh utb_±._!lnh ADJ coo.31924059551022 575 11 . . PUNCT coo.31924059551022 576 1 e e X coo.31924059551022 577 1 ~ ~ PUNCT coo.31924059551022 577 2 u u PROPN coo.31924059551022 577 3 2 2 NUM coo.31924059551022 577 4 pb pb X coo.31924059551022 577 5 + + CCONJ coo.31924059551022 577 6 g(u g(u ADJ coo.31924059551022 577 7 + + CCONJ coo.31924059551022 577 8 c c X coo.31924059551022 577 9 ) ) PUNCT coo.31924059551022 577 10 u u PROPN coo.31924059551022 577 11 1 1 NUM coo.31924059551022 577 12 u u PROPN coo.31924059551022 577 13 6u6c 6u6c PROPN coo.31924059551022 577 14 u u PROPN coo.31924059551022 577 15 ’ ' PUNCT coo.31924059551022 577 16 2 2 NUM coo.31924059551022 577 17 pc pc NOUN coo.31924059551022 577 18 take take VERB coo.31924059551022 577 19 ^_±d)a(^±b ^_±d)a(^±b SPACE coo.31924059551022 577 20 ) ) PUNCT coo.31924059551022 577 21 a(u a(u PROPN coo.31924059551022 577 22 + + PROPN coo.31924059551022 577 23 ^ ^ NOUN coo.31924059551022 577 24 e_(^+?6+fc e_(^+?6+fc X coo.31924059551022 577 25 ) ) PUNCT coo.31924059551022 577 26 „ „ PUNCT coo.31924059551022 577 27 a(a a(a ADV coo.31924059551022 577 28 ) ) PUNCT coo.31924059551022 577 29 6(b 6(b NUM coo.31924059551022 577 30 ) ) PUNCT coo.31924059551022 577 31 6(c 6(c NUM coo.31924059551022 577 32 ) ) PUNCT coo.31924059551022 577 33 o3u o3u ADV coo.31924059551022 577 34 = = PUNCT coo.31924059551022 578 1 [ [ X coo.31924059551022 578 2 ω5 ω5 X coo.31924059551022 578 3 τ(ρα τ(ρα NOUN coo.31924059551022 578 4 h"pv h"pv SPACE coo.31924059551022 578 5 ) ) PUNCT coo.31924059551022 579 1 + + CCONJ coo.31924059551022 579 2 ] ] X coo.31924059551022 579 3 ( ( PUNCT coo.31924059551022 579 4 v v NOUN coo.31924059551022 579 5 — — PUNCT coo.31924059551022 579 6 yp(c yp(c PROPN coo.31924059551022 579 7 ) ) PUNCT coo.31924059551022 579 8 + + PROPN coo.31924059551022 579 9 ) ) PUNCT coo.31924059551022 580 1 f f PROPN coo.31924059551022 580 2 = = PUNCT coo.31924059551022 580 3 c-“^“+f6 c-“^“+f6 VERB coo.31924059551022 580 4 + + PROPN coo.31924059551022 580 5 fe fe X coo.31924059551022 580 6 ) ) PUNCT coo.31924059551022 580 7 = = PROPN coo.31924059551022 580 8 ( ( PUNCT coo.31924059551022 580 9 _ _ PUNCT coo.31924059551022 580 10 “ " PUNCT coo.31924059551022 580 11 + + PROPN coo.31924059551022 580 12 jo jo PROPN coo.31924059551022 580 13 ( ( PUNCT coo.31924059551022 580 14 x x PROPN coo.31924059551022 580 15 - - NOUN coo.31924059551022 580 16 iv)n iv)n ADJ coo.31924059551022 580 17 e e NOUN coo.31924059551022 580 18 ( ( PUNCT coo.31924059551022 580 19 « « PUNCT coo.31924059551022 580 20 + + CCONJ coo.31924059551022 580 21 ö ö NOUN coo.31924059551022 580 22 + + PUNCT coo.31924059551022 580 23 c)öm c)öm PROPN coo.31924059551022 580 24 ° ° PROPN coo.31924059551022 580 25 auav auav PROPN coo.31924059551022 580 26 e e NOUN coo.31924059551022 580 27 ~y ~y SPACE coo.31924059551022 581 1 ~ ~ PUNCT coo.31924059551022 581 2 y y PROPN coo.31924059551022 581 3 ( ( PUNCT coo.31924059551022 581 4 pa pa PROPN coo.31924059551022 581 5 + + PROPN coo.31924059551022 581 6 pb-\pc pb-\pc PROPN coo.31924059551022 581 7 ) ) PUNCT coo.31924059551022 581 8 h--------f h--------f NOUN coo.31924059551022 581 9 y y PROPN coo.31924059551022 581 10 ¡ ¡ PROPN coo.31924059551022 582 1 — — PUNCT coo.31924059551022 583 1 i i PRON coo.31924059551022 584 1 ( ( PUNCT coo.31924059551022 585 1 pa pa PROPN coo.31924059551022 585 2 + + NOUN coo.31924059551022 585 3 ρδ ρδ PROPN coo.31924059551022 585 4 + + PRON coo.31924059551022 585 5 pe pe X coo.31924059551022 585 6 ) ) PUNCT coo.31924059551022 585 7 ------------ƒ ------------ƒ PUNCT coo.31924059551022 585 8 " " PUNCT coo.31924059551022 585 9 _ _ PUNCT coo.31924059551022 585 10 _ _ PUNCT coo.31924059551022 585 11 _ _ PUNCT coo.31924059551022 585 12 2 2 NUM coo.31924059551022 585 13 ? ? PUNCT coo.31924059551022 585 14 / / PUNCT coo.31924059551022 586 1 — — PUNCT coo.31924059551022 586 2 55 55 NUM coo.31924059551022 586 3 + + NUM coo.31924059551022 586 4 · · PUNCT coo.31924059551022 586 5 · · PUNCT coo.31924059551022 586 6 · · PUNCT coo.31924059551022 586 7 whence whence SCONJ coo.31924059551022 586 8 we we PRON coo.31924059551022 586 9 observe observe VERB coo.31924059551022 586 10 that that SCONJ coo.31924059551022 586 11 we we PRON coo.31924059551022 586 12 may may AUX coo.31924059551022 586 13 write write VERB coo.31924059551022 586 14 y y PROPN coo.31924059551022 586 15 ~ ~ PROPN coo.31924059551022 586 16 ~2 ~2 PROPN coo.31924059551022 586 17 if"u if"u NOUN coo.31924059551022 586 18 — — PUNCT coo.31924059551022 586 19 ( ( PUNCT coo.31924059551022 586 20 pa pa PROPN coo.31924059551022 586 21 + + PROPN coo.31924059551022 586 22 pi pi NOUN coo.31924059551022 586 23 > > X coo.31924059551022 586 24 + + X coo.31924059551022 586 25 pc pc NOUN coo.31924059551022 586 26 ) ) PUNCT coo.31924059551022 586 27 fu\. fu\. PROPN coo.31924059551022 586 28 but but CCONJ coo.31924059551022 586 29 * * PUNCT coo.31924059551022 587 1 pa pa PROPN coo.31924059551022 587 2 + + CCONJ coo.31924059551022 587 3 pb pb X coo.31924059551022 587 4 pc pc NOUN coo.31924059551022 587 5 = = PROPN coo.31924059551022 587 6 \ \ PROPN coo.31924059551022 587 7 b b PROPN coo.31924059551022 587 8 = = PROPN coo.31924059551022 587 9 36 36 NUM coo.31924059551022 587 10 • • SYM coo.31924059551022 587 11 2d 2d NOUN coo.31924059551022 587 12 solution solution NOUN coo.31924059551022 587 13 . . PUNCT coo.31924059551022 588 1 reduction reduction NUM coo.31924059551022 588 2 of of ADP coo.31924059551022 588 3 the the DET coo.31924059551022 588 4 forms form NOUN coo.31924059551022 588 5 when when SCONJ coo.31924059551022 588 6 n n SYM coo.31924059551022 588 7 equals equal VERB coo.31924059551022 588 8 three three NUM coo.31924059551022 588 9 . . PUNCT coo.31924059551022 589 1 47 47 NUM coo.31924059551022 589 2 and and CCONJ coo.31924059551022 589 3 , , PUNCT coo.31924059551022 589 4 disregarding disregard VERB coo.31924059551022 589 5 the the DET coo.31924059551022 589 6 factor factor NOUN coo.31924059551022 589 7 we we PRON coo.31924059551022 589 8 obtain obtain VERB coo.31924059551022 589 9 the the DET coo.31924059551022 589 10 first first ADJ coo.31924059551022 589 11 form form NOUN coo.31924059551022 589 12 : : PUNCT coo.31924059551022 589 13 y y PROPN coo.31924059551022 589 14 = = SYM coo.31924059551022 589 15 f"-m f"-m VERB coo.31924059551022 589 16 having have VERB coo.31924059551022 589 17 then then ADV coo.31924059551022 589 18 a a DET coo.31924059551022 589 19 method method NOUN coo.31924059551022 589 20 of of ADP coo.31924059551022 589 21 reduction reduction NOUN coo.31924059551022 589 22 the the DET coo.31924059551022 589 23 determination determination NOUN coo.31924059551022 589 24 of of ADP coo.31924059551022 589 25 a a PRON coo.31924059551022 589 26 : : PUNCT coo.31924059551022 589 27 δ δ NOUN coo.31924059551022 589 28 : : PUNCT coo.31924059551022 589 29 c c PROPN coo.31924059551022 589 30 is be AUX coo.31924059551022 589 31 involved involve VERB coo.31924059551022 589 32 in in ADP coo.31924059551022 589 33 the the DET coo.31924059551022 589 34 determinate determinate NOUN coo.31924059551022 589 35 of of ADP coo.31924059551022 589 36 v. v. NOUN coo.31924059551022 589 37 determination determination NOUN coo.31924059551022 589 38 of of ADP coo.31924059551022 589 39 x x SYM coo.31924059551022 589 40 and and CCONJ coo.31924059551022 589 41 v. v. ADP coo.31924059551022 589 42 first first ADJ coo.31924059551022 589 43 method method NOUN coo.31924059551022 589 44 . . PUNCT coo.31924059551022 590 1 to to ADP coo.31924059551022 590 2 this this DET coo.31924059551022 590 3 end end NOUN coo.31924059551022 590 4 we we PRON coo.31924059551022 590 5 have have VERB coo.31924059551022 590 6 from from ADP coo.31924059551022 590 7 ( ( PUNCT coo.31924059551022 590 8 31 31 NUM coo.31924059551022 590 9 ) ) PUNCT coo.31924059551022 590 10 and and CCONJ coo.31924059551022 590 11 ( ( PUNCT coo.31924059551022 590 12 26 26 NUM coo.31924059551022 590 13 ) ) PUNCT coo.31924059551022 590 14 h0 h0 PROPN coo.31924059551022 591 1 = = X coo.31924059551022 591 2 x x X coo.31924059551022 591 3 ] ] X coo.31924059551022 591 4 ht ht NOUN coo.31924059551022 591 5 = = X coo.31924059551022 591 6 y y PROPN coo.31924059551022 591 7 ( ( PUNCT coo.31924059551022 591 8 x2 x2 PROPN coo.31924059551022 591 9 + + CCONJ coo.31924059551022 591 10 po po NOUN coo.31924059551022 591 11 ; ; PUNCT coo.31924059551022 591 12 s2 s2 PROPN coo.31924059551022 591 13 = = PUNCT coo.31924059551022 591 14 y(æ3 y(æ3 X coo.31924059551022 592 1 + + PUNCT coo.31924059551022 592 2 3 3 NUM coo.31924059551022 592 3 p2x p2x NOUN coo.31924059551022 592 4 + + NUM coo.31924059551022 592 5 p8 p8 PROPN coo.31924059551022 592 6 ) ) PUNCT coo.31924059551022 592 7 and and CCONJ coo.31924059551022 592 8 also also ADV coo.31924059551022 592 9 ht ht NOUN coo.31924059551022 592 10 = = SYM coo.31924059551022 592 11 b b PROPN coo.31924059551022 592 12 10 10 NUM coo.31924059551022 592 13 2?2 2?2 NUM coo.31924059551022 592 14 120 120 NUM coo.31924059551022 593 1 whence whence NOUN coo.31924059551022 593 2 relations relation NOUN coo.31924059551022 593 3 ( ( PUNCT coo.31924059551022 593 4 78 78 NUM coo.31924059551022 593 5 ) ) PUNCT coo.31924059551022 593 6 become become VERB coo.31924059551022 593 7 l l NOUN coo.31924059551022 593 8 · · PUNCT coo.31924059551022 593 9 20 20 NUM coo.31924059551022 593 10 1(*3 1(*3 NUM coo.31924059551022 594 1 + + NUM coo.31924059551022 594 2 3p2 3p2 NUM coo.31924059551022 594 3 * * PUNCT coo.31924059551022 594 4 + + SYM coo.31924059551022 594 5 p3)-|z p3)-|z NOUN coo.31924059551022 594 6 = = PUNCT coo.31924059551022 594 7 0 0 PUNCT coo.31924059551022 595 1 ±(x*+6p2x*+4p3x ±(x*+6p2x*+4p3x PROPN coo.31924059551022 595 2 + + CCONJ coo.31924059551022 595 3 p4 p4 PROPN coo.31924059551022 595 4 ) ) PUNCT coo.31924059551022 595 5 f f PROPN coo.31924059551022 596 1 ( ( PUNCT coo.31924059551022 596 2 * * PUNCT coo.31924059551022 596 3 * * PUNCT coo.31924059551022 596 4 + + NUM coo.31924059551022 596 5 p2 p2 X coo.31924059551022 596 6 ) ) PUNCT coo.31924059551022 596 7 = = PROPN coo.31924059551022 596 8 f f PROPN coo.31924059551022 596 9 f f PROPN coo.31924059551022 596 10 set set PROPN coo.31924059551022 596 11 í í PROPN coo.31924059551022 596 12 - - PUNCT coo.31924059551022 596 13 t.b t.b PROPN coo.31924059551022 596 14 or or CCONJ coo.31924059551022 596 15 and and CCONJ coo.31924059551022 596 16 take take VERB coo.31924059551022 596 17 from from ADP coo.31924059551022 596 18 ( ( PUNCT coo.31924059551022 596 19 p. p. NOUN coo.31924059551022 596 20 24 24 NUM coo.31924059551022 596 21 ) ) PUNCT coo.31924059551022 596 22 p2 p2 PROPN coo.31924059551022 596 23 = = X coo.31924059551022 596 24 p3 p3 PROPN coo.31924059551022 596 25 = = PUNCT coo.31924059551022 596 26 — — PUNCT coo.31924059551022 596 27 pv pv ADP coo.31924059551022 596 28 ; ; PUNCT coo.31924059551022 596 29 p4 p4 PROPN coo.31924059551022 596 30 = = NOUN coo.31924059551022 596 31 — — PUNCT coo.31924059551022 596 32 3p2v 3p2v NOUN coo.31924059551022 596 33 + + CCONJ coo.31924059551022 596 34 | | NOUN coo.31924059551022 596 35 & & CCONJ coo.31924059551022 596 36 ¡ ¡ ADJ coo.31924059551022 596 37 which which DET coo.31924059551022 596 38 values value NOUN coo.31924059551022 596 39 reduce reduce VERB coo.31924059551022 596 40 our our PRON coo.31924059551022 596 41 relations relation NOUN coo.31924059551022 596 42 to to ADP coo.31924059551022 596 43 the the DET coo.31924059551022 596 44 form form NOUN coo.31924059551022 596 45 ( ( PUNCT coo.31924059551022 596 46 a a X coo.31924059551022 596 47 ) ) PUNCT coo.31924059551022 596 48 lx3 lx3 NOUN coo.31924059551022 596 49 — — PUNCT coo.31924059551022 596 50 3p{v)x 3p{v)x NUM coo.31924059551022 596 51 — — PUNCT coo.31924059551022 596 52 p'(v p'(v NOUN coo.31924059551022 596 53 ) ) PUNCT coo.31924059551022 596 54 — — PUNCT coo.31924059551022 596 55 3lx 3lx NOUN coo.31924059551022 596 56 = = SYM coo.31924059551022 596 57 0 0 NUM coo.31924059551022 596 58 γ γ NOUN coo.31924059551022 596 59 80 80 NUM coo.31924059551022 596 60 ] ] PUNCT coo.31924059551022 597 1 j j PROPN coo.31924059551022 597 2 c72 c72 PROPN coo.31924059551022 597 3 ( ( PUNCT coo.31924059551022 597 4 b b NOUN coo.31924059551022 597 5 ) ) PUNCT coo.31924059551022 597 6 he4 he4 NOUN coo.31924059551022 597 7 6p(v)x2 6p(v)x2 NUM coo.31924059551022 597 8 — — PUNCT coo.31924059551022 597 9 4p 4p NUM coo.31924059551022 597 10 ( ( PUNCT coo.31924059551022 597 11 v)x v)x X coo.31924059551022 597 12 3p2 3p2 NUM coo.31924059551022 597 13 ( ( PUNCT coo.31924059551022 597 14 v v NOUN coo.31924059551022 597 15 ) ) PUNCT coo.31924059551022 597 16 — — PUNCT coo.31924059551022 597 17 21 21 NUM coo.31924059551022 597 18 + + NUM coo.31924059551022 597 19 2 2 NUM coo.31924059551022 597 20 ip ip NOUN coo.31924059551022 597 21 ( ( PUNCT coo.31924059551022 597 22 v v NOUN coo.31924059551022 597 23 ) ) PUNCT coo.31924059551022 597 24 = = PUNCT coo.31924059551022 597 25 ~ ~ PUNCT coo.31924059551022 597 26 — — PUNCT coo.31924059551022 597 27 //2 //2 PUNCT coo.31924059551022 598 1 i i PRON coo.31924059551022 598 2 o o X coo.31924059551022 598 3 which which PRON coo.31924059551022 598 4 are be AUX coo.31924059551022 598 5 reduced reduce VERB coo.31924059551022 598 6 forms form NOUN coo.31924059551022 598 7 of of ADP coo.31924059551022 598 8 the the DET coo.31924059551022 598 9 equations equation NOUN coo.31924059551022 598 10 of of ADP coo.31924059551022 598 11 condition condition NOUN coo.31924059551022 598 12 that that SCONJ coo.31924059551022 598 13 y y PROPN coo.31924059551022 598 14 = = PROPN coo.31924059551022 598 15 fx fx PROPN coo.31924059551022 598 16 ( ( PUNCT coo.31924059551022 598 17 x x SYM coo.31924059551022 598 18 ) ) PUNCT coo.31924059551022 598 19 be be AUX coo.31924059551022 598 20 a a DET coo.31924059551022 598 21 solution solution NOUN coo.31924059551022 598 22 in in ADP coo.31924059551022 598 23 addition addition NOUN coo.31924059551022 598 24 to to ADP coo.31924059551022 598 25 which which PRON coo.31924059551022 598 26 we we PRON coo.31924059551022 598 27 have have VERB coo.31924059551022 598 28 the the DET coo.31924059551022 598 29 identity identity NOUN coo.31924059551022 598 30 p'o)2 p'o)2 VERB coo.31924059551022 598 31 = = X coo.31924059551022 598 32 4ps(v 4ps(v NUM coo.31924059551022 598 33 ) ) PUNCT coo.31924059551022 598 34 — — PUNCT coo.31924059551022 598 35 g2p(y g2p(y PROPN coo.31924059551022 598 36 ) ) PUNCT coo.31924059551022 598 37 — — PUNCT coo.31924059551022 598 38 g3 g3 PROPN coo.31924059551022 598 39 and and CCONJ coo.31924059551022 598 40 the the DET coo.31924059551022 598 41 useful useful ADJ coo.31924059551022 598 42 relation relation NOUN coo.31924059551022 598 43 h1=\ h1=\ PUNCT coo.31924059551022 598 44 ( ( PUNCT coo.31924059551022 598 45 a;2 a;2 PROPN coo.31924059551022 598 46 — — PUNCT coo.31924059551022 598 47 p(v p(v PROPN coo.31924059551022 598 48 ) ) PUNCT coo.31924059551022 598 49 ) ) PUNCT coo.31924059551022 598 50 . . PUNCT coo.31924059551022 599 1 or or CCONJ coo.31924059551022 599 2 p(v p(v PROPN coo.31924059551022 599 3 ) ) PUNCT coo.31924059551022 600 1 = = PUNCT coo.31924059551022 600 2 x x PUNCT coo.31924059551022 600 3 ? ? PUNCT coo.31924059551022 601 1 — — PUNCT coo.31924059551022 601 2 2hv 2hv ADJ coo.31924059551022 601 3 the the DET coo.31924059551022 601 4 product product NOUN coo.31924059551022 601 5 of of ADP coo.31924059551022 601 6 equations equation NOUN coo.31924059551022 601 7 ( ( PUNCT coo.31924059551022 601 8 80 80 NUM coo.31924059551022 601 9 ) ) PUNCT coo.31924059551022 601 10 is be AUX coo.31924059551022 601 11 an an DET coo.31924059551022 601 12 equation equation NOUN coo.31924059551022 601 13 of of ADP coo.31924059551022 601 14 the the DET coo.31924059551022 601 15 seventh seventh ADJ coo.31924059551022 601 16 degree degree NOUN coo.31924059551022 601 17 in in ADP coo.31924059551022 601 18 x x PROPN coo.31924059551022 601 19 the the DET coo.31924059551022 601 20 roots root NOUN coo.31924059551022 601 21 of of ADP coo.31924059551022 601 22 which which PRON coo.31924059551022 601 23 are be AUX coo.31924059551022 601 24 functions function NOUN coo.31924059551022 601 25 of of ADP coo.31924059551022 601 26 v v PROPN coo.31924059551022 601 27 and and CCONJ coo.31924059551022 601 28 b b PROPN coo.31924059551022 601 29 and and CCONJ coo.31924059551022 601 30 hence hence ADV coo.31924059551022 601 31 the the DET coo.31924059551022 601 32 values value NOUN coo.31924059551022 601 33 of of ADP coo.31924059551022 601 34 b b PROPN coo.31924059551022 601 35 that that PRON coo.31924059551022 601 36 will will AUX coo.31924059551022 601 37 reduce reduce VERB coo.31924059551022 601 38 x x PROPN coo.31924059551022 601 39 to to ADP coo.31924059551022 601 40 zero zero NUM coo.31924059551022 601 41 are be AUX coo.31924059551022 601 42 in in ADP coo.31924059551022 601 43 number number NOUN coo.31924059551022 601 44 not not PART coo.31924059551022 601 45 more more ADJ coo.31924059551022 601 46 than than ADP coo.31924059551022 601 47 seven seven NUM coo.31924059551022 601 48 . . PUNCT coo.31924059551022 602 1 but but CCONJ coo.31924059551022 602 2 when when SCONJ coo.31924059551022 602 3 x x PUNCT coo.31924059551022 602 4 equals equal VERB coo.31924059551022 602 5 zero zero NUM coo.31924059551022 602 6 ( ( PUNCT coo.31924059551022 602 7 and and CCONJ coo.31924059551022 602 8 v v X coo.31924059551022 602 9 = = X coo.31924059551022 602 10 w%\ w%\ PROPN coo.31924059551022 603 1 y y PROPN coo.31924059551022 603 2 is be AUX coo.31924059551022 603 3 in in ADP coo.31924059551022 603 4 general general ADJ coo.31924059551022 603 5 a a DET coo.31924059551022 603 6 doubly doubly ADV coo.31924059551022 603 7 periodic periodic ADJ coo.31924059551022 603 8 function function NOUN coo.31924059551022 603 9 and and CCONJ coo.31924059551022 603 10 the the DET coo.31924059551022 603 11 doubly doubly ADV coo.31924059551022 603 12 periodic periodic ADJ coo.31924059551022 603 13 special special ADJ coo.31924059551022 603 14 functions function NOUN coo.31924059551022 603 15 of of ADP coo.31924059551022 603 16 lamé lamé NOUN coo.31924059551022 603 17 48 48 NUM coo.31924059551022 603 18 part part NOUN coo.31924059551022 603 19 v. v. ADP coo.31924059551022 603 20 are be AUX coo.31924059551022 603 21 in in ADP coo.31924059551022 603 22 all all DET coo.31924059551022 603 23 seven seven NUM coo.31924059551022 603 24 in in ADP coo.31924059551022 603 25 number number NOUN coo.31924059551022 603 26 for for ADP coo.31924059551022 603 27 n n NOUN coo.31924059551022 603 28 equals equal VERB coo.31924059551022 603 29 three three NUM coo.31924059551022 603 30 one one NUM coo.31924059551022 603 31 being being NOUN coo.31924059551022 603 32 of of ADP coo.31924059551022 603 33 the the DET coo.31924059551022 603 34 first first ADJ coo.31924059551022 603 35 sort sort NOUN coo.31924059551022 603 36 and and CCONJ coo.31924059551022 603 37 six six NUM coo.31924059551022 603 38 of of ADP coo.31924059551022 603 39 the the DET coo.31924059551022 603 40 second second ADJ coo.31924059551022 603 41 . . PUNCT coo.31924059551022 604 1 it it PRON coo.31924059551022 604 2 follows follow VERB coo.31924059551022 604 3 then then ADV coo.31924059551022 604 4 that that SCONJ coo.31924059551022 604 5 by by ADP coo.31924059551022 604 6 elliminating elliminate VERB coo.31924059551022 604 7 p(v p(v PROPN coo.31924059551022 604 8 ) ) PUNCT coo.31924059551022 604 9 and and CCONJ coo.31924059551022 604 10 p'(v p'(v PROPN coo.31924059551022 604 11 ) ) PUNCT coo.31924059551022 604 12 , , PUNCT coo.31924059551022 604 13 we we PRON coo.31924059551022 604 14 should should AUX coo.31924059551022 604 15 obtain obtain VERB coo.31924059551022 604 16 æ æ X coo.31924059551022 604 17 as as ADP coo.31924059551022 604 18 a a DET coo.31924059551022 604 19 function function NOUN coo.31924059551022 604 20 of of ADP coo.31924059551022 604 21 φ φ NOUN coo.31924059551022 604 22 where where SCONJ coo.31924059551022 604 23 φ φ PROPN coo.31924059551022 604 24 is be AUX coo.31924059551022 604 25 a a DET coo.31924059551022 604 26 function function NOUN coo.31924059551022 604 27 of of ADP coo.31924059551022 604 28 b b NOUN coo.31924059551022 604 29 the the DET coo.31924059551022 604 30 vanishing vanishing NOUN coo.31924059551022 604 31 of of ADP coo.31924059551022 604 32 which which PRON coo.31924059551022 604 33 will will AUX coo.31924059551022 604 34 be be AUX coo.31924059551022 604 35 the the DET coo.31924059551022 604 36 condition condition NOUN coo.31924059551022 604 37 for for ADP coo.31924059551022 604 38 the the DET coo.31924059551022 604 39 special special ADJ coo.31924059551022 604 40 functions function NOUN coo.31924059551022 604 41 of of ADP coo.31924059551022 604 42 lamé lamé NOUN coo.31924059551022 604 43 . . PUNCT coo.31924059551022 605 1 this this DET coo.31924059551022 605 2 complicated complicated ADJ coo.31924059551022 605 3 ellimination ellimination NOUN coo.31924059551022 605 4 , , PUNCT coo.31924059551022 605 5 suggesting suggest VERB coo.31924059551022 605 6 the the DET coo.31924059551022 605 7 practical practical ADJ coo.31924059551022 605 8 uselesness uselesness NOUN coo.31924059551022 605 9 of of ADP coo.31924059551022 605 10 . . PUNCT coo.31924059551022 606 1 this this DET coo.31924059551022 606 2 method method NOUN coo.31924059551022 606 3 for for ADP coo.31924059551022 606 4 any any DET coo.31924059551022 606 5 higher high ADJ coo.31924059551022 606 6 value value NOUN coo.31924059551022 606 7 of of ADP coo.31924059551022 606 8 n n CCONJ coo.31924059551022 606 9 is be AUX coo.31924059551022 606 10 performed perform VERB coo.31924059551022 606 11 as as SCONJ coo.31924059551022 606 12 follows follow NOUN coo.31924059551022 606 13 . . PUNCT coo.31924059551022 607 1 multiplying multiply VERB coo.31924059551022 607 2 the the DET coo.31924059551022 607 3 first first ADJ coo.31924059551022 607 4 equation equation NOUN coo.31924059551022 607 5 by by ADP coo.31924059551022 607 6 four four NUM coo.31924059551022 607 7 and and CCONJ coo.31924059551022 607 8 subtracting subtract VERB coo.31924059551022 607 9 we we PRON coo.31924059551022 607 10 obtain obtain VERB coo.31924059551022 607 11 3 3 NUM coo.31924059551022 607 12 a:4 a:4 NOUN coo.31924059551022 607 13 6p(v)x2 6p(v)x2 NUM coo.31924059551022 607 14 — — PUNCT coo.31924059551022 607 15 10lx2 10lx2 NUM coo.31924059551022 607 16 2lp(v 2lp(v NUM coo.31924059551022 607 17 ) ) PUNCT coo.31924059551022 608 1 + + NUM coo.31924059551022 608 2 3/0 3/0 NUM coo.31924059551022 608 3 ) ) PUNCT coo.31924059551022 608 4 = = PUNCT coo.31924059551022 608 5 — — PUNCT coo.31924059551022 608 6 ~ ~ PUNCT coo.31924059551022 608 7 + + PUNCT coo.31924059551022 608 8 g2 g2 PROPN coo.31924059551022 608 9 whence whence ADP coo.31924059551022 608 10 the the DET coo.31924059551022 608 11 relation relation NOUN coo.31924059551022 608 12 p(v p(v PROPN coo.31924059551022 608 13 ) ) PUNCT coo.31924059551022 608 14 — — PUNCT coo.31924059551022 608 15 x2 x2 INTJ coo.31924059551022 608 16 — — PUNCT coo.31924059551022 608 17 2 2 NUM coo.31924059551022 608 18 h1 h1 NOUN coo.31924059551022 608 19 gives give VERB coo.31924059551022 608 20 ( ( PUNCT coo.31924059551022 608 21 c c NOUN coo.31924059551022 608 22 ) ) PUNCT coo.31924059551022 608 23 36 36 NUM coo.31924059551022 608 24 hi hi INTJ coo.31924059551022 608 25 — — PUNCT coo.31924059551022 609 1 3 3 NUM coo.31924059551022 609 2 ux2 ux2 NOUN coo.31924059551022 609 3 + + NUM coo.31924059551022 609 4 12 12 NUM coo.31924059551022 609 5 lht lht NOUN coo.31924059551022 609 6 + + PROPN coo.31924059551022 609 7 5z2 5z2 NUM coo.31924059551022 609 8 — — PUNCT coo.31924059551022 609 9 3 3 NUM coo.31924059551022 609 10 g2 g2 PROPN coo.31924059551022 609 11 = = SYM coo.31924059551022 609 12 0 0 NUM coo.31924059551022 609 13 . . PUNCT coo.31924059551022 609 14 again again ADV coo.31924059551022 609 15 from from ADP coo.31924059551022 609 16 ( ( PUNCT coo.31924059551022 609 17 b b NOUN coo.31924059551022 609 18 ) ) PUNCT coo.31924059551022 609 19 and and CCONJ coo.31924059551022 609 20 the the DET coo.31924059551022 609 21 identity identity NOUN coo.31924059551022 609 22 p'(y)2 p'(y)2 NOUN coo.31924059551022 609 23 = = NOUN coo.31924059551022 609 24 ( ( PUNCT coo.31924059551022 609 25 3hx 3hx PROPN coo.31924059551022 609 26 -j3p(v)x -j3p(v)x X coo.31924059551022 609 27 — — PUNCT coo.31924059551022 609 28 χ3)2 χ3)2 NOUN coo.31924059551022 609 29 = = PROPN coo.31924059551022 609 30 9ϋ2χ2-\-9ρ2(ν)χ2-\-χ(ί-\18bp(v)x2 9ϋ2χ2-\-9ρ2(ν)χ2-\-χ(ί-\18bp(v)x2 NUM coo.31924059551022 609 31 — — PUNCT coo.31924059551022 609 32 6bx4 6bx4 NUM coo.31924059551022 609 33 — — PUNCT coo.31924059551022 609 34 6jp(v)x4 6jp(v)x4 NUM coo.31924059551022 609 35 = = SYM coo.31924059551022 609 36 9b2x2 9b2x2 NUM coo.31924059551022 609 37 -f -f PUNCT coo.31924059551022 609 38 9íc204 9íc204 NUM coo.31924059551022 609 39 4a;2it 4a;2it NUM coo.31924059551022 609 40 , , PUNCT coo.31924059551022 609 41 + + NUM coo.31924059551022 609 42 4hf 4hf ADJ coo.31924059551022 609 43 ) ) PUNCT coo.31924059551022 610 1 + + PUNCT coo.31924059551022 610 2 a;0 a;0 PROPN coo.31924059551022 611 1 + + CCONJ coo.31924059551022 611 2 \ux\xì \ux\xì X coo.31924059551022 611 3 — — PUNCT coo.31924059551022 611 4 2iq 2iq NOUN coo.31924059551022 611 5 — — PUNCT coo.31924059551022 611 6 qbx4 qbx4 NOUN coo.31924059551022 611 7 — — PUNCT coo.31924059551022 611 8 6x4(x2 6x4(x2 NUM coo.31924059551022 611 9 — — PUNCT coo.31924059551022 611 10 2 2 NUM coo.31924059551022 611 11 - - PUNCT coo.31924059551022 611 12 ítj ítj NOUN coo.31924059551022 611 13 ) ) PUNCT coo.31924059551022 611 14 — — PUNCT coo.31924059551022 611 15 4(íc 4(íc NUM coo.31924059551022 611 16 « « PUNCT coo.31924059551022 612 1 6xihl 6xihl NUM coo.31924059551022 612 2 + + NUM coo.31924059551022 612 3 12a2hi 12a2hi NUM coo.31924059551022 612 4 8hî 8hî NOUN coo.31924059551022 612 5 ) ) PUNCT coo.31924059551022 612 6 g2 g2 PROPN coo.31924059551022 612 7 ( ( PUNCT coo.31924059551022 612 8 x2 x2 PROPN coo.31924059551022 612 9 2hj 2hj NOUN coo.31924059551022 612 10 — — PUNCT coo.31924059551022 612 11 g% g% NOUN coo.31924059551022 612 12 or or CCONJ coo.31924059551022 612 13 multiplying multiply VERB coo.31924059551022 612 14 by by ADP coo.31924059551022 612 15 9 9 NUM coo.31924059551022 612 16 ( ( PUNCT coo.31924059551022 612 17 d d NOUN coo.31924059551022 612 18 ) ) PUNCT coo.31924059551022 612 19 81 81 NUM coo.31924059551022 612 20 l2x2 l2x2 X coo.31924059551022 613 1 108x2h\ 108x2h\ NOUN coo.31924059551022 613 2 + + SYM coo.31924059551022 613 3 108lx 108lx NOUN coo.31924059551022 613 4 * * PUNCT coo.31924059551022 613 5 — — PUNCT coo.31924059551022 613 6 9 9 NUM coo.31924059551022 613 7 · · SYM coo.31924059551022 613 8 36zh 36zh PROPN coo.31924059551022 613 9 , , PUNCT coo.31924059551022 613 10 a:2 a:2 PROPN coo.31924059551022 613 11 + + PROPN coo.31924059551022 613 12 9 9 NUM coo.31924059551022 613 13 · · PUNCT coo.31924059551022 613 14 32h\ 32h\ NUM coo.31924059551022 613 15 + + NUM coo.31924059551022 613 16 9 9 NUM coo.31924059551022 613 17 g2x g2x NOUN coo.31924059551022 613 18 ? ? PUNCT coo.31924059551022 613 19 — — PUNCT coo.31924059551022 614 1 18 18 NUM coo.31924059551022 614 2 + + NUM coo.31924059551022 614 3 9g3 9g3 NUM coo.31924059551022 614 4 = = SYM coo.31924059551022 614 5 0 0 NUM coo.31924059551022 614 6 . . PUNCT coo.31924059551022 615 1 from from ADP coo.31924059551022 615 2 ( ( PUNCT coo.31924059551022 615 3 a a NOUN coo.31924059551022 615 4 ) ) PUNCT coo.31924059551022 615 5 , , PUNCT coo.31924059551022 615 6 ( ( PUNCT coo.31924059551022 615 7 b b NOUN coo.31924059551022 615 8 ) ) PUNCT coo.31924059551022 615 9 and and CCONJ coo.31924059551022 615 10 the the DET coo.31924059551022 615 11 value value NOUN coo.31924059551022 615 12 for for ADP coo.31924059551022 615 13 p(v p(v NOUN coo.31924059551022 615 14 ) ) PUNCT coo.31924059551022 615 15 a:4 a:4 PROPN coo.31924059551022 615 16 — — PUNCT coo.31924059551022 615 17 & & CCONJ coo.31924059551022 615 18 x2 x2 PROPN coo.31924059551022 615 19 ( ( PUNCT coo.31924059551022 615 20 x2 x2 ADJ coo.31924059551022 615 21 — — PUNCT coo.31924059551022 615 22 2 2 NUM coo.31924059551022 615 23 h h NOUN coo.31924059551022 615 24 , , PUNCT coo.31924059551022 615 25 ) ) PUNCT coo.31924059551022 615 26 — — PUNCT coo.31924059551022 615 27 4a:(a;s 4a:(a;s NUM coo.31924059551022 615 28 — — PUNCT coo.31924059551022 615 29 3 3 NUM coo.31924059551022 615 30 p p NOUN coo.31924059551022 615 31 ( ( PUNCT coo.31924059551022 615 32 v)x v)x NOUN coo.31924059551022 615 33 — — PUNCT coo.31924059551022 615 34 3 3 NUM coo.31924059551022 615 35 bx bx X coo.31924059551022 615 36 ) ) PUNCT coo.31924059551022 615 37 — — PUNCT coo.31924059551022 616 1 3 3 X coo.31924059551022 616 2 ( ( PUNCT coo.31924059551022 616 3 [ [ X coo.31924059551022 616 4 x4 x4 PROPN coo.31924059551022 616 5 — — PUNCT coo.31924059551022 616 6 4 4 X coo.31924059551022 616 7 : : PUNCT coo.31924059551022 616 8 x2hí+4 x2hí+4 PROPN coo.31924059551022 616 9 hf hf PROPN coo.31924059551022 616 10 ) ) PUNCT coo.31924059551022 616 11 2lx2 2lx2 NUM coo.31924059551022 616 12 + + NUM coo.31924059551022 616 13 2l{x2 2l{x2 NUM coo.31924059551022 616 14 2hj 2hj NOUN coo.31924059551022 616 15 = = PUNCT coo.31924059551022 616 16 ^ ^ X coo.31924059551022 616 17 & & CCONJ coo.31924059551022 616 18 or or CCONJ coo.31924059551022 616 19 ( ( PUNCT coo.31924059551022 616 20 e e NOUN coo.31924059551022 616 21 ) ) PUNCT coo.31924059551022 616 22 12za:2 12za:2 NUM coo.31924059551022 616 23 12hj 12hj PROPN coo.31924059551022 616 24 4bh 4bh PROPN coo.31924059551022 616 25 , , PUNCT coo.31924059551022 616 26 — — PUNCT coo.31924059551022 616 27 ψg2 ψg2 NOUN coo.31924059551022 616 28 and and CCONJ coo.31924059551022 616 29 multiplying multiplying NOUN coo.31924059551022 616 30 ( ( PUNCT coo.31924059551022 616 31 e e NOUN coo.31924059551022 616 32 ) ) PUNCT coo.31924059551022 616 33 by by ADP coo.31924059551022 616 34 3 3 NUM coo.31924059551022 616 35 and and CCONJ coo.31924059551022 616 36 85^ 85^ NUM coo.31924059551022 616 37 it it PRON coo.31924059551022 616 38 becomes become VERB coo.31924059551022 616 39 ( ( PUNCT coo.31924059551022 616 40 f f X coo.31924059551022 616 41 ) ) PUNCT coo.31924059551022 616 42 36 36 NUM coo.31924059551022 616 43 · · PUNCT coo.31924059551022 616 44 8lx2b 8lx2b NUM coo.31924059551022 616 45 * * SYM coo.31924059551022 616 46 36 36 NUM coo.31924059551022 616 47 · · SYM coo.31924059551022 616 48 8h 8h NUM coo.31924059551022 616 49 ? ? PUNCT coo.31924059551022 617 1 961hì 961hì NOUN coo.31924059551022 617 2 = = NOUN coo.31924059551022 617 3 40z2h 40z2h NUM coo.31924059551022 617 4 , , PUNCT coo.31924059551022 617 5 — — PUNCT coo.31924059551022 617 6 24g2h 24g2h NUM coo.31924059551022 617 7 , , PUNCT coo.31924059551022 617 8 whence whence ADV coo.31924059551022 617 9 from from ADP coo.31924059551022 617 10 ( ( PUNCT coo.31924059551022 617 11 c c X coo.31924059551022 617 12 ) ) PUNCT coo.31924059551022 617 13 elliminating elliminate VERB coo.31924059551022 617 14 bx bx X coo.31924059551022 617 15 ( ( PUNCT coo.31924059551022 617 16 g g PROPN coo.31924059551022 617 17 ) ) PUNCT coo.31924059551022 617 18 81 81 NUM coo.31924059551022 618 1 z2 z2 PROPN coo.31924059551022 618 2 * * SYM coo.31924059551022 618 3 2 2 NUM coo.31924059551022 618 4 108x2h 108x2h NUM coo.31924059551022 618 5 ¡ ¡ NUM coo.31924059551022 618 6 + + NUM coo.31924059551022 618 7 108za;4 108za;4 X coo.31924059551022 618 8 36lhtx2 36lhtx2 NUM coo.31924059551022 618 9 96ibi 96ibi NUM coo.31924059551022 618 10 = = PUNCT coo.31924059551022 618 11 40z2h 40z2h NUM coo.31924059551022 618 12 , , PUNCT coo.31924059551022 618 13 — — PUNCT coo.31924059551022 618 14 6g2h1 6g2h1 NOUN coo.31924059551022 618 15 — — PUNCT coo.31924059551022 618 16 9 9 NUM coo.31924059551022 618 17 g2x2 g2x2 SYM coo.31924059551022 618 18 — — PUNCT coo.31924059551022 618 19 9gs 9gs ADJ coo.31924059551022 618 20 . . PUNCT coo.31924059551022 619 1 reduction reduction NUM coo.31924059551022 619 2 of of ADP coo.31924059551022 619 3 the the DET coo.31924059551022 619 4 forms form NOUN coo.31924059551022 619 5 when when SCONJ coo.31924059551022 619 6 n n SYM coo.31924059551022 619 7 equals equal VERB coo.31924059551022 619 8 three three NUM coo.31924059551022 619 9 . . PUNCT coo.31924059551022 620 1 49 49 NUM coo.31924059551022 620 2 whence whence NOUN coo.31924059551022 620 3 a a DET coo.31924059551022 620 4 further further ADJ coo.31924059551022 620 5 combination combination NOUN coo.31924059551022 620 6 with with ADP coo.31924059551022 620 7 ( ( PUNCT coo.31924059551022 620 8 c c NOUN coo.31924059551022 620 9 ) ) PUNCT coo.31924059551022 620 10 gives give VERB coo.31924059551022 620 11 ( ( PUNCT coo.31924059551022 620 12 h h PROPN coo.31924059551022 620 13 ) ) PUNCT coo.31924059551022 620 14 72i2a;2 72i2a;2 SYM coo.31924059551022 620 15 " " PUNCT coo.31924059551022 620 16 721h\ 721h\ NUM coo.31924059551022 620 17 32ph1 32ph1 NUM coo.31924059551022 620 18 + + NUM coo.31924059551022 621 1 6~ 6~ INTJ coo.31924059551022 621 2 + + CCONJ coo.31924059551022 621 3 9gt 9gt ADJ coo.31924059551022 621 4 2lg2 2lg2 NUM coo.31924059551022 621 5 0 0 NUM coo.31924059551022 621 6 and and CCONJ coo.31924059551022 621 7 again again ADV coo.31924059551022 621 8 ( ( PUNCT coo.31924059551022 621 9 i i NOUN coo.31924059551022 621 10 ) ) PUNCT coo.31924059551022 621 11 whence whence ADP coo.31924059551022 621 12 where where SCONJ coo.31924059551022 621 13 8 8 NUM coo.31924059551022 621 14 l2ht l2ht PRON coo.31924059551022 621 15 sg.h sg.h NOUN coo.31924059551022 621 16 , , PUNCT coo.31924059551022 621 17 ^ ^ X coo.31924059551022 621 18 9λ 9λ NUM coo.31924059551022 621 19 + + CCONJ coo.31924059551022 621 20 8 8 NUM coo.31924059551022 621 21 lg2 lg2 CCONJ coo.31924059551022 621 22 = = NOUN coo.31924059551022 621 23 0 0 NUM coo.31924059551022 621 24 . . PROPN coo.31924059551022 621 25 10 10 NUM coo.31924059551022 621 26 z3 z3 PROPN coo.31924059551022 621 27 — — PUNCT coo.31924059551022 621 28 6z^2 6z^2 NUM coo.31924059551022 621 29 + + CCONJ coo.31924059551022 621 30 — — PUNCT coo.31924059551022 621 31 # # SYM coo.31924059551022 621 32 3 3 NUM coo.31924059551022 621 33 ~ ~ PUNCT coo.31924059551022 621 34 6(22 6(22 NUM coo.31924059551022 621 35 — — PUNCT coo.31924059551022 621 36 10 10 NUM coo.31924059551022 621 37 z3 z3 PROPN coo.31924059551022 621 38 — — PUNCT coo.31924059551022 621 39 8 8 NUM coo.31924059551022 621 40 ax ax NOUN coo.31924059551022 621 41 l l NOUN coo.31924059551022 621 42 — — PUNCT coo.31924059551022 621 43 b1 b1 NOUN coo.31924059551022 621 44 ■ ■ PUNCT coo.31924059551022 621 45 6(za 6(za PROPN coo.31924059551022 621 46 — — PUNCT coo.31924059551022 621 47 ax ax NOUN coo.31924059551022 621 48 ) ) PUNCT coo.31924059551022 621 49 and and CCONJ coo.31924059551022 621 50 bi bi PROPN coo.31924059551022 621 51 = = PROPN coo.31924059551022 621 52 2z 2z PROPN coo.31924059551022 621 53 t?8 t?8 ADJ coo.31924059551022 621 54 · · PUNCT coo.31924059551022 621 55 prom prom PROPN coo.31924059551022 621 56 this this DET coo.31924059551022 621 57 value value NOUN coo.31924059551022 621 58 of of ADP coo.31924059551022 621 59 we we PRON coo.31924059551022 621 60 have have VERB coo.31924059551022 621 61 by by ADP coo.31924059551022 621 62 substituting substitute VERB coo.31924059551022 621 63 in in ADP coo.31924059551022 621 64 ( ( PUNCT coo.31924059551022 621 65 c c NOUN coo.31924059551022 621 66 ) ) PUNCT coo.31924059551022 621 67 125z6 125z6 NUM coo.31924059551022 621 68 — — PUNCT coo.31924059551022 621 69 210a1z4 210a1z4 NUM coo.31924059551022 621 70 — — PUNCT coo.31924059551022 622 1 22&jz3 22&jz3 NUM coo.31924059551022 622 2 + + CCONJ coo.31924059551022 622 3 93af 93af INTJ coo.31924059551022 622 4 z2 z2 X coo.31924059551022 622 5 + + NUM coo.31924059551022 622 6 18a 18a NUM coo.31924059551022 622 7 , , PUNCT coo.31924059551022 622 8 ^ ^ X coo.31924059551022 623 1 z z PROPN coo.31924059551022 623 2 + + CCONJ coo.31924059551022 623 3 b\ b\ NUM coo.31924059551022 623 4 — — PUNCT coo.31924059551022 623 5 4af 4af NOUN coo.31924059551022 623 6 ® ® NOUN coo.31924059551022 623 7 = = VERB coo.31924059551022 623 8 36 36 NUM coo.31924059551022 623 9 z z X coo.31924059551022 623 10 ( ( PUNCT coo.31924059551022 623 11 z2 z2 PROPN coo.31924059551022 623 12 — — PUNCT coo.31924059551022 623 13 aj2 aj2 CCONJ coo.31924059551022 623 14 ~ ~ PUNCT coo.31924059551022 623 15 _ _ PUNCT coo.31924059551022 623 16 _ _ PUNCT coo.31924059551022 623 17 4(z2 4(z2 NUM coo.31924059551022 623 18 — — PUNCT coo.31924059551022 623 19 a,)3 a,)3 NOUN coo.31924059551022 624 1 + + PUNCT coo.31924059551022 624 2 ( ( PUNCT coo.31924059551022 624 3 11z3 11z3 NUM coo.31924059551022 624 4 — — PUNCT coo.31924059551022 624 5 9a 9a NUM coo.31924059551022 624 6 , , PUNCT coo.31924059551022 624 7 z z PROPN coo.31924059551022 624 8 — — PUNCT coo.31924059551022 624 9 & & CCONJ coo.31924059551022 624 10 x)2 x)2 PROPN coo.31924059551022 624 11 — — PUNCT coo.31924059551022 624 12 ~ ~ PUNCT coo.31924059551022 624 13 " " PUNCT coo.31924059551022 624 14 36z(z2 36z(z2 NUM coo.31924059551022 624 15 aj)2 aj)2 PROPN coo.31924059551022 624 16 — — PUNCT coo.31924059551022 624 17 sd2 sd2 ADJ coo.31924059551022 624 18 where where SCONJ coo.31924059551022 624 19 φ(0 φ(0 VERB coo.31924059551022 624 20 = = PRON coo.31924059551022 624 21 125ï6 125ï6 NUM coo.31924059551022 624 22 — — PUNCT coo.31924059551022 624 23 210a,£4 210a,£4 NUM coo.31924059551022 624 24 226^ 226^ NUM coo.31924059551022 624 25 * * PUNCT coo.31924059551022 624 26 + + NUM coo.31924059551022 624 27 93a2i2 93a2i2 NUM coo.31924059551022 625 1 + + NUM coo.31924059551022 626 1 18av 18av ADJ coo.31924059551022 627 1 + + CCONJ coo.31924059551022 627 2 δ2 δ2 PROPN coo.31924059551022 627 3 — — PUNCT coo.31924059551022 627 4 4a\ 4a\ NUM coo.31924059551022 627 5 s s VERB coo.31924059551022 627 6 = = NOUN coo.31924059551022 627 7 m m NOUN coo.31924059551022 627 8 , , PUNCT coo.31924059551022 627 9 _ _ PROPN coo.31924059551022 627 10 d d X coo.31924059551022 627 11 = = PUNCT coo.31924059551022 627 12 ( ( PUNCT coo.31924059551022 627 13 z2 z2 PROPN coo.31924059551022 627 14 — — PUNCT coo.31924059551022 627 15 ax ax PROPN coo.31924059551022 627 16 ) ) PUNCT coo.31924059551022 627 17 , , PUNCT coo.31924059551022 627 18 l l PROPN coo.31924059551022 627 19 = = PROPN coo.31924059551022 627 20 y y PROPN coo.31924059551022 627 21 b b PROPN coo.31924059551022 627 22 = = PUNCT coo.31924059551022 627 23 3b 3b NOUN coo.31924059551022 627 24 « « PUNCT coo.31924059551022 627 25 x=3f x=3f X coo.31924059551022 627 26 = = PROPN coo.31924059551022 627 27 p p PROPN coo.31924059551022 627 28 ( ( PUNCT coo.31924059551022 627 29 ! ! PUNCT coo.31924059551022 628 1 + + CCONJ coo.31924059551022 628 2 fc4 fc4 PROPN coo.31924059551022 628 3 ) ) PUNCT coo.31924059551022 628 4 ; ; PUNCT coo.31924059551022 629 1 = = PROPN coo.31924059551022 629 2 2^s= 2^s= NUM coo.31924059551022 629 3 ¿ ¿ NUM coo.31924059551022 629 4 ( ( PUNCT coo.31924059551022 629 5 1 1 NUM coo.31924059551022 629 6 + + NUM coo.31924059551022 629 7 * * PUNCT coo.31924059551022 629 8 ! ! PUNCT coo.31924059551022 629 9 ) ) PUNCT coo.31924059551022 630 1 ( ( PUNCT coo.31924059551022 630 2 2 2 NUM coo.31924059551022 630 3 f)(l f)(l NUM coo.31924059551022 630 4 2p 2p NOUN coo.31924059551022 630 5 ) ) PUNCT coo.31924059551022 630 6 . . PUNCT coo.31924059551022 631 1 * * PUNCT coo.31924059551022 631 2 ) ) PUNCT coo.31924059551022 631 3 φ(ζ φ(ζ SPACE coo.31924059551022 631 4 ) ) PUNCT coo.31924059551022 632 1 = = PROPN coo.31924059551022 632 2 0 0 NUM coo.31924059551022 633 1 is be AUX coo.31924059551022 633 2 then then ADV coo.31924059551022 633 3 the the DET coo.31924059551022 633 4 condition condition NOUN coo.31924059551022 633 5 for for ADP coo.31924059551022 633 6 the the DET coo.31924059551022 633 7 existence existence NOUN coo.31924059551022 633 8 of of ADP coo.31924059551022 633 9 the the DET coo.31924059551022 633 10 special special ADJ coo.31924059551022 633 11 functions function NOUN coo.31924059551022 633 12 of of ADP coo.31924059551022 633 13 lamé lamé NOUN coo.31924059551022 633 14 the the DET coo.31924059551022 633 15 seventh seventh ADJ coo.31924059551022 633 16 value value NOUN coo.31924059551022 633 17 of of ADP coo.31924059551022 633 18 b b NOUN coo.31924059551022 633 19 ; ; PUNCT coo.31924059551022 633 20 as as SCONJ coo.31924059551022 633 21 we we PRON coo.31924059551022 633 22 have have AUX coo.31924059551022 633 23 already already ADV coo.31924059551022 633 24 seen see VERB coo.31924059551022 633 25 ( ( PUNCT coo.31924059551022 633 26 p. p. NOUN coo.31924059551022 633 27 43 43 NUM coo.31924059551022 633 28 ) ) PUNCT coo.31924059551022 633 29 , , PUNCT coo.31924059551022 633 30 being be AUX coo.31924059551022 633 31 b b ADP coo.31924059551022 633 32 = = SYM coo.31924059551022 633 33 0 0 NUM coo.31924059551022 633 34 . . PUNCT coo.31924059551022 633 35 φ(1 φ(1 SPACE coo.31924059551022 633 36 ) ) PUNCT coo.31924059551022 633 37 must must AUX coo.31924059551022 633 38 then then ADV coo.31924059551022 633 39 be be AUX coo.31924059551022 633 40 q(l q(l PROPN coo.31924059551022 633 41 ) ) PUNCT coo.31924059551022 633 42 times time NOUN coo.31924059551022 633 43 a a DET coo.31924059551022 633 44 constant constant ADJ coo.31924059551022 633 45 and and CCONJ coo.31924059551022 633 46 as as SCONJ coo.31924059551022 633 47 we we PRON coo.31924059551022 633 48 have have AUX coo.31924059551022 633 49 seen see VERB coo.31924059551022 633 50 that that SCONJ coo.31924059551022 633 51 q q NOUN coo.31924059551022 633 52 is be AUX coo.31924059551022 633 53 separable separable ADJ coo.31924059551022 633 54 into into ADP coo.31924059551022 633 55 three three NUM coo.31924059551022 633 56 factors factor NOUN coo.31924059551022 633 57 of of ADP coo.31924059551022 633 58 the the DET coo.31924059551022 633 59 second second ADJ coo.31924059551022 633 60 degree degree NOUN coo.31924059551022 633 61 it it PRON coo.31924059551022 633 62 follows follow VERB coo.31924059551022 633 63 that that SCONJ coo.31924059551022 633 64 φ(ΐ φ(ΐ SPACE coo.31924059551022 633 65 ) ) PUNCT coo.31924059551022 633 66 is be AUX coo.31924059551022 633 67 a a DET coo.31924059551022 633 68 reducable reducable ADJ coo.31924059551022 633 69 equation equation NOUN coo.31924059551022 633 70 of of ADP coo.31924059551022 633 71 the the DET coo.31924059551022 633 72 sixth sixth ADJ coo.31924059551022 633 73 degree degree NOUN coo.31924059551022 633 74 . . PUNCT coo.31924059551022 634 1 * * PUNCT coo.31924059551022 634 2 * * PUNCT coo.31924059551022 634 3 ) ) PUNCT coo.31924059551022 634 4 moreover moreover ADV coo.31924059551022 634 5 if if SCONJ coo.31924059551022 634 6 we we PRON coo.31924059551022 634 7 make make VERB coo.31924059551022 634 8 the the DET coo.31924059551022 634 9 transformation transformation NOUN coo.31924059551022 634 10 ï-6f ï-6f SPACE coo.31924059551022 634 11 * * PUNCT coo.31924059551022 635 1 * * PUNCT coo.31924059551022 635 2 ) ) PUNCT coo.31924059551022 636 1 the the DET coo.31924059551022 636 2 expressions expression NOUN coo.31924059551022 636 3 used use VERB coo.31924059551022 636 4 here here ADV coo.31924059551022 636 5 are be AUX coo.31924059551022 636 6 essentially essentially ADV coo.31924059551022 636 7 the the DET coo.31924059551022 636 8 same same ADJ coo.31924059551022 636 9 as as ADP coo.31924059551022 636 10 those those PRON coo.31924059551022 636 11 of of ADP coo.31924059551022 636 12 m. m. NOUN coo.31924059551022 636 13 hermite hermite NOUN coo.31924059551022 636 14 in in ADP coo.31924059551022 636 15 his his PRON coo.31924059551022 636 16 celebrated celebrated ADJ coo.31924059551022 636 17 memoir memoir PROPN coo.31924059551022 636 18 . . PUNCT coo.31924059551022 637 1 the the DET coo.31924059551022 637 2 following follow VERB coo.31924059551022 637 3 reduction reduction NOUN coo.31924059551022 637 4 of of ADP coo.31924059551022 637 5 the the DET coo.31924059551022 637 6 function function NOUN coo.31924059551022 637 7 φ(ζ φ(ζ SPACE coo.31924059551022 637 8 ) ) PUNCT coo.31924059551022 637 9 is be AUX coo.31924059551022 637 10 also also ADV coo.31924059551022 637 11 indicated indicate VERB coo.31924059551022 637 12 by by ADP coo.31924059551022 637 13 hermite hermite NOUN coo.31924059551022 637 14 . . PUNCT coo.31924059551022 638 1 * * PUNCT coo.31924059551022 638 2 * * PUNCT coo.31924059551022 638 3 ) ) PUNCT coo.31924059551022 638 4 it it PRON coo.31924059551022 638 5 is be AUX coo.31924059551022 638 6 interesting interesting ADJ coo.31924059551022 638 7 to to PART coo.31924059551022 638 8 note note VERB coo.31924059551022 638 9 that that SCONJ coo.31924059551022 638 10 it it PRON coo.31924059551022 638 11 is be AUX coo.31924059551022 638 12 not not PART coo.31924059551022 638 13 given give VERB coo.31924059551022 638 14 under under ADP coo.31924059551022 638 15 the the DET coo.31924059551022 638 16 head head NOUN coo.31924059551022 638 17 of of ADP coo.31924059551022 638 18 reducable reducable ADJ coo.31924059551022 638 19 forms form NOUN coo.31924059551022 638 20 of of ADP coo.31924059551022 638 21 the the DET coo.31924059551022 638 22 sixth sixth ADJ coo.31924059551022 638 23 degree degree NOUN coo.31924059551022 638 24 by by ADP coo.31924059551022 638 25 either either DET coo.31924059551022 638 26 clebsch clebsch PROPN coo.31924059551022 638 27 or or CCONJ coo.31924059551022 638 28 gordan gordan PROPN coo.31924059551022 638 29 . . PUNCT coo.31924059551022 639 1 50 50 X coo.31924059551022 639 2 part part NOUN coo.31924059551022 639 3 v. v. ADP coo.31924059551022 639 4 the the DET coo.31924059551022 639 5 coefficients coefficient NOUN coo.31924059551022 639 6 of of ADP coo.31924059551022 639 7 φ φ NOUN coo.31924059551022 639 8 all all PRON coo.31924059551022 639 9 reduce reduce VERB coo.31924059551022 639 10 to to ADP coo.31924059551022 639 11 functions function NOUN coo.31924059551022 639 12 of of ADP coo.31924059551022 639 13 the the DET coo.31924059551022 639 14 absolute absolute ADJ coo.31924059551022 639 15 invariant invariant NOUN coo.31924059551022 639 16 of of ADP coo.31924059551022 639 17 the the DET coo.31924059551022 639 18 fourth fourth ADJ coo.31924059551022 639 19 degree degree NOUN coo.31924059551022 639 20 , , PUNCT coo.31924059551022 639 21 3 3 NUM coo.31924059551022 639 22 _ _ PUNCT coo.31924059551022 639 23 < < X coo.31924059551022 640 1 4 4 NUM coo.31924059551022 640 2 i i PRON coo.31924059551022 640 3 $ $ SYM coo.31924059551022 640 4 _ _ NOUN coo.31924059551022 640 5 ( ( PUNCT coo.31924059551022 640 6 1 1 NUM coo.31924059551022 640 7 — — PUNCT coo.31924059551022 641 1 ¥ ¥ SYM coo.31924059551022 641 2 + + NUM coo.31924059551022 641 3 le4)3 le4)3 NOUN coo.31924059551022 641 4 bi bi NOUN coo.31924059551022 641 5 c c NOUN coo.31924059551022 641 6 b\ b\ PROPN coo.31924059551022 641 7 108 108 NUM coo.31924059551022 641 8 g\ g\ NUM coo.31924059551022 641 9 ( ( PUNCT coo.31924059551022 641 10 1 1 NUM coo.31924059551022 641 11 + + CCONJ coo.31924059551022 641 12 ¿ ¿ NUM coo.31924059551022 641 13 \>2 \>2 NUM coo.31924059551022 641 14 ( ( PUNCT coo.31924059551022 641 15 2 2 NUM coo.31924059551022 641 16 vf vf NOUN coo.31924059551022 641 17 ( ( PUNCT coo.31924059551022 641 18 1 1 NUM coo.31924059551022 641 19 2 2 NUM coo.31924059551022 641 20 icy icy NOUN coo.31924059551022 642 1 and and CCONJ coo.31924059551022 642 2 we we PRON coo.31924059551022 642 3 have have VERB coo.31924059551022 642 4 the the DET coo.31924059551022 642 5 form form NOUN coo.31924059551022 642 6 : : PUNCT coo.31924059551022 642 7 [ [ X coo.31924059551022 642 8 83 83 NUM coo.31924059551022 642 9 ] ] PUNCT coo.31924059551022 642 10 · · PUNCT coo.31924059551022 642 11 φ φ PROPN coo.31924059551022 642 12 & & CCONJ coo.31924059551022 642 13 ) ) PUNCT coo.31924059551022 642 14 = = X coo.31924059551022 642 15 = = X coo.31924059551022 643 1 125ξβ 125ξβ NOUN coo.31924059551022 643 2 — — PUNCT coo.31924059551022 643 3 210c|4 210c|4 NUM coo.31924059551022 643 4 — — PUNCT coo.31924059551022 643 5 22|3 22|3 NUM coo.31924059551022 643 6 + + SYM coo.31924059551022 643 7 93c2|2 93c2|2 NUM coo.31924059551022 643 8 + + NUM coo.31924059551022 643 9 · · PUNCT coo.31924059551022 643 10 18c| 18c| NUM coo.31924059551022 643 11 + + NUM coo.31924059551022 643 12 1 1 NUM coo.31924059551022 643 13 _ _ NOUN coo.31924059551022 643 14 4c3 4c3 NUM coo.31924059551022 643 15 = = SYM coo.31924059551022 643 16 0 0 NUM coo.31924059551022 643 17 . . PUNCT coo.31924059551022 644 1 if if SCONJ coo.31924059551022 644 2 then then ADV coo.31924059551022 644 3 this this DET coo.31924059551022 644 4 equation equation NOUN coo.31924059551022 644 5 be be AUX coo.31924059551022 644 6 written write VERB coo.31924059551022 644 7 in in ADP coo.31924059551022 644 8 its its PRON coo.31924059551022 644 9 expanded expand VERB coo.31924059551022 644 10 form form NOUN coo.31924059551022 644 11 in in ADP coo.31924059551022 644 12 terms term NOUN coo.31924059551022 644 13 of of ADP coo.31924059551022 644 14 the the DET coo.31924059551022 644 15 modulus modulus NOUN coo.31924059551022 644 16 h h NOUN coo.31924059551022 644 17 it it PRON coo.31924059551022 644 18 will will AUX coo.31924059551022 644 19 not not PART coo.31924059551022 644 20 be be AUX coo.31924059551022 644 21 difficult difficult ADJ coo.31924059551022 644 22 to to PART coo.31924059551022 644 23 see see VERB coo.31924059551022 644 24 by by ADP coo.31924059551022 644 25 inspection inspection NOUN coo.31924059551022 644 26 ( ( PUNCT coo.31924059551022 644 27 for for ADP coo.31924059551022 644 28 rigorous rigorous ADJ coo.31924059551022 644 29 proof proof NOUN coo.31924059551022 644 30 see see VERB coo.31924059551022 644 31 p. p. NOUN coo.31924059551022 644 32 56 56 NUM coo.31924059551022 644 33 ) ) PUNCT coo.31924059551022 645 1 that that SCONJ coo.31924059551022 645 2 if if SCONJ coo.31924059551022 645 3 we we PRON coo.31924059551022 645 4 write write VERB coo.31924059551022 645 5 [ [ X coo.31924059551022 645 6 84 84 NUM coo.31924059551022 645 7 ] ] PUNCT coo.31924059551022 645 8 ......................... ......................... PUNCT coo.31924059551022 645 9 φ φ X coo.31924059551022 645 10 = = X coo.31924059551022 645 11 φ φ PROPN coo.31924059551022 645 12 , , PUNCT coo.31924059551022 645 13 φ2φ3 φ2φ3 PUNCT coo.31924059551022 645 14 these these DET coo.31924059551022 645 15 factors factor NOUN coo.31924059551022 645 16 of of ADP coo.31924059551022 645 17 φ φ PROPN coo.31924059551022 645 18 corresponding correspond VERB coo.31924059551022 645 19 to to ADP coo.31924059551022 645 20 the the DET coo.31924059551022 645 21 special special ADJ coo.31924059551022 645 22 functions function NOUN coo.31924059551022 645 23 of of ADP coo.31924059551022 645 24 the the DET coo.31924059551022 645 25 second second ADJ coo.31924059551022 645 26 sort sort NOUN coo.31924059551022 645 27 are be AUX coo.31924059551022 645 28 , , PUNCT coo.31924059551022 645 29 as as SCONJ coo.31924059551022 645 30 given give VERB coo.31924059551022 645 31 by by ADP coo.31924059551022 645 32 m. m. NOUN coo.31924059551022 645 33 hermite hermite PROPN coo.31924059551022 645 34 : : PUNCT coo.31924059551022 645 35 φ φ X coo.31924059551022 645 36 , , PUNCT coo.31924059551022 645 37 = = SYM coo.31924059551022 645 38 5l2 5l2 NUM coo.31924059551022 645 39 2{h2 2{h2 NUM coo.31924059551022 645 40 2)1 2)1 NUM coo.31924059551022 645 41 u4 u4 NOUN coo.31924059551022 645 42 [ [ X coo.31924059551022 645 43 85 85 NUM coo.31924059551022 645 44 ] ] PUNCT coo.31924059551022 645 45 · · PUNCT coo.31924059551022 645 46 · · PUNCT coo.31924059551022 645 47 · · PUNCT coo.31924059551022 645 48 · · PUNCT coo.31924059551022 645 49 ■ ■ PUNCT coo.31924059551022 645 50 φ2 φ2 PROPN coo.31924059551022 645 51 = = X coo.31924059551022 645 52 bl2 bl2 ADV coo.31924059551022 645 53 2(1 2(1 NUM coo.31924059551022 645 54 — — PUNCT coo.31924059551022 645 55 27c2 27c2 NUM coo.31924059551022 645 56 ) ) PUNCT coo.31924059551022 645 57 ? ? PUNCT coo.31924059551022 646 1 — — PUNCT coo.31924059551022 646 2 3 3 NUM coo.31924059551022 646 3 φ3 φ3 PROPN coo.31924059551022 646 4 = = SYM coo.31924059551022 646 5 512 512 NUM coo.31924059551022 646 6 — — PUNCT coo.31924059551022 646 7 2(1 2(1 NUM coo.31924059551022 646 8 + + CCONJ coo.31924059551022 646 9 lc2)l lc2)l PROPN coo.31924059551022 646 10 — — PUNCT coo.31924059551022 646 11 3(1 3(1 PROPN coo.31924059551022 646 12 — — PUNCT coo.31924059551022 646 13 jc2)2 jc2)2 PROPN coo.31924059551022 646 14 . . PUNCT coo.31924059551022 646 15 ' ' PUNCT coo.31924059551022 647 1 when when SCONJ coo.31924059551022 647 2 φ φ PROPN coo.31924059551022 647 3 = = X coo.31924059551022 647 4 0 0 NUM coo.31924059551022 648 1 we we PRON coo.31924059551022 648 2 have have VERB coo.31924059551022 648 3 x x SYM coo.31924059551022 648 4 = = SYM coo.31924059551022 648 5 0 0 NUM coo.31924059551022 648 6 whence whence ADV coo.31924059551022 648 7 , , PUNCT coo.31924059551022 648 8 as as SCONJ coo.31924059551022 648 9 before before SCONJ coo.31924059551022 648 10 stated state VERB coo.31924059551022 648 11 , , PUNCT coo.31924059551022 648 12 φ φ NOUN coo.31924059551022 648 13 = = SYM coo.31924059551022 648 14 0 0 NUM coo.31924059551022 648 15 is be AUX coo.31924059551022 648 16 a a DET coo.31924059551022 648 17 necessary necessary ADJ coo.31924059551022 648 18 condition condition NOUN coo.31924059551022 648 19 for for ADP coo.31924059551022 648 20 the the DET coo.31924059551022 648 21 existence existence NOUN coo.31924059551022 648 22 of of ADP coo.31924059551022 648 23 a a DET coo.31924059551022 648 24 doubly doubly ADV coo.31924059551022 648 25 periodic periodic ADJ coo.31924059551022 648 26 function function NOUN coo.31924059551022 648 27 . . PUNCT coo.31924059551022 649 1 but but CCONJ coo.31924059551022 649 2 in in ADP coo.31924059551022 649 3 order order NOUN coo.31924059551022 649 4 to to PART coo.31924059551022 649 5 be be AUX coo.31924059551022 649 6 a a DET coo.31924059551022 649 7 sufficient sufficient ADJ coo.31924059551022 649 8 condition condition NOUN coo.31924059551022 649 9 it it PRON coo.31924059551022 649 10 must must AUX coo.31924059551022 649 11 involve involve VERB coo.31924059551022 649 12 a a DET coo.31924059551022 649 13 definite definite ADJ coo.31924059551022 649 14 value value NOUN coo.31924059551022 649 15 of of ADP coo.31924059551022 649 16 v v NOUN coo.31924059551022 649 17 , , PUNCT coo.31924059551022 649 18 that that PRON coo.31924059551022 649 19 is be AUX coo.31924059551022 649 20 v v NOUN coo.31924059551022 649 21 must must AUX coo.31924059551022 649 22 be be AUX coo.31924059551022 649 23 a a DET coo.31924059551022 649 24 half half ADJ coo.31924059551022 649 25 - - PUNCT coo.31924059551022 649 26 period period NOUN coo.31924059551022 649 27 . . PUNCT coo.31924059551022 650 1 that that SCONJ coo.31924059551022 650 2 this this PRON coo.31924059551022 650 3 is be AUX coo.31924059551022 650 4 the the DET coo.31924059551022 650 5 case case NOUN coo.31924059551022 650 6 , , PUNCT coo.31924059551022 650 7 although although SCONJ coo.31924059551022 650 8 the the DET coo.31924059551022 650 9 reverse reverse NOUN coo.31924059551022 650 10 as as SCONJ coo.31924059551022 650 11 we we PRON coo.31924059551022 650 12 shall shall AUX coo.31924059551022 650 13 find find VERB coo.31924059551022 650 14 later later ADV coo.31924059551022 650 15 does do AUX coo.31924059551022 650 16 not not PART coo.31924059551022 650 17 hold hold VERB coo.31924059551022 650 18 , , PUNCT coo.31924059551022 650 19 is be AUX coo.31924059551022 650 20 seen see VERB coo.31924059551022 650 21 by by ADP coo.31924059551022 650 22 a a DET coo.31924059551022 650 23 determination determination NOUN coo.31924059551022 650 24 of of ADP coo.31924059551022 650 25 v v NOUN coo.31924059551022 650 26 as as SCONJ coo.31924059551022 650 27 follows follow VERB coo.31924059551022 650 28 : : PUNCT coo.31924059551022 650 29 we we PRON coo.31924059551022 650 30 have have VERB coo.31924059551022 650 31 ( ( PUNCT coo.31924059551022 650 32 p. p. NOUN coo.31924059551022 650 33 47 47 NUM coo.31924059551022 650 34 ) ) PUNCT coo.31924059551022 650 35 p(v p(v PROPN coo.31924059551022 650 36 ) ) PUNCT coo.31924059551022 650 37 = = PROPN coo.31924059551022 650 38 — — PUNCT coo.31924059551022 650 39 2 2 NUM coo.31924059551022 650 40 h h NOUN coo.31924059551022 650 41 , , PUNCT coo.31924059551022 650 42 _ _ NOUN coo.31924059551022 650 43 φ(ζ φ(ζ SPACE coo.31924059551022 650 44 ) ) PUNCT coo.31924059551022 650 45 — — PUNCT coo.31924059551022 650 46 12z(z2 12z(z2 NUM coo.31924059551022 650 47 — — PUNCT coo.31924059551022 650 48 αχ)(ί013 αχ)(ί013 PROPN coo.31924059551022 650 49 — — PUNCT coo.31924059551022 650 50 saj saj PROPN coo.31924059551022 650 51 — — PUNCT coo.31924059551022 650 52 bt)~ bt)~ PROPN coo.31924059551022 650 53 36 36 NUM coo.31924059551022 650 54 z z PROPN coo.31924059551022 650 55 ( ( PUNCT coo.31924059551022 650 56 z2 z2 PROPN coo.31924059551022 650 57 — — PUNCT coo.31924059551022 650 58 axy axy PROPN coo.31924059551022 650 59 define define VERB coo.31924059551022 650 60 ψ(0 ψ(0 PROPN coo.31924059551022 650 61 — — PUNCT coo.31924059551022 650 62 φ(0 φ(0 VERB coo.31924059551022 650 63 — — PUNCT coo.31924059551022 650 64 12?(i2 12?(i2 NUM coo.31924059551022 650 65 — — PUNCT coo.31924059551022 650 66 ax ax NOUN coo.31924059551022 650 67 ) ) PUNCT coo.31924059551022 650 68 ( ( PUNCT coo.31924059551022 650 69 10z3 10z3 NUM coo.31924059551022 650 70 — — PUNCT coo.31924059551022 650 71 8axl 8axl NUM coo.31924059551022 650 72 — — PUNCT coo.31924059551022 650 73 \ \ PROPN coo.31924059551022 650 74 ) ) PUNCT coo.31924059551022 650 75 = = VERB coo.31924059551022 650 76 5 5 NUM coo.31924059551022 650 77 ? ? SYM coo.31924059551022 650 78 6 6 NUM coo.31924059551022 651 1 + + NUM coo.31924059551022 651 2 6 6 NUM coo.31924059551022 651 3 aj aj PROPN coo.31924059551022 651 4 — — PUNCT coo.31924059551022 651 5 lob^—sall2 lob^—sall2 PROPN coo.31924059551022 651 6 + + CCONJ coo.31924059551022 651 7 6 6 NUM coo.31924059551022 651 8 ajtj ajtj NOUN coo.31924059551022 651 9 + + PROPN coo.31924059551022 651 10 h\ h\ PROPN coo.31924059551022 651 11 — — PUNCT coo.31924059551022 651 12 4 4 NUM coo.31924059551022 651 13 a a DET coo.31924059551022 651 14 ¡ ¡ NOUN coo.31924059551022 651 15 . . PUNCT coo.31924059551022 652 1 whence whence ADV coo.31924059551022 652 2 we we PRON coo.31924059551022 652 3 write write VERB coo.31924059551022 652 4 t86] t86] SPACE coo.31924059551022 652 5 ............. ............. PUNCT coo.31924059551022 652 6 ^(v ^(v NOUN coo.31924059551022 652 7 ) ) PUNCT coo.31924059551022 652 8 = = PUNCT coo.31924059551022 652 9 tc2 tc2 X coo.31924059551022 652 10 sn2 sn2 PROPN coo.31924059551022 652 11 ω ω PROPN coo.31924059551022 652 12 — — PUNCT coo.31924059551022 652 13 · · PUNCT coo.31924059551022 652 14 returning return VERB coo.31924059551022 652 15 to to ADP coo.31924059551022 652 16 ( ( PUNCT coo.31924059551022 652 17 80 80 NUM coo.31924059551022 652 18 , , PUNCT coo.31924059551022 652 19 a a X coo.31924059551022 652 20 ) ) PUNCT coo.31924059551022 652 21 we we PRON coo.31924059551022 652 22 have have VERB coo.31924059551022 652 23 p(v p(v SPACE coo.31924059551022 652 24 ) ) PUNCT coo.31924059551022 652 25 = = X coo.31924059551022 652 26 = = X coo.31924059551022 652 27 » » PUNCT coo.31924059551022 652 28 x(x2 x(x2 NUM coo.31924059551022 652 29 — — PUNCT coo.31924059551022 652 30 3pv 3pv NOUN coo.31924059551022 652 31 — — PUNCT coo.31924059551022 652 32 3 3 X coo.31924059551022 652 33 ? ? PUNCT coo.31924059551022 652 34 ) ) PUNCT coo.31924059551022 652 35 _ _ PUNCT coo.31924059551022 652 36 φ(ζ φ(ζ SPACE coo.31924059551022 652 37 ) ) PUNCT coo.31924059551022 652 38 — — PUNCT coo.31924059551022 652 39 3τρ(ΐ 3τρ(ΐ NUM coo.31924059551022 652 40 ) ) PUNCT coo.31924059551022 652 41 — — PUNCT coo.31924059551022 652 42 108 108 NUM coo.31924059551022 652 43 z2 z2 PROPN coo.31924059551022 652 44 ( ( PUNCT coo.31924059551022 652 45 z2 z2 PROPN coo.31924059551022 652 46 — — PUNCT coo.31924059551022 652 47 axf axf PROPN coo.31924059551022 652 48 — — PUNCT coo.31924059551022 652 49 χ χ X coo.31924059551022 652 50 mnp mnp PROPN coo.31924059551022 652 51 - - NOUN coo.31924059551022 652 52 ayy ayy NOUN coo.31924059551022 652 53 _ _ PUNCT coo.31924059551022 652 54 _ _ PUNCT coo.31924059551022 652 55 _ _ PUNCT coo.31924059551022 652 56 · · PUNCT coo.31924059551022 652 57 > > PUNCT coo.31924059551022 652 58 ' ' PUNCT coo.31924059551022 652 59 · · PUNCT coo.31924059551022 652 60 χ χ X coo.31924059551022 652 61 _ _ NOUN coo.31924059551022 652 62 _ _ PUNCT coo.31924059551022 652 63 18 18 NUM coo.31924059551022 652 64 z z PROPN coo.31924059551022 652 65 ( ( PUNCT coo.31924059551022 652 66 z4 z4 PROPN coo.31924059551022 652 67 — — PUNCT coo.31924059551022 652 68 axy axy NOUN coo.31924059551022 652 69 reduction reduction NUM coo.31924059551022 652 70 of of ADP coo.31924059551022 652 71 the the DET coo.31924059551022 652 72 forms form NOUN coo.31924059551022 652 73 when when SCONJ coo.31924059551022 652 74 n n SYM coo.31924059551022 652 75 equals equal VERB coo.31924059551022 652 76 three three NUM coo.31924059551022 652 77 . . PUNCT coo.31924059551022 653 1 51 51 NUM coo.31924059551022 653 2 where where SCONJ coo.31924059551022 653 3 we we PRON coo.31924059551022 653 4 define define VERB coo.31924059551022 653 5 x x PUNCT coo.31924059551022 653 6 = = X coo.31924059551022 653 7 y y X coo.31924059551022 653 8 [ [ X coo.31924059551022 653 9 φ(1 φ(1 X coo.31924059551022 653 10 > > X coo.31924059551022 653 11 — — PUNCT coo.31924059551022 653 12 3ψ(0 3ψ(0 NUM coo.31924059551022 653 13 í0sp(p í0sp(p SPACE coo.31924059551022 653 14 — — PUNCT coo.31924059551022 653 15 αχ)2 αχ)2 PROPN coo.31924059551022 653 16 ] ] PUNCT coo.31924059551022 653 17 = = PROPN coo.31924059551022 653 18 p p X coo.31924059551022 653 19 — — PUNCT coo.31924059551022 653 20 gaj gaj ADJ coo.31924059551022 653 21 * * PUNCT coo.31924059551022 653 22 + + CCONJ coo.31924059551022 653 23 áòjz8 áòjz8 NOUN coo.31924059551022 653 24 — — PUNCT coo.31924059551022 653 25 3α*ζ 3α*ζ NUM coo.31924059551022 653 26 — — PUNCT coo.31924059551022 653 27 h\ h\ PROPN coo.31924059551022 653 28 + + CCONJ coo.31924059551022 653 29 4 4 NUM coo.31924059551022 653 30 α α NOUN coo.31924059551022 653 31 » » X coo.31924059551022 653 32 = = NOUN coo.31924059551022 653 33 * * PUNCT coo.31924059551022 653 34 a a X coo.31924059551022 653 35 · · PUNCT coo.31924059551022 653 36 e e SYM coo.31924059551022 653 37 ■ ■ PUNCT coo.31924059551022 653 38 c. c. PROPN coo.31924059551022 653 39 * * PUNCT coo.31924059551022 653 40 ) ) PUNCT coo.31924059551022 654 1 where where SCONJ coo.31924059551022 654 2 a a DET coo.31924059551022 654 3 = = NOUN coo.31924059551022 654 4 p p NOUN coo.31924059551022 654 5 — — PUNCT coo.31924059551022 654 6 ( ( PUNCT coo.31924059551022 654 7 1 1 NUM coo.31924059551022 654 8 + + NUM coo.31924059551022 654 9 # # SYM coo.31924059551022 654 10 · · X coo.31924059551022 654 11 ) ) PUNCT coo.31924059551022 654 12 * * PUNCT coo.31924059551022 654 13 — — PUNCT coo.31924059551022 654 14 3¿2 3¿2 NUM coo.31924059551022 654 15 b b NOUN coo.31924059551022 654 16 = = SYM coo.31924059551022 654 17 l2 l2 PROPN coo.31924059551022 654 18 — — PUNCT coo.31924059551022 654 19 ( ( PUNCT coo.31924059551022 654 20 1 1 NUM coo.31924059551022 654 21 — — PUNCT coo.31924059551022 654 22 2a2 2a2 NUM coo.31924059551022 654 23 ) ) PUNCT coo.31924059551022 654 24 ? ? PUNCT coo.31924059551022 655 1 + + CCONJ coo.31924059551022 655 2 3(ft2 3(ft2 NUM coo.31924059551022 655 3 — — PUNCT coo.31924059551022 655 4 fc4 fc4 PROPN coo.31924059551022 655 5 ) ) PUNCT coo.31924059551022 656 1 [ [ X coo.31924059551022 656 2 87 87 NUM coo.31924059551022 656 3 ] ] PUNCT coo.31924059551022 656 4 ............. ............. PUNCT coo.31924059551022 656 5 c c X coo.31924059551022 656 6 — — PUNCT coo.31924059551022 656 7 p p NOUN coo.31924059551022 656 8 — — PUNCT coo.31924059551022 656 9 ( ( PUNCT coo.31924059551022 656 10 ip ip NOUN coo.31924059551022 656 11 — — PUNCT coo.31924059551022 656 12 2)i 2)i NUM coo.31924059551022 656 13 — — PUNCT coo.31924059551022 656 14 3(1 3(1 NOUN coo.31924059551022 656 15 — — PUNCT coo.31924059551022 656 16 ¿ ¿ PROPN coo.31924059551022 656 17 2 2 NUM coo.31924059551022 656 18 ) ) PUNCT coo.31924059551022 656 19 . . PUNCT coo.31924059551022 657 1 refering refer VERB coo.31924059551022 657 2 then then ADV coo.31924059551022 657 3 to to PART coo.31924059551022 657 4 note note VERB coo.31924059551022 657 5 ( ( PUNCT coo.31924059551022 657 6 p. p. NOUN coo.31924059551022 657 7 24 24 NUM coo.31924059551022 657 8 ) ) PUNCT coo.31924059551022 657 9 we we PRON coo.31924059551022 657 10 have have VERB coo.31924059551022 657 11 : : PUNCT coo.31924059551022 657 12 [ [ X coo.31924059551022 657 13 88 88 NUM coo.31924059551022 657 14 ] ] PUNCT coo.31924059551022 657 15 · · PUNCT coo.31924059551022 657 16 ■ ■ PUNCT coo.31924059551022 657 17 · · PUNCT coo.31924059551022 657 18 · · PUNCT coo.31924059551022 657 19 p'(v p'(v NOUN coo.31924059551022 657 20 ) ) PUNCT coo.31924059551022 657 21 = = PROPN coo.31924059551022 657 22 — — PUNCT coo.31924059551022 657 23 ipsvpv ipsvpv NOUN coo.31924059551022 657 24 ■ ■ PUNCT coo.31924059551022 657 25 cn2v cn2v NOUN coo.31924059551022 657 26 -drpv -drpv NOUN coo.31924059551022 657 27 = = PROPN coo.31924059551022 657 28 that that PRON coo.31924059551022 657 29 is be AUX coo.31924059551022 657 30 p'(v p'(v ADJ coo.31924059551022 657 31 ) ) PUNCT coo.31924059551022 657 32 vanishes vanish VERB coo.31924059551022 657 33 where where SCONJ coo.31924059551022 657 34 ¿ ¿ NUM coo.31924059551022 657 35 r r NOUN coo.31924059551022 657 36 vanishes vanishe NOUN coo.31924059551022 657 37 which which PRON coo.31924059551022 657 38 gives give VERB coo.31924059551022 657 39 v v NOUN coo.31924059551022 657 40 — — PUNCT coo.31924059551022 657 41 wi wi PROPN coo.31924059551022 657 42 a a DET coo.31924059551022 657 43 semi semi ADJ coo.31924059551022 657 44 - - NOUN coo.31924059551022 657 45 period period NOUN coo.31924059551022 657 46 , , PUNCT coo.31924059551022 657 47 and and CCONJ coo.31924059551022 657 48 in in ADP coo.31924059551022 657 49 consequence consequence NOUN coo.31924059551022 657 50 , , PUNCT coo.31924059551022 657 51 when when SCONJ coo.31924059551022 657 52 φ φ PROPN coo.31924059551022 657 53 = = X coo.31924059551022 657 54 0 0 NUM coo.31924059551022 657 55 , , PUNCT coo.31924059551022 657 56 f f PROPN coo.31924059551022 657 57 reduces reduce VERB coo.31924059551022 657 58 to to ADP coo.31924059551022 657 59 = = PROPN coo.31924059551022 657 60 c(m c(m PROPN coo.31924059551022 657 61 + + CCONJ coo.31924059551022 657 62 w w NOUN coo.31924059551022 657 63 * * NOUN coo.31924059551022 657 64 ) ) PUNCT coo.31924059551022 657 65 e e NUM coo.31924059551022 657 66 _ _ PRON coo.31924059551022 657 67 .c(ei .c(ei PUNCT coo.31924059551022 657 68 ) ) PUNCT coo.31924059551022 657 69 e!îw e!îw NOUN coo.31924059551022 657 70 . . PUNCT coo.31924059551022 658 1 · · PUNCT coo.31924059551022 658 2 < < X coo.31924059551022 658 3 y(w y(w X coo.31924059551022 658 4 ) ) PUNCT coo.31924059551022 658 5 ^w?)==tix ^w?)==tix VERB coo.31924059551022 658 6 the the DET coo.31924059551022 658 7 value value NOUN coo.31924059551022 658 8 of of ADP coo.31924059551022 658 9 the the DET coo.31924059551022 658 10 function function NOUN coo.31924059551022 658 11 of of ADP coo.31924059551022 658 12 lamé lamé NOUN coo.31924059551022 658 13 corresponding correspond VERB coo.31924059551022 658 14 to to ADP coo.31924059551022 658 15 any any DET coo.31924059551022 658 16 value value NOUN coo.31924059551022 658 17 of of ADP coo.31924059551022 658 18 b b NOUN coo.31924059551022 658 19 giving giving NOUN coo.31924059551022 658 20 rise rise NOUN coo.31924059551022 658 21 to to ADP coo.31924059551022 658 22 the the DET coo.31924059551022 658 23 condition condition NOUN coo.31924059551022 658 24 φ φ X coo.31924059551022 659 1 = = PUNCT coo.31924059551022 659 2 0 0 NUM coo.31924059551022 659 3 is be AUX coo.31924059551022 659 4 then then ADV coo.31924059551022 659 5 deduced deduce VERB coo.31924059551022 659 6 as as SCONJ coo.31924059551022 659 7 follows follow NOUN coo.31924059551022 659 8 . . PUNCT coo.31924059551022 660 1 from from ADP coo.31924059551022 660 2 φ3 φ3 PROPN coo.31924059551022 660 3 = = SYM coo.31924059551022 660 4 0 0 PUNCT coo.31924059551022 660 5 we we PRON coo.31924059551022 660 6 derive derive VERB coo.31924059551022 660 7 : : PUNCT coo.31924059551022 660 8 e e X coo.31924059551022 660 9 = = SYM coo.31924059551022 660 10 5 5 X coo.31924059551022 660 11 ? ? NUM coo.31924059551022 660 12 — — PUNCT coo.31924059551022 660 13 1 1 NUM coo.31924059551022 660 14 + + PUNCT coo.31924059551022 660 15 ip ip NOUN coo.31924059551022 660 16 + + CCONJ coo.31924059551022 660 17 2 2 NUM coo.31924059551022 660 18 j j NOUN coo.31924059551022 660 19 / / SYM coo.31924059551022 660 20 ï9(l ï9(l X coo.31924059551022 660 21 — — PUNCT coo.31924059551022 660 22 vf vf NOUN coo.31924059551022 660 23 + + CCONJ coo.31924059551022 660 24 ¥ ¥ NUM coo.31924059551022 661 1 and and CCONJ coo.31924059551022 661 2 the the DET coo.31924059551022 661 3 special special ADJ coo.31924059551022 661 4 equation equation NOUN coo.31924059551022 661 5 of of ADP coo.31924059551022 661 6 lamé lamé NOUN coo.31924059551022 661 7 becomes become VERB coo.31924059551022 661 8 y"= y"= NOUN coo.31924059551022 662 1 [ [ PUNCT coo.31924059551022 662 2 l l NOUN coo.31924059551022 662 3 2_p 2_p NUM coo.31924059551022 662 4 ( ( PUNCT coo.31924059551022 662 5 u u NOUN coo.31924059551022 662 6 ) ) PUNCT coo.31924059551022 662 7 + + NUM coo.31924059551022 662 8 1 1 NUM coo.31924059551022 662 9 + + NUM coo.31924059551022 662 10 ¥ ¥ NUM coo.31924059551022 662 11 + + NUM coo.31924059551022 662 12 21/19jï^¥f~+¥]y 21/19jï^¥f~+¥]y NUM coo.31924059551022 662 13 and and CCONJ coo.31924059551022 662 14 from from ADP coo.31924059551022 662 15 the the DET coo.31924059551022 662 16 general general ADJ coo.31924059551022 662 17 form form NOUN coo.31924059551022 662 18 of of ADP coo.31924059551022 662 19 the the DET coo.31924059551022 662 20 integral integral ADJ coo.31924059551022 662 21 [ [ X coo.31924059551022 662 22 77 77 NUM coo.31924059551022 662 23 ] ] PUNCT coo.31924059551022 662 24 y y NOUN coo.31924059551022 662 25 = = X coo.31924059551022 662 26 n n X coo.31924059551022 662 27 — — PUNCT coo.31924059551022 662 28 y y PROPN coo.31924059551022 662 29 { { PUNCT coo.31924059551022 662 30 1 1 NUM coo.31924059551022 662 31 + + NOUN coo.31924059551022 662 32 w w ADJ coo.31924059551022 662 33 + + NUM coo.31924059551022 662 34 21/19(1 21/19(1 NUM coo.31924059551022 662 35 — — PUNCT coo.31924059551022 662 36 f)2 f)2 PROPN coo.31924059551022 662 37 + + CCONJ coo.31924059551022 662 38 t2 t2 PROPN coo.31924059551022 662 39 } } PUNCT coo.31924059551022 662 40 / / PUNCT coo.31924059551022 662 41 ] ] X coo.31924059551022 662 42 . . PUNCT coo.31924059551022 663 1 but but CCONJ coo.31924059551022 663 2 differentiating differentiate VERB coo.31924059551022 663 3 ƒ ƒ PROPN coo.31924059551022 663 4 * * PUNCT coo.31924059551022 663 5 we we PRON coo.31924059551022 663 6 have have VERB coo.31924059551022 663 7 k k PROPN coo.31924059551022 663 8 = = PUNCT coo.31924059551022 664 1 [ [ X coo.31924059551022 664 2 2jp 2jp X coo.31924059551022 664 3 ( ( PUNCT coo.31924059551022 664 4 « « NOUN coo.31924059551022 664 5 ) ) PUNCT coo.31924059551022 664 6 + + CCONJ coo.31924059551022 664 7 inlf inlf NOUN coo.31924059551022 664 8 , , PUNCT coo.31924059551022 664 9 = = X coo.31924059551022 664 10 [ [ X coo.31924059551022 664 11 2p 2p NOUN coo.31924059551022 664 12 ( ( PUNCT coo.31924059551022 664 13 « « NOUN coo.31924059551022 664 14 ) ) PUNCT coo.31924059551022 664 15 + + CCONJ coo.31924059551022 664 16 ea ea X coo.31924059551022 664 17 ] ] X coo.31924059551022 664 18 fv fv X coo.31924059551022 664 19 hence hence ADV coo.31924059551022 664 20 y y X coo.31924059551022 664 21 = = PUNCT coo.31924059551022 665 1 [ [ X coo.31924059551022 665 2 2p 2p NOUN coo.31924059551022 665 3 ( ( PUNCT coo.31924059551022 665 4 « « PROPN coo.31924059551022 665 5 ) ) PUNCT coo.31924059551022 665 6 + + CCONJ coo.31924059551022 665 7 i i PRON coo.31924059551022 665 8 ( ( PUNCT coo.31924059551022 665 9 1 1 NUM coo.31924059551022 665 10 + + CCONJ coo.31924059551022 665 11 tp tp PROPN coo.31924059551022 665 12 ) ) PUNCT coo.31924059551022 665 13 f f PROPN coo.31924059551022 665 14 l l NOUN coo.31924059551022 665 15 / / SYM coo.31924059551022 665 16 ï9(l ï9(l X coo.31924059551022 666 1 a2)2 a2)2 X coo.31924059551022 667 1 + + NUM coo.31924059551022 667 2 fc2 fc2 NUM coo.31924059551022 667 3 ] ] X coo.31924059551022 667 4 ^ ^ X coo.31924059551022 667 5 = = PUNCT coo.31924059551022 668 1 [ [ X coo.31924059551022 668 2 2 2 NUM coo.31924059551022 668 3 pm pm NOUN coo.31924059551022 669 1 + + PROPN coo.31924059551022 669 2 ea ea INTJ coo.31924059551022 669 3 |(1 |(1 NOUN coo.31924059551022 669 4 + + CCONJ coo.31924059551022 669 5 λ λ NOUN coo.31924059551022 669 6 * * PUNCT coo.31924059551022 669 7 ) ) PUNCT coo.31924059551022 669 8 — — PUNCT coo.31924059551022 669 9 41/19(1 41/19(1 NUM coo.31924059551022 669 10 — — PUNCT coo.31924059551022 669 11 ¿ ¿ VERB coo.31924059551022 669 12 2)2 2)2 NUM coo.31924059551022 669 13 + + NUM coo.31924059551022 669 14 ¿ ¿ NUM coo.31924059551022 669 15 2 2 NUM coo.31924059551022 669 16 ] ] PUNCT coo.31924059551022 669 17 1 1 NUM coo.31924059551022 669 18 / / SYM coo.31924059551022 669 19 pu pu X coo.31924059551022 669 20 — — PUNCT coo.31924059551022 669 21 ea ea NOUN coo.31924059551022 669 22 = = SYM coo.31924059551022 669 23 2 2 NUM coo.31924059551022 670 1 [ [ X coo.31924059551022 670 2 k k X coo.31924059551022 670 3 * * PUNCT coo.31924059551022 670 4 * * PUNCT coo.31924059551022 670 5 ) ) PUNCT coo.31924059551022 670 6 + + CCONJ coo.31924059551022 670 7 4e 4e PUNCT coo.31924059551022 670 8 « « PUNCT coo.31924059551022 670 9 — — PUNCT coo.31924059551022 670 10 ¿ ¿ X coo.31924059551022 670 11 -b -b X coo.31924059551022 670 12 ] ] X coo.31924059551022 670 13 w w X coo.31924059551022 670 14 — — PUNCT coo.31924059551022 670 15 e e NOUN coo.31924059551022 670 16 « « NOUN coo.31924059551022 670 17 or or CCONJ coo.31924059551022 670 18 y y PROPN coo.31924059551022 670 19 = = PUNCT coo.31924059551022 670 20 s|/f s|/f PROPN coo.31924059551022 670 21 > > SYM coo.31924059551022 670 22 m m PROPN coo.31924059551022 670 23 — — PUNCT coo.31924059551022 670 24 ea ea NOUN coo.31924059551022 670 25 where where SCONJ coo.31924059551022 670 26 0 0 NUM coo.31924059551022 670 27 has have VERB coo.31924059551022 670 28 the the DET coo.31924059551022 670 29 value value NOUN coo.31924059551022 670 30 determined determine VERB coo.31924059551022 670 31 by by ADP coo.31924059551022 670 32 the the DET coo.31924059551022 670 33 elimentary elimentary ADJ coo.31924059551022 670 34 consideration consideration NOUN coo.31924059551022 670 35 ( ( PUNCT coo.31924059551022 670 36 p p NOUN coo.31924059551022 670 37 · · NUM coo.31924059551022 670 38 44 44 NUM coo.31924059551022 670 39 ) ) PUNCT coo.31924059551022 670 40 . . PUNCT coo.31924059551022 671 1 * * PUNCT coo.31924059551022 671 2 ) ) PUNCT coo.31924059551022 671 3 compair compair NOUN coo.31924059551022 672 1 [ [ X coo.31924059551022 672 2 161 161 NUM coo.31924059551022 672 3 ] ] PUNCT coo.31924059551022 672 4 p. p. NOUN coo.31924059551022 672 5 73 73 NUM coo.31924059551022 672 6 . . PUNCT coo.31924059551022 673 1 4 4 NUM coo.31924059551022 673 2 * * NUM coo.31924059551022 673 3 52 52 NUM coo.31924059551022 673 4 part part NOUN coo.31924059551022 673 5 y. y. NOUN coo.31924059551022 673 6 case case NOUN coo.31924059551022 673 7 χ χ X coo.31924059551022 673 8 = = NOUN coo.31924059551022 673 9 0 0 NUM coo.31924059551022 673 10 . . PUNCT coo.31924059551022 674 1 if if SCONJ coo.31924059551022 674 2 % % NOUN coo.31924059551022 674 3 = = SYM coo.31924059551022 674 4 0 0 NUM coo.31924059551022 674 5 we we PRON coo.31924059551022 674 6 have have VERB coo.31924059551022 674 7 a a DET coo.31924059551022 674 8 second second ADJ coo.31924059551022 674 9 case case NOUN coo.31924059551022 674 10 in in ADP coo.31924059551022 674 11 which which PRON coo.31924059551022 674 12 the the DET coo.31924059551022 674 13 p p NOUN coo.31924059551022 674 14 ( ( PUNCT coo.31924059551022 674 15 y y PROPN coo.31924059551022 674 16 ) ) PUNCT coo.31924059551022 674 17 vanishes vanish VERB coo.31924059551022 674 18 , , PUNCT coo.31924059551022 674 19 v v ADP coo.31924059551022 674 20 taking take VERB coo.31924059551022 674 21 the the DET coo.31924059551022 674 22 value value NOUN coo.31924059551022 674 23 of of ADP coo.31924059551022 674 24 a a DET coo.31924059551022 674 25 semi semi ADJ coo.31924059551022 674 26 - - NOUN coo.31924059551022 674 27 period period NOUN coo.31924059551022 674 28 , , PUNCT coo.31924059551022 674 29 but but CCONJ coo.31924059551022 674 30 as as SCONJ coo.31924059551022 674 31 this this PRON coo.31924059551022 674 32 may may AUX coo.31924059551022 674 33 occur occur VERB coo.31924059551022 674 34 without without ADP coo.31924059551022 674 35 reducing reduce VERB coo.31924059551022 674 36 x x PROPN coo.31924059551022 674 37 to to PART coo.31924059551022 674 38 zero zero NUM coo.31924059551022 674 39 the the DET coo.31924059551022 674 40 eliment eliment NOUN coo.31924059551022 674 41 will will AUX coo.31924059551022 674 42 not not PART coo.31924059551022 674 43 be be AUX coo.31924059551022 674 44 doubly doubly ADV coo.31924059551022 674 45 periodic periodic ADJ coo.31924059551022 674 46 since since SCONJ coo.31924059551022 674 47 it it PRON coo.31924059551022 674 48 will will AUX coo.31924059551022 674 49 contain contain VERB coo.31924059551022 674 50 an an DET coo.31924059551022 674 51 exponential exponential ADJ coo.31924059551022 674 52 factor factor NOUN coo.31924059551022 674 53 e?u e?u NOUN coo.31924059551022 674 54 . . PUNCT coo.31924059551022 675 1 if if SCONJ coo.31924059551022 675 2 then then ADV coo.31924059551022 675 3 χ χ X coo.31924059551022 675 4 = = SYM coo.31924059551022 675 5 0 0 NUM coo.31924059551022 676 1 we we PRON coo.31924059551022 676 2 will will AUX coo.31924059551022 676 3 have have VERB coo.31924059551022 676 4 from from ADP coo.31924059551022 676 5 ( ( PUNCT coo.31924059551022 676 6 87 87 NUM coo.31924059551022 676 7 ) ) PUNCT coo.31924059551022 676 8 six six NUM coo.31924059551022 676 9 values value NOUN coo.31924059551022 676 10 of of ADP coo.31924059551022 676 11 b b PROPN coo.31924059551022 676 12 for for ADP coo.31924059551022 676 13 which which PRON coo.31924059551022 676 14 the the DET coo.31924059551022 676 15 integral integral NOUN coo.31924059551022 676 16 will will AUX coo.31924059551022 676 17 take take VERB coo.31924059551022 676 18 the the DET coo.31924059551022 676 19 form form NOUN coo.31924059551022 676 20 y y PROPN coo.31924059551022 676 21 = = X coo.31924059551022 676 22 f f X coo.31924059551022 676 23 " " PUNCT coo.31924059551022 676 24 — — PUNCT coo.31924059551022 676 25 ~ ~ PROPN coo.31924059551022 676 26 bnf bnf PROPN coo.31924059551022 676 27 , , PUNCT coo.31924059551022 676 28 where where SCONJ coo.31924059551022 676 29 f2 f2 PROPN coo.31924059551022 676 30 = = X coo.31924059551022 676 31 ^ ^ X coo.31924059551022 676 32 ( ( PUNCT coo.31924059551022 676 33 * * PUNCT coo.31924059551022 676 34 — — PUNCT coo.31924059551022 676 35 v v ADP coo.31924059551022 676 36 1 1 NUM coo.31924059551022 676 37 2 2 NUM coo.31924059551022 676 38 5 5 NUM coo.31924059551022 676 39 2/2 2/2 NUM coo.31924059551022 676 40 i i PRON coo.31924059551022 676 41 ¿ ¿ X coo.31924059551022 676 42 eu eu PROPN coo.31924059551022 676 43 a a DET coo.31924059551022 676 44 ωλ ωλ PROPN coo.31924059551022 676 45 c7u c7u PROPN coo.31924059551022 676 46 _ _ PUNCT coo.31924059551022 676 47 _ _ PUNCT coo.31924059551022 676 48 a a DET coo.31924059551022 676 49 qxu qxu PROPN coo.31924059551022 676 50 6u 6u NUM coo.31924059551022 676 51 moreover moreover ADV coo.31924059551022 676 52 the the DET coo.31924059551022 676 53 second second ADJ coo.31924059551022 676 54 integral integral NOUN coo.31924059551022 676 55 will will AUX coo.31924059551022 676 56 be be AUX coo.31924059551022 676 57 the the DET coo.31924059551022 676 58 form form NOUN coo.31924059551022 676 59 remaining remain VERB coo.31924059551022 676 60 unchanged unchanged ADJ coo.31924059551022 676 61 which which PRON coo.31924059551022 676 62 is be AUX coo.31924059551022 676 63 not not PART coo.31924059551022 676 64 as as SCONJ coo.31924059551022 676 65 we we PRON coo.31924059551022 676 66 have have AUX coo.31924059551022 676 67 seen see VERB coo.31924059551022 676 68 in in ADP coo.31924059551022 676 69 general general ADJ coo.31924059551022 676 70 the the DET coo.31924059551022 676 71 case case NOUN coo.31924059551022 676 72 . . PUNCT coo.31924059551022 677 1 case case NOUN coo.31924059551022 677 2 ό ό X coo.31924059551022 677 3 = = SYM coo.31924059551022 677 4 0 0 NUM coo.31924059551022 677 5 . . PUNCT coo.31924059551022 678 1 the the DET coo.31924059551022 678 2 only only ADJ coo.31924059551022 678 3 remaining remain VERB coo.31924059551022 678 4 case case NOUN coo.31924059551022 678 5 to to PART coo.31924059551022 678 6 be be AUX coo.31924059551022 678 7 considered consider VERB coo.31924059551022 678 8 is be AUX coo.31924059551022 678 9 where where SCONJ coo.31924059551022 678 10 d d X coo.31924059551022 678 11 — — PUNCT coo.31924059551022 678 12 0 0 NUM coo.31924059551022 678 13 , , PUNCT coo.31924059551022 678 14 or or CCONJ coo.31924059551022 678 15 p p NOUN coo.31924059551022 678 16 - - PUNCT coo.31924059551022 678 17 , , PUNCT coo.31924059551022 678 18 a1 a1 PROPN coo.31924059551022 678 19 = = NOUN coo.31924059551022 678 20 v v NOUN coo.31924059551022 678 21 — — PUNCT coo.31924059551022 678 22 1 1 NUM coo.31924059551022 678 23 + + CCONJ coo.31924059551022 678 24 k k X coo.31924059551022 678 25 * * PUNCT coo.31924059551022 678 26 — — PUNCT coo.31924059551022 678 27 = = NOUN coo.31924059551022 678 28 0 0 NUM coo.31924059551022 678 29 or or CCONJ coo.31924059551022 678 30 l l NOUN coo.31924059551022 678 31 = = VERB coo.31924059551022 678 32 ±(l ±(l ADV coo.31924059551022 678 33 — — PUNCT coo.31924059551022 678 34 ¥ ¥ SYM coo.31924059551022 678 35 + + CCONJ coo.31924059551022 678 36 = = NOUN coo.31924059551022 678 37 since since SCONJ coo.31924059551022 678 38 x2g2 x2g2 PUNCT coo.31924059551022 678 39 — — PUNCT coo.31924059551022 678 40 y y PROPN coo.31924059551022 678 41 ( ( PUNCT coo.31924059551022 678 42 1 1 NUM coo.31924059551022 678 43 — — PUNCT coo.31924059551022 678 44 k2 k2 ADJ coo.31924059551022 678 45 + + CCONJ coo.31924059551022 678 46 ¥ ¥ X coo.31924059551022 678 47 ) ) PUNCT coo.31924059551022 678 48 . . PUNCT coo.31924059551022 679 1 also also ADV coo.31924059551022 679 2 l l PRON coo.31924059551022 679 3 = = VERB coo.31924059551022 679 4 3 3 NUM coo.31924059551022 679 5 & & CCONJ coo.31924059551022 679 6 whence whence PROPN coo.31924059551022 679 7 or or CCONJ coo.31924059551022 679 8 12 12 NUM coo.31924059551022 679 9 l·2 l·2 PROPN coo.31924059551022 679 10 — — PUNCT coo.31924059551022 679 11 9 9 NUM coo.31924059551022 679 12 % % NOUN coo.31924059551022 679 13 = = NOUN coo.31924059551022 679 14 φ'(ρ φ'(ρ ADV coo.31924059551022 679 15 ) ) PUNCT coo.31924059551022 679 16 = = PROPN coo.31924059551022 679 17 0 0 NUM coo.31924059551022 679 18 . . PUNCT coo.31924059551022 680 1 that that PRON coo.31924059551022 680 2 is be AUX coo.31924059551022 680 3 d d X coo.31924059551022 680 4 = = NOUN coo.31924059551022 680 5 0 0 NUM coo.31924059551022 680 6 and and CCONJ coo.31924059551022 680 7 φ'(δ φ'(δ PROPN coo.31924059551022 680 8 ) ) PUNCT coo.31924059551022 680 9 = = PUNCT coo.31924059551022 680 10 0 0 NUM coo.31924059551022 680 11 are be AUX coo.31924059551022 680 12 conditions condition NOUN coo.31924059551022 680 13 for for ADP coo.31924059551022 680 14 one one NUM coo.31924059551022 680 15 and and CCONJ coo.31924059551022 680 16 the the DET coo.31924059551022 680 17 same same ADJ coo.31924059551022 680 18 function function NOUN coo.31924059551022 680 19 of of ADP coo.31924059551022 680 20 lamé lamé NOUN coo.31924059551022 680 21 . . PUNCT coo.31924059551022 681 1 in in ADP coo.31924059551022 681 2 this this DET coo.31924059551022 681 3 case case NOUN coo.31924059551022 681 4 p(v p(v SPACE coo.31924059551022 681 5 ) ) PUNCT coo.31924059551022 681 6 and and CCONJ coo.31924059551022 681 7 also also ADV coo.31924059551022 681 8 the the DET coo.31924059551022 681 9 p'{y p'{y NOUN coo.31924059551022 681 10 ) ) PUNCT coo.31924059551022 681 11 become become VERB coo.31924059551022 681 12 infinite infinite NOUN coo.31924059551022 681 13 which which PRON coo.31924059551022 681 14 gives give VERB coo.31924059551022 681 15 v v NOUN coo.31924059551022 681 16 = = NOUN coo.31924059551022 681 17 0 0 NUM coo.31924059551022 681 18 or or CCONJ coo.31924059551022 681 19 the the DET coo.31924059551022 681 20 congruent congruent ADJ coo.31924059551022 681 21 values value NOUN coo.31924059551022 681 22 2mw 2mw ADJ coo.31924059551022 681 23 -f -f X coo.31924059551022 681 24 * * SYM coo.31924059551022 681 25 2 2 NUM coo.31924059551022 681 26 m m NOUN coo.31924059551022 681 27 w. w. ADJ coo.31924059551022 681 28 the the DET coo.31924059551022 681 29 general general ADJ coo.31924059551022 681 30 form form NOUN coo.31924059551022 681 31 of of ADP coo.31924059551022 681 32 our our PRON coo.31924059551022 681 33 integral integral ADJ coo.31924059551022 681 34 will will AUX coo.31924059551022 681 35 not not PART coo.31924059551022 681 36 hold hold VERB coo.31924059551022 681 37 for for ADP coo.31924059551022 681 38 this this DET coo.31924059551022 681 39 exceptional exceptional ADJ coo.31924059551022 681 40 case case NOUN coo.31924059551022 681 41 and and CCONJ coo.31924059551022 681 42 we we PRON coo.31924059551022 681 43 are be AUX coo.31924059551022 681 44 obliged oblige VERB coo.31924059551022 681 45 to to PART coo.31924059551022 681 46 return return VERB coo.31924059551022 681 47 to to ADP coo.31924059551022 681 48 the the DET coo.31924059551022 681 49 treatment treatment NOUN coo.31924059551022 681 50 of of ADP coo.31924059551022 681 51 the the DET coo.31924059551022 681 52 subject subject NOUN coo.31924059551022 681 53 from from ADP coo.31924059551022 681 54 the the DET coo.31924059551022 681 55 standpoint standpoint NOUN coo.31924059551022 681 56 of of ADP coo.31924059551022 681 57 a a DET coo.31924059551022 681 58 product product NOUN coo.31924059551022 681 59 . . PUNCT coo.31924059551022 682 1 helation helation NOUN coo.31924059551022 682 2 of of ADP coo.31924059551022 682 3 y y PROPN coo.31924059551022 682 4 and and CCONJ coo.31924059551022 682 5 c c NOUN coo.31924059551022 682 6 to to ADP coo.31924059551022 682 7 the the DET coo.31924059551022 682 8 special special ADJ coo.31924059551022 682 9 functions function NOUN coo.31924059551022 682 10 of of ADP coo.31924059551022 682 11 lamé lamé NOUN coo.31924059551022 682 12 . . PUNCT coo.31924059551022 683 1 returning return VERB coo.31924059551022 683 2 first first ADV coo.31924059551022 683 3 to to ADP coo.31924059551022 683 4 ( ( PUNCT coo.31924059551022 683 5 part part NOUN coo.31924059551022 683 6 iv iv X coo.31924059551022 683 7 , , PUNCT coo.31924059551022 683 8 p. p. NOUN coo.31924059551022 683 9 42 42 NUM coo.31924059551022 683 10 ) ) PUNCT coo.31924059551022 683 11 , , PUNCT coo.31924059551022 683 12 the the DET coo.31924059551022 683 13 elimentary elimentary ADJ coo.31924059551022 683 14 determination determination NOUN coo.31924059551022 683 15 of of ADP coo.31924059551022 683 16 the the DET coo.31924059551022 683 17 special special ADJ coo.31924059551022 683 18 functions function NOUN coo.31924059551022 683 19 of of ADP coo.31924059551022 683 20 lamé lamé NOUN coo.31924059551022 683 21 , , PUNCT coo.31924059551022 683 22 we we PRON coo.31924059551022 683 23 there there ADV coo.31924059551022 683 24 found find VERB coo.31924059551022 683 25 with with ADP coo.31924059551022 683 26 reference reference NOUN coo.31924059551022 683 27 to to ADP coo.31924059551022 683 28 b b PROPN coo.31924059551022 683 29 that that PRON coo.31924059551022 683 30 , , PUNCT coo.31924059551022 683 31 first first ADV coo.31924059551022 683 32 , , PUNCT coo.31924059551022 683 33 if if SCONJ coo.31924059551022 683 34 n n CCONJ coo.31924059551022 683 35 be be AUX coo.31924059551022 683 36 odd odd ADJ coo.31924059551022 683 37 , , PUNCT coo.31924059551022 683 38 it it PRON coo.31924059551022 683 39 is be AUX coo.31924059551022 683 40 determined determine VERB coo.31924059551022 683 41 by by ADP coo.31924059551022 683 42 two two NUM coo.31924059551022 683 43 sorts sort NOUN coo.31924059551022 683 44 of of ADP coo.31924059551022 683 45 equations equation NOUN coo.31924059551022 683 46 , , PUNCT coo.31924059551022 683 47 one one NUM coo.31924059551022 683 48 of of ADP coo.31924059551022 683 49 degree degree NOUN coo.31924059551022 683 50 ~ ~ PUNCT coo.31924059551022 683 51 ( ( PUNCT coo.31924059551022 683 52 n n X coo.31924059551022 683 53 — — PUNCT coo.31924059551022 683 54 1 1 X coo.31924059551022 683 55 ) ) PUNCT coo.31924059551022 683 56 giving give VERB coo.31924059551022 683 57 rise rise NOUN coo.31924059551022 683 58 to to ADP coo.31924059551022 683 59 functions function NOUN coo.31924059551022 683 60 of of ADP coo.31924059551022 683 61 the the DET coo.31924059551022 683 62 reduction reduction NUM coo.31924059551022 683 63 of of ADP coo.31924059551022 683 64 the the DET coo.31924059551022 683 65 forms form NOUN coo.31924059551022 683 66 when when SCONJ coo.31924059551022 683 67 n n SYM coo.31924059551022 683 68 equals equal VERB coo.31924059551022 683 69 three three NUM coo.31924059551022 683 70 . . PUNCT coo.31924059551022 684 1 53 53 NUM coo.31924059551022 684 2 first first ADJ coo.31924059551022 684 3 sort sort NOUN coo.31924059551022 684 4 , , PUNCT coo.31924059551022 684 5 and and CCONJ coo.31924059551022 684 6 the the DET coo.31924059551022 684 7 other other ADJ coo.31924059551022 684 8 , , PUNCT coo.31924059551022 684 9 three three NUM coo.31924059551022 684 10 in in ADP coo.31924059551022 684 11 all all PRON coo.31924059551022 684 12 , , PUNCT coo.31924059551022 684 13 of of ADP coo.31924059551022 684 14 degree degree NOUN coo.31924059551022 684 15 γ γ PROPN coo.31924059551022 684 16 ( ( PUNCT coo.31924059551022 684 17 n n CCONJ coo.31924059551022 684 18 + + CCONJ coo.31924059551022 684 19 1 1 X coo.31924059551022 684 20 ) ) PUNCT coo.31924059551022 684 21 giving give VERB coo.31924059551022 684 22 rise rise NOUN coo.31924059551022 684 23 to to ADP coo.31924059551022 684 24 functions function NOUN coo.31924059551022 684 25 of of ADP coo.31924059551022 684 26 the the DET coo.31924059551022 684 27 second second ADJ coo.31924059551022 684 28 sort sort NOUN coo.31924059551022 684 29 ; ; PUNCT coo.31924059551022 685 1 whence whence ADV coo.31924059551022 685 2 combining combine VERB coo.31924059551022 685 3 we we PRON coo.31924059551022 685 4 have have VERB coo.31924059551022 685 5 , , PUNCT coo.31924059551022 685 6 n n CCONJ coo.31924059551022 685 7 being be AUX coo.31924059551022 685 8 odd odd ADJ coo.31924059551022 685 9 , , PUNCT coo.31924059551022 685 10 b b X coo.31924059551022 685 11 determined determine VERB coo.31924059551022 685 12 by by ADP coo.31924059551022 685 13 an an DET coo.31924059551022 685 14 equation equation NOUN coo.31924059551022 685 15 of of ADP coo.31924059551022 685 16 degree degree NOUN coo.31924059551022 685 17 γ γ PROPN coo.31924059551022 685 18 ( ( PUNCT coo.31924059551022 685 19 n n PROPN coo.31924059551022 685 20 -f1 -f1 PROPN coo.31924059551022 685 21 ) ) PUNCT coo.31924059551022 685 22 + + PROPN coo.31924059551022 685 23 y y PROPN coo.31924059551022 685 24 ( ( PUNCT coo.31924059551022 685 25 n n CCONJ coo.31924059551022 685 26 ~~ ~~ X coo.31924059551022 685 27 1 1 X coo.31924059551022 685 28 ) ) PUNCT coo.31924059551022 685 29 = = PUNCT coo.31924059551022 685 30 2n 2n NUM coo.31924059551022 686 1 + + CCONJ coo.31924059551022 686 2 1 1 X coo.31924059551022 686 3 . . PUNCT coo.31924059551022 687 1 if if SCONJ coo.31924059551022 687 2 n n ADV coo.31924059551022 687 3 is be AUX coo.31924059551022 687 4 even even ADV coo.31924059551022 687 5 we we PRON coo.31924059551022 687 6 find find VERB coo.31924059551022 687 7 but but CCONJ coo.31924059551022 687 8 one one NUM coo.31924059551022 687 9 equation equation NOUN coo.31924059551022 687 10 , , PUNCT coo.31924059551022 687 11 degree degree NOUN coo.31924059551022 687 12 -\1 -\1 SPACE coo.31924059551022 687 13 , , PUNCT coo.31924059551022 687 14 for for ADP coo.31924059551022 687 15 functions function NOUN coo.31924059551022 687 16 of of ADP coo.31924059551022 687 17 the the DET coo.31924059551022 687 18 first first ADJ coo.31924059551022 687 19 sort sort NOUN coo.31924059551022 687 20 and and CCONJ coo.31924059551022 687 21 three three NUM coo.31924059551022 687 22 equations equation NOUN coo.31924059551022 687 23 , , PUNCT coo.31924059551022 687 24 degree degree VERB coo.31924059551022 687 25 γ γ PROPN coo.31924059551022 687 26 n9 n9 PROPN coo.31924059551022 687 27 for for ADP coo.31924059551022 687 28 those those PRON coo.31924059551022 687 29 of of ADP coo.31924059551022 687 30 the the DET coo.31924059551022 687 31 second second ADJ coo.31924059551022 687 32 sort sort NOUN coo.31924059551022 687 33 making make VERB coo.31924059551022 687 34 a a DET coo.31924059551022 687 35 single single ADJ coo.31924059551022 687 36 equation equation NOUN coo.31924059551022 687 37 whose whose DET coo.31924059551022 687 38 degree degree NOUN coo.31924059551022 687 39 as as ADP coo.31924059551022 687 40 in in ADP coo.31924059551022 687 41 the the DET coo.31924059551022 687 42 first first ADJ coo.31924059551022 687 43 case case NOUN coo.31924059551022 687 44 is be AUX coo.31924059551022 687 45 2n 2n PROPN coo.31924059551022 687 46 -f1 -f1 PROPN coo.31924059551022 687 47 . . PUNCT coo.31924059551022 688 1 if if SCONJ coo.31924059551022 688 2 then then ADV coo.31924059551022 688 3 these these DET coo.31924059551022 688 4 roots root NOUN coo.31924059551022 688 5 are be AUX coo.31924059551022 688 6 all all ADV coo.31924059551022 688 7 different different ADJ coo.31924059551022 688 8 we we PRON coo.31924059551022 688 9 have have AUX coo.31924059551022 688 10 in in ADP coo.31924059551022 688 11 all all DET coo.31924059551022 688 12 2 2 NUM coo.31924059551022 688 13 n n CCONJ coo.31924059551022 688 14 -f1 -f1 PROPN coo.31924059551022 688 15 special special ADJ coo.31924059551022 688 16 functions function NOUN coo.31924059551022 688 17 of of ADP coo.31924059551022 688 18 lamé lamé NOUN coo.31924059551022 688 19 . . PUNCT coo.31924059551022 689 1 returning return VERB coo.31924059551022 689 2 now now ADV coo.31924059551022 689 3 to to ADP coo.31924059551022 689 4 the the DET coo.31924059551022 689 5 forms form NOUN coo.31924059551022 689 6 ( ( PUNCT coo.31924059551022 689 7 65 65 NUM coo.31924059551022 689 8 ) ) PUNCT coo.31924059551022 689 9 2 2 NUM coo.31924059551022 689 10 g g NOUN coo.31924059551022 689 11 = = NOUN coo.31924059551022 689 12 a a DET coo.31924059551022 689 13 ( ( PUNCT coo.31924059551022 689 14 a a DET coo.31924059551022 689 15 — — PUNCT coo.31924059551022 689 16 fi fi NOUN coo.31924059551022 689 17 ) ) PUNCT coo.31924059551022 689 18 ( ( PUNCT coo.31924059551022 689 19 a a DET coo.31924059551022 689 20 — — PUNCT coo.31924059551022 689 21 γ γ NOUN coo.31924059551022 689 22 ) ) PUNCT coo.31924059551022 689 23 · · PUNCT coo.31924059551022 689 24 · · PUNCT coo.31924059551022 689 25 · · PUNCT coo.31924059551022 689 26 we we PRON coo.31924059551022 689 27 have have VERB coo.31924059551022 689 28 the the DET coo.31924059551022 689 29 half half ADJ coo.31924059551022 689 30 periods period NOUN coo.31924059551022 689 31 or or CCONJ coo.31924059551022 689 32 values value NOUN coo.31924059551022 689 33 of of ADP coo.31924059551022 689 34 the the DET coo.31924059551022 689 35 roots root NOUN coo.31924059551022 689 36 a a PRON coo.31924059551022 689 37 , , PUNCT coo.31924059551022 689 38 β β X coo.31924059551022 689 39 that that PRON coo.31924059551022 689 40 will will AUX coo.31924059551022 689 41 reduce reduce VERB coo.31924059551022 689 42 them they PRON coo.31924059551022 689 43 to to ADP coo.31924059551022 689 44 zero zero NUM coo.31924059551022 689 45 . . PUNCT coo.31924059551022 690 1 moreover moreover ADV coo.31924059551022 690 2 they they PRON coo.31924059551022 690 3 will will AUX coo.31924059551022 690 4 not not PART coo.31924059551022 690 5 be be AUX coo.31924059551022 690 6 double double ADJ coo.31924059551022 690 7 roots root NOUN coo.31924059551022 690 8 , , PUNCT coo.31924059551022 690 9 for for ADP coo.31924059551022 690 10 consider consider VERB coo.31924059551022 690 11 t t NOUN coo.31924059551022 690 12 = = ADV coo.31924059551022 690 13 e% e% ADV coo.31924059551022 690 14 as as ADP coo.31924059551022 690 15 a a DET coo.31924059551022 690 16 double double ADJ coo.31924059551022 690 17 root root NOUN coo.31924059551022 690 18 of of ADP coo.31924059551022 690 19 y y PROPN coo.31924059551022 690 20 in in ADP coo.31924059551022 690 21 which which DET coo.31924059551022 690 22 case case NOUN coo.31924059551022 690 23 all all DET coo.31924059551022 690 24 the the DET coo.31924059551022 690 25 terms term NOUN coo.31924059551022 690 26 of of ADP coo.31924059551022 690 27 equation equation NOUN coo.31924059551022 690 28 ( ( PUNCT coo.31924059551022 690 29 57 57 NUM coo.31924059551022 690 30 ) ) PUNCT coo.31924059551022 690 31 will will AUX coo.31924059551022 690 32 reduce reduce VERB coo.31924059551022 690 33 to to ADP coo.31924059551022 690 34 zero zero NUM coo.31924059551022 690 35 save save VERB coo.31924059551022 690 36 the the DET coo.31924059551022 690 37 second second ADJ coo.31924059551022 690 38 which which PRON coo.31924059551022 690 39 will will AUX coo.31924059551022 690 40 be be AUX coo.31924059551022 690 41 identically identically ADV coo.31924059551022 690 42 zero zero NUM coo.31924059551022 690 43 , , PUNCT coo.31924059551022 690 44 which which PRON coo.31924059551022 690 45 is be AUX coo.31924059551022 690 46 a a DET coo.31924059551022 690 47 condition condition NOUN coo.31924059551022 690 48 that that SCONJ coo.31924059551022 690 49 the the DET coo.31924059551022 690 50 root root NOUN coo.31924059551022 690 51 be be AUX coo.31924059551022 690 52 tripple tripple NOUN coo.31924059551022 690 53 . . PUNCT coo.31924059551022 691 1 differentiating differentiate VERB coo.31924059551022 691 2 we we PRON coo.31924059551022 691 3 find find VERB coo.31924059551022 691 4 an an DET coo.31924059551022 691 5 analogous analogous ADJ coo.31924059551022 691 6 equation equation NOUN coo.31924059551022 691 7 and and CCONJ coo.31924059551022 691 8 a a DET coo.31924059551022 691 9 similar similar ADJ coo.31924059551022 691 10 course course NOUN coo.31924059551022 691 11 of of ADP coo.31924059551022 691 12 reasoning reasoning NOUN coo.31924059551022 691 13 shows show VERB coo.31924059551022 691 14 that that SCONJ coo.31924059551022 691 15 the the DET coo.31924059551022 691 16 root root NOUN coo.31924059551022 691 17 must must AUX coo.31924059551022 691 18 be be AUX coo.31924059551022 691 19 quadruple quadruple ADJ coo.31924059551022 691 20 and and CCONJ coo.31924059551022 691 21 so so ADV coo.31924059551022 691 22 on on ADP coo.31924059551022 691 23 which which PRON coo.31924059551022 691 24 is be AUX coo.31924059551022 691 25 absurde absurde ADJ coo.31924059551022 691 26 . . PUNCT coo.31924059551022 692 1 hence hence ADV coo.31924059551022 692 2 the the DET coo.31924059551022 692 3 roots root NOUN coo.31924059551022 692 4 that that PRON coo.31924059551022 692 5 are be AUX coo.31924059551022 692 6 half half ADJ coo.31924059551022 692 7 - - PUNCT coo.31924059551022 692 8 periods period NOUN coo.31924059551022 692 9 are be AUX coo.31924059551022 692 10 not not PART coo.31924059551022 692 11 double double ADJ coo.31924059551022 692 12 . . PUNCT coo.31924059551022 693 1 on on ADP coo.31924059551022 693 2 the the DET coo.31924059551022 693 3 other other ADJ coo.31924059551022 693 4 hand hand NOUN coo.31924059551022 693 5 any any DET coo.31924059551022 693 6 other other ADJ coo.31924059551022 693 7 root root NOUN coo.31924059551022 693 8 of of ADP coo.31924059551022 693 9 y y PROPN coo.31924059551022 693 10 may may AUX coo.31924059551022 693 11 be be AUX coo.31924059551022 693 12 double double ADJ coo.31924059551022 693 13 but but CCONJ coo.31924059551022 693 14 as as ADP coo.31924059551022 693 15 a a DET coo.31924059551022 693 16 similar similar ADJ coo.31924059551022 693 17 course course NOUN coo.31924059551022 693 18 of of ADP coo.31924059551022 693 19 reasoning reasoning NOUN coo.31924059551022 693 20 shows show VERB coo.31924059551022 693 21 it it PRON coo.31924059551022 693 22 could could AUX coo.31924059551022 693 23 not not PART coo.31924059551022 693 24 be be AUX coo.31924059551022 693 25 tripple tripple NOUN coo.31924059551022 693 26 . . PUNCT coo.31924059551022 694 1 if if SCONJ coo.31924059551022 694 2 then then ADV coo.31924059551022 694 3 c c X coo.31924059551022 694 4 = = SYM coo.31924059551022 694 5 0 0 NUM coo.31924059551022 695 1 all all DET coo.31924059551022 695 2 the the DET coo.31924059551022 695 3 roots root NOUN coo.31924059551022 695 4 will will AUX coo.31924059551022 695 5 be be AUX coo.31924059551022 695 6 double double ADJ coo.31924059551022 695 7 unless unless SCONJ coo.31924059551022 695 8 they they PRON coo.31924059551022 695 9 are be AUX coo.31924059551022 695 10 semi semi ADJ coo.31924059551022 695 11 - - NOUN coo.31924059551022 695 12 periods period NOUN coo.31924059551022 695 13 and and CCONJ coo.31924059551022 695 14 we we PRON coo.31924059551022 695 15 may^ may^ VERB coo.31924059551022 695 16 write write VERB coo.31924059551022 695 17 [ [ X coo.31924059551022 695 18 89 89 NUM coo.31924059551022 695 19 ] ] PUNCT coo.31924059551022 695 20 . . PUNCT coo.31924059551022 695 21 . . PUNCT coo.31924059551022 695 22 . . PUNCT coo.31924059551022 696 1 y y NOUN coo.31924059551022 696 2 = = PROPN coo.31924059551022 696 3 ( ( PUNCT coo.31924059551022 696 4 pu pu X coo.31924059551022 696 5 — — PUNCT coo.31924059551022 696 6 ef)s ef)s PROPN coo.31924059551022 696 7 ( ( PUNCT coo.31924059551022 696 8 pu pu PROPN coo.31924059551022 696 9 — — PUNCT coo.31924059551022 696 10 e2y e2y NOUN coo.31924059551022 696 11 ( ( PUNCT coo.31924059551022 696 12 pu pu X coo.31924059551022 696 13 — — PUNCT coo.31924059551022 696 14 e3 e3 PROPN coo.31924059551022 696 15 ) ) PUNCT coo.31924059551022 696 16 * * PUNCT coo.31924059551022 696 17 " " PUNCT coo.31924059551022 696 18 π(pu π(pu PRON coo.31924059551022 696 19 cm cm PROPN coo.31924059551022 696 20 1 1 NUM coo.31924059551022 696 21 whence whence NOUN coo.31924059551022 696 22 [ [ X coo.31924059551022 696 23 90 90 NUM coo.31924059551022 696 24 ] ] PUNCT coo.31924059551022 696 25 • • PUNCT coo.31924059551022 696 26 · · PUNCT coo.31924059551022 696 27 · · PUNCT coo.31924059551022 696 28 y y PROPN coo.31924059551022 696 29 = = SYM coo.31924059551022 696 30 v(pu v(pu X coo.31924059551022 696 31 — — PUNCT coo.31924059551022 696 32 ety ety PROPN coo.31924059551022 696 33 { { PUNCT coo.31924059551022 696 34 pu pu PROPN coo.31924059551022 696 35 — — PUNCT coo.31924059551022 696 36 e2y e2y NOUN coo.31924059551022 696 37 ( ( PUNCT coo.31924059551022 696 38 jm jm NOUN coo.31924059551022 696 39 — — PUNCT coo.31924059551022 696 40 e3 e3 PROPN coo.31924059551022 696 41 ) ) PUNCT coo.31924059551022 696 42 ° ° NOUN coo.31924059551022 696 43 " " PUNCT coo.31924059551022 697 1 π(pu π(pu PROPN coo.31924059551022 697 2 -pa -pa SPACE coo.31924059551022 697 3 ) ) PUNCT coo.31924059551022 697 4 where where SCONJ coo.31924059551022 697 5 £ £ PROPN coo.31924059551022 697 6 , , PUNCT coo.31924059551022 697 7 s s VERB coo.31924059551022 697 8 , , PUNCT coo.31924059551022 697 9 b b NOUN coo.31924059551022 697 10 " " PUNCT coo.31924059551022 697 11 = = NOUN coo.31924059551022 697 12 0 0 NUM coo.31924059551022 697 13 or or CCONJ coo.31924059551022 697 14 1 1 NUM coo.31924059551022 697 15 . . PUNCT coo.31924059551022 698 1 but but CCONJ coo.31924059551022 698 2 this this DET coo.31924059551022 698 3 form form NOUN coo.31924059551022 698 4 we we PRON coo.31924059551022 698 5 observe observe VERB coo.31924059551022 698 6 at at ADP coo.31924059551022 698 7 once once ADV coo.31924059551022 698 8 is be AUX coo.31924059551022 698 9 that that PRON coo.31924059551022 698 10 assumed assume VERB coo.31924059551022 698 11 in in ADP coo.31924059551022 698 12 every every DET coo.31924059551022 698 13 case case NOUN coo.31924059551022 698 14 by by ADP coo.31924059551022 698 15 the the DET coo.31924059551022 698 16 special special ADJ coo.31924059551022 698 17 functions function NOUN coo.31924059551022 698 18 of of ADP coo.31924059551022 698 19 lamé lamé NOUN coo.31924059551022 698 20 where where SCONJ coo.31924059551022 698 21 we we PRON coo.31924059551022 698 22 found find VERB coo.31924059551022 698 23 y y PROPN coo.31924059551022 698 24 always always ADV coo.31924059551022 698 25 equal equal ADJ coo.31924059551022 698 26 to to ADP coo.31924059551022 698 27 a a DET coo.31924059551022 698 28 polynomial polynomial ADJ coo.31924059551022 698 29 in in ADP coo.31924059551022 698 30 p(u p(u PROPN coo.31924059551022 698 31 ) ) PUNCT coo.31924059551022 698 32 times time NOUN coo.31924059551022 698 33 some some DET coo.31924059551022 698 34 one one NUM coo.31924059551022 698 35 or or CCONJ coo.31924059551022 698 36 more more ADJ coo.31924059551022 698 37 of of ADP coo.31924059551022 698 38 the the DET coo.31924059551022 698 39 factors factor NOUN coo.31924059551022 698 40 ( ( PUNCT coo.31924059551022 698 41 pu pu X coo.31924059551022 698 42 — — PUNCT coo.31924059551022 698 43 that that PRON coo.31924059551022 698 44 is be AUX coo.31924059551022 698 45 c c NOUN coo.31924059551022 698 46 = = SYM coo.31924059551022 698 47 0 0 NUM coo.31924059551022 698 48 is be AUX coo.31924059551022 698 49 a a DET coo.31924059551022 698 50 condition condition NOUN coo.31924059551022 698 51 that that SCONJ coo.31924059551022 698 52 the the DET coo.31924059551022 698 53 integrals integral NOUN coo.31924059551022 698 54 he he PRON coo.31924059551022 698 55 the the DET coo.31924059551022 698 56 special special ADJ coo.31924059551022 698 57 double double ADJ coo.31924059551022 698 58 periodic periodic ADJ coo.31924059551022 698 59 functions function NOUN coo.31924059551022 698 60 of of ADP coo.31924059551022 698 61 lamé lamé NOUN coo.31924059551022 698 62 . . PUNCT coo.31924059551022 699 1 by by ADP coo.31924059551022 699 2 a a DET coo.31924059551022 699 3 transformation transformation NOUN coo.31924059551022 699 4 similar similar ADJ coo.31924059551022 699 5 to to ADP coo.31924059551022 699 6 that that PRON coo.31924059551022 699 7 on on ADP coo.31924059551022 699 8 p. p. NOUN coo.31924059551022 699 9 35 35 NUM coo.31924059551022 699 10 we we PRON coo.31924059551022 699 11 ' ' AUX coo.31924059551022 699 12 may may AUX coo.31924059551022 699 13 write write VERB coo.31924059551022 699 14 equation equation NOUN coo.31924059551022 699 15 ( ( PUNCT coo.31924059551022 699 16 64 64 NUM coo.31924059551022 699 17 , , PUNCT coo.31924059551022 699 18 p. p. NOUN coo.31924059551022 699 19 38 38 NUM coo.31924059551022 699 20 ) ) PUNCT coo.31924059551022 699 21 in in ADP coo.31924059551022 699 22 the the DET coo.31924059551022 699 23 form form NOUN coo.31924059551022 699 24 : : PUNCT coo.31924059551022 699 25 54 54 NUM coo.31924059551022 699 26 part part NOUN coo.31924059551022 699 27 v. v. ADP coo.31924059551022 699 28 4 4 NUM coo.31924059551022 699 29 c2 c2 PROPN coo.31924059551022 699 30 = = SYM coo.31924059551022 699 31 ( ( PUNCT coo.31924059551022 699 32 4 4 NUM coo.31924059551022 699 33 ís ís NOUN coo.31924059551022 699 34 — — PUNCT coo.31924059551022 699 35 g2 g2 PROPN coo.31924059551022 699 36 t t PROPN coo.31924059551022 699 37 93)[(^ 93)[(^ NUM coo.31924059551022 699 38 dt dt PROPN coo.31924059551022 699 39 ) ) PUNCT coo.31924059551022 699 40 2 2 NUM coo.31924059551022 699 41 ¥ ¥ NUM coo.31924059551022 699 42 d d X coo.31924059551022 699 43 * * X coo.31924059551022 699 44 r r X coo.31924059551022 699 45 dt dt X coo.31924059551022 700 1 * * X coo.31924059551022 700 2 ] ] X coo.31924059551022 700 3 — — PUNCT coo.31924059551022 700 4 ( ( PUNCT coo.31924059551022 700 5 12i2 12i2 NUM coo.31924059551022 700 6 λ)γϊ λ)γϊ NOUN coo.31924059551022 700 7 and and CCONJ coo.31924059551022 700 8 we we PRON coo.31924059551022 700 9 have have VERB coo.31924059551022 700 10 ( ( PUNCT coo.31924059551022 700 11 62 62 NUM coo.31924059551022 700 12 , , PUNCT coo.31924059551022 700 13 p. p. NOUN coo.31924059551022 700 14 37 37 NUM coo.31924059551022 700 15 ) ) PUNCT coo.31924059551022 700 16 γ γ NOUN coo.31924059551022 700 17 = = PUNCT coo.31924059551022 700 18 + + NUM coo.31924059551022 700 19 4 4 NUM coo.31924059551022 701 1 [ [ X coo.31924059551022 701 2 n(n n(n PROPN coo.31924059551022 701 3 + + CCONJ coo.31924059551022 701 4 1 1 NUM coo.31924059551022 701 5 ) ) PUNCT coo.31924059551022 701 6 t+ t+ X coo.31924059551022 701 7 b b X coo.31924059551022 701 8 ] ] X coo.31924059551022 701 9 y2 y2 PROPN coo.31924059551022 701 10 ( ( PUNCT coo.31924059551022 701 11 _ _ PROPN coo.31924059551022 701 12 _ _ PUNCT coo.31924059551022 702 1 xyibn xyibn PROPN coo.31924059551022 703 1 [ [ X coo.31924059551022 703 2 3 3 NUM coo.31924059551022 703 3 · · SYM coo.31924059551022 703 4 5 5 NUM coo.31924059551022 703 5 · · SYM coo.31924059551022 703 6 7 7 NUM coo.31924059551022 703 7 · · SYM coo.31924059551022 703 8 · · PUNCT coo.31924059551022 703 9 2 2 NUM coo.31924059551022 703 10 w w NOUN coo.31924059551022 703 11 — — PUNCT coo.31924059551022 703 12 1 1 NUM coo.31924059551022 703 13 ] ] SYM coo.31924059551022 703 14 12 12 NUM coo.31924059551022 703 15 + + NUM coo.31924059551022 703 16 from from ADP coo.31924059551022 703 17 which which PRON coo.31924059551022 703 18 relations relation NOUN coo.31924059551022 703 19 we we PRON coo.31924059551022 703 20 see see VERB coo.31924059551022 703 21 that that SCONJ coo.31924059551022 703 22 the the DET coo.31924059551022 703 23 highest high ADJ coo.31924059551022 703 24 power power NOUN coo.31924059551022 703 25 of of ADP coo.31924059551022 703 26 b b PROPN coo.31924059551022 703 27 in in ADP coo.31924059551022 703 28 c2 c2 PROPN coo.31924059551022 703 29 is be AUX coo.31924059551022 703 30 2 2 NUM coo.31924059551022 703 31 w w NOUN coo.31924059551022 703 32 + + CCONJ coo.31924059551022 703 33 1 1 NUM coo.31924059551022 704 1 and and CCONJ coo.31924059551022 704 2 that that SCONJ coo.31924059551022 704 3 the the DET coo.31924059551022 704 4 condition condition NOUN coo.31924059551022 704 5 ( ( PUNCT coo.31924059551022 704 6 7=0 7=0 NUM coo.31924059551022 704 7 gives gives AUX coo.31924059551022 704 8 rise rise VERB coo.31924059551022 704 9 to to ADP coo.31924059551022 704 10 an an DET coo.31924059551022 704 11 equation equation NOUN coo.31924059551022 704 12 of of ADP coo.31924059551022 704 13 the the DET coo.31924059551022 704 14 2n 2n NUM coo.31924059551022 704 15 + + NUM coo.31924059551022 704 16 1st 1st ADJ coo.31924059551022 704 17 degree degree NOUN coo.31924059551022 704 18 in in ADP coo.31924059551022 704 19 b b PROPN coo.31924059551022 704 20 which which PRON coo.31924059551022 704 21 is be AUX coo.31924059551022 704 22 as as ADP coo.31924059551022 704 23 the the DET coo.31924059551022 704 24 number number NOUN coo.31924059551022 704 25 of of ADP coo.31924059551022 704 26 the the DET coo.31924059551022 704 27 special special ADJ coo.31924059551022 704 28 functions function NOUN coo.31924059551022 704 29 of of ADP coo.31924059551022 704 30 lamé lamé NOUN coo.31924059551022 704 31 . . PUNCT coo.31924059551022 705 1 refering refer VERB coo.31924059551022 705 2 to to ADP coo.31924059551022 705 3 ( ( PUNCT coo.31924059551022 705 4 68 68 NUM coo.31924059551022 705 5 , , PUNCT coo.31924059551022 705 6 p. p. NOUN coo.31924059551022 705 7 40 40 NUM coo.31924059551022 705 8 ) ) PUNCT coo.31924059551022 705 9 we we PRON coo.31924059551022 705 10 see see VERB coo.31924059551022 705 11 that that SCONJ coo.31924059551022 705 12 c2 c2 PROPN coo.31924059551022 705 13 = = SYM coo.31924059551022 705 14 0 0 NUM coo.31924059551022 705 15 has have AUX coo.31924059551022 705 16 been be AUX coo.31924059551022 705 17 fornidas fornida VERB coo.31924059551022 705 18 an an DET coo.31924059551022 705 19 equation equation NOUN coo.31924059551022 705 20 of of ADP coo.31924059551022 705 21 the the DET coo.31924059551022 705 22 seventh seventh ADJ coo.31924059551022 705 23 degree degree NOUN coo.31924059551022 705 24 in in ADP coo.31924059551022 705 25 b b PROPN coo.31924059551022 705 26 as as SCONJ coo.31924059551022 705 27 required require VERB coo.31924059551022 705 28 by by ADP coo.31924059551022 705 29 the the DET coo.31924059551022 705 30 above above ADJ coo.31924059551022 705 31 theory theory NOUN coo.31924059551022 705 32 . . PUNCT coo.31924059551022 706 1 functions function NOUN coo.31924059551022 706 2 of of ADP coo.31924059551022 706 3 the the DET coo.31924059551022 706 4 first first ADJ coo.31924059551022 706 5 sort sort NOUN coo.31924059551022 706 6 following follow VERB coo.31924059551022 706 7 the the DET coo.31924059551022 706 8 notation notation NOUN coo.31924059551022 706 9 of of ADP coo.31924059551022 706 10 m. m. PROPN coo.31924059551022 706 11 halphen halphen ADV coo.31924059551022 706 12 designate designate ADJ coo.31924059551022 706 13 by by ADP coo.31924059551022 706 14 p p PROPN coo.31924059551022 706 15 the the DET coo.31924059551022 706 16 first first ADJ coo.31924059551022 706 17 member member NOUN coo.31924059551022 706 18 of of ADP coo.31924059551022 706 19 the the DET coo.31924059551022 706 20 equation equation NOUN coo.31924059551022 706 21 that that PRON coo.31924059551022 706 22 determines determine VERB coo.31924059551022 706 23 b b PROPN coo.31924059551022 706 24 corresponding correspond VERB coo.31924059551022 706 25 to to ADP coo.31924059551022 706 26 functions function NOUN coo.31924059551022 706 27 of of ADP coo.31924059551022 706 28 the the DET coo.31924059551022 706 29 first first ADJ coo.31924059551022 706 30 sort sort NOUN coo.31924059551022 706 31 . . PUNCT coo.31924059551022 707 1 refering refer VERB coo.31924059551022 707 2 again again ADV coo.31924059551022 707 3 to to ADP coo.31924059551022 707 4 ( ( PUNCT coo.31924059551022 707 5 part part NOUN coo.31924059551022 707 6 iv iv X coo.31924059551022 707 7 ) ) PUNCT coo.31924059551022 707 8 we we PRON coo.31924059551022 707 9 observe observe VERB coo.31924059551022 707 10 that that SCONJ coo.31924059551022 707 11 if if SCONJ coo.31924059551022 707 12 n n ADP coo.31924059551022 707 13 is be AUX coo.31924059551022 707 14 odd odd ADJ coo.31924059551022 707 15 each each PRON coo.31924059551022 707 16 of of ADP coo.31924059551022 707 17 these these DET coo.31924059551022 707 18 functions function NOUN coo.31924059551022 707 19 contains contain VERB coo.31924059551022 707 20 the the DET coo.31924059551022 707 21 factor factor NOUN coo.31924059551022 707 22 pu pu PROPN coo.31924059551022 707 23 . . PUNCT coo.31924059551022 708 1 for for ADP coo.31924059551022 708 2 example example NOUN coo.31924059551022 708 3 we we PRON coo.31924059551022 708 4 have have VERB coo.31924059551022 708 5 : : PUNCT coo.31924059551022 708 6 n n CCONJ coo.31924059551022 708 7 = = X coo.31924059551022 708 8 3 3 NUM coo.31924059551022 708 9 : : PUNCT coo.31924059551022 709 1 y y NOUN coo.31924059551022 709 2 = = X coo.31924059551022 709 3 p p PROPN coo.31924059551022 709 4 where where SCONJ coo.31924059551022 709 5 b b NOUN coo.31924059551022 709 6 = = SYM coo.31924059551022 709 7 0 0 NUM coo.31924059551022 709 8 , , PUNCT coo.31924059551022 709 9 the the DET coo.31924059551022 709 10 degree degree NOUN coo.31924059551022 709 11 in in ADP coo.31924059551022 709 12 b b PROPN coo.31924059551022 709 13 being be AUX coo.31924059551022 709 14 unity unity NOUN coo.31924059551022 709 15 . . PUNCT coo.31924059551022 710 1 n n CCONJ coo.31924059551022 710 2 = = X coo.31924059551022 710 3 5 5 NUM coo.31924059551022 710 4 : : PUNCT coo.31924059551022 710 5 y y NOUN coo.31924059551022 710 6 = = X coo.31924059551022 710 7 p p NOUN coo.31924059551022 710 8 " " PUNCT coo.31924059551022 710 9 — — PUNCT coo.31924059551022 710 10 y y PROPN coo.31924059551022 710 11 bp bp PROPN coo.31924059551022 710 12 = = PROPN coo.31924059551022 710 13 p p PROPN coo.31924059551022 710 14 ( ( PUNCT coo.31924059551022 710 15 12p 12p NUM coo.31924059551022 710 16 — — PUNCT coo.31924059551022 710 17 jb jb PROPN coo.31924059551022 710 18 ) ) PUNCT coo.31924059551022 710 19 where where SCONJ coo.31924059551022 710 20 b2 b2 PROPN coo.31924059551022 710 21 — — PUNCT coo.31924059551022 710 22 21 21 NUM coo.31924059551022 710 23 g2 g2 PROPN coo.31924059551022 710 24 = = SYM coo.31924059551022 710 25 0 0 PUNCT coo.31924059551022 710 26 the the DET coo.31924059551022 710 27 degree degree NOUN coo.31924059551022 710 28 being be AUX coo.31924059551022 710 29 two two NUM coo.31924059551022 710 30 , , PUNCT coo.31924059551022 710 31 etc etc X coo.31924059551022 710 32 . . X coo.31924059551022 711 1 but but CCONJ coo.31924059551022 711 2 p p NOUN coo.31924059551022 711 3 ' ' PUNCT coo.31924059551022 711 4 ( ( PUNCT coo.31924059551022 711 5 u u NOUN coo.31924059551022 711 6 ) ) PUNCT coo.31924059551022 711 7 = = NOUN coo.31924059551022 711 8 4 4 NUM coo.31924059551022 711 9 ( ( PUNCT coo.31924059551022 711 10 pu pu PROPN coo.31924059551022 711 11 — — PUNCT coo.31924059551022 711 12 ef ef PROPN coo.31924059551022 711 13 ) ) PUNCT coo.31924059551022 711 14 ( ( PUNCT coo.31924059551022 711 15 pu pu PROPN coo.31924059551022 711 16 — — PUNCT coo.31924059551022 711 17 e2 e2 PROPN coo.31924059551022 711 18 ) ) PUNCT coo.31924059551022 711 19 ( ( PUNCT coo.31924059551022 711 20 pu pu PROPN coo.31924059551022 711 21 — — PUNCT coo.31924059551022 711 22 e3 e3 PROPN coo.31924059551022 711 23 ) ) PUNCT coo.31924059551022 711 24 whence whence NOUN coo.31924059551022 711 25 for for ADP coo.31924059551022 711 26 n n NOUN coo.31924059551022 711 27 odd odd ADJ coo.31924059551022 711 28 or or CCONJ coo.31924059551022 711 29 equal equal ADJ coo.31924059551022 711 30 to to ADP coo.31924059551022 711 31 three three NUM coo.31924059551022 711 32 , , PUNCT coo.31924059551022 711 33 f f PROPN coo.31924059551022 711 34 , , PUNCT coo.31924059551022 711 35 ε ε PROPN coo.31924059551022 711 36 , , PUNCT coo.31924059551022 711 37 έ έ PROPN coo.31924059551022 711 38 ' ' PUNCT coo.31924059551022 711 39 are be AUX coo.31924059551022 711 40 all all PRON coo.31924059551022 711 41 equal equal ADJ coo.31924059551022 711 42 to to ADP coo.31924059551022 711 43 unity unity NOUN coo.31924059551022 711 44 . . PUNCT coo.31924059551022 712 1 moreover moreover ADV coo.31924059551022 712 2 we we PRON coo.31924059551022 712 3 have have AUX coo.31924059551022 712 4 obtained obtain VERB coo.31924059551022 712 5 y y PROPN coo.31924059551022 712 6 ( ( PUNCT coo.31924059551022 712 7 67 67 NUM coo.31924059551022 712 8 , , PUNCT coo.31924059551022 712 9 p. p. NOUN coo.31924059551022 712 10 40 40 NUM coo.31924059551022 712 11 ) ) PUNCT coo.31924059551022 712 12 expressed express VERB coo.31924059551022 712 13 as as ADP coo.31924059551022 712 14 a a DET coo.31924059551022 712 15 polynomial polynomial NOUN coo.31924059551022 712 16 in in ADP coo.31924059551022 712 17 t t PROPN coo.31924059551022 712 18 and and CCONJ coo.31924059551022 712 19 h h NOUN coo.31924059551022 712 20 in in ADP coo.31924059551022 712 21 the the DET coo.31924059551022 712 22 form form NOUN coo.31924059551022 712 23 γη=ΐ={φ(*)-δ[φ γη=ΐ={φ(*)-δ[φ PROPN coo.31924059551022 712 24 ' ' PUNCT coo.31924059551022 712 25 + + PROPN coo.31924059551022 712 26 3(*-&)2 3(*-&)2 NUM coo.31924059551022 712 27 ] ] PUNCT coo.31924059551022 712 28 and and CCONJ coo.31924059551022 712 29 since since SCONJ coo.31924059551022 712 30 p p PROPN coo.31924059551022 712 31 � � SPACE coo.31924059551022 712 32 i i X coo.31924059551022 712 33 ) ) PUNCT coo.31924059551022 712 34 = = VERB coo.31924059551022 713 1 t t PROPN coo.31924059551022 713 2 ' ' PUNCT coo.31924059551022 713 3 ( ( PUNCT coo.31924059551022 713 4 βχ βχ NOUN coo.31924059551022 713 5 ) ) PUNCT coo.31924059551022 713 6 = = SYM coo.31924059551022 713 7 0 0 NUM coo.31924059551022 714 1 we we PRON coo.31924059551022 714 2 derive derive VERB coo.31924059551022 714 3 [ [ PUNCT coo.31924059551022 714 4 91] 91] NUM coo.31924059551022 714 5 .............. .............. PUNCT coo.31924059551022 714 6 yn yn X coo.31924059551022 714 7 = = NOUN coo.31924059551022 714 8 z(ef z(ef X coo.31924059551022 714 9 ) ) PUNCT coo.31924059551022 714 10 — — PUNCT coo.31924059551022 714 11 — — PUNCT coo.31924059551022 714 12 b b X coo.31924059551022 714 13 [ [ X coo.31924059551022 714 14 φ φ X coo.31924059551022 714 15 + + PROPN coo.31924059551022 714 16 3 3 NUM coo.31924059551022 714 17 ( ( PUNCT coo.31924059551022 714 18 βχ βχ ADP coo.31924059551022 714 19 — — PUNCT coo.31924059551022 714 20 δ δ X coo.31924059551022 714 21 ) ) PUNCT coo.31924059551022 714 22 ] ] PUNCT coo.31924059551022 714 23 . . PUNCT coo.31924059551022 715 1 hence hence ADV coo.31924059551022 715 2 pw==3 pw==3 X coo.31924059551022 715 3 — — PUNCT coo.31924059551022 715 4 p p NOUN coo.31924059551022 715 5 = = SYM coo.31924059551022 715 6 15 15 NUM coo.31924059551022 716 1 δ δ PROPN coo.31924059551022 716 2 is be AUX coo.31924059551022 716 3 a a DET coo.31924059551022 716 4 factor factor NOUN coo.31924059551022 716 5 of of ADP coo.31924059551022 716 6 yn=$(ex yn=$(ex PROPN coo.31924059551022 716 7 ) ) PUNCT coo.31924059551022 716 8 times time NOUN coo.31924059551022 716 9 a a DET coo.31924059551022 716 10 constant constant ADJ coo.31924059551022 716 11 . . PUNCT coo.31924059551022 717 1 if if SCONJ coo.31924059551022 717 2 on on ADP coo.31924059551022 717 3 the the DET coo.31924059551022 717 4 other other ADJ coo.31924059551022 717 5 hand hand NOUN coo.31924059551022 717 6 n n CCONJ coo.31924059551022 717 7 be be AUX coo.31924059551022 717 8 even even ADV coo.31924059551022 717 9 none none NOUN coo.31924059551022 717 10 of of ADP coo.31924059551022 717 11 the the DET coo.31924059551022 717 12 functions function NOUN coo.31924059551022 717 13 of of ADP coo.31924059551022 717 14 the the DET coo.31924059551022 717 15 first first ADJ coo.31924059551022 717 16 sort sort NOUN coo.31924059551022 717 17 contain contain VERB coo.31924059551022 717 18 a a DET coo.31924059551022 717 19 factor factor NOUN coo.31924059551022 717 20 ] ] PUNCT coo.31924059551022 717 21 /pu /pu PUNCT coo.31924059551022 717 22 — — PUNCT coo.31924059551022 717 23 βχ βχ ADP coo.31924059551022 717 24 and and CCONJ coo.31924059551022 717 25 pm==2 pm==2 PROPN coo.31924059551022 717 26 * * PUNCT coo.31924059551022 717 27 will will AUX coo.31924059551022 717 28 not not PART coo.31924059551022 717 29 be be AUX coo.31924059551022 717 30 a a DET coo.31924059551022 717 31 factor factor NOUN coo.31924059551022 717 32 of of ADP coo.31924059551022 717 33 yn== yn== ADJ coo.31924059551022 717 34 % % NOUN coo.31924059551022 717 35 x(ex x(ex X coo.31924059551022 717 36 ) ) PUNCT coo.31924059551022 717 37 . . PUNCT coo.31924059551022 718 1 •reduction •reduction NUM coo.31924059551022 718 2 of of ADP coo.31924059551022 718 3 the the DET coo.31924059551022 718 4 forms form NOUN coo.31924059551022 718 5 when when SCONJ coo.31924059551022 718 6 n n SYM coo.31924059551022 718 7 equals equal VERB coo.31924059551022 718 8 three three NUM coo.31924059551022 718 9 . . PUNCT coo.31924059551022 719 1 55 55 NUM coo.31924059551022 719 2 functions function NOUN coo.31924059551022 719 3 of of ADP coo.31924059551022 719 4 the the DET coo.31924059551022 719 5 second second ADJ coo.31924059551022 719 6 sort sort NOUN coo.31924059551022 719 7 . . PUNCT coo.31924059551022 720 1 we we PRON coo.31924059551022 720 2 have have AUX coo.31924059551022 720 3 found find VERB coo.31924059551022 720 4 three three NUM coo.31924059551022 720 5 equations equation NOUN coo.31924059551022 720 6 each each PRON coo.31924059551022 720 7 of of ADP coo.31924059551022 720 8 degree degree NOUN coo.31924059551022 720 9 ~ ~ PUNCT coo.31924059551022 720 10 ( ( PUNCT coo.31924059551022 720 11 n n PROPN coo.31924059551022 720 12 -f1 -f1 PROPN coo.31924059551022 720 13 ) ) PUNCT coo.31924059551022 720 14 or or CCONJ coo.31924059551022 720 15 y y PROPN coo.31924059551022 720 16 n n CCONJ coo.31924059551022 720 17 as as ADP coo.31924059551022 720 18 n n ADV coo.31924059551022 720 19 is be AUX coo.31924059551022 720 20 taken take VERB coo.31924059551022 720 21 odd odd ADJ coo.31924059551022 720 22 or or CCONJ coo.31924059551022 720 23 even even ADV coo.31924059551022 720 24 , , PUNCT coo.31924059551022 720 25 that that PRON coo.31924059551022 720 26 give give VERB coo.31924059551022 720 27 values value NOUN coo.31924059551022 720 28 of of ADP coo.31924059551022 720 29 b b NOUN coo.31924059551022 720 30 that that PRON coo.31924059551022 720 31 , , PUNCT coo.31924059551022 720 32 if if SCONJ coo.31924059551022 720 33 n n ADV coo.31924059551022 720 34 he he PRON coo.31924059551022 720 35 odd odd ADJ coo.31924059551022 720 36 , , PUNCT coo.31924059551022 720 37 correspond correspond VERB coo.31924059551022 720 38 to to ADP coo.31924059551022 720 39 functions function NOUN coo.31924059551022 720 40 of of ADP coo.31924059551022 720 41 the the DET coo.31924059551022 720 42 second second ADJ coo.31924059551022 720 43 sort sort NOUN coo.31924059551022 720 44 , , PUNCT coo.31924059551022 720 45 or or CCONJ coo.31924059551022 720 46 , , PUNCT coo.31924059551022 720 47 if if SCONJ coo.31924059551022 720 48 n n AUX coo.31924059551022 720 49 be be AUX coo.31924059551022 720 50 even even ADV coo.31924059551022 720 51 , , PUNCT coo.31924059551022 720 52 to to ADP coo.31924059551022 720 53 functions function NOUN coo.31924059551022 720 54 of of ADP coo.31924059551022 720 55 the the DET coo.31924059551022 720 56 third third ADJ coo.31924059551022 720 57 sort sort NOUN coo.31924059551022 720 58 . . PUNCT coo.31924059551022 721 1 designate designate ADJ coo.31924059551022 721 2 ? ? PUNCT coo.31924059551022 722 1 the the DET coo.31924059551022 722 2 first first ADJ coo.31924059551022 722 3 members member NOUN coo.31924059551022 722 4 , , PUNCT coo.31924059551022 722 5 by by ADP coo.31924059551022 722 6 qu qu PROPN coo.31924059551022 722 7 q2 q2 PROPN coo.31924059551022 722 8 , , PUNCT coo.31924059551022 722 9 and and CCONJ coo.31924059551022 722 10 q3 q3 PROPN coo.31924059551022 722 11 . . PUNCT coo.31924059551022 722 12 refering refer VERB coo.31924059551022 722 13 again again ADV coo.31924059551022 722 14 to to ADP coo.31924059551022 722 15 lame lame PROPN coo.31924059551022 722 16 's 's PART coo.31924059551022 722 17 special special ADJ coo.31924059551022 722 18 functions function NOUN coo.31924059551022 722 19 we we PRON coo.31924059551022 722 20 see see VERB coo.31924059551022 722 21 that that SCONJ coo.31924059551022 722 22 if if SCONJ coo.31924059551022 722 23 qt qt NOUN coo.31924059551022 722 24 = = SYM coo.31924059551022 722 25 0 0 NUM coo.31924059551022 722 26 the the DET coo.31924059551022 722 27 function function NOUN coo.31924059551022 722 28 of of ADP coo.31924059551022 722 29 lamé lamé NOUN coo.31924059551022 722 30 corresponding corresponding NOUN coo.31924059551022 722 31 contains contain VERB coo.31924059551022 722 32 the the DET coo.31924059551022 722 33 factor factor NOUN coo.31924059551022 722 34 ypu ypu PRON coo.31924059551022 722 35 — — PUNCT coo.31924059551022 722 36 et et NOUN coo.31924059551022 722 37 if if SCONJ coo.31924059551022 722 38 n n CCONJ coo.31924059551022 722 39 is be AUX coo.31924059551022 722 40 odd odd ADJ coo.31924059551022 722 41 and and CCONJ coo.31924059551022 722 42 the the DET coo.31924059551022 722 43 two two NUM coo.31924059551022 722 44 corresponding corresponding ADJ coo.31924059551022 722 45 factors factor NOUN coo.31924059551022 722 46 y y PROPN coo.31924059551022 722 47 pu pu PROPN coo.31924059551022 722 48 — — PUNCT coo.31924059551022 722 49 e2 e2 PROPN coo.31924059551022 722 50 , , PUNCT coo.31924059551022 722 51 y y PROPN coo.31924059551022 722 52 pu pu PROPN coo.31924059551022 722 53 — — PUNCT coo.31924059551022 722 54 e3 e3 PROPN coo.31924059551022 722 55 if if SCONJ coo.31924059551022 722 56 n n CCONJ coo.31924059551022 722 57 is be AUX coo.31924059551022 722 58 even even ADV coo.31924059551022 722 59 . . PUNCT coo.31924059551022 723 1 in in ADP coo.31924059551022 723 2 the the DET coo.31924059551022 723 3 first first ADJ coo.31924059551022 723 4 case case NOUN coo.31924059551022 723 5 qt qt PROPN coo.31924059551022 723 6 is be AUX coo.31924059551022 723 7 a a DET coo.31924059551022 723 8 factor factor NOUN coo.31924059551022 723 9 of of ADP coo.31924059551022 723 10 y(e± y(e± PROPN coo.31924059551022 723 11 ) ) PUNCT coo.31924059551022 723 12 and and CCONJ coo.31924059551022 723 13 in in ADP coo.31924059551022 723 14 the the DET coo.31924059551022 723 15 second second ADJ coo.31924059551022 723 16 case case NOUN coo.31924059551022 723 17 of of ADP coo.31924059551022 723 18 y(e2 y(e2 PROPN coo.31924059551022 723 19 ) ) PUNCT coo.31924059551022 723 20 and and CCONJ coo.31924059551022 723 21 of of ADP coo.31924059551022 723 22 y(e3 y(e3 PROPN coo.31924059551022 723 23 ) ) PUNCT coo.31924059551022 723 24 , , PUNCT coo.31924059551022 723 25 while while SCONJ coo.31924059551022 723 26 in in ADP coo.31924059551022 723 27 the the DET coo.31924059551022 723 28 second second ADJ coo.31924059551022 723 29 case case NOUN coo.31924059551022 723 30 we we PRON coo.31924059551022 723 31 have have AUX coo.31924059551022 723 32 also also ADV coo.31924059551022 723 33 y(ef y(ef VERB coo.31924059551022 723 34 ) ) PUNCT coo.31924059551022 723 35 contains contain VERB coo.31924059551022 723 36 the the DET coo.31924059551022 723 37 factor factor NOUN coo.31924059551022 723 38 q2qs q2qs PUNCT coo.31924059551022 723 39 . . PUNCT coo.31924059551022 724 1 returning return VERB coo.31924059551022 724 2 to to ADP coo.31924059551022 724 3 n n NOUN coo.31924059551022 724 4 = = SYM coo.31924059551022 724 5 3 3 NUM coo.31924059551022 724 6 we we PRON coo.31924059551022 724 7 have have AUX coo.31924059551022 724 8 ( ( PUNCT coo.31924059551022 724 9 see see VERB coo.31924059551022 724 10 ( ( PUNCT coo.31924059551022 724 11 73 73 NUM coo.31924059551022 724 12 ) ) PUNCT coo.31924059551022 724 13 p. p. NOUN coo.31924059551022 724 14 44 44 NUM coo.31924059551022 724 15 ) ) PUNCT coo.31924059551022 725 1 [ [ X coo.31924059551022 725 2 & & CCONJ coo.31924059551022 725 3 ] ] X coo.31924059551022 725 4 * * PUNCT coo.31924059551022 725 5 =3 =3 VERB coo.31924059551022 725 6 = = SYM coo.31924059551022 725 7 6 6 NUM coo.31924059551022 725 8 ^ ^ SYM coo.31924059551022 725 9 b b NOUN coo.31924059551022 726 1 + + PROPN coo.31924059551022 726 2 45 45 NUM coo.31924059551022 726 3 c,2 c,2 VERB coo.31924059551022 726 4 15 15 NUM coo.31924059551022 726 5 # # SYM coo.31924059551022 726 6 2 2 NUM coo.31924059551022 726 7 [ [ X coo.31924059551022 726 8 92 92 NUM coo.31924059551022 726 9 ] ] PUNCT coo.31924059551022 726 10 ........ ........ PUNCT coo.31924059551022 727 1 [ [ X coo.31924059551022 727 2 & & CCONJ coo.31924059551022 727 3 u3 u3 PROPN coo.31924059551022 727 4 = = X coo.31924059551022 727 5 b b PROPN coo.31924059551022 727 6 * * PUNCT coo.31924059551022 727 7 6 6 NUM coo.31924059551022 728 1 e2b e2b ADJ coo.31924059551022 728 2 + + NUM coo.31924059551022 728 3 45e22 45e22 NUM coo.31924059551022 728 4 10g2 10g2 NUM coo.31924059551022 729 1 [ [ X coo.31924059551022 729 2 q3 q3 X coo.31924059551022 729 3 =3 =3 PROPN coo.31924059551022 729 4 = = SYM coo.31924059551022 729 5 b2 b2 PROPN coo.31924059551022 729 6 — — PUNCT coo.31924059551022 729 7 6es 6es PROPN coo.31924059551022 729 8 b b PROPN coo.31924059551022 729 9 + + PROPN coo.31924059551022 729 10 45 45 NUM coo.31924059551022 729 11 e32 e32 NOUN coo.31924059551022 729 12 — — PUNCT coo.31924059551022 729 13 lbg2 lbg2 ADJ coo.31924059551022 729 14 or or CCONJ coo.31924059551022 729 15 in in ADP coo.31924059551022 729 16 general general ADJ coo.31924059551022 729 17 writing writing NOUN coo.31924059551022 729 18 b b PROPN coo.31924059551022 729 19 = = SYM coo.31924059551022 729 20 15 15 NUM coo.31924059551022 729 21 & & CCONJ coo.31924059551022 729 22 and and CCONJ coo.31924059551022 729 23 φ φ X coo.31924059551022 729 24 = = X coo.31924059551022 729 25 < < X coo.31924059551022 729 26 p(b p(b X coo.31924059551022 729 27 ) ) PUNCT coo.31924059551022 729 28 = = PROPN coo.31924059551022 729 29 4&3 4&3 NUM coo.31924059551022 729 30 — — PUNCT coo.31924059551022 729 31 g2b g2b PROPN coo.31924059551022 729 32 — — PUNCT coo.31924059551022 730 1 g3 g3 X coo.31924059551022 731 1 [ [ X coo.31924059551022 731 2 93 93 NUM coo.31924059551022 731 3 ] ] PUNCT coo.31924059551022 731 4 ........... ........... PUNCT coo.31924059551022 732 1 [ [ X coo.31924059551022 732 2 qx]n=3 qx]n=3 X coo.31924059551022 732 3 = = PRON coo.31924059551022 732 4 32.5 32.5 NUM coo.31924059551022 732 5 w w NOUN coo.31924059551022 732 6 + + SYM coo.31924059551022 732 7 3 3 NUM coo.31924059551022 733 1 ( ( PUNCT coo.31924059551022 733 2 ex ex NOUN coo.31924059551022 733 3 ft)2 ft)2 PROPN coo.31924059551022 733 4 ] ] PUNCT coo.31924059551022 733 5 . . PUNCT coo.31924059551022 734 1 also also ADV coo.31924059551022 734 2 from from ADP coo.31924059551022 734 3 ( ( PUNCT coo.31924059551022 734 4 91 91 NUM coo.31924059551022 734 5 ) ) PUNCT coo.31924059551022 734 6 . . PUNCT coo.31924059551022 735 1 [ [ X coo.31924059551022 735 2 94 94 NUM coo.31924059551022 735 3 ] ] PUNCT coo.31924059551022 735 4 · · PUNCT coo.31924059551022 735 5 . . PUNCT coo.31924059551022 735 6 . . PUNCT coo.31924059551022 735 7 . . PUNCT coo.31924059551022 736 1 γ(0«-δ[φ+ γ(0«-δ[φ+ NOUN coo.31924059551022 736 2 3 3 NUM coo.31924059551022 736 3 — — PUNCT coo.31924059551022 736 4 & & CCONJ coo.31924059551022 736 5 ) ) PUNCT coo.31924059551022 736 6 2 2 NUM coo.31924059551022 736 7 ] ] PUNCT coo.31924059551022 736 8 — — PUNCT coo.31924059551022 736 9 b b X coo.31924059551022 736 10 [ [ X coo.31924059551022 736 11 lbb2 lbb2 NOUN coo.31924059551022 736 12 + + CCONJ coo.31924059551022 736 13 3e,2 3e,2 NUM coo.31924059551022 736 14 6etb 6etb NUM coo.31924059551022 736 15 g2 g2 PROPN coo.31924059551022 736 16 ] ] X coo.31924059551022 737 1 b b ADP coo.31924059551022 737 2 γβ2 γβ2 NOUN coo.31924059551022 737 3 15 15 NUM coo.31924059551022 737 4 l l NOUN coo.31924059551022 737 5 15 15 NUM coo.31924059551022 737 6 ' ' NUM coo.31924059551022 737 7 6etb 6etb NUM coo.31924059551022 737 8 15 15 NUM coo.31924059551022 737 9 + + NUM coo.31924059551022 737 10 — — PUNCT coo.31924059551022 737 11 ft ft NOUN coo.31924059551022 737 12 ] ] X coo.31924059551022 737 13 = = X coo.31924059551022 737 14 cb cb X coo.31924059551022 737 15 [ [ X coo.31924059551022 737 16 b2 b2 PROPN coo.31924059551022 737 17 — — PUNCT coo.31924059551022 737 18 6^b 6^b NUM coo.31924059551022 737 19 + + NUM coo.31924059551022 737 20 45e2 45e2 NUM coo.31924059551022 737 21 15 15 NUM coo.31924059551022 737 22 ft ft NOUN coo.31924059551022 737 23 ] ] PUNCT coo.31924059551022 737 24 = = ADP coo.31924059551022 737 25 c*&p c*&p NOUN coo.31924059551022 738 1 [ [ X coo.31924059551022 738 2 95 95 NUM coo.31924059551022 738 3 ] ] PUNCT coo.31924059551022 738 4 where where SCONJ coo.31924059551022 738 5 in in ADP coo.31924059551022 738 6 general general ADJ coo.31924059551022 738 7 _ _ PUNCT coo.31924059551022 738 8 _ _ PUNCT coo.31924059551022 739 1 l l NOUN coo.31924059551022 739 2 c c X coo.31924059551022 740 1 3 3 NUM coo.31924059551022 740 2 . . PUNCT coo.31924059551022 740 3 5 5 NUM coo.31924059551022 740 4 · · PUNCT coo.31924059551022 740 5 · · PUNCT coo.31924059551022 740 6 . . PUNCT coo.31924059551022 741 1 2n 2n NUM coo.31924059551022 741 2 — — PUNCT coo.31924059551022 741 3 ï ï ADV coo.31924059551022 741 4 ' ' PUNCT coo.31924059551022 741 5 the the DET coo.31924059551022 741 6 quantities quantity NOUN coo.31924059551022 741 7 q q PROPN coo.31924059551022 741 8 are be AUX coo.31924059551022 741 9 also also ADV coo.31924059551022 741 10 necessarily necessarily ADV coo.31924059551022 741 11 the the DET coo.31924059551022 741 12 functions function NOUN coo.31924059551022 741 13 φ φ PROPN coo.31924059551022 741 14 times times PROPN coo.31924059551022 741 15 a a DET coo.31924059551022 741 16 factor factor NOUN coo.31924059551022 741 17 as as SCONJ coo.31924059551022 741 18 is be AUX coo.31924059551022 741 19 shown show VERB coo.31924059551022 741 20 by by ADP coo.31924059551022 741 21 taking take VERB coo.31924059551022 741 22 the the DET coo.31924059551022 741 23 substitutions substitution NOUN coo.31924059551022 741 24 ƒ ƒ X coo.31924059551022 742 1 = = X coo.31924059551022 742 2 à à ADP coo.31924059551022 742 3 c1 c1 PROPN coo.31924059551022 742 4 * * PUNCT coo.31924059551022 742 5 * * PUNCT coo.31924059551022 742 6 + + PUNCT coo.31924059551022 742 7 ^ ^ PUNCT coo.31924059551022 743 1 [ [ X coo.31924059551022 743 2 & & CCONJ coo.31924059551022 743 3 ] ] X coo.31924059551022 743 4 .= .= X coo.31924059551022 743 5 » » X coo.31924059551022 743 6 = = X coo.31924059551022 743 7 b*-\{2tc2)b b*-\{2tc2)b NOUN coo.31924059551022 743 8 [ [ PUNCT coo.31924059551022 743 9 & & CCONJ coo.31924059551022 743 10 ] ] X coo.31924059551022 743 11 „ „ PUNCT coo.31924059551022 743 12 = = NOUN coo.31924059551022 743 13 s s X coo.31924059551022 743 14 = = NOUN coo.31924059551022 743 15 b2 b2 PROPN coo.31924059551022 743 16 \ \ PROPN coo.31924059551022 743 17 ( ( PUNCT coo.31924059551022 743 18 1 1 NUM coo.31924059551022 743 19 2k2 2k2 NUM coo.31924059551022 743 20 ) ) PUNCT coo.31924059551022 743 21 b b NOUN coo.31924059551022 743 22 ~ ~ PUNCT coo.31924059551022 743 23 [ [ X coo.31924059551022 743 24 & & CCONJ coo.31924059551022 743 25 ] ] X coo.31924059551022 743 26 .=. .=. PUNCT coo.31924059551022 743 27 = = PROPN coo.31924059551022 743 28 b2 b2 PROPN coo.31924059551022 743 29 \ \ PROPN coo.31924059551022 743 30 ( ( PUNCT coo.31924059551022 743 31 1 1 NUM coo.31924059551022 743 32 + + NUM coo.31924059551022 743 33 ¥ ¥ X coo.31924059551022 743 34 ) ) PUNCT coo.31924059551022 743 35 b b NOUN coo.31924059551022 743 36 8-*(1jl-*y 8-*(1jl-*y NUM coo.31924059551022 743 37 . . PUNCT coo.31924059551022 744 1 whence whence ADV coo.31924059551022 744 2 : : PUNCT coo.31924059551022 744 3 56 56 NUM coo.31924059551022 744 4 part part NOUN coo.31924059551022 744 5 y. y. NOUN coo.31924059551022 744 6 hence hence ADV coo.31924059551022 744 7 making make VERB coo.31924059551022 744 8 λ λ NOUN coo.31924059551022 744 9 — — PUNCT coo.31924059551022 744 10 constant constant ADJ coo.31924059551022 744 11 , , PUNCT coo.31924059551022 744 12 equal equal ADJ coo.31924059551022 744 13 — — PUNCT coo.31924059551022 744 14 1 1 NUM coo.31924059551022 744 15 and and CCONJ coo.31924059551022 744 16 b b X coo.31924059551022 744 17 = = NOUN coo.31924059551022 744 18 61 61 NUM coo.31924059551022 744 19 = = SYM coo.31924059551022 744 20 15 15 NUM coo.31924059551022 744 21 δ δ NOUN coo.31924059551022 744 22 we we PRON coo.31924059551022 744 23 obtain obtain VERB coo.31924059551022 744 24 mn= mn= PROPN coo.31924059551022 744 25 * * PUNCT coo.31924059551022 744 26 = = SYM coo.31924059551022 744 27 5 5 NUM coo.31924059551022 744 28 φ φ NOUN coo.31924059551022 744 29 , , PUNCT coo.31924059551022 744 30 = = SYM coo.31924059551022 744 31 5 5 NUM coo.31924059551022 744 32 [ [ X coo.31924059551022 744 33 bl2 bl2 NOUN coo.31924059551022 744 34 2 2 NUM coo.31924059551022 744 35 ( ( PUNCT coo.31924059551022 744 36 h2 h2 NOUN coo.31924059551022 744 37 2 2 X coo.31924059551022 744 38 ) ) PUNCT coo.31924059551022 744 39 l l NOUN coo.31924059551022 744 40 3 3 NUM coo.31924059551022 745 1 [ [ X coo.31924059551022 745 2 96 96 NUM coo.31924059551022 745 3 ] ] PUNCT coo.31924059551022 745 4 · · PUNCT coo.31924059551022 745 5 . . PUNCT coo.31924059551022 746 1 [ [ X coo.31924059551022 746 2 ρ2],==3=5φ2 ρ2],==3=5φ2 PROPN coo.31924059551022 746 3 = = NOUN coo.31924059551022 746 4 5[5ϊ2 5[5ϊ2 NUM coo.31924059551022 746 5 - - PUNCT coo.31924059551022 746 6 2(1 2(1 NUM coo.31924059551022 746 7 -2a2)i^3 -2a2)i^3 X coo.31924059551022 746 8 ] ] X coo.31924059551022 747 1 [ [ X coo.31924059551022 747 2 ^3]n=3 ^3]n=3 NOUN coo.31924059551022 747 3 5.φ3 5.φ3 NUM coo.31924059551022 747 4 5 5 NUM coo.31924059551022 748 1 [ [ PUNCT coo.31924059551022 748 2 51 51 NUM coo.31924059551022 748 3 ® ® NOUN coo.31924059551022 748 4 2 2 NUM coo.31924059551022 748 5 ( ( PUNCT coo.31924059551022 748 6 1 1 NUM coo.31924059551022 748 7 + + CCONJ coo.31924059551022 748 8 v v NOUN coo.31924059551022 748 9 ) ) PUNCT coo.31924059551022 748 10 l l NOUN coo.31924059551022 748 11 3 3 NUM coo.31924059551022 748 12 ( ( PUNCT coo.31924059551022 748 13 1 1 NUM coo.31924059551022 748 14 v v NOUN coo.31924059551022 748 15 ) ) PUNCT coo.31924059551022 748 16 * * PUNCT coo.31924059551022 748 17 ] ] X coo.31924059551022 748 18 . . PUNCT coo.31924059551022 749 1 hence hence ADV coo.31924059551022 749 2 also also ADV coo.31924059551022 749 3 : : PUNCT coo.31924059551022 749 4 [ [ X coo.31924059551022 749 5 97 97 NUM coo.31924059551022 749 6 ] ] PUNCT coo.31924059551022 749 7 q q X coo.31924059551022 749 8 - - PUNCT coo.31924059551022 749 9 qxq%q,-^φφ qxq%q,-^φφ PROPN coo.31924059551022 749 10 - - PUNCT coo.31924059551022 749 11 δ3 δ3 PROPN coo.31924059551022 749 12 ® ® NUM coo.31924059551022 749 13 ^ ^ NOUN coo.31924059551022 749 14 , , PUNCT coo.31924059551022 749 15 ® ® PROPN coo.31924059551022 749 16 , , PUNCT coo.31924059551022 749 17 = = NOUN coo.31924059551022 749 18 53 53 NUM coo.31924059551022 749 19 [ [ PUNCT coo.31924059551022 749 20 4 4 NUM coo.31924059551022 749 21 ( ( PUNCT coo.31924059551022 749 22 ï2 ï2 PROPN coo.31924059551022 749 23 aty aty PROPN coo.31924059551022 749 24 + + PROPN coo.31924059551022 749 25 ( ( PUNCT coo.31924059551022 749 26 11 11 NUM coo.31924059551022 749 27 i3 i3 PROPN coo.31924059551022 749 28 9 9 NUM coo.31924059551022 749 29 v v NOUN coo.31924059551022 749 30 δ,)2 δ,)2 PROPN coo.31924059551022 749 31 ] ] X coo.31924059551022 749 32 = = ADP coo.31924059551022 749 33 53 53 NUM coo.31924059551022 750 1 [ [ PUNCT coo.31924059551022 750 2 12516 12516 NUM coo.31924059551022 750 3 — — PUNCT coo.31924059551022 750 4 210^|4 210^|4 NUM coo.31924059551022 750 5 — — PUNCT coo.31924059551022 750 6 22|3 22|3 NUM coo.31924059551022 750 7 + + NUM coo.31924059551022 750 8 93q2|2 93q2|2 NUM coo.31924059551022 750 9 + + NUM coo.31924059551022 750 10 18 18 NUM coo.31924059551022 750 11 01 01 NUM coo.31924059551022 750 12 + + NUM coo.31924059551022 750 13 1 1 NUM coo.31924059551022 750 14 — — PUNCT coo.31924059551022 750 15 4^ 4^ NUM coo.31924059551022 750 16 ® ® NUM coo.31924059551022 750 17 ] ] PUNCT coo.31924059551022 750 18 = = X coo.31924059551022 750 19 etc etc X coo.31924059551022 750 20 , , PUNCT coo.31924059551022 750 21 where where SCONJ coo.31924059551022 750 22 3__v 3__v NUM coo.31924059551022 750 23 _ _ VERB coo.31924059551022 750 24 _ _ PUNCT coo.31924059551022 750 25 _ _ PUNCT coo.31924059551022 750 26 _ _ PUNCT coo.31924059551022 750 27 _ _ PUNCT coo.31924059551022 750 28 ! ! PUNCT coo.31924059551022 751 1 _ _ PUNCT coo.31924059551022 751 2 10q 10q NOUN coo.31924059551022 752 1 ( ( PUNCT coo.31924059551022 752 2 1 1 NUM coo.31924059551022 752 3 - - PUNCT coo.31924059551022 752 4 f f X coo.31924059551022 752 5 + + NOUN coo.31924059551022 752 6 fc4)3 fc4)3 NOUN coo.31924059551022 752 7 _ _ NOUN coo.31924059551022 752 8 _ _ PUNCT coo.31924059551022 752 9 _ _ PUNCT coo.31924059551022 753 1 _ _ PUNCT coo.31924059551022 753 2 ci ci PROPN coo.31924059551022 753 3 & & CCONJ coo.31924059551022 753 4 t t PROPN coo.31924059551022 753 5 » » PUNCT coo.31924059551022 753 6 “ " PUNCT coo.31924059551022 753 7 108 108 NUM coo.31924059551022 753 8 * * PUNCT coo.31924059551022 753 9 ^ ^ X coo.31924059551022 753 10 iuo iuo PROPN coo.31924059551022 753 11 ( ( PUNCT coo.31924059551022 753 12 1 1 NUM coo.31924059551022 753 13 + + NUM coo.31924059551022 753 14 ¿ ¿ NUM coo.31924059551022 753 15 2)2 2)2 NUM coo.31924059551022 753 16 ( ( PUNCT coo.31924059551022 753 17 2 2 NUM coo.31924059551022 753 18 — — PUNCT coo.31924059551022 753 19 ¿ ¿ VERB coo.31924059551022 753 20 2)2 2)2 NUM coo.31924059551022 753 21 ( ( PUNCT coo.31924059551022 753 22 ! ! PUNCT coo.31924059551022 753 23 _ _ PUNCT coo.31924059551022 754 1 _ _ PUNCT coo.31924059551022 754 2 2 2 NUM coo.31924059551022 754 3 ¿ ¿ NUM coo.31924059551022 754 4 2)2 2)2 NUM coo.31924059551022 755 1 we we PRON coo.31924059551022 755 2 have have VERB coo.31924059551022 755 3 moreover moreover ADV coo.31924059551022 755 4 that that SCONJ coo.31924059551022 755 5 the the DET coo.31924059551022 755 6 conditions condition NOUN coo.31924059551022 755 7 that that PRON coo.31924059551022 755 8 the the DET coo.31924059551022 755 9 integrals integral NOUN coo.31924059551022 755 10 be be VERB coo.31924059551022 755 11 special special ADJ coo.31924059551022 755 12 functions function NOUN coo.31924059551022 755 13 of of ADP coo.31924059551022 755 14 lamé lamé NOUN coo.31924059551022 755 15 are be AUX coo.31924059551022 755 16 that that DET coo.31924059551022 755 17 qlf qlf NOUN coo.31924059551022 756 1 q2j q2j NOUN coo.31924059551022 756 2 q3 q3 PROPN coo.31924059551022 756 3 and and CCONJ coo.31924059551022 756 4 p p PROPN coo.31924059551022 756 5 vanish vanish VERB coo.31924059551022 756 6 . . PUNCT coo.31924059551022 757 1 but but CCONJ coo.31924059551022 757 2 c2 c2 PROPN coo.31924059551022 757 3 — — PUNCT coo.31924059551022 757 4 0 0 NUM coo.31924059551022 757 5 was be AUX coo.31924059551022 757 6 also also ADV coo.31924059551022 757 7 found find VERB coo.31924059551022 757 8 to to PART coo.31924059551022 757 9 be be AUX coo.31924059551022 757 10 a a DET coo.31924059551022 757 11 condition condition NOUN coo.31924059551022 758 1 and and CCONJ coo.31924059551022 758 2 we we PRON coo.31924059551022 758 3 note note VERB coo.31924059551022 758 4 that that SCONJ coo.31924059551022 758 5 the the DET coo.31924059551022 758 6 sum sum NOUN coo.31924059551022 758 7 of of ADP coo.31924059551022 758 8 the the DET coo.31924059551022 758 9 degrees degree NOUN coo.31924059551022 758 10 of of ADP coo.31924059551022 758 11 qi qi PROPN coo.31924059551022 758 12 and and CCONJ coo.31924059551022 758 13 p p PROPN coo.31924059551022 758 14 is be AUX coo.31924059551022 758 15 equal equal ADJ coo.31924059551022 758 16 to to ADP coo.31924059551022 758 17 the the DET coo.31924059551022 758 18 degree degree NOUN coo.31924059551022 758 19 of of ADP coo.31924059551022 758 20 g2 g2 PROPN coo.31924059551022 758 21 which which PRON coo.31924059551022 758 22 equals equal VERB coo.31924059551022 758 23 the the DET coo.31924059551022 758 24 number number NOUN coo.31924059551022 758 25 of of ADP coo.31924059551022 758 26 the the DET coo.31924059551022 758 27 functions function NOUN coo.31924059551022 758 28 of of ADP coo.31924059551022 758 29 lamé lamé NOUN coo.31924059551022 758 30 . . PUNCT coo.31924059551022 759 1 we we PRON coo.31924059551022 759 2 must must AUX coo.31924059551022 759 3 have have VERB coo.31924059551022 759 4 then then ADV coo.31924059551022 759 5 the the DET coo.31924059551022 759 6 relation relation NOUN coo.31924059551022 759 7 c2 c2 PROPN coo.31924059551022 759 8 = = SYM coo.31924059551022 759 9 c'q1q2q3p c'q1q2q3p PROPN coo.31924059551022 759 10 . . PUNCT coo.31924059551022 760 1 but but CCONJ coo.31924059551022 760 2 we we PRON coo.31924059551022 760 3 have have AUX coo.31924059551022 760 4 shown show VERB coo.31924059551022 760 5 that that SCONJ coo.31924059551022 760 6 the the DET coo.31924059551022 760 7 highest high ADJ coo.31924059551022 760 8 power power NOUN coo.31924059551022 760 9 of of ADP coo.31924059551022 760 10 b b PROPN coo.31924059551022 760 11 in in ADP coo.31924059551022 760 12 the the DET coo.31924059551022 760 13 development development NOUN coo.31924059551022 760 14 of of ADP coo.31924059551022 760 15 ac2 ac2 NOUN coo.31924059551022 760 16 is be AUX coo.31924059551022 760 17 ( ( PUNCT coo.31924059551022 760 18 p. p. NOUN coo.31924059551022 760 19 38 38 NUM coo.31924059551022 760 20 ) ) PUNCT coo.31924059551022 760 21 4/72 4/72 NUM coo.31924059551022 760 22 = = PUNCT coo.31924059551022 761 1 aby2 aby2 PROPN coo.31924059551022 761 2 4 4 NUM coo.31924059551022 761 3 ... ... PUNCT coo.31924059551022 761 4 _ _ PUNCT coo.31924059551022 761 5 _ _ PUNCT coo.31924059551022 761 6 _ _ PUNCT coo.31924059551022 762 1 _ _ PUNCT coo.31924059551022 762 2 4 4 NUM coo.31924059551022 762 3 # # SYM coo.31924059551022 762 4 ( ( PUNCT coo.31924059551022 762 5 — — PUNCT coo.31924059551022 762 6 b)2n b)2n ADJ coo.31924059551022 762 7 i i PRON coo.31924059551022 762 8 . . PUNCT coo.31924059551022 762 9 . . PUNCT coo.31924059551022 762 10 . . PUNCT coo.31924059551022 763 1 40 40 NUM coo.31924059551022 763 2 λ λ PROPN coo.31924059551022 763 3 - - PUNCT coo.31924059551022 763 4 f f X coo.31924059551022 763 5 — — PUNCT coo.31924059551022 763 6 [ [ X coo.31924059551022 763 7 3 3 NUM coo.31924059551022 763 8 . . SYM coo.31924059551022 763 9 5 5 NUM coo.31924059551022 763 10 . . PUNCT coo.31924059551022 763 11 . . PUNCT coo.31924059551022 763 12 . . PUNCT coo.31924059551022 764 1 ( ( PUNCT coo.31924059551022 764 2 2n 2n X coo.31924059551022 764 3 _ _ INTJ coo.31924059551022 765 1 i i PRON coo.31924059551022 765 2 ) ) PUNCT coo.31924059551022 765 3 ] ] PUNCT coo.31924059551022 766 1 * * PUNCT coo.31924059551022 766 2 + + CCONJ coo.31924059551022 766 3 whence whence ADP coo.31924059551022 766 4 c c NOUN coo.31924059551022 766 5 ' ' PUNCT coo.31924059551022 766 6 = = SYM coo.31924059551022 766 7 _ _ PUNCT coo.31924059551022 766 8 _ _ PUNCT coo.31924059551022 766 9 _ _ PUNCT coo.31924059551022 767 1 _ _ PUNCT coo.31924059551022 767 2 _ _ PUNCT coo.31924059551022 768 1 _ _ PUNCT coo.31924059551022 768 2 _ _ PUNCT coo.31924059551022 769 1 _ _ PUNCT coo.31924059551022 769 2 _ _ PUNCT coo.31924059551022 770 1 _ _ PUNCT coo.31924059551022 770 2 _ _ PUNCT coo.31924059551022 771 1 _ _ PUNCT coo.31924059551022 771 2 _ _ PUNCT coo.31924059551022 772 1 _ _ PUNCT coo.31924059551022 772 2 _ _ PUNCT coo.31924059551022 773 1 = = PUNCT coo.31924059551022 773 2 é é X coo.31924059551022 774 1 [ [ X coo.31924059551022 774 2 3 3 NUM coo.31924059551022 774 3 · · SYM coo.31924059551022 774 4 5 5 NUM coo.31924059551022 774 5 · · PUNCT coo.31924059551022 774 6 · · PUNCT coo.31924059551022 774 7 . . PUNCT coo.31924059551022 775 1 ( ( PUNCT coo.31924059551022 775 2 2w 2w NOUN coo.31924059551022 775 3 — — PUNCT coo.31924059551022 775 4 l)]4 l)]4 PROPN coo.31924059551022 775 5 6 6 NUM coo.31924059551022 775 6 which which PRON coo.31924059551022 775 7 for for ADP coo.31924059551022 775 8 n n NOUN coo.31924059551022 775 9 = = AUX coo.31924059551022 775 10 3 3 NUM coo.31924059551022 775 11 gives give VERB coo.31924059551022 775 12 as as ADP coo.31924059551022 775 13 before before ADP coo.31924059551022 775 14 taken take VERB coo.31924059551022 775 15 c c PROPN coo.31924059551022 775 16 — — PUNCT coo.31924059551022 775 17 ~-= ~-= NUM coo.31924059551022 775 18 ■ ■ NOUN coo.31924059551022 775 19 · · PUNCT coo.31924059551022 775 20 0 0 NUM coo.31924059551022 775 21 * * PUNCT coo.31924059551022 775 22 0 0 NUM coo.31924059551022 775 23 we we PRON coo.31924059551022 775 24 have have AUX coo.31924059551022 775 25 then then ADV coo.31924059551022 775 26 in in ADP coo.31924059551022 775 27 general general ADJ coo.31924059551022 775 28 [ [ X coo.31924059551022 775 29 98 98 NUM coo.31924059551022 775 30 ] ] PUNCT coo.31924059551022 775 31 · · PUNCT coo.31924059551022 775 32 · · PUNCT coo.31924059551022 775 33 .··' .··' NUM coo.31924059551022 775 34 ...... ...... PROPN coo.31924059551022 775 35 cp cp PROPN coo.31924059551022 775 36 — — PUNCT coo.31924059551022 775 37 àpqiqiq àpqiqiq ADJ coo.31924059551022 775 38 » » PUNCT coo.31924059551022 775 39 and and CCONJ coo.31924059551022 775 40 when when SCONJ coo.31924059551022 775 41 n n ADP coo.31924059551022 775 42 = = SYM coo.31924059551022 775 43 3 3 NUM coo.31924059551022 775 44 to to PART coo.31924059551022 775 45 ............ ............ PUNCT coo.31924059551022 775 46 c'-m c'-m PROPN coo.31924059551022 775 47 - - PUNCT coo.31924059551022 775 48 qf-^fq qf-^fq PROPN coo.31924059551022 775 49 · · PUNCT coo.31924059551022 775 50 if if SCONJ coo.31924059551022 775 51 then then ADV coo.31924059551022 775 52 we we PRON coo.31924059551022 775 53 take take VERB coo.31924059551022 775 54 q q PROPN coo.31924059551022 775 55 , , PUNCT coo.31924059551022 775 56 = = SYM coo.31924059551022 775 57 0 0 NUM coo.31924059551022 776 1 : : PUNCT coo.31924059551022 776 2 b b X coo.31924059551022 776 3 = = NOUN coo.31924059551022 776 4 3c 3c NUM coo.31924059551022 776 5 , , PUNCT coo.31924059551022 776 6 + + NOUN coo.31924059551022 776 7 y$(—12^+5 y$(—12^+5 NOUN coo.31924059551022 776 8 ¿ ¿ NUM coo.31924059551022 776 9 ¡ ¡ PROPN coo.31924059551022 776 10 ) ) PUNCT coo.31924059551022 776 11 = = NOUN coo.31924059551022 776 12 7c2 7c2 NUM coo.31924059551022 776 13 — — PUNCT coo.31924059551022 776 14 2 2 NUM coo.31924059551022 776 15 ± ± NOUN coo.31924059551022 776 16 v(h2 v(h2 NOUN coo.31924059551022 776 17 — — PUNCT coo.31924059551022 776 18 2)2 2)2 NUM coo.31924059551022 776 19 + + NUM coo.31924059551022 776 20 15 15 NUM coo.31924059551022 777 1 * * PUNCT coo.31924059551022 777 2 * * PUNCT coo.31924059551022 777 3 y~{ï y~{ï INTJ coo.31924059551022 777 4 , , PUNCT coo.31924059551022 777 5 jr jr PROPN coo.31924059551022 777 6 jei jei PROPN coo.31924059551022 777 7 ¿ ¿ PROPN coo.31924059551022 777 8 ( ( PUNCT coo.31924059551022 777 9 3^ 3^ NUM coo.31924059551022 777 10 ± ± NOUN coo.31924059551022 778 1 ÿ3 ÿ3 NOUN coo.31924059551022 778 2 ( ( PUNCT coo.31924059551022 778 3 5 5 NUM coo.31924059551022 778 4 ^ ^ NUM coo.31924059551022 778 5 2 2 NUM coo.31924059551022 778 6 — — PUNCT coo.31924059551022 778 7 ï2e| ï2e| NOUN coo.31924059551022 778 8 } } PUNCT coo.31924059551022 778 9 ) ) PUNCT coo.31924059551022 778 10 } } PUNCT coo.31924059551022 778 11 = = X coo.31924059551022 778 12 { { PUNCT coo.31924059551022 778 13 p p NOUN coo.31924059551022 778 14 + + X coo.31924059551022 778 15 ά ά NOUN coo.31924059551022 778 16 ( ( PUNCT coo.31924059551022 778 17 fc2 fc2 PROPN coo.31924059551022 778 18 2 2 NUM coo.31924059551022 778 19 ) ) PUNCT coo.31924059551022 778 20 ± ± NOUN coo.31924059551022 778 21 ¿ ¿ ADP coo.31924059551022 778 22 νζν-2γ+ΐδ νζν-2γ+ΐδ SPACE coo.31924059551022 778 23 & & CCONJ coo.31924059551022 778 24 } } PUNCT coo.31924059551022 778 25 vp vp PROPN coo.31924059551022 778 26 j(k2 j(k2 PROPN coo.31924059551022 778 27 2 2 X coo.31924059551022 778 28 ) ) PUNCT coo.31924059551022 778 29 reduction reduction NUM coo.31924059551022 778 30 of of ADP coo.31924059551022 778 31 the the DET coo.31924059551022 778 32 forms form NOUN coo.31924059551022 778 33 when when SCONJ coo.31924059551022 778 34 n n SYM coo.31924059551022 778 35 equals equal VERB coo.31924059551022 778 36 three three NUM coo.31924059551022 778 37 . . PUNCT coo.31924059551022 779 1 57 57 NUM coo.31924059551022 780 1 [ [ X coo.31924059551022 780 2 10ò 10ò NUM coo.31924059551022 780 3 ] ] PUNCT coo.31924059551022 780 4 q2 q2 NOUN coo.31924059551022 780 5 = = SYM coo.31924059551022 780 6 0 0 NUM coo.31924059551022 780 7 : : PUNCT coo.31924059551022 780 8 b b X coo.31924059551022 780 9 = = NOUN coo.31924059551022 780 10 3e2 3e2 VERB coo.31924059551022 780 11 + + CCONJ coo.31924059551022 780 12 ] ] X coo.31924059551022 780 13 /3 /3 PUNCT coo.31924059551022 780 14 ( ( PUNCT coo.31924059551022 780 15 5g2 5g2 NUM coo.31924059551022 780 16 12e 12e NOUN coo.31924059551022 780 17 , , PUNCT coo.31924059551022 780 18 ) ) PUNCT coo.31924059551022 780 19 = = PROPN coo.31924059551022 780 20 1 1 NUM coo.31924059551022 780 21 27c2 27c2 NUM coo.31924059551022 780 22 + + CCONJ coo.31924059551022 780 23 ] ] X coo.31924059551022 780 24 /(l /(l PUNCT coo.31924059551022 780 25 — — PUNCT coo.31924059551022 780 26 2¿2)2 2¿2)2 NUM coo.31924059551022 780 27 + + NUM coo.31924059551022 780 28 15 15 NUM coo.31924059551022 780 29 y y NOUN coo.31924059551022 780 30 = = PUNCT coo.31924059551022 781 1 + + CCONJ coo.31924059551022 781 2 i i PRON coo.31924059551022 781 3 « « PUNCT coo.31924059551022 781 4 * * PUNCT coo.31924059551022 781 5 fo fo ADP coo.31924059551022 781 6 ± ± NOUN coo.31924059551022 781 7 ν ν X coo.31924059551022 781 8 ' ' NOUN coo.31924059551022 781 9 » » PUNCT coo.31924059551022 781 10 ( ( PUNCT coo.31924059551022 781 11 5λí2 5λí2 NUM coo.31924059551022 781 12 ^ ^ NUM coo.31924059551022 781 13 1 1 NUM coo.31924059551022 781 14 ) ) PUNCT coo.31924059551022 781 15 ) ) PUNCT coo.31924059551022 781 16 } } PUNCT coo.31924059551022 781 17 v*3 v*3 NOUN coo.31924059551022 781 18 * * PUNCT coo.31924059551022 781 19 = = PUNCT coo.31924059551022 781 20 { { PUNCT coo.31924059551022 781 21 * * PUNCT coo.31924059551022 781 22 > > X coo.31924059551022 781 23 + + PROPN coo.31924059551022 781 24 è è X coo.31924059551022 781 25 ( ( PUNCT coo.31924059551022 781 26 1 1 NUM coo.31924059551022 781 27 - - SYM coo.31924059551022 781 28 2j 2j NUM coo.31924059551022 781 29 * * NOUN coo.31924059551022 781 30 ) ) PUNCT coo.31924059551022 781 31 + + CCONJ coo.31924059551022 781 32 ¿ ¿ NUM coo.31924059551022 781 33 y(ï=2^+ï5 y(ï=2^+ï5 PROPN coo.31924059551022 781 34 } } PUNCT coo.31924059551022 781 35 l l PROPN coo.31924059551022 781 36 / / SYM coo.31924059551022 781 37 p p NOUN coo.31924059551022 781 38 - - PUNCT coo.31924059551022 781 39 fíl-2f fíl-2f PROPN coo.31924059551022 781 40 ) ) PUNCT coo.31924059551022 781 41 ç3 ç3 PROPN coo.31924059551022 781 42 = = PUNCT coo.31924059551022 781 43 0 0 NUM coo.31924059551022 781 44 : : PUNCT coo.31924059551022 781 45 b==3e3 b==3e3 NOUN coo.31924059551022 781 46 + + ADV coo.31924059551022 781 47 ] ] X coo.31924059551022 781 48 /3(5 > X coo.31924059551022 782 12 + + PROPN coo.31924059551022 782 13 t«b t«b PROPN coo.31924059551022 782 14 ¿ ¿ NOUN coo.31924059551022 782 15 ( ( PUNCT coo.31924059551022 782 16 3ea 3ea PROPN coo.31924059551022 782 17 ± ± NOUN coo.31924059551022 782 18 y3(5 y3(5 X coo.31924059551022 782 19 ^ ^ NOUN coo.31924059551022 782 20 -12e -12e ADJ coo.31924059551022 782 21 · · PUNCT coo.31924059551022 782 22 ) ) PUNCT coo.31924059551022 782 23 ) ) PUNCT coo.31924059551022 782 24 } } PUNCT coo.31924059551022 782 25 “ " PUNCT coo.31924059551022 782 26 h h PROPN coo.31924059551022 782 27 + + NOUN coo.31924059551022 782 28 ¿ ¿ NUM coo.31924059551022 782 29 ( ( PUNCT coo.31924059551022 782 30 1 1 NUM coo.31924059551022 782 31 + + NUM coo.31924059551022 782 32 m m VERB coo.31924059551022 782 33 ± ± NOUN coo.31924059551022 783 1 i i PRON coo.31924059551022 783 2 v(2 v(2 PROPN coo.31924059551022 783 3 - - PUNCT coo.31924059551022 783 4 k*f k*f NOUN coo.31924059551022 783 5 - - PUNCT coo.31924059551022 783 6 m m NOUN coo.31924059551022 783 7 } } PUNCT coo.31924059551022 783 8 yp yp PROPN coo.31924059551022 783 9 - - PROPN coo.31924059551022 783 10 l(l l(l PROPN coo.31924059551022 783 11 + + CCONJ coo.31924059551022 783 12 ¥ ¥ X coo.31924059551022 783 13 ) ) PUNCT coo.31924059551022 783 14 all all PRON coo.31924059551022 783 15 of of ADP coo.31924059551022 783 16 which which PRON coo.31924059551022 783 17 are be AUX coo.31924059551022 783 18 special special ADJ coo.31924059551022 783 19 functions function NOUN coo.31924059551022 783 20 of of ADP coo.31924059551022 783 21 lamé lamé NOUN coo.31924059551022 783 22 of of ADP coo.31924059551022 783 23 the the DET coo.31924059551022 783 24 second second ADJ coo.31924059551022 783 25 species specie NOUN coo.31924059551022 783 26 , , PUNCT coo.31924059551022 783 27 the the DET coo.31924059551022 783 28 general general ADJ coo.31924059551022 783 29 form form NOUN coo.31924059551022 783 30 being be AUX coo.31924059551022 783 31 y y X coo.31924059551022 783 32 = = PROPN coo.31924059551022 783 33 ζγρη ζγρη PROPN coo.31924059551022 783 34 — — PUNCT coo.31924059551022 783 35 ea ea NOUN coo.31924059551022 783 36 where where SCONJ coo.31924059551022 783 37 z z PROPN coo.31924059551022 783 38 = = NOUN coo.31924059551022 783 39 p(*~3 p(*~3 NOUN coo.31924059551022 783 40 ) ) PUNCT coo.31924059551022 783 41 4 4 NUM coo.31924059551022 783 42 “ " PUNCT coo.31924059551022 783 43 « « PUNCT coo.31924059551022 783 44 ip(?î ip(?î NOUN coo.31924059551022 783 45 — — PUNCT coo.31924059551022 783 46 5 5 X coo.31924059551022 783 47 ) ) PUNCT coo.31924059551022 784 1 + + NUM coo.31924059551022 784 2 · · PUNCT coo.31924059551022 784 3 · · PUNCT coo.31924059551022 784 4 . . PUNCT coo.31924059551022 784 5 · · PUNCT coo.31924059551022 785 1 + + CCONJ coo.31924059551022 785 2 c c X coo.31924059551022 785 3 , , PUNCT coo.31924059551022 785 4 and and CCONJ coo.31924059551022 785 5 as as SCONJ coo.31924059551022 785 6 given give VERB coo.31924059551022 785 7 ( ( PUNCT coo.31924059551022 785 8 p. p. NOUN coo.31924059551022 785 9 43 43 NUM coo.31924059551022 785 10 ) ) PUNCT coo.31924059551022 785 11 the the DET coo.31924059551022 785 12 general general ADJ coo.31924059551022 785 13 form form NOUN coo.31924059551022 785 14 for for ADP coo.31924059551022 785 15 n n CCONJ coo.31924059551022 785 16 = = SYM coo.31924059551022 785 17 3 3 NUM coo.31924059551022 785 18 including include VERB coo.31924059551022 785 19 the the DET coo.31924059551022 785 20 above above ADJ coo.31924059551022 785 21 is be AUX coo.31924059551022 785 22 [ [ X coo.31924059551022 785 23 101 101 NUM coo.31924059551022 785 24 ] ] SYM coo.31924059551022 785 25 · · PUNCT coo.31924059551022 785 26 · · PUNCT coo.31924059551022 785 27 ■ ■ NOUN coo.31924059551022 785 28 · · PUNCT coo.31924059551022 785 29 · · NUM coo.31924059551022 785 30 · · NUM coo.31924059551022 785 31 · · PUNCT coo.31924059551022 785 32 y-(p y-(p X coo.31924059551022 785 33 + + PUNCT coo.31924059551022 785 34 tee-¡5b)yp=^ tee-¡5b)yp=^ ADJ coo.31924059551022 785 35 where where SCONJ coo.31924059551022 785 36 b b NOUN coo.31924059551022 785 37 = = PRON coo.31924059551022 785 38 3ea± 3ea± NUM coo.31924059551022 785 39 γ3(δg2 γ3(δg2 PROPN coo.31924059551022 785 40 12e 12e NOUN coo.31924059551022 785 41 * * PUNCT coo.31924059551022 785 42 ) ) PUNCT coo.31924059551022 785 43 . . PUNCT coo.31924059551022 786 1 the the DET coo.31924059551022 786 2 discriminant discriminant NOUN coo.31924059551022 786 3 of of ADP coo.31924059551022 786 4 y. y. PROPN coo.31924059551022 786 5 from from ADP coo.31924059551022 786 6 ( ( PUNCT coo.31924059551022 786 7 65 65 NUM coo.31924059551022 786 8 ) ) PUNCT coo.31924059551022 787 1 p. p. NOUN coo.31924059551022 787 2 38 38 NUM coo.31924059551022 788 1 we we PRON coo.31924059551022 788 2 have have VERB coo.31924059551022 788 3 2(7= 2(7= NUM coo.31924059551022 788 4 a a DET coo.31924059551022 788 5 ( ( PUNCT coo.31924059551022 788 6 a a DET coo.31924059551022 788 7 — — PUNCT coo.31924059551022 788 8 β β X coo.31924059551022 788 9 ) ) PUNCT coo.31924059551022 788 10 ( ( PUNCT coo.31924059551022 788 11 cc cc PROPN coo.31924059551022 788 12 γ γ PROPN coo.31924059551022 788 13 ) ) PUNCT coo.31924059551022 788 14 ■ ■ PUNCT coo.31924059551022 788 15 ■ ■ PUNCT coo.31924059551022 788 16 · · PUNCT coo.31924059551022 788 17 = = PUNCT coo.31924059551022 788 18 β'(β β'(β NOUN coo.31924059551022 788 19 — — PUNCT coo.31924059551022 788 20 a a X coo.31924059551022 788 21 ) ) PUNCT coo.31924059551022 788 22 ( ( PUNCT coo.31924059551022 788 23 β β X coo.31924059551022 788 24 — — PUNCT coo.31924059551022 788 25 γ γ PROPN coo.31924059551022 788 26 ) ) PUNCT coo.31924059551022 788 27 · · PUNCT coo.31924059551022 788 28 · · PUNCT coo.31924059551022 788 29 · · PUNCT coo.31924059551022 788 30 = = PUNCT coo.31924059551022 788 31 · · PUNCT coo.31924059551022 788 32 ■ ■ PUNCT coo.31924059551022 788 33 · · PUNCT coo.31924059551022 788 34 = = SYM coo.31924059551022 788 35 ϋφ ϋφ INTJ coo.31924059551022 788 36 ( ( PUNCT coo.31924059551022 788 37 α α NOUN coo.31924059551022 788 38 ) ) PUNCT coo.31924059551022 788 39 ( ( PUNCT coo.31924059551022 788 40 α α PROPN coo.31924059551022 788 41 — — PUNCT coo.31924059551022 788 42 β)(α β)(α NUM coo.31924059551022 788 43 — — PUNCT coo.31924059551022 788 44 γ γ X coo.31924059551022 788 45 ) ) PUNCT coo.31924059551022 788 46 ■ ■ PUNCT coo.31924059551022 788 47 ■ ■ PUNCT coo.31924059551022 788 48 · · PUNCT coo.31924059551022 788 49 ] ] X coo.31924059551022 788 50 /φ /φ PUNCT coo.31924059551022 788 51 ( ( PUNCT coo.31924059551022 788 52 b b NOUN coo.31924059551022 788 53 ) ) PUNCT coo.31924059551022 788 54 ( ( PUNCT coo.31924059551022 788 55 β β PROPN coo.31924059551022 788 56 — — PUNCT coo.31924059551022 788 57 α)(β α)(β NUM coo.31924059551022 788 58 γ γ X coo.31924059551022 788 59 ) ) PUNCT coo.31924059551022 788 60 · · PUNCT coo.31924059551022 788 61 · · PUNCT coo.31924059551022 788 62 · · PUNCT coo.31924059551022 788 63 = = PUNCT coo.31924059551022 788 64 · · PUNCT coo.31924059551022 788 65 · · PUNCT coo.31924059551022 788 66 · · PUNCT coo.31924059551022 788 67 where where SCONJ coo.31924059551022 788 68 · · PUNCT coo.31924059551022 788 69 ψ ψ PROPN coo.31924059551022 788 70 ( ( PUNCT coo.31924059551022 788 71 « « NOUN coo.31924059551022 788 72 ) ) PUNCT coo.31924059551022 788 73 = = PROPN coo.31924059551022 788 74 4 4 NUM coo.31924059551022 788 75 ( ( PUNCT coo.31924059551022 788 76 l l NOUN coo.31924059551022 788 77 > > X coo.31924059551022 788 78 « « PUNCT coo.31924059551022 788 79 — — PUNCT coo.31924059551022 788 80 e e PROPN coo.31924059551022 788 81 , , PUNCT coo.31924059551022 788 82 ) ) PUNCT coo.31924059551022 788 83 ( ( PUNCT coo.31924059551022 788 84 # # SYM coo.31924059551022 788 85 μ μ NUM coo.31924059551022 788 86 — — PUNCT coo.31924059551022 788 87 e2 e2 PROPN coo.31924059551022 788 88 ) ) PUNCT coo.31924059551022 788 89 ( ( PUNCT coo.31924059551022 788 90 pu pu PROPN coo.31924059551022 788 91 — — PUNCT coo.31924059551022 788 92 ¿ ¿ PROPN coo.31924059551022 788 93 3 3 NUM coo.31924059551022 788 94 ) ) PUNCT coo.31924059551022 788 95 γ γ PROPN coo.31924059551022 788 96 " " PUNCT coo.31924059551022 788 97 = = X coo.31924059551022 788 98 ( ( PUNCT coo.31924059551022 788 99 pw pw X coo.31924059551022 788 100 — — PUNCT coo.31924059551022 788 101 ei ei PROPN coo.31924059551022 788 102 ) ) PUNCT coo.31924059551022 788 103 ' ' PUNCT coo.31924059551022 788 104 ( ( PUNCT coo.31924059551022 788 105 ρμ ρμ PROPN coo.31924059551022 788 106 — — PUNCT coo.31924059551022 788 107 e2y e2y NOUN coo.31924059551022 788 108 ( ( PUNCT coo.31924059551022 788 109 pu pu X coo.31924059551022 788 110 — — PUNCT coo.31924059551022 788 111 e3)f e3)f PROPN coo.31924059551022 788 112 " " PUNCT coo.31924059551022 788 113 π π NOUN coo.31924059551022 788 114 ( ( PUNCT coo.31924059551022 788 115 pu pu PROPN coo.31924059551022 788 116 — — PUNCT coo.31924059551022 788 117 pa pa PROPN coo.31924059551022 788 118 ) ) PUNCT coo.31924059551022 788 119 . . PUNCT coo.31924059551022 789 1 the the DET coo.31924059551022 789 2 roots root NOUN coo.31924059551022 789 3 of of ADP coo.31924059551022 789 4 ψ ψ PROPN coo.31924059551022 789 5 ( ( PUNCT coo.31924059551022 789 6 a a X coo.31924059551022 789 7 ) ) PUNCT coo.31924059551022 789 8 = = SYM coo.31924059551022 789 9 0 0 NUM coo.31924059551022 789 10 are be AUX coo.31924059551022 789 11 e e NOUN coo.31924059551022 789 12 ¡ ¡ PROPN coo.31924059551022 789 13 , , PUNCT coo.31924059551022 789 14 e2 e2 PROPN coo.31924059551022 789 15 , , PUNCT coo.31924059551022 789 16 es es PROPN coo.31924059551022 789 17 . . PUNCT coo.31924059551022 790 1 the the DET coo.31924059551022 790 2 roots root NOUN coo.31924059551022 790 3 of of ADP coo.31924059551022 790 4 y= y= NOUN coo.31924059551022 790 5 0 0 NUM coo.31924059551022 790 6 are be AUX coo.31924059551022 790 7 el7 el7 PROPN coo.31924059551022 790 8 e2 e2 PROPN coo.31924059551022 790 9 , , PUNCT coo.31924059551022 790 10 es es PROPN coo.31924059551022 790 11 , , PUNCT coo.31924059551022 790 12 α1βί α1βί NUM coo.31924059551022 790 13 · · PUNCT coo.31924059551022 790 14 · · PUNCT coo.31924059551022 790 15 · · PUNCT coo.31924059551022 790 16 whence whence ADP coo.31924059551022 790 17 the the DET coo.31924059551022 790 18 resultant resultant NOUN coo.31924059551022 790 19 of of ADP coo.31924059551022 790 20 φ(α φ(α SPACE coo.31924059551022 790 21 ) ) PUNCT coo.31924059551022 790 22 and and CCONJ coo.31924059551022 790 23 y y PROPN coo.31924059551022 790 24 written write VERB coo.31924059551022 790 25 as as ADP coo.31924059551022 790 26 the the DET coo.31924059551022 790 27 product product NOUN coo.31924059551022 790 28 of of ADP coo.31924059551022 790 29 the the DET coo.31924059551022 790 30 differences difference NOUN coo.31924059551022 790 31 of of ADP coo.31924059551022 790 32 the the DET coo.31924059551022 790 33 roots root NOUN coo.31924059551022 790 34 is be AUX coo.31924059551022 790 35 h h NOUN coo.31924059551022 790 36 = = PROPN coo.31924059551022 790 37 n{a n{a PROPN coo.31924059551022 790 38 — — PUNCT coo.31924059551022 790 39 ex ex PROPN coo.31924059551022 790 40 ) ) PUNCT coo.31924059551022 790 41 , , PUNCT coo.31924059551022 791 1 where where SCONJ coo.31924059551022 791 2 α α NOUN coo.31924059551022 791 3 = = NOUN coo.31924059551022 791 4 α1/31 α1/31 ADV coo.31924059551022 791 5 · · PUNCT coo.31924059551022 791 6 · · PUNCT coo.31924059551022 791 7 · · PUNCT coo.31924059551022 791 8 to to ADP coo.31924059551022 791 9 n n NOUN coo.31924059551022 791 10 letters letter NOUN coo.31924059551022 791 11 and and CCONJ coo.31924059551022 791 12 λ λ NOUN coo.31924059551022 791 13 = = SYM coo.31924059551022 791 14 1 1 NUM coo.31924059551022 791 15 , , PUNCT coo.31924059551022 791 16 2 2 NUM coo.31924059551022 791 17 or or CCONJ coo.31924059551022 791 18 3 3 NUM coo.31924059551022 791 19 = = PUNCT coo.31924059551022 791 20 [ [ X coo.31924059551022 791 21 ( ( PUNCT coo.31924059551022 791 22 « « PUNCT coo.31924059551022 791 23 — — PUNCT coo.31924059551022 791 24 ei ei PROPN coo.31924059551022 791 25 ) ) PUNCT coo.31924059551022 791 26 0 0 NUM coo.31924059551022 791 27 — — PUNCT coo.31924059551022 791 28 e2 e2 PROPN coo.31924059551022 791 29 ) ) PUNCT coo.31924059551022 791 30 ( ( PUNCT coo.31924059551022 791 31 « « PUNCT coo.31924059551022 791 32 — — PUNCT coo.31924059551022 791 33 e2ji e2ji PRON coo.31924059551022 791 34 [ [ X coo.31924059551022 791 35 ( ( PUNCT coo.31924059551022 791 36 β β X coo.31924059551022 791 37 — — PUNCT coo.31924059551022 791 38 β,)(β β,)(β NOUN coo.31924059551022 791 39 — — PUNCT coo.31924059551022 791 40 < < X coo.31924059551022 791 41 h h X coo.31924059551022 791 42 ) ) PUNCT coo.31924059551022 791 43 ( ( PUNCT coo.31924059551022 791 44 β β NOUN coo.31924059551022 791 45 ~ ~ PUNCT coo.31924059551022 791 46 « « SYM coo.31924059551022 791 47 3 3 NUM coo.31924059551022 791 48 ) ) PUNCT coo.31924059551022 791 49 ] ] PUNCT coo.31924059551022 792 1 * * PUNCT coo.31924059551022 792 2 ' ' PUNCT coo.31924059551022 792 3 ' ' PUNCT coo.31924059551022 792 4 = = PRON coo.31924059551022 792 5 ^τίφ^ ^τίφ^ NUM coo.31924059551022 792 6 · · PUNCT coo.31924059551022 792 7 58 58 NUM coo.31924059551022 792 8 part part NOUN coo.31924059551022 792 9 v. v. NOUN coo.31924059551022 792 10 but but CCONJ coo.31924059551022 792 11 again again ADV coo.31924059551022 792 12 t(et t(et NOUN coo.31924059551022 792 13 ) ) PUNCT coo.31924059551022 792 14 = = PUNCT coo.31924059551022 793 1 [ [ X coo.31924059551022 793 2 ( ( PUNCT coo.31924059551022 793 3 « « X coo.31924059551022 793 4 e e NOUN coo.31924059551022 793 5 , , PUNCT coo.31924059551022 793 6 ) ) PUNCT coo.31924059551022 793 7 ( ( PUNCT coo.31924059551022 793 8 β β X coo.31924059551022 793 9 ( ( PUNCT coo.31924059551022 793 10 y y PROPN coo.31924059551022 793 11 e e PROPN coo.31924059551022 793 12 , , PUNCT coo.31924059551022 793 13 ) ) PUNCT coo.31924059551022 793 14 ] ] PUNCT coo.31924059551022 793 15 · · PUNCT coo.31924059551022 793 16 · · PUNCT coo.31924059551022 793 17 · · PUNCT coo.31924059551022 793 18 r(c2 r(c2 PROPN coo.31924059551022 793 19 ) ) PUNCT coo.31924059551022 793 20 = = PUNCT coo.31924059551022 794 1 [ [ X coo.31924059551022 794 2 ( ( PUNCT coo.31924059551022 794 3 « « PUNCT coo.31924059551022 794 4 e2 e2 PROPN coo.31924059551022 794 5 ) ) PUNCT coo.31924059551022 794 6 ( ( PUNCT coo.31924059551022 794 7 β β PROPN coo.31924059551022 794 8 e2 e2 PROPN coo.31924059551022 794 9 ) ) PUNCT coo.31924059551022 794 10 ( ( PUNCT coo.31924059551022 794 11 y y PROPN coo.31924059551022 794 12 -e -e PROPN coo.31924059551022 794 13 , , PUNCT coo.31924059551022 794 14 ) ) PUNCT coo.31924059551022 794 15 ] ] PUNCT coo.31924059551022 794 16 · · PUNCT coo.31924059551022 794 17 · · PUNCT coo.31924059551022 794 18 · · PUNCT coo.31924059551022 794 19 * * PROPN coo.31924059551022 794 20 & & CCONJ coo.31924059551022 794 21 ) ) PUNCT coo.31924059551022 794 22 -[(«-0.(0-'»)(r-<% -[(«-0.(0-'»)(r-<% NOUN coo.31924059551022 794 23 ) ) PUNCT coo.31924059551022 794 24 ] ] PUNCT coo.31924059551022 794 25 · · PUNCT coo.31924059551022 794 26 · · PUNCT coo.31924059551022 794 27 · · PUNCT coo.31924059551022 794 28 whence whence ADP coo.31924059551022 794 29 β β X coo.31924059551022 794 30 = = NOUN coo.31924059551022 794 31 π(~α-^==^πφ(α π(~α-^==^πφ(α X coo.31924059551022 794 32 ) ) PUNCT coo.31924059551022 794 33 ( ( PUNCT coo.31924059551022 794 34 ~-1)'ítr(ei ~-1)'ítr(ei PROPN coo.31924059551022 794 35 ) ) PUNCT coo.31924059551022 794 36 · · PUNCT coo.31924059551022 794 37 again again ADV coo.31924059551022 794 38 we we PRON coo.31924059551022 794 39 have have AUX coo.31924059551022 794 40 shown show VERB coo.31924059551022 794 41 ( ( PUNCT coo.31924059551022 794 42 94 94 NUM coo.31924059551022 794 43 ; ; PUNCT coo.31924059551022 794 44 p. p. NOUN coo.31924059551022 794 45 55 55 NUM coo.31924059551022 794 46 ) ) PUNCT coo.31924059551022 795 1 that that SCONJ coo.31924059551022 795 2 for for ADP coo.31924059551022 795 3 w w PROPN coo.31924059551022 795 4 — — PUNCT coo.31924059551022 795 5 3 3 NUM coo.31924059551022 795 6 ; ; PUNCT coo.31924059551022 795 7 and and CCONJ coo.31924059551022 795 8 the the DET coo.31924059551022 795 9 same same ADJ coo.31924059551022 795 10 method method NOUN coo.31924059551022 795 11 gives give VERB coo.31924059551022 795 12 in in ADP coo.31924059551022 795 13 general general ADJ coo.31924059551022 795 14 for for ADP coo.31924059551022 795 15 n n ADP coo.31924059551022 795 16 odd odd ADJ coo.31924059551022 795 17 : : PUNCT coo.31924059551022 795 18 w w PROPN coo.31924059551022 795 19 odd odd ADJ coo.31924059551022 795 20 : : PUNCT coo.31924059551022 795 21 r(0 r(0 NOUN coo.31924059551022 795 22 = = PUNCT coo.31924059551022 795 23 -c2p(?i -c2p(?i PROPN coo.31924059551022 795 24 ; ; PUNCT coo.31924059551022 795 25 y(e2 y(e2 PROPN coo.31924059551022 795 26 ) ) PUNCT coo.31924059551022 795 27 = = VERB coo.31924059551022 795 28 — — PUNCT coo.31924059551022 795 29 c2 c2 PROPN coo.31924059551022 795 30 pq2 pq2 NOUN coo.31924059551022 795 31 ¡ ¡ NUM coo.31924059551022 795 32 y(e3 y(e3 PROPN coo.31924059551022 795 33 ) ) PUNCT coo.31924059551022 795 34 = = PROPN coo.31924059551022 795 35 c2pç3 c2pç3 VERB coo.31924059551022 795 36 and and CCONJ coo.31924059551022 795 37 likewise likewise ADV coo.31924059551022 795 38 » » PUNCT coo.31924059551022 795 39 even even ADV coo.31924059551022 795 40 : : PUNCT coo.31924059551022 795 41 y(et y(et X coo.31924059551022 795 42 ) ) PUNCT coo.31924059551022 795 43 = = PUNCT coo.31924059551022 795 44 c2q2qs c2q2qs SPACE coo.31924059551022 795 45 · · PUNCT coo.31924059551022 795 46 , , PUNCT coo.31924059551022 795 47 y(e2 y(e2 PROPN coo.31924059551022 795 48 ) ) PUNCT coo.31924059551022 795 49 = = PROPN coo.31924059551022 795 50 c*lí ^>lí PART coo.31924059551022 797 3 £ £ SYM coo.31924059551022 797 4 v v ADP coo.31924059551022 797 5 * * SYM coo.31924059551022 797 6 α α NOUN coo.31924059551022 797 7 . . PUNCT coo.31924059551022 798 1 λ λ NOUN coo.31924059551022 798 2 λ λ PROPN coo.31924059551022 798 3 7 7 NUM coo.31924059551022 798 4 now now ADV coo.31924059551022 798 5 the the DET coo.31924059551022 798 6 discriminant discriminant NOUN coo.31924059551022 798 7 of of ADP coo.31924059551022 798 8 y y PROPN coo.31924059551022 798 9 equals equal VERB coo.31924059551022 798 10 the the DET coo.31924059551022 798 11 product product NOUN coo.31924059551022 798 12 of of ADP coo.31924059551022 798 13 the the DET coo.31924059551022 798 14 squares square NOUN coo.31924059551022 798 15 of of ADP coo.31924059551022 798 16 the the DET coo.31924059551022 798 17 differences difference NOUN coo.31924059551022 798 18 of of ADP coo.31924059551022 798 19 the the DET coo.31924059551022 798 20 roots root NOUN coo.31924059551022 798 21 and and CCONJ coo.31924059551022 798 22 may may AUX coo.31924059551022 798 23 be be AUX coo.31924059551022 798 24 written write VERB coo.31924059551022 798 25 : : PUNCT coo.31924059551022 798 26 a a DET coo.31924059551022 798 27 = = NOUN coo.31924059551022 798 28 = = X coo.31924059551022 798 29 ( ( PUNCT coo.31924059551022 798 30 « « PUNCT coo.31924059551022 798 31 — — PUNCT coo.31924059551022 798 32 β)2 β)2 PROPN coo.31924059551022 798 33 ( ( PUNCT coo.31924059551022 798 34 « « PUNCT coo.31924059551022 798 35 — — PUNCT coo.31924059551022 798 36 γ)2 γ)2 NOUN coo.31924059551022 798 37 · · PUNCT coo.31924059551022 798 38 ■ ■ PUNCT coo.31924059551022 798 39 ■ ■ PUNCT coo.31924059551022 798 40 whence whence NOUN coo.31924059551022 798 41 from from ADP coo.31924059551022 798 42 ( ( PUNCT coo.31924059551022 798 43 65 65 NUM coo.31924059551022 798 44 ) ) PUNCT coo.31924059551022 798 45 22 22 NUM coo.31924059551022 798 46 ( ( PUNCT coo.31924059551022 798 47 72 72 NUM coo.31924059551022 798 48 2 2 NUM coo.31924059551022 798 49 2c2 2c2 NUM coo.31924059551022 798 50 22w£2 22w£2 NUM coo.31924059551022 798 51 » » PUNCT coo.31924059551022 798 52 δ2 δ2 PROPN coo.31924059551022 798 53 φ(α φ(α SPACE coo.31924059551022 798 54 ) ) PUNCT coo.31924059551022 798 55 φ φ PROPN coo.31924059551022 798 56 ( ( PUNCT coo.31924059551022 798 57 b b X coo.31924059551022 798 58 ) ) PUNCT coo.31924059551022 798 59 πφ(α πφ(α SPACE coo.31924059551022 798 60 ) ) PUNCT coo.31924059551022 798 61 πφ πφ PROPN coo.31924059551022 798 62 ( ( PUNCT coo.31924059551022 798 63 a a X coo.31924059551022 798 64 ) ) PUNCT coo.31924059551022 798 65 = = PUNCT coo.31924059551022 798 66 4rip 4rip NUM coo.31924059551022 798 67 c2n c2n NOUN coo.31924059551022 799 1 δ2 δ2 PROPN coo.31924059551022 799 2 = = PROPN coo.31924059551022 800 1 but but CCONJ coo.31924059551022 800 2 we we PRON coo.31924059551022 800 3 have have AUX coo.31924059551022 800 4 first first ADV coo.31924059551022 800 5 found find VERB coo.31924059551022 800 6 whence whence ADV coo.31924059551022 800 7 again again ADV coo.31924059551022 800 8 c2 c2 PROPN coo.31924059551022 800 9 = = PUNCT coo.31924059551022 800 10 c4p$ c4p$ PROPN coo.31924059551022 801 1 and and CCONJ coo.31924059551022 801 2 we we PRON coo.31924059551022 801 3 derive derive VERB coo.31924059551022 801 4 from from ADP coo.31924059551022 801 5 these these PRON coo.31924059551022 801 6 n n CCONJ coo.31924059551022 801 7 being be AUX coo.31924059551022 801 8 odd odd ADJ coo.31924059551022 801 9 λ λ NOUN coo.31924059551022 801 10 2 2 NUM coo.31924059551022 801 11 _ _ PUNCT coo.31924059551022 801 12 c2n c2n NOUN coo.31924059551022 801 13 _ _ NOUN coo.31924059551022 802 1 ( ( PUNCT coo.31924059551022 802 2 cy cy INTJ coo.31924059551022 802 3 _ _ PROPN coo.31924059551022 802 4 c4w c4w PROPN coo.31924059551022 802 5 pnqn pnqn PROPN coo.31924059551022 802 6 _ _ X coo.31924059551022 802 7 ^ ^ PUNCT coo.31924059551022 803 1 ~ ~ PUNCT coo.31924059551022 803 2 β β X coo.31924059551022 803 3 ~ ~ PROPN coo.31924059551022 803 4 b b X coo.31924059551022 803 5 ~~ ~~ X coo.31924059551022 803 6 cqp*q~ cqp*q~ PROPN coo.31924059551022 803 7 ( ( PUNCT coo.31924059551022 803 8 from from ADP coo.31924059551022 803 9 99 99 NUM coo.31924059551022 803 10 ) ) PUNCT coo.31924059551022 803 11 c2(2n c2(2n NOUN coo.31924059551022 803 12 — — PUNCT coo.31924059551022 803 13 3)pn—3qn 3)pn—3qn NUM coo.31924059551022 803 14 — — PUNCT coo.31924059551022 803 15 l l NOUN coo.31924059551022 803 16 or or CCONJ coo.31924059551022 803 17 n n NOUN coo.31924059551022 803 18 — — PUNCT coo.31924059551022 803 19 1 1 NUM coo.31924059551022 803 20 n n CCONJ coo.31924059551022 803 21 — — PUNCT coo.31924059551022 803 22 3 3 NUM coo.31924059551022 803 23 n n CCONJ coo.31924059551022 803 24 — — PUNCT coo.31924059551022 803 25 1 1 NUM coo.31924059551022 803 26 δ δ NOUN coo.31924059551022 803 27 = = SYM coo.31924059551022 803 28 ( ( PUNCT coo.31924059551022 803 29 — — PUNCT coo.31924059551022 803 30 1 1 X coo.31924059551022 803 31 ) ) PUNCT coo.31924059551022 803 32 2 2 NUM coo.31924059551022 803 33 c2n~~bp c2n~~bp PROPN coo.31924059551022 803 34 s s PART coo.31924059551022 803 35 q q NOUN coo.31924059551022 803 36 2 2 NUM coo.31924059551022 803 37 : : PUNCT coo.31924059551022 803 38 n n CCONJ coo.31924059551022 803 39 odd odd ADJ coo.31924059551022 803 40 [ [ PUNCT coo.31924059551022 803 41 103 103 NUM coo.31924059551022 803 42 ] ] PUNCT coo.31924059551022 803 43 and and CCONJ coo.31924059551022 803 44 in in ADP coo.31924059551022 803 45 like like ADJ coo.31924059551022 803 46 manner manner NOUN coo.31924059551022 803 47 we we PRON coo.31924059551022 803 48 derive derive VERB coo.31924059551022 803 49 ( ( PUNCT coo.31924059551022 803 50 sign sign VERB coo.31924059551022 803 51 ambiguous ambiguous ADJ coo.31924059551022 803 52 ) ) PUNCT coo.31924059551022 803 53 δ δ NOUN coo.31924059551022 803 54 = = SYM coo.31924059551022 803 55 ( ( PUNCT coo.31924059551022 803 56 — — PUNCT coo.31924059551022 803 57 i)2c2^p~2 i)2c2^p~2 ADP coo.31924059551022 803 58 ρ2 ρ2 PROPN coo.31924059551022 803 59 n n CCONJ coo.31924059551022 803 60 even even ADV coo.31924059551022 803 61 and and CCONJ coo.31924059551022 803 62 we we PRON coo.31924059551022 803 63 have have VERB coo.31924059551022 803 64 also also ADV coo.31924059551022 803 65 δ δ PROPN coo.31924059551022 803 66 = = SYM coo.31924059551022 803 67 0 0 NUM coo.31924059551022 803 68 since since SCONJ coo.31924059551022 803 69 y y PROPN coo.31924059551022 803 70 has have VERB coo.31924059551022 803 71 at at ADV coo.31924059551022 803 72 least least ADV coo.31924059551022 803 73 one one NUM coo.31924059551022 803 74 double double ADJ coo.31924059551022 803 75 root root NOUN coo.31924059551022 803 76 . . PUNCT coo.31924059551022 804 1 reduction reduction NUM coo.31924059551022 804 2 of of ADP coo.31924059551022 804 3 the the DET coo.31924059551022 804 4 forms form NOUN coo.31924059551022 804 5 when when SCONJ coo.31924059551022 804 6 n n SYM coo.31924059551022 804 7 equals equal VERB coo.31924059551022 804 8 three three NUM coo.31924059551022 804 9 . . PUNCT coo.31924059551022 805 1 59 59 NUM coo.31924059551022 805 2 case case NOUN coo.31924059551022 805 3 n n X coo.31924059551022 805 4 = = X coo.31924059551022 805 5 3 3 X coo.31924059551022 805 6 . . PUNCT coo.31924059551022 806 1 [ [ X coo.31924059551022 806 2 104 104 NUM coo.31924059551022 806 3 ] ] PUNCT coo.31924059551022 806 4 b b NOUN coo.31924059551022 806 5 = = X coo.31924059551022 806 6 ( ( PUNCT coo.31924059551022 806 7 a a DET coo.31924059551022 806 8 — — PUNCT coo.31924059551022 806 9 et et X coo.31924059551022 806 10 ) ) PUNCT coo.31924059551022 806 11 ( ( PUNCT coo.31924059551022 806 12 a a DET coo.31924059551022 806 13 — — PUNCT coo.31924059551022 806 14 e2 e2 PROPN coo.31924059551022 806 15 ) ) PUNCT coo.31924059551022 806 16 ( ( PUNCT coo.31924059551022 806 17 a a DET coo.31924059551022 806 18 — — PUNCT coo.31924059551022 806 19 e3)(β e3)(β NOUN coo.31924059551022 806 20 — — PUNCT coo.31924059551022 806 21 ο,)(β ο,)(β PROPN coo.31924059551022 806 22 — — PUNCT coo.31924059551022 806 23 ε2)(/3 ε2)(/3 PROPN coo.31924059551022 806 24 — — PUNCT coo.31924059551022 806 25 e3)(y e3)(y NOUN coo.31924059551022 806 26 — — PUNCT coo.31924059551022 806 27 ex)(y ex)(y PROPN coo.31924059551022 806 28 — — PUNCT coo.31924059551022 806 29 e,)(y e,)(y PROPN coo.31924059551022 806 30 - - PROPN coo.31924059551022 806 31 e. e. PROPN coo.31924059551022 806 32 ¡ ¡ PROPN coo.31924059551022 806 33 ) ) PUNCT coo.31924059551022 806 34 = = X coo.31924059551022 806 35 ¿ ¿ X coo.31924059551022 806 36 ( ( PUNCT coo.31924059551022 806 37 « « PUNCT coo.31924059551022 806 38 3 3 NUM coo.31924059551022 806 39 — — PUNCT coo.31924059551022 806 40 · · PUNCT coo.31924059551022 806 41 λ λ PROPN coo.31924059551022 806 42 « « NOUN coo.31924059551022 806 43 9s 9s NUM coo.31924059551022 806 44 ) ) PUNCT coo.31924059551022 806 45 ( ( PUNCT coo.31924059551022 806 46 β3 β3 PROPN coo.31924059551022 806 47 92 92 NUM coo.31924059551022 806 48 β~ β~ NUM coo.31924059551022 806 49 9s 9s NUM coo.31924059551022 806 50 ) ) PUNCT coo.31924059551022 806 51 ( ( PUNCT coo.31924059551022 806 52 73 73 NUM coo.31924059551022 806 53 — — PUNCT coo.31924059551022 806 54 927 927 NUM coo.31924059551022 806 55 — — PUNCT coo.31924059551022 806 56 9s 9s NUM coo.31924059551022 806 57 ) ) PUNCT coo.31924059551022 806 58 = = PUNCT coo.31924059551022 807 1 ~ ~ PUNCT coo.31924059551022 807 2 vw+z vw+z PROPN coo.31924059551022 807 3 fe fe PROPN coo.31924059551022 807 4 ¿ ¿ PROPN coo.31924059551022 807 5 fe fe PROPN coo.31924059551022 807 6 ] ] X coo.31924059551022 808 1 [ [ X coo.31924059551022 808 2 φ'+ φ'+ ADV coo.31924059551022 808 3 3 3 NUM coo.31924059551022 808 4 fe fe X coo.31924059551022 808 5 ¿ ¿ X coo.31924059551022 808 6 fe fe X coo.31924059551022 808 7 ] ] X coo.31924059551022 809 1 [ [ X coo.31924059551022 809 2 φ'+ φ'+ PROPN coo.31924059551022 809 3 b b PROPN coo.31924059551022 809 4 fe fe PROPN coo.31924059551022 809 5 ¿ ¿ PROPN coo.31924059551022 809 6 fe fe PROPN coo.31924059551022 809 7 ] ] X coo.31924059551022 810 1 [ [ X coo.31924059551022 810 2 105 105 NUM coo.31924059551022 810 3 ] ] PUNCT coo.31924059551022 810 4 a a DET coo.31924059551022 810 5 = = NOUN coo.31924059551022 810 6 ¿ ¿ NUM coo.31924059551022 810 7 p p PROPN coo.31924059551022 810 8 ° ° X coo.31924059551022 810 9 < < X coo.31924059551022 810 10 ? ? PUNCT coo.31924059551022 811 1 = = PUNCT coo.31924059551022 812 1 g)01 > X coo.31924059551022 816 25 fe fe X coo.31924059551022 816 26 = = NOUN coo.31924059551022 816 27 — — PUNCT coo.31924059551022 816 28 27as 27as NOUN coo.31924059551022 816 29 [ [ X coo.31924059551022 816 30 106 106 NUM coo.31924059551022 816 31 ] ] PUNCT coo.31924059551022 816 32 · · PUNCT coo.31924059551022 816 33 · · PUNCT coo.31924059551022 816 34 · · PUNCT coo.31924059551022 816 35 ........... ........... PUNCT coo.31924059551022 816 36 ç ç PROPN coo.31924059551022 816 37 = = PROPN coo.31924059551022 816 38 3s-53[44 3s-53[44 NUM coo.31924059551022 816 39 + + NUM coo.31924059551022 816 40 27^ 27^ NUM coo.31924059551022 816 41 ] ] PUNCT coo.31924059551022 816 42 [ [ X coo.31924059551022 816 43 107 107 NUM coo.31924059551022 816 44 ] ] PUNCT coo.31924059551022 816 45 ............. ............. PUNCT coo.31924059551022 816 46 a a X coo.31924059551022 816 47 = = X coo.31924059551022 816 48 [ [ X coo.31924059551022 816 49 4ja 4ja X coo.31924059551022 816 50 + + NUM coo.31924059551022 816 51 27^ì 27^ì NUM coo.31924059551022 816 52 ] ] PUNCT coo.31924059551022 816 53 which which DET coo.31924059551022 816 54 latter latter ADJ coo.31924059551022 816 55 value value NOUN coo.31924059551022 816 56 we we PRON coo.31924059551022 816 57 would would AUX coo.31924059551022 816 58 have have AUX coo.31924059551022 816 59 derived derive VERB coo.31924059551022 816 60 directly directly ADV coo.31924059551022 816 61 from from ADP coo.31924059551022 816 62 the the DET coo.31924059551022 816 63 form form NOUN coo.31924059551022 816 64 y y PROPN coo.31924059551022 816 65 = = SYM coo.31924059551022 816 66 s s NOUN coo.31924059551022 816 67 * * NOUN coo.31924059551022 816 68 + + PUNCT coo.31924059551022 816 69 a2s a2s NOUN coo.31924059551022 816 70 + + CCONJ coo.31924059551022 816 71 a3 a3 PROPN coo.31924059551022 816 72 . . PUNCT coo.31924059551022 817 1 writing write VERB coo.31924059551022 817 2 a2 a2 PROPN coo.31924059551022 817 3 = = PROPN coo.31924059551022 817 4 y y PROPN coo.31924059551022 817 5 < < X coo.31924059551022 817 6 p p PROPN coo.31924059551022 817 7 ' ' PUNCT coo.31924059551022 817 8 and and CCONJ coo.31924059551022 817 9 α3 α3 PROPN coo.31924059551022 817 10 = = SYM coo.31924059551022 817 11 ~φ ~φ SPACE coo.31924059551022 817 12 — — PUNCT coo.31924059551022 817 13 b b X coo.31924059551022 817 14 < < X coo.31924059551022 817 15 p p X coo.31924059551022 817 16 ' ' PUNCT coo.31924059551022 817 17 we we PRON coo.31924059551022 817 18 derive derive VERB coo.31924059551022 817 19 still still ADV coo.31924059551022 817 20 another another DET coo.31924059551022 817 21 form form NOUN coo.31924059551022 817 22 for for ADP coo.31924059551022 817 23 q q X coo.31924059551022 817 24 namely namely ADV coo.31924059551022 817 25 [ [ PUNCT coo.31924059551022 817 26 108 108 NUM coo.31924059551022 817 27 ] ] PUNCT coo.31924059551022 817 28 · · PUNCT coo.31924059551022 817 29 · · PUNCT coo.31924059551022 817 30 < < X coo.31924059551022 817 31 ? ? PUNCT coo.31924059551022 818 1 = = PUNCT coo.31924059551022 818 2 -^[φ/3 -^[φ/3 X coo.31924059551022 819 1 + + NUM coo.31924059551022 819 2 27φ28·27δφφ 27φ28·27δφφ NUM coo.31924059551022 819 3 ' ' PUNCT coo.31924059551022 819 4 + + NUM coo.31924059551022 819 5 16·27δ2φ'2 16·27δ2φ'2 NUM coo.31924059551022 819 6 ] ] PUNCT coo.31924059551022 819 7 . . PUNCT coo.31924059551022 820 1 again again ADV coo.31924059551022 820 2 we we PRON coo.31924059551022 820 3 find find VERB coo.31924059551022 820 4 [ [ X coo.31924059551022 820 5 109 109 NUM coo.31924059551022 820 6 ] ] PUNCT coo.31924059551022 820 7 · · PUNCT coo.31924059551022 820 8 · · PUNCT coo.31924059551022 820 9 · · PUNCT coo.31924059551022 820 10 .2 .2 NUM coo.31924059551022 820 11 _ _ NOUN coo.31924059551022 820 12 φ(0 φ(0 VERB coo.31924059551022 820 13 36ϊ 36ϊ NOUN coo.31924059551022 820 14 ( ( PUNCT coo.31924059551022 820 15 ϊ2 ϊ2 PROPN coo.31924059551022 820 16 “ " PUNCT coo.31924059551022 820 17 — — PUNCT coo.31924059551022 820 18 a a DET coo.31924059551022 820 19 ¡ ¡ NUM coo.31924059551022 820 20 ) ) PUNCT coo.31924059551022 820 21 4233δ 4233δ NUM coo.31924059551022 820 22 36 36 NUM coo.31924059551022 820 23 · · PUNCT coo.31924059551022 820 24 336φ'2 336φ'2 NUM coo.31924059551022 820 25 _ _ PUNCT coo.31924059551022 820 26 { { PUNCT coo.31924059551022 820 27 2 2 NUM coo.31924059551022 820 28 ΐ/4αϊ+27α|γ ΐ/4αϊ+27α|γ NUM coo.31924059551022 821 1 13φ'κ 13φ'κ NUM coo.31924059551022 822 1 δ~ δ~ PROPN coo.31924059551022 822 2 j j NOUN coo.31924059551022 822 3 from from ADP coo.31924059551022 822 4 which which PRON coo.31924059551022 822 5 value value NOUN coo.31924059551022 822 6 we we PRON coo.31924059551022 822 7 again again ADV coo.31924059551022 822 8 see see VERB coo.31924059551022 822 9 that that SCONJ coo.31924059551022 822 10 the the DET coo.31924059551022 822 11 vanishing vanishing NOUN coo.31924059551022 822 12 of of ADP coo.31924059551022 822 13 ψ ψ PROPN coo.31924059551022 822 14 ’ ' PUNCT coo.31924059551022 822 15 is be AUX coo.31924059551022 822 16 equivalent equivalent ADJ coo.31924059551022 822 17 to to ADP coo.31924059551022 822 18 the the DET coo.31924059551022 822 19 vanishing vanishing NOUN coo.31924059551022 822 20 of of ADP coo.31924059551022 822 21 ώ ώ PROPN coo.31924059551022 822 22 . . PUNCT coo.31924059551022 822 23 ( ( PUNCT coo.31924059551022 822 24 compair compair NOUN coo.31924059551022 822 25 p. p. NOUN coo.31924059551022 822 26 49 49 NUM coo.31924059551022 822 27 and and CCONJ coo.31924059551022 822 28 52 52 NUM coo.31924059551022 822 29 . . PUNCT coo.31924059551022 822 30 ) ) PUNCT coo.31924059551022 823 1 60 60 NUM coo.31924059551022 823 2 part part NOUN coo.31924059551022 823 3 v. v. ADP coo.31924059551022 823 4 determination determination NOUN coo.31924059551022 823 5 of of ADP coo.31924059551022 823 6 x x SYM coo.31924059551022 823 7 and and CCONJ coo.31924059551022 823 8 v. v. ADP coo.31924059551022 823 9 second second ADJ coo.31924059551022 823 10 method method NOUN coo.31924059551022 823 11 . . PUNCT coo.31924059551022 824 1 we we PRON coo.31924059551022 824 2 have have VERB coo.31924059551022 824 3 the the DET coo.31924059551022 824 4 general general ADJ coo.31924059551022 824 5 theorem theorem NOUN coo.31924059551022 824 6 : : PUNCT coo.31924059551022 824 7 every every DET coo.31924059551022 824 8 rational rational ADJ coo.31924059551022 824 9 function function NOUN coo.31924059551022 824 10 of of ADP coo.31924059551022 824 11 pu pu PROPN coo.31924059551022 824 12 and and CCONJ coo.31924059551022 824 13 pu pu PROPN coo.31924059551022 824 14 can can AUX coo.31924059551022 824 15 be be AUX coo.31924059551022 824 16 written write VERB coo.31924059551022 824 17 in in ADP coo.31924059551022 824 18 the the DET coo.31924059551022 824 19 form form NOUN coo.31924059551022 824 20 : : PUNCT coo.31924059551022 824 21 ac ac PROPN coo.31924059551022 824 22 ( ( PUNCT coo.31924059551022 824 23 u u PROPN coo.31924059551022 824 24 — — PUNCT coo.31924059551022 824 25 vj vj PROPN coo.31924059551022 824 26 a a PRON coo.31924059551022 824 27 ( ( PUNCT coo.31924059551022 824 28 u u PROPN coo.31924059551022 824 29 — — PUNCT coo.31924059551022 824 30 v% v% PROPN coo.31924059551022 824 31 ) ) PUNCT coo.31924059551022 824 32 · · PUNCT coo.31924059551022 824 33 · · PUNCT coo.31924059551022 824 34 · · PUNCT coo.31924059551022 824 35 a a X coo.31924059551022 824 36 ( ( PUNCT coo.31924059551022 824 37 u u PROPN coo.31924059551022 824 38 — — PUNCT coo.31924059551022 824 39 vu vu PROPN coo.31924059551022 824 40 ) ) PUNCT coo.31924059551022 824 41 < < X coo.31924059551022 824 42 pl pl X coo.31924059551022 824 43 w w PROPN coo.31924059551022 824 44 g(u g(u PROPN coo.31924059551022 824 45 — — PUNCT coo.31924059551022 824 46 1// 1// NUM coo.31924059551022 824 47 ) ) PUNCT coo.31924059551022 824 48 o(u o(u PROPN coo.31924059551022 824 49 — — PUNCT coo.31924059551022 824 50 v% v% X coo.31924059551022 824 51 ' ' PUNCT coo.31924059551022 824 52 ) ) PUNCT coo.31924059551022 824 53 · · PUNCT coo.31924059551022 824 54 · · PUNCT coo.31924059551022 824 55 * * PUNCT coo.31924059551022 824 56 6 6 NUM coo.31924059551022 824 57 ( ( PUNCT coo.31924059551022 824 58 u u PROPN coo.31924059551022 824 59 — — PUNCT coo.31924059551022 824 60 v'u v'u ADV coo.31924059551022 824 61 ) ) PUNCT coo.31924059551022 824 62 where where SCONJ coo.31924059551022 824 63 the the DET coo.31924059551022 824 64 number number NOUN coo.31924059551022 824 65 of of ADP coo.31924059551022 824 66 functions function NOUN coo.31924059551022 824 67 in in ADP coo.31924059551022 824 68 the the DET coo.31924059551022 824 69 numerator numerator NOUN coo.31924059551022 824 70 equals equal VERB coo.31924059551022 824 71 the the DET coo.31924059551022 824 72 number number NOUN coo.31924059551022 824 73 in in ADP coo.31924059551022 824 74 the the DET coo.31924059551022 824 75 denominator denominator NOUN coo.31924059551022 824 76 , , PUNCT coo.31924059551022 824 77 making make VERB coo.31924059551022 824 78 the the DET coo.31924059551022 824 79 number number NOUN coo.31924059551022 824 80 of of ADP coo.31924059551022 824 81 zeros zero NOUN coo.31924059551022 824 82 equal equal ADJ coo.31924059551022 824 83 to to ADP coo.31924059551022 824 84 the the DET coo.31924059551022 824 85 number number NOUN coo.31924059551022 824 86 of of ADP coo.31924059551022 824 87 infinites infinite NOUN coo.31924059551022 824 88 . . PUNCT coo.31924059551022 825 1 the the DET coo.31924059551022 825 2 reverse reverse ADJ coo.31924059551022 825 3 theorem theorem NOUN coo.31924059551022 825 4 is be AUX coo.31924059551022 825 5 also also ADV coo.31924059551022 825 6 known know VERB coo.31924059551022 825 7 and and CCONJ coo.31924059551022 825 8 we we PRON coo.31924059551022 825 9 may may AUX coo.31924059551022 825 10 write write VERB coo.31924059551022 825 11 : : PUNCT coo.31924059551022 825 12 [ [ X coo.31924059551022 825 13 u0 u0 X coo.31924059551022 825 14 ] ] X coo.31924059551022 825 15 ( ( PUNCT coo.31924059551022 825 16 _ _ PROPN coo.31924059551022 825 17 irii irii VERB coo.31924059551022 825 18 _ _ PUNCT coo.31924059551022 825 19 0(pu 0(pu NUM coo.31924059551022 825 20 ) ) PUNCT coo.31924059551022 826 1 _ _ PROPN coo.31924059551022 827 1 w w X coo.31924059551022 827 2 ( ( PUNCT coo.31924059551022 827 3 pu pu PROPN coo.31924059551022 827 4 ) ) PUNCT coo.31924059551022 827 5 where where SCONJ coo.31924059551022 827 6 φ φ PROPN coo.31924059551022 827 7 and and CCONJ coo.31924059551022 827 8 ψ ψ PROPN coo.31924059551022 827 9 are be AUX coo.31924059551022 827 10 intire intire ADJ coo.31924059551022 827 11 polynomials polynomial NOUN coo.31924059551022 827 12 in in ADP coo.31924059551022 827 13 pu pu PROPN coo.31924059551022 827 14 and and CCONJ coo.31924059551022 827 15 p'u p'u ADV coo.31924059551022 827 16 , , PUNCT coo.31924059551022 827 17 \ \ PROPN coo.31924059551022 827 18 a a DET coo.31924059551022 827 19 constant constant NOUN coo.31924059551022 827 20 to to PART coo.31924059551022 827 21 be be AUX coo.31924059551022 827 22 determined determine VERB coo.31924059551022 827 23 and and CCONJ coo.31924059551022 827 24 the the DET coo.31924059551022 827 25 relation relation NOUN coo.31924059551022 827 26 exists exist VERB coo.31924059551022 827 27 « « PUNCT coo.31924059551022 827 28 + + CCONJ coo.31924059551022 828 1 b b X coo.31924059551022 828 2 + + CCONJ coo.31924059551022 828 3 c c NOUN coo.31924059551022 828 4 = = SYM coo.31924059551022 828 5 also also ADV coo.31924059551022 828 6 , , PUNCT coo.31924059551022 828 7 from from ADP coo.31924059551022 828 8 the the DET coo.31924059551022 828 9 general general ADJ coo.31924059551022 828 10 theory theory NOUN coo.31924059551022 828 11 , , PUNCT coo.31924059551022 828 12 the the DET coo.31924059551022 828 13 degree degree NOUN coo.31924059551022 828 14 of of ADP coo.31924059551022 828 15 the the DET coo.31924059551022 828 16 right right ADJ coo.31924059551022 828 17 hand hand NOUN coo.31924059551022 828 18 member member NOUN coo.31924059551022 828 19 is be AUX coo.31924059551022 828 20 four four NUM coo.31924059551022 828 21 , , PUNCT coo.31924059551022 828 22 p p NOUN coo.31924059551022 828 23 ( ( PUNCT coo.31924059551022 828 24 u u NOUN coo.31924059551022 828 25 ) ) PUNCT coo.31924059551022 828 26 being be AUX coo.31924059551022 828 27 considered consider VERB coo.31924059551022 828 28 as as ADP coo.31924059551022 828 29 of of ADP coo.31924059551022 828 30 the the DET coo.31924059551022 828 31 second second ADJ coo.31924059551022 828 32 degree degree NOUN coo.31924059551022 828 33 and and CCONJ coo.31924059551022 828 34 p'(u p'(u PROPN coo.31924059551022 828 35 ) ) PUNCT coo.31924059551022 828 36 of of ADP coo.31924059551022 828 37 the the DET coo.31924059551022 828 38 third third ADJ coo.31924059551022 828 39 . . PUNCT coo.31924059551022 829 1 the the DET coo.31924059551022 829 2 degree degree NOUN coo.31924059551022 829 3 of of ADP coo.31924059551022 829 4 φ φ PROPN coo.31924059551022 829 5 and and CCONJ coo.31924059551022 829 6 ψ ψ PROPN coo.31924059551022 829 7 are be AUX coo.31924059551022 829 8 thus thus ADV coo.31924059551022 829 9 determined determine VERB coo.31924059551022 829 10 as as SCONJ coo.31924059551022 829 11 follows follow VERB coo.31924059551022 829 12 : : PUNCT coo.31924059551022 829 13 φ φ PROPN coo.31924059551022 829 14 ψ ψ PROPN coo.31924059551022 830 1 n n ADP coo.31924059551022 830 2 odd odd ADJ coo.31924059551022 830 3 : : PUNCT coo.31924059551022 830 4 | | SYM coo.31924059551022 830 5 ( ( PUNCT coo.31924059551022 830 6 w w X coo.31924059551022 830 7 + + NUM coo.31924059551022 830 8 1 1 NUM coo.31924059551022 830 9 ) ) PUNCT coo.31924059551022 830 10 ~ ~ PUNCT coo.31924059551022 830 11 ( ( PUNCT coo.31924059551022 830 12 n n X coo.31924059551022 830 13 — — PUNCT coo.31924059551022 830 14 3 3 X coo.31924059551022 830 15 ) ) PUNCT coo.31924059551022 830 16 ' ' PUNCT coo.31924059551022 830 17 n n CCONJ coo.31924059551022 830 18 even even ADV coo.31924059551022 830 19 ~n ~n NUM coo.31924059551022 830 20 — — PUNCT coo.31924059551022 830 21 1 1 NUM coo.31924059551022 830 22 n n CCONJ coo.31924059551022 830 23 = = SYM coo.31924059551022 830 24 3 3 NUM coo.31924059551022 830 25 2 2 NUM coo.31924059551022 830 26 0 0 NUM coo.31924059551022 830 27 . . PUNCT coo.31924059551022 831 1 the the DET coo.31924059551022 831 2 n n ADJ coo.31924059551022 831 3 roots root NOUN coo.31924059551022 831 4 of of ADP coo.31924059551022 831 5 the the DET coo.31924059551022 831 6 first first ADJ coo.31924059551022 831 7 member member NOUN coo.31924059551022 831 8 in in ADP coo.31924059551022 831 9 the the DET coo.31924059551022 831 10 general general ADJ coo.31924059551022 831 11 case case NOUN coo.31924059551022 831 12 being be AUX coo.31924059551022 831 13 a a DET coo.31924059551022 831 14 , , PUNCT coo.31924059551022 831 15 6 6 NUM coo.31924059551022 831 16 , , PUNCT coo.31924059551022 831 17 c c NOUN coo.31924059551022 831 18 ... ... PUNCT coo.31924059551022 831 19 we we PRON coo.31924059551022 831 20 have have VERB coo.31924059551022 831 21 : : PUNCT coo.31924059551022 831 22 [ [ X coo.31924059551022 831 23 111 111 NUM coo.31924059551022 831 24 ] ] PUNCT coo.31924059551022 831 25 ................ ................ PUNCT coo.31924059551022 831 26 φ(α φ(α SPACE coo.31924059551022 831 27 ’ ' PUNCT coo.31924059551022 831 28 ) ) PUNCT coo.31924059551022 831 29 — — PUNCT coo.31924059551022 831 30 ^1α'ψ(α ^1α'ψ(α SPACE coo.31924059551022 831 31 ) ) PUNCT coo.31924059551022 831 32 = = PROPN coo.31924059551022 831 33 0 0 NUM coo.31924059551022 832 1 where where SCONJ coo.31924059551022 832 2 u u PROPN coo.31924059551022 832 3 — — PUNCT coo.31924059551022 832 4 p'(a)7 p'(a)7 PROPN coo.31924059551022 832 5 a a DET coo.31924059551022 832 6 = = NOUN coo.31924059551022 832 7 p(a p(a NOUN coo.31924059551022 832 8 ) ) PUNCT coo.31924059551022 832 9 . . PUNCT coo.31924059551022 833 1 from from ADP coo.31924059551022 833 2 ( ( PUNCT coo.31924059551022 833 3 p. p. NOUN coo.31924059551022 833 4 38 38 NUM coo.31924059551022 833 5 ) ) PUNCT coo.31924059551022 833 6 dy dy PROPN coo.31924059551022 833 7 2c 2c PROPN coo.31924059551022 833 8 f f PROPN coo.31924059551022 833 9 ' ' PUNCT coo.31924059551022 833 10 t t PROPN coo.31924059551022 833 11 ' ' PUNCT coo.31924059551022 833 12 \ \ PROPN coo.31924059551022 833 13 ~dt ~dt X coo.31924059551022 833 14 = = PUNCT coo.31924059551022 833 15 « « PUNCT coo.31924059551022 833 16 ' ' PUNCT coo.31924059551022 833 17 =( =( X coo.31924059551022 833 18 “ " PUNCT coo.31924059551022 833 19 β β X coo.31924059551022 833 20 ) ) PUNCT coo.31924059551022 833 21 ( ( PUNCT coo.31924059551022 833 22 “ " PUNCT coo.31924059551022 833 23 r r NOUN coo.31924059551022 833 24 ) ) PUNCT coo.31924059551022 833 25 · · PUNCT coo.31924059551022 833 26 ■ ■ PUNCT coo.31924059551022 833 27 ■ ■ PUNCT coo.31924059551022 833 28 whence whence ADP coo.31924059551022 833 29 j j X coo.31924059551022 833 30 _ _ PRON coo.31924059551022 833 31 , , PUNCT coo.31924059551022 833 32 _ _ PRON coo.31924059551022 833 33 ( ( PUNCT coo.31924059551022 833 34 dt\ dt\ X coo.31924059551022 833 35 2 2 NUM coo.31924059551022 833 36 c c X coo.31924059551022 833 37 ® ® NOUN coo.31924059551022 833 38 . . PUNCT coo.31924059551022 833 39 \dyji \dyji ADV coo.31924059551022 833 40 = = PRON coo.31924059551022 833 41 a a NOUN coo.31924059551022 833 42 and and CCONJ coo.31924059551022 833 43 [ [ X coo.31924059551022 833 44 111 111 NUM coo.31924059551022 833 45 ] ] PUNCT coo.31924059551022 833 46 becomes become VERB coo.31924059551022 833 47 [ [ X coo.31924059551022 833 48 112 112 NUM coo.31924059551022 833 49 ] ] PUNCT coo.31924059551022 833 50 ............. ............. PUNCT coo.31924059551022 833 51 γφ^ι γφ^ι SPACE coo.31924059551022 833 52 - - PUNCT coo.31924059551022 833 53 ψί ψί NOUN coo.31924059551022 833 54 = = SYM coo.31924059551022 833 55 0 0 NUM coo.31924059551022 833 56 . . PUNCT coo.31924059551022 834 1 but but CCONJ coo.31924059551022 834 2 a a DET coo.31924059551022 834 3 , , PUNCT coo.31924059551022 834 4 β β X coo.31924059551022 834 5 , , PUNCT coo.31924059551022 834 6 y y PROPN coo.31924059551022 834 7 , , PUNCT coo.31924059551022 834 8 ... ... PUNCT coo.31924059551022 834 9 are be AUX coo.31924059551022 834 10 also also ADV coo.31924059551022 834 11 roots root NOUN coo.31924059551022 834 12 of of ADP coo.31924059551022 834 13 yf yf NOUN coo.31924059551022 834 14 whence whence INTJ coo.31924059551022 834 15 the the PRON coo.31924059551022 834 16 . . PUNCT coo.31924059551022 835 1 relation relation PROPN coo.31924059551022 835 2 [ [ X coo.31924059551022 835 3 113 113 NUM coo.31924059551022 835 4 ] ] PUNCT coo.31924059551022 835 5 · · PUNCT coo.31924059551022 835 6 ............... ............... PUNCT coo.31924059551022 835 7 ψ ψ X coo.31924059551022 835 8 = = X coo.31924059551022 836 1 ευ ευ X coo.31924059551022 836 2 where where SCONJ coo.31924059551022 836 3 e e NOUN coo.31924059551022 836 4 is be AUX coo.31924059551022 836 5 also also ADV coo.31924059551022 836 6 in in ADP coo.31924059551022 836 7 general general ADJ coo.31924059551022 836 8 an an DET coo.31924059551022 836 9 intire intire ADJ coo.31924059551022 836 10 polynomial polynomial NOUN coo.31924059551022 836 11 in in ADP coo.31924059551022 836 12 t t PROPN coo.31924059551022 836 13 whence whence NOUN coo.31924059551022 836 14 t114j t114j NOUN coo.31924059551022 836 15 ................... ................... PUNCT coo.31924059551022 836 16 #4?=^+ #4?=^+ PROPN coo.31924059551022 836 17 ? ? PUNCT coo.31924059551022 836 18 ' ' PUNCT coo.31924059551022 837 1 reduction reduction NOUN coo.31924059551022 837 2 of of ADP coo.31924059551022 837 3 the the DET coo.31924059551022 837 4 forms form NOUN coo.31924059551022 837 5 when when SCONJ coo.31924059551022 837 6 n n SYM coo.31924059551022 837 7 equals equal VERB coo.31924059551022 837 8 three three NUM coo.31924059551022 837 9 . . PUNCT coo.31924059551022 838 1 61 61 NUM coo.31924059551022 838 2 we we PRON coo.31924059551022 838 3 have have VERB coo.31924059551022 838 4 also also ADV coo.31924059551022 838 5 [ [ X coo.31924059551022 838 6 « « PUNCT coo.31924059551022 838 7 " " PUNCT coo.31924059551022 838 8 -ίί·.-0 -ίί·.-0 PROPN coo.31924059551022 838 9 etc etc X coo.31924059551022 838 10 . . X coo.31924059551022 839 1 for for ADP coo.31924059551022 839 2 the the DET coo.31924059551022 839 3 other other ADJ coo.31924059551022 839 4 roots root NOUN coo.31924059551022 839 5 of of ADP coo.31924059551022 839 6 y. y. NOUN coo.31924059551022 839 7 the the DET coo.31924059551022 839 8 degrees degree NOUN coo.31924059551022 839 9 of of ADP coo.31924059551022 839 10 [ [ PUNCT coo.31924059551022 839 11 114 114 NUM coo.31924059551022 839 12 ] ] PUNCT coo.31924059551022 839 13 are be AUX coo.31924059551022 839 14 7js 7js PROPN coo.31924059551022 839 15 y y PROPN coo.31924059551022 839 16 . . PUNCT coo.31924059551022 840 1 φ φ PROPN coo.31924059551022 841 1 n n X coo.31924059551022 841 2 odd odd ADJ coo.31924059551022 841 3 : : PUNCT coo.31924059551022 841 4 , , PUNCT coo.31924059551022 841 5 -----------------i---------r -----------------i---------r ADJ coo.31924059551022 841 6 ί----------|(h-8)- ί----------|(h-8)- SPACE coo.31924059551022 841 7 » » PUNCT coo.31924059551022 841 8 = = PUNCT coo.31924059551022 841 9 -i -i PUNCT coo.31924059551022 841 10 ( ( PUNCT coo.31924059551022 841 11 » » PUNCT coo.31924059551022 841 12 + + NUM coo.31924059551022 841 13 8) 8) NUM coo.31924059551022 841 14 } } PUNCT coo.31924059551022 841 15 ( ( PUNCT coo.31924059551022 841 16 n n CCONJ coo.31924059551022 841 17 + + CCONJ coo.31924059551022 841 18 3 3 X coo.31924059551022 841 19 ) ) PUNCT coo.31924059551022 841 20 -1 -1 PROPN coo.31924059551022 841 21 n n CCONJ coo.31924059551022 841 22 even even ADV coo.31924059551022 841 23 : : PUNCT coo.31924059551022 841 24 γ γ NOUN coo.31924059551022 841 25 ( ( PUNCT coo.31924059551022 841 26 n n NOUN coo.31924059551022 841 27 ) ) PUNCT coo.31924059551022 841 28 — — PUNCT coo.31924059551022 841 29 1 1 NUM coo.31924059551022 841 30 — — PUNCT coo.31924059551022 841 31 n n CCONJ coo.31924059551022 841 32 = = PUNCT coo.31924059551022 841 33 — — PUNCT coo.31924059551022 841 34 ( ( PUNCT coo.31924059551022 841 35 γ γ NOUN coo.31924059551022 841 36 n n X coo.31924059551022 841 37 + + PRON coo.31924059551022 841 38 l l NOUN coo.31924059551022 841 39 ) ) PUNCT coo.31924059551022 841 40 , , PUNCT coo.31924059551022 841 41 ( ( PUNCT coo.31924059551022 841 42 j j X coo.31924059551022 841 43 « « SYM coo.31924059551022 841 44 + + CCONJ coo.31924059551022 841 45 l l NOUN coo.31924059551022 841 46 ] ] X coo.31924059551022 841 47 — — PUNCT coo.31924059551022 841 48 1 1 X coo.31924059551022 841 49 . . X coo.31924059551022 842 1 we we PRON coo.31924059551022 842 2 have have VERB coo.31924059551022 842 3 . . PUNCT coo.31924059551022 843 1 y y PROPN coo.31924059551022 843 2 = = X coo.31924059551022 843 3 tn tn PROPN coo.31924059551022 843 4 -faltn~1 -faltn~1 X coo.31924059551022 843 5 -fa2tn~~2 -fa2tn~~2 X coo.31924059551022 843 6 -f -f PUNCT coo.31924059551022 843 7 · · PUNCT coo.31924059551022 843 8 · · PUNCT coo.31924059551022 843 9 · · PUNCT coo.31924059551022 843 10 -fan -fan NUM coo.31924059551022 844 1 - - NOUN coo.31924059551022 844 2 xt xt PROPN coo.31924059551022 844 3 -fun -fun X coo.31924059551022 844 4 y y NOUN coo.31924059551022 844 5 ' ' PUNCT coo.31924059551022 844 6 = = PRON coo.31924059551022 844 7 ntn ntn PROPN coo.31924059551022 844 8 ~ ~ PROPN coo.31924059551022 844 9 x x SYM coo.31924059551022 844 10 + + CCONJ coo.31924059551022 844 11 ( ( PUNCT coo.31924059551022 844 12 m m PROPN coo.31924059551022 844 13 — — PUNCT coo.31924059551022 844 14 1 1 X coo.31924059551022 844 15 ) ) PUNCT coo.31924059551022 844 16 a±tn~2 a±tn~2 NOUN coo.31924059551022 844 17 + + CCONJ coo.31924059551022 844 18 ( ( PUNCT coo.31924059551022 844 19 n n X coo.31924059551022 844 20 — — PUNCT coo.31924059551022 844 21 2 2 X coo.31924059551022 844 22 ) ) PUNCT coo.31924059551022 844 23 a2tn~3 a2tn~3 PROPN coo.31924059551022 845 1 + + PUNCT coo.31924059551022 845 2 · · PUNCT coo.31924059551022 845 3 · · PUNCT coo.31924059551022 845 4 · · PUNCT coo.31924059551022 845 5 + + CCONJ coo.31924059551022 845 6 an an X coo.31924059551022 845 7 — — PUNCT coo.31924059551022 845 8 i i PRON coo.31924059551022 845 9 and and CCONJ coo.31924059551022 845 10 y y NOUN coo.31924059551022 845 11 _ _ PUNCT coo.31924059551022 845 12 = = PUNCT coo.31924059551022 846 1 nt"-1 nt"-1 ADJ coo.31924059551022 846 2 + + CCONJ coo.31924059551022 846 3 ax ax ADJ coo.31924059551022 846 4 ( ( PUNCT coo.31924059551022 846 5 η η PROPN coo.31924059551022 846 6 — — PUNCT coo.31924059551022 846 7 1 1 X coo.31924059551022 846 8 ) ) PUNCT coo.31924059551022 846 9 tn~2 tn~2 NOUN coo.31924059551022 846 10 -\- -\- NOUN coo.31924059551022 847 1 _ _ X coo.31924059551022 848 1 h h X coo.31924059551022 848 2 > > X coo.31924059551022 849 1 i i PRON coo.31924059551022 849 2 h h VERB coo.31924059551022 849 3 jl jl PROPN coo.31924059551022 849 4 h h PROPN coo.31924059551022 849 5 4 4 NUM coo.31924059551022 849 6 . . PUNCT coo.31924059551022 849 7 . . PUNCT coo.31924059551022 850 1 y y PROPN coo.31924059551022 850 2 f1 f1 PROPN coo.31924059551022 850 3 + + CCONJ coo.31924059551022 850 4 α α NOUN coo.31924059551022 850 5 , , PUNCT coo.31924059551022 850 6 γ"1 γ"1 VERB coo.31924059551022 850 7 + + ADP coo.31924059551022 850 8 a2tn~2 a2tn~2 ADJ coo.31924059551022 851 1 + + PUNCT coo.31924059551022 851 2 · · PUNCT coo.31924059551022 851 3 . . PUNCT coo.31924059551022 852 1 ^ ^ X coo.31924059551022 852 2 * * PUNCT coo.31924059551022 853 1 i2 i2 PROPN coo.31924059551022 853 2 ' ' PUNCT coo.31924059551022 853 3 ” " PUNCT coo.31924059551022 853 4 * * PUNCT coo.31924059551022 853 5 or or CCONJ coo.31924059551022 853 6 ntn~1 ntn~1 ADJ coo.31924059551022 854 1 + + CCONJ coo.31924059551022 854 2 ax ax NOUN coo.31924059551022 854 3 ( ( PUNCT coo.31924059551022 854 4 n n NOUN coo.31924059551022 854 5 — — PUNCT coo.31924059551022 854 6 1 1 X coo.31924059551022 854 7 ) ) PUNCT coo.31924059551022 854 8 tn~2 tn~2 NOUN coo.31924059551022 854 9 -fa2 -fa2 PROPN coo.31924059551022 855 1 ( ( PUNCT coo.31924059551022 855 2 n n X coo.31924059551022 855 3 — — PUNCT coo.31924059551022 855 4 2 2 X coo.31924059551022 855 5 ) ) PUNCT coo.31924059551022 855 6 ¿ ¿ NOUN coo.31924059551022 855 7 w—3 w—3 PROPN coo.31924059551022 856 1 + + CCONJ coo.31924059551022 856 2 · · PUNCT coo.31924059551022 856 3 · · PUNCT coo.31924059551022 856 4 · · PUNCT coo.31924059551022 856 5 = = PUNCT coo.31924059551022 856 6 a a NOUN coo.31924059551022 856 7 + + ADJ coo.31924059551022 856 8 * * PUNCT coo.31924059551022 856 9 · · PUNCT coo.31924059551022 856 10 ’ ’ NUM coo.31924059551022 856 11 · · PUNCT coo.31924059551022 856 12 ) ) PUNCT coo.31924059551022 856 13 + + CCONJ coo.31924059551022 856 14 ( ( PUNCT coo.31924059551022 856 15 * * PUNCT coo.31924059551022 856 16 ” " PUNCT coo.31924059551022 856 17 ~2 ~2 PROPN coo.31924059551022 856 18 + + CCONJ coo.31924059551022 856 19 mn~3 mn~3 PROPN coo.31924059551022 856 20 + + PUNCT coo.31924059551022 856 21 · · PUNCT coo.31924059551022 856 22 * * PUNCT coo.31924059551022 856 23 0 0 NUM coo.31924059551022 856 24 and and CCONJ coo.31924059551022 856 25 equating equate VERB coo.31924059551022 856 26 the the DET coo.31924059551022 856 27 corresponding corresponding ADJ coo.31924059551022 856 28 coefficients coefficient NOUN coo.31924059551022 856 29 we we PRON coo.31924059551022 856 30 obtain obtain VERB coo.31924059551022 856 31 : : PUNCT coo.31924059551022 856 32 \ \ X coo.31924059551022 856 33 = = X coo.31924059551022 856 34 n n X coo.31924059551022 856 35 at at ADP coo.31924059551022 856 36 ( ( PUNCT coo.31924059551022 856 37 n n NOUN coo.31924059551022 856 38 — — PUNCT coo.31924059551022 856 39 1 1 X coo.31924059551022 856 40 ) ) PUNCT coo.31924059551022 856 41 = = X coo.31924059551022 856 42 nat nat PROPN coo.31924059551022 856 43 + + CCONJ coo.31924059551022 856 44 ^ ^ NOUN coo.31924059551022 856 45 or or CCONJ coo.31924059551022 856 46 = = VERB coo.31924059551022 856 47 — — PUNCT coo.31924059551022 856 48 « « PUNCT coo.31924059551022 856 49 1 1 X coo.31924059551022 856 50 [ [ X coo.31924059551022 856 51 115]· 115]· X coo.31924059551022 856 52 ................. ................. PUNCT coo.31924059551022 856 53 δ2 δ2 PROPN coo.31924059551022 856 54 = = PROPN coo.31924059551022 856 55 — — PUNCT coo.31924059551022 856 56 2 2 NUM coo.31924059551022 856 57 ft ft NOUN coo.31924059551022 856 58 + + NOUN coo.31924059551022 856 59 aî aî NOUN coo.31924059551022 856 60 g g NOUN coo.31924059551022 856 61 = = PUNCT coo.31924059551022 856 62 — — PUNCT coo.31924059551022 856 63 3 3 X coo.31924059551022 856 64 - - PUNCT coo.31924059551022 856 65 { { PUNCT coo.31924059551022 856 66 — — PUNCT coo.31924059551022 856 67 öq öq X coo.31924059551022 856 68 $ $ SYM coo.31924059551022 856 69 2 2 NUM coo.31924059551022 856 70 — — PUNCT coo.31924059551022 856 71 etc etc X coo.31924059551022 856 72 . . X coo.31924059551022 856 73 . . PUNCT coo.31924059551022 857 1 — — PUNCT coo.31924059551022 857 2 — — PUNCT coo.31924059551022 857 3 — — PUNCT coo.31924059551022 857 4 — — PUNCT coo.31924059551022 857 5 — — PUNCT coo.31924059551022 857 6 proceeding proceed VERB coo.31924059551022 857 7 in in ADP coo.31924059551022 857 8 like like ADJ coo.31924059551022 857 9 manner manner NOUN coo.31924059551022 857 10 we we PRON coo.31924059551022 857 11 write write VERB coo.31924059551022 857 12 : : PUNCT coo.31924059551022 857 13 φ φ X coo.31924059551022 857 14 = = PROPN coo.31924059551022 857 15 b0v b0v PROPN coo.31924059551022 857 16 + + CCONJ coo.31924059551022 857 17 jbji—1 jbji—1 PROPN coo.31924059551022 857 18 -1 -1 X coo.31924059551022 857 19 - - NOUN coo.31924059551022 857 20 -----h -----h NOUN coo.31924059551022 858 1 + + CCONJ coo.31924059551022 858 2 -br -br PUNCT coo.31924059551022 858 3 where where SCONJ coo.31924059551022 858 4 v v ADP coo.31924059551022 858 5 =[ =[ X coo.31924059551022 858 6 } } PUNCT coo.31924059551022 858 7 ( ( PUNCT coo.31924059551022 858 8 w+ w+ PROPN coo.31924059551022 858 9 1 1 NUM coo.31924059551022 858 10 ) ) PUNCT coo.31924059551022 858 11 , , PUNCT coo.31924059551022 858 12 4w 4w NOUN coo.31924059551022 858 13 ] ] X coo.31924059551022 858 14 whence whence NOUN coo.31924059551022 858 15 ( ( PUNCT coo.31924059551022 858 16 τ τ NOUN coo.31924059551022 858 17 + + NOUN coo.31924059551022 858 18 ψ ψ PUNCT coo.31924059551022 859 1 + + PUNCT coo.31924059551022 859 2 f f X coo.31924059551022 859 3 + + PUNCT coo.31924059551022 859 4 · · PUNCT coo.31924059551022 859 5 · · PUNCT coo.31924059551022 859 6 · · PUNCT coo.31924059551022 859 7 ) ) PUNCT coo.31924059551022 859 8 w w PROPN coo.31924059551022 859 9 + + NOUN coo.31924059551022 859 10 b^~l b^~l NOUN coo.31924059551022 859 11 + + CCONJ coo.31924059551022 859 12 ' ' PUNCT coo.31924059551022 859 13 ' ' PUNCT coo.31924059551022 859 14 ' ' PUNCT coo.31924059551022 859 15 ■ ■ PUNCT coo.31924059551022 859 16 + + CCONJ coo.31924059551022 859 17 μ μ NOUN coo.31924059551022 859 18 + + NOUN coo.31924059551022 859 19 * * PUNCT coo.31924059551022 859 20 ) ) PUNCT coo.31924059551022 859 21 = = NOUN coo.31924059551022 859 22 60 60 NUM coo.31924059551022 859 23 ( ( PUNCT coo.31924059551022 859 24 ΰοί’-1 ΰοί’-1 PROPN coo.31924059551022 859 25 + + ADP coo.31924059551022 859 26 η,#»- η,#»- SPACE coo.31924059551022 859 27 * * PUNCT coo.31924059551022 859 28 + + NUM coo.31924059551022 859 29 ■ ■ NOUN coo.31924059551022 859 30 · · PUNCT coo.31924059551022 859 31 · · PUNCT coo.31924059551022 859 32 + + NUM coo.31924059551022 859 33 b b X coo.31924059551022 859 34 , , PUNCT coo.31924059551022 859 35 _ _ NOUN coo.31924059551022 859 36 ! ! PUNCT coo.31924059551022 860 1 + + PUNCT coo.31924059551022 860 2 * * PUNCT coo.31924059551022 860 3 ’ ' PUNCT coo.31924059551022 860 4 - - PUNCT coo.31924059551022 860 5 ) ) PUNCT coo.31924059551022 861 1 + + CCONJ coo.31924059551022 861 2 δ δ X coo.31924059551022 861 3 , , PUNCT coo.31924059551022 861 4 ( ( PUNCT coo.31924059551022 861 5 -b0¿”-2 -b0¿”-2 NOUN coo.31924059551022 861 6 + + CCONJ coo.31924059551022 861 7 b**»- b**»- SPACE coo.31924059551022 861 8 » » PUNCT coo.31924059551022 861 9 h h PROPN coo.31924059551022 861 10 --- --- PUNCT coo.31924059551022 861 11 l l NOUN coo.31924059551022 861 12 · · PUNCT coo.31924059551022 861 13 -b -b PUNCT coo.31924059551022 861 14 . . PUNCT coo.31924059551022 862 1 -2 -2 X coo.31924059551022 863 1 + + CCONJ coo.31924059551022 863 2 br br NOUN coo.31924059551022 863 3 - - NOUN coo.31924059551022 863 4 i*"1 i*"1 NOUN coo.31924059551022 863 5 + + PUNCT coo.31924059551022 863 6 -β -β X coo.31924059551022 863 7 , , PUNCT coo.31924059551022 863 8 ί-2 ί-2 X coo.31924059551022 863 9 ) ) PUNCT coo.31924059551022 863 10 + + CCONJ coo.31924059551022 863 11 \ \ PROPN coo.31924059551022 864 1 ( ( PUNCT coo.31924059551022 864 2 -b0¿r—8 -b0¿r—8 PROPN coo.31924059551022 864 3 + + X coo.31924059551022 864 4 bt bt PROPN coo.31924059551022 864 5 £ £ SYM coo.31924059551022 864 6 ’ ’ NUM coo.31924059551022 864 7 ~4 ~4 NUM coo.31924059551022 864 8 -f -f SYM coo.31924059551022 864 9 · · PUNCT coo.31924059551022 864 10 · · NUM coo.31924059551022 864 11 · · PUNCT coo.31924059551022 864 12 ) ) PUNCT coo.31924059551022 865 1 + + CCONJ coo.31924059551022 865 2 · · PUNCT coo.31924059551022 865 3 · · PUNCT coo.31924059551022 865 4 · · PUNCT coo.31924059551022 865 5 62 62 NUM coo.31924059551022 865 6 part part NOUN coo.31924059551022 865 7 v. v. ADP coo.31924059551022 865 8 [ [ X coo.31924059551022 865 9 11.6 11.6 NUM coo.31924059551022 865 10 ] ] PUNCT coo.31924059551022 865 11 ^+vu1+iiw+w^+"'+f'7+'·1^ ^+vu1+iiw+w^+"'+f'7+'·1^ NOUN coo.31924059551022 865 12 + + CCONJ coo.31924059551022 865 13 \bvir \bvir X coo.31924059551022 865 14 * * NOUN coo.31924059551022 865 15 + + SYM coo.31924059551022 865 16 b.bv b.bv NOUN coo.31924059551022 865 17 - - PUNCT coo.31924059551022 865 18 it-1 it-1 PRON coo.31924059551022 866 1 + + PUNCT coo.31924059551022 866 2 \br \br PROPN coo.31924059551022 866 3 - - PUNCT coo.31924059551022 866 4 i i NOUN coo.31924059551022 866 5 + + CCONJ coo.31924059551022 866 6 hb,-»t hb,-»t PROPN coo.31924059551022 867 1 + + PUNCT coo.31924059551022 867 2 · · PUNCT coo.31924059551022 867 3 + + CCONJ coo.31924059551022 867 4 ’ ' PUNCT coo.31924059551022 867 5 . . PUNCT coo.31924059551022 868 1 , , PUNCT coo.31924059551022 868 2 + + PUNCT coo.31924059551022 868 3 hv-1bvt hv-1bvt X coo.31924059551022 868 4 ~ ~ SYM coo.31924059551022 868 5 v+ v+ NOUN coo.31924059551022 868 6 -----h -----h PUNCT coo.31924059551022 868 7 ® ® NOUN coo.31924059551022 868 8 * * PUNCT coo.31924059551022 868 9 -i -i X coo.31924059551022 868 10 = = PUNCT coo.31924059551022 868 11 + + X coo.31924059551022 868 12 h0b,-ip h0b,-ip NOUN coo.31924059551022 868 13 + + CCONJ coo.31924059551022 868 14 b0bv-^+l-\-l b0bv-^+l-\-l ADJ coo.31924059551022 868 15 · · PUNCT coo.31924059551022 868 16 kbj2 kbj2 PROPN coo.31924059551022 868 17 + + CCONJ coo.31924059551022 868 18 b0b0t**-1+t b0b0t**-1+t NOUN coo.31924059551022 868 19 > > SYM coo.31924059551022 868 20 ibvt''-2+b1br ibvt''-2+b1br NUM coo.31924059551022 868 21 - - PUNCT coo.31924059551022 868 22 it*-1-\-hbv it*-1-\-hbv ADV coo.31924059551022 868 23 - - PUNCT coo.31924059551022 868 24 i!t''+ i!t''+ ADJ coo.31924059551022 868 25 ■ ■ NOUN coo.31924059551022 868 26 · · PUNCT coo.31924059551022 868 27 from from ADP coo.31924059551022 868 28 whence whence ADP coo.31924059551022 868 29 the the DET coo.31924059551022 868 30 relations relation NOUN coo.31924059551022 868 31 : : PUNCT coo.31924059551022 868 32 \βν \βν PROPN coo.31924059551022 868 33 + + CCONJ coo.31924059551022 868 34 \bv \bv PROPN coo.31924059551022 868 35 - - PUNCT coo.31924059551022 868 36 i i NOUN coo.31924059551022 868 37 + + CCONJ coo.31924059551022 868 38 b2br-2 b2br-2 ADP coo.31924059551022 868 39 + + NOUN coo.31924059551022 868 40 · · PUNCT coo.31924059551022 868 41 · · PUNCT coo.31924059551022 868 42 · · PUNCT coo.31924059551022 868 43 + + CCONJ coo.31924059551022 868 44 b b X coo.31924059551022 868 45 > > X coo.31924059551022 868 46 vb0 vb0 X coo.31924059551022 868 47 = = SYM coo.31924059551022 868 48 0 0 X coo.31924059551022 868 49 \βύ \βύ PROPN coo.31924059551022 868 50 + + NUM coo.31924059551022 868 51 \br-1 \br-1 PUNCT coo.31924059551022 868 52 + + NUM coo.31924059551022 868 53 h----l h----l NOUN coo.31924059551022 868 54 · · PUNCT coo.31924059551022 868 55 ^r+l-^o ^r+l-^o X coo.31924059551022 868 56 = = SYM coo.31924059551022 868 57 0 0 NUM coo.31924059551022 868 58 v v NOUN coo.31924059551022 868 59 — — PUNCT coo.31924059551022 868 60 2 2 NUM coo.31924059551022 868 61 bv bv PROPN coo.31924059551022 868 62 - - PUNCT coo.31924059551022 868 63 xbv xbv PROPN coo.31924059551022 868 64 + + CCONJ coo.31924059551022 868 65 bvbv-1 bvbv-1 NOUN coo.31924059551022 868 66 + + CCONJ coo.31924059551022 868 67 br+tbv-2 br+tbv-2 VERB coo.31924059551022 868 68 h---------1&2,-i#c h---------1&2,-i#c ADJ coo.31924059551022 868 69 = = NOUN coo.31924059551022 868 70 0 0 NUM coo.31924059551022 868 71 we we PRON coo.31924059551022 868 72 will will AUX coo.31924059551022 868 73 define define VERB coo.31924059551022 868 74 : : PUNCT coo.31924059551022 868 75 [ [ X coo.31924059551022 868 76 117 117 NUM coo.31924059551022 868 77 ] ] X coo.31924059551022 868 78 dm dm PROPN coo.31924059551022 868 79 = = X coo.31924059551022 868 80 w w PROPN coo.31924059551022 868 81 & & CCONJ coo.31924059551022 868 82 1 1 PROPN coo.31924059551022 868 83 & & CCONJ coo.31924059551022 868 84 2 2 NUM coo.31924059551022 868 85 * * PUNCT coo.31924059551022 868 86 * * PUNCT coo.31924059551022 868 87 ’ ' PUNCT coo.31924059551022 868 88 bm bm X coo.31924059551022 868 89 * * PUNCT coo.31924059551022 868 90 ‘ ' PUNCT coo.31924059551022 868 91 * * PUNCT coo.31924059551022 868 92 .^m .^m PUNCT coo.31924059551022 869 1 + + PUNCT coo.31924059551022 869 2 l l NOUN coo.31924059551022 869 3 ^m^ra ^m^ra PUNCT coo.31924059551022 869 4 + + CCONJ coo.31924059551022 869 5 1 1 NUM coo.31924059551022 869 6 ^m ^m NOUN coo.31924059551022 869 7 - - SYM coo.31924059551022 869 8 f-2 f-2 PROPN coo.31924059551022 869 9 * * PUNCT coo.31924059551022 869 10 * * PUNCT coo.31924059551022 870 1 * * PUNCT coo.31924059551022 870 2 ^2 ^2 PRON coo.31924059551022 870 3 m m VERB coo.31924059551022 870 4 we we PRON coo.31924059551022 870 5 will will AUX coo.31924059551022 870 6 define define VERB coo.31924059551022 870 7 b b NOUN coo.31924059551022 870 8 , , PUNCT coo.31924059551022 870 9 = = X coo.31924059551022 870 10 ^r—1 ^r—1 VERB coo.31924059551022 871 1 and and CCONJ coo.31924059551022 871 2 we we PRON coo.31924059551022 871 3 will will AUX coo.31924059551022 871 4 then then ADV coo.31924059551022 871 5 have have VERB coo.31924059551022 871 6 from from ADP coo.31924059551022 871 7 the the DET coo.31924059551022 871 8 above above ADJ coo.31924059551022 871 9 conditions condition NOUN coo.31924059551022 871 10 , , PUNCT coo.31924059551022 871 11 all all DET coo.31924059551022 871 12 the the DET coo.31924059551022 871 13 coefficients coefficient NOUN coo.31924059551022 871 14 b1b2 b1b2 ADP coo.31924059551022 871 15 , , PUNCT coo.31924059551022 871 16 .. .. PUNCT coo.31924059551022 871 17 as as ADP coo.31924059551022 871 18 intire intire ADJ coo.31924059551022 871 19 functions function NOUN coo.31924059551022 871 20 of of ADP coo.31924059551022 871 21 w w PROPN coo.31924059551022 871 22 ... ... PUNCT coo.31924059551022 871 23 which which PRON coo.31924059551022 871 24 are be AUX coo.31924059551022 871 25 in in ADP coo.31924059551022 871 26 turn turn NOUN coo.31924059551022 871 27 functions function NOUN coo.31924059551022 871 28 of of ADP coo.31924059551022 871 29 a19 a19 PROPN coo.31924059551022 871 30 a2 a2 PROPN coo.31924059551022 871 31 ... ... PUNCT coo.31924059551022 871 32 which which PRON coo.31924059551022 871 33 finally finally ADV coo.31924059551022 871 34 are be AUX coo.31924059551022 871 35 expressed express VERB coo.31924059551022 871 36 as as ADP coo.31924059551022 871 37 functions function NOUN coo.31924059551022 871 38 of of ADP coo.31924059551022 871 39 b b NOUN coo.31924059551022 871 40 , , PUNCT coo.31924059551022 871 41 g2 g2 PROPN coo.31924059551022 871 42 and and CCONJ coo.31924059551022 871 43 g3 g3 PROPN coo.31924059551022 871 44 . . PUNCT coo.31924059551022 872 1 that that PRON coo.31924059551022 872 2 is be AUX coo.31924059551022 872 3 we we PRON coo.31924059551022 872 4 have have AUX coo.31924059551022 872 5 obtained obtain VERB coo.31924059551022 872 6 φ φ PROPN coo.31924059551022 872 7 , , PUNCT coo.31924059551022 872 8 of of ADP coo.31924059551022 872 9 which which PRON coo.31924059551022 872 10 the the DET coo.31924059551022 872 11 first first ADJ coo.31924059551022 872 12 coefficient coefficient NOUN coo.31924059551022 872 13 shall shall AUX coo.31924059551022 872 14 be be AUX coo.31924059551022 872 15 âv^x âv^x X coo.31924059551022 872 16 intire intire NOUN coo.31924059551022 872 17 in in ADP coo.31924059551022 872 18 terms term NOUN coo.31924059551022 872 19 of of ADP coo.31924059551022 872 20 t t PROPN coo.31924059551022 872 21 , , PUNCT coo.31924059551022 872 22 b b PROPN coo.31924059551022 872 23 , , PUNCT coo.31924059551022 872 24 g2 g2 PROPN coo.31924059551022 872 25 and and CCONJ coo.31924059551022 872 26 g3 g3 PROPN coo.31924059551022 872 27 . . PROPN coo.31924059551022 873 1 case case PROPN coo.31924059551022 873 2 n n X coo.31924059551022 873 3 = = SYM coo.31924059551022 873 4 3 3 NUM coo.31924059551022 873 5 we we PRON coo.31924059551022 873 6 have have VERB coo.31924059551022 873 7 : : PUNCT coo.31924059551022 873 8 b b X coo.31924059551022 873 9 5 5 NUM coo.31924059551022 873 10 from from ADP coo.31924059551022 873 11 ( ( PUNCT coo.31924059551022 873 12 p. p. NOUN coo.31924059551022 873 13 36 36 NUM coo.31924059551022 873 14 ) ) PUNCT coo.31924059551022 873 15 μ μ NOUN coo.31924059551022 873 16 = = SYM coo.31924059551022 873 17 2 2 NUM coo.31924059551022 873 18 : : SYM coo.31924059551022 873 19 2 2 NUM coo.31924059551022 873 20 · · SYM coo.31924059551022 873 21 1 1 NUM coo.31924059551022 873 22 · · SYM coo.31924059551022 873 23 5 5 NUM coo.31924059551022 873 24 · · PUNCT coo.31924059551022 873 25 6at 6at NOUN coo.31924059551022 873 26 + + CCONJ coo.31924059551022 873 27 4 4 X coo.31924059551022 873 28 · · PUNCT coo.31924059551022 873 29 sb sb PROPN coo.31924059551022 873 30 = = PUNCT coo.31924059551022 873 31 0 0 NUM coo.31924059551022 873 32 or or CCONJ coo.31924059551022 873 33 μ μ NOUN coo.31924059551022 873 34 = = SYM coo.31924059551022 873 35 1 1 NUM coo.31924059551022 873 36 : : PUNCT coo.31924059551022 873 37 a2 a2 NOUN coo.31924059551022 873 38 = = X coo.31924059551022 873 39 2 2 NUM coo.31924059551022 873 40 * * NOUN coo.31924059551022 873 41 ’ ' PUNCT coo.31924059551022 873 42 λ λ NOUN coo.31924059551022 873 43 3 3 NUM coo.31924059551022 873 44 · · PUNCT coo.31924059551022 873 45 δ2 δ2 PROPN coo.31924059551022 873 46 4 4 NUM coo.31924059551022 873 47 μ μ NOUN coo.31924059551022 873 48 = = SYM coo.31924059551022 873 49 0 0 NUM coo.31924059551022 873 50 : : PUNCT coo.31924059551022 873 51 as as ADP coo.31924059551022 873 52 = = PUNCT coo.31924059551022 873 53 b3 b3 PROPN coo.31924059551022 873 54 i i PRON coo.31924059551022 873 55 3 3 NUM coo.31924059551022 873 56 * * SYM coo.31924059551022 873 57 52 52 NUM coo.31924059551022 873 58 1 1 NUM coo.31924059551022 873 59 ” " PUNCT coo.31924059551022 873 60 3 3 NUM coo.31924059551022 873 61 -5 -5 NUM coo.31924059551022 873 62 93 93 NUM coo.31924059551022 873 63 4 4 NUM coo.31924059551022 873 64 and and CCONJ coo.31924059551022 873 65 from from ADP coo.31924059551022 873 66 ( ( PUNCT coo.31924059551022 873 67 115 115 NUM coo.31924059551022 873 68 ) ) PUNCT coo.31924059551022 873 69 tn-1 tn-1 SPACE coo.31924059551022 873 70 n n CCONJ coo.31924059551022 873 71 = = SYM coo.31924059551022 873 72 b0 b0 NOUN coo.31924059551022 873 73 ¿ ¿ NOUN coo.31924059551022 873 74 « « PUNCT coo.31924059551022 873 75 -2 -2 NOUN coo.31924059551022 873 76 al al PROPN coo.31924059551022 873 77 ( ( PUNCT coo.31924059551022 873 78 n n NOUN coo.31924059551022 873 79 — — PUNCT coo.31924059551022 873 80 .1 .1 NUM coo.31924059551022 873 81 ) ) PUNCT coo.31924059551022 873 82 = = VERB coo.31924059551022 874 1 kaû kaû ADV coo.31924059551022 874 2 \ \ X coo.31924059551022 874 3 = = ADP coo.31924059551022 874 4 ‘ ' PUNCT coo.31924059551022 874 5 ■ ■ NOUN coo.31924059551022 874 6 — — PUNCT coo.31924059551022 874 7 οχ οχ X coo.31924059551022 874 8 a2(n a2(n PROPN coo.31924059551022 874 9 — — PUNCT coo.31924059551022 874 10 ■ ■ PRON coo.31924059551022 874 11 2 2 NUM coo.31924059551022 874 12 ) ) PUNCT coo.31924059551022 874 13 = = PUNCT coo.31924059551022 875 1 b0a2 b0a2 ADP coo.31924059551022 875 2 -fl>1 -fl>1 PUNCT coo.31924059551022 875 3 al al PROPN coo.31924059551022 875 4 + + CCONJ coo.31924059551022 875 5 ^2 ^2 NOUN coo.31924059551022 875 6 ; ; PUNCT coo.31924059551022 875 7 htn htn PROPN coo.31924059551022 875 8 ^ ^ PROPN coo.31924059551022 875 9 as as ADP coo.31924059551022 875 10 ( ( PUNCT coo.31924059551022 875 11 m m PROPN coo.31924059551022 875 12 — — PUNCT coo.31924059551022 875 13 3 3 X coo.31924059551022 875 14 ) ) PUNCT coo.31924059551022 875 15 — — PUNCT coo.31924059551022 875 16 � � VERB coo.31924059551022 875 17 3 3 NUM coo.31924059551022 875 18 + + NUM coo.31924059551022 875 19 + + PUNCT coo.31924059551022 875 20 + + CCONJ coo.31924059551022 875 21 v v NOUN coo.31924059551022 875 22 > > X coo.31924059551022 875 23 reduction reduction NUM coo.31924059551022 875 24 of of ADP coo.31924059551022 875 25 the the DET coo.31924059551022 875 26 forms form NOUN coo.31924059551022 875 27 when when SCONJ coo.31924059551022 875 28 n n SYM coo.31924059551022 875 29 equals equal VERB coo.31924059551022 875 30 three three NUM coo.31924059551022 875 31 . . PUNCT coo.31924059551022 875 32 63 63 NUM coo.31924059551022 876 1 the the DET coo.31924059551022 876 2 conditions condition NOUN coo.31924059551022 876 3 ( ( PUNCT coo.31924059551022 876 4 116 116 NUM coo.31924059551022 876 5 ) ) PUNCT coo.31924059551022 876 6 become become VERB coo.31924059551022 876 7 : : PUNCT coo.31924059551022 876 8 b0b2 b0b2 PUNCT coo.31924059551022 877 1 + + CCONJ coo.31924059551022 877 2 \bi \bi PROPN coo.31924059551022 877 3 + + X coo.31924059551022 877 4 b2b0 b2b0 PUNCT coo.31924059551022 877 5 * * PUNCT coo.31924059551022 877 6 = = SYM coo.31924059551022 877 7 0 0 NUM coo.31924059551022 877 8 \b2 \b2 PROPN coo.31924059551022 877 9 + + CCONJ coo.31924059551022 877 10 b2 b2 PROPN coo.31924059551022 877 11 b1 b1 PROPN coo.31924059551022 877 12 + + CCONJ coo.31924059551022 877 13 bsb0 bsb0 NOUN coo.31924059551022 877 14 = = SYM coo.31924059551022 877 15 0 0 NUM coo.31924059551022 877 16 whence whence NOUN coo.31924059551022 877 17 ( ( PUNCT coo.31924059551022 877 18 6λ-^)^-(δλ-^)50 6λ-^)^-(δλ-^)50 NUM coo.31924059551022 877 19 ( ( PUNCT coo.31924059551022 877 20 po^2 po^2 NOUN coo.31924059551022 877 21 hi hi PROPN coo.31924059551022 877 22 ) ) PUNCT coo.31924059551022 877 23 - - PUNCT coo.31924059551022 877 24 ® ® NUM coo.31924059551022 877 25 i i PRON coo.31924059551022 877 26 — — PUNCT coo.31924059551022 877 27 ( ( PUNCT coo.31924059551022 877 28 bxb2 bxb2 PROPN coo.31924059551022 877 29 b0b3 b0b3 SPACE coo.31924059551022 877 30 ) ) PUNCT coo.31924059551022 877 31 b0 b0 PROPN coo.31924059551022 877 32 . . PUNCT coo.31924059551022 878 1 but but CCONJ coo.31924059551022 878 2 b0 b0 NOUN coo.31924059551022 878 3 = = PUNCT coo.31924059551022 878 4 & & CCONJ coo.31924059551022 878 5 λ λ X coo.31924059551022 878 6 bí bí PROPN coo.31924059551022 878 7 = = VERB coo.31924059551022 878 8 \gi \gi PROPN coo.31924059551022 878 9 b b NOUN coo.31924059551022 878 10 * * PUNCT coo.31924059551022 878 11 = = SYM coo.31924059551022 878 12 4 4 NUM coo.31924059551022 878 13 g218 g218 PROPN coo.31924059551022 878 14 δ2 δ2 PROPN coo.31924059551022 878 15 = = VERB coo.31924059551022 878 16 6a2 6a2 NUM coo.31924059551022 878 17 = = PROPN coo.31924059551022 878 18 f f X coo.31924059551022 878 19 φ'2 φ'2 NOUN coo.31924059551022 878 20 whence whence ADP coo.31924059551022 878 21 jb2= jb2= NOUN coo.31924059551022 878 22 ( ( PUNCT coo.31924059551022 878 23 — — PUNCT coo.31924059551022 878 24 % % NOUN coo.31924059551022 878 25 ) ) PUNCT coo.31924059551022 878 26 φαχα2 φαχα2 PROPN coo.31924059551022 878 27 — — PUNCT coo.31924059551022 878 28 3α3 3α3 NUM coo.31924059551022 878 29 — — PUNCT coo.31924059551022 878 30 α α PROPN coo.31924059551022 878 31 ® ® NUM coo.31924059551022 878 32 ) ) PUNCT coo.31924059551022 878 33 — — PUNCT coo.31924059551022 878 34 ( ( PUNCT coo.31924059551022 878 35 4α| 4α| NUM coo.31924059551022 878 36 — — PUNCT coo.31924059551022 878 37 4α^α2 4α^α2 NUM coo.31924059551022 878 38 + + CCONJ coo.31924059551022 878 39 < < X coo.31924059551022 878 40 ή ή X coo.31924059551022 878 41 ) ) PUNCT coo.31924059551022 878 42 = = VERB coo.31924059551022 878 43 α^α2 α^α2 PROPN coo.31924059551022 878 44 + + NUM coo.31924059551022 878 45 3%^ 3%^ NUM coo.31924059551022 878 46 — — PUNCT coo.31924059551022 878 47 4α| 4α| NUM coo.31924059551022 878 48 = = PUNCT coo.31924059551022 878 49 i i PRON coo.31924059551022 878 50 ft·5 ft·5 NOUN coo.31924059551022 878 51 * * PUNCT coo.31924059551022 878 52 , , PUNCT coo.31924059551022 878 53 _ _ NOUN coo.31924059551022 878 54 1 1 NUM coo.31924059551022 878 55 2 2 NUM coo.31924059551022 878 56 3 3 NUM coo.31924059551022 878 57 * * PUNCT coo.31924059551022 878 58 . . PUNCT coo.31924059551022 879 1 53 53 NUM coo.31924059551022 879 2 3·4·5 3·4·5 NUM coo.31924059551022 879 3 * * NOUN coo.31924059551022 879 4 ' ' NUM coo.31924059551022 879 5 4 4 NUM coo.31924059551022 879 6 · · SYM coo.31924059551022 879 7 5 5 NUM coo.31924059551022 879 8 4 4 NUM coo.31924059551022 879 9 y2 y2 PROPN coo.31924059551022 879 10 = = SYM coo.31924059551022 879 11 32 32 NUM coo.31924059551022 879 12 · · PUNCT coo.31924059551022 879 13 5δ4 5δ4 NUM coo.31924059551022 879 14 + + NUM coo.31924059551022 879 15 τ τ NOUN coo.31924059551022 879 16 ^ ^ X coo.31924059551022 880 1 + + CCONJ coo.31924059551022 880 2 t t NOUN coo.31924059551022 880 3 — — PUNCT coo.31924059551022 880 4 τ τ NOUN coo.31924059551022 880 5 ^2 ^2 X coo.31924059551022 881 1 β1 β1 NOUN coo.31924059551022 881 2 = = X coo.31924059551022 881 3 ( ( PUNCT coo.31924059551022 881 4 — — PUNCT coo.31924059551022 881 5 % % NOUN coo.31924059551022 881 6 ) ) PUNCT coo.31924059551022 881 7 ( ( PUNCT coo.31924059551022 881 8 α2 α2 NOUN coo.31924059551022 881 9 — — PUNCT coo.31924059551022 881 10 2 2 NUM coo.31924059551022 881 11 α α NOUN coo.31924059551022 881 12 , , PUNCT coo.31924059551022 881 13 ) ) PUNCT coo.31924059551022 881 14 — — PUNCT coo.31924059551022 881 15 3 3 NUM coo.31924059551022 881 16 ( ( PUNCT coo.31924059551022 881 17 3 3 NUM coo.31924059551022 881 18 α α NOUN coo.31924059551022 881 19 , , PUNCT coo.31924059551022 881 20 « « PUNCT coo.31924059551022 881 21 2 2 NUM coo.31924059551022 881 22 — — PUNCT coo.31924059551022 881 23 3 3 NUM coo.31924059551022 881 24 — — PUNCT coo.31924059551022 881 25 α α X coo.31924059551022 881 26 ® ® NUM coo.31924059551022 881 27 ) ) PUNCT coo.31924059551022 881 28 = = X coo.31924059551022 882 1 2α 2α NUM coo.31924059551022 882 2 ® ® NOUN coo.31924059551022 882 3 — — PUNCT coo.31924059551022 882 4 ία^α^ ία^α^ PROPN coo.31924059551022 882 5 + + NUM coo.31924059551022 882 6 9α3 9α3 NUM coo.31924059551022 882 7 7β 7β NUM coo.31924059551022 882 8 ° ° PROPN coo.31924059551022 882 9 g g PROPN coo.31924059551022 882 10 , , PUNCT coo.31924059551022 882 11 b b PROPN coo.31924059551022 882 12 3 3 NUM coo.31924059551022 882 13 v v NOUN coo.31924059551022 882 14 3 3 NUM coo.31924059551022 882 15 · · SYM coo.31924059551022 882 16 53 53 NUM coo.31924059551022 882 17 " " PUNCT coo.31924059551022 882 18 τ τ PROPN coo.31924059551022 882 19 " " PUNCT coo.31924059551022 882 20 4 4 NUM coo.31924059551022 882 21 4 4 NUM coo.31924059551022 882 22 = = SYM coo.31924059551022 882 23 3276 3276 NUM coo.31924059551022 882 24 ® ® PROPN coo.31924059551022 882 25 +^2δ-|5ί3 +^2δ-|5ί3 PROPN coo.31924059551022 882 26 = = SYM coo.31924059551022 882 27 9 9 NUM coo.31924059551022 882 28 ^ ^ NOUN coo.31924059551022 882 29 3 3 NUM coo.31924059551022 882 30 + + NUM coo.31924059551022 882 31 126 126 NUM coo.31924059551022 882 32 α2 α2 NOUN coo.31924059551022 882 33 — — PUNCT coo.31924059551022 882 34 -jφ -jφ PUNCT coo.31924059551022 882 35 — — PUNCT coo.31924059551022 882 36 6δφ\ 6δφ\ NUM coo.31924059551022 882 37 we we PRON coo.31924059551022 882 38 derive derive VERB coo.31924059551022 882 39 then then ADV coo.31924059551022 882 40 , , PUNCT coo.31924059551022 882 41 finally finally ADV coo.31924059551022 882 42 φ φ X coo.31924059551022 882 43 = = PROPN coo.31924059551022 882 44 5 5 NUM coo.31924059551022 882 45 * * PUNCT coo.31924059551022 882 46 » » PUNCT coo.31924059551022 882 47 + + CCONJ coo.31924059551022 882 48 btt btt VERB coo.31924059551022 882 49 + + CCONJ coo.31924059551022 882 50 b2 b2 PROPN coo.31924059551022 882 51 — — PUNCT coo.31924059551022 882 52 — — PUNCT coo.31924059551022 882 53 6(362 6(362 NUM coo.31924059551022 882 54 — — PUNCT coo.31924059551022 882 55 ■ ■ NOUN coo.31924059551022 882 56 ! ! PUNCT coo.31924059551022 882 57 · · PUNCT coo.31924059551022 882 58 < < X coo.31924059551022 882 59 ? ? NUM coo.31924059551022 882 60 2 2 NUM coo.31924059551022 882 61 ) ) PUNCT coo.31924059551022 882 62 ( ( PUNCT coo.31924059551022 882 63 £ £ SYM coo.31924059551022 882 64 2 2 NUM coo.31924059551022 882 65 + + NUM coo.31924059551022 882 66 2δ£ 2δ£ NUM coo.31924059551022 882 67 + + PUNCT coo.31924059551022 882 68 δ2 δ2 PROPN coo.31924059551022 882 69 ) ) PUNCT coo.31924059551022 882 70 + + NUM coo.31924059551022 882 71 ( ( PUNCT coo.31924059551022 882 72 636»+“&6 636»+“&6 NUM coo.31924059551022 882 73 - - NOUN coo.31924059551022 882 74 -|&)(s -|&)(s NOUN coo.31924059551022 882 75 + + NUM coo.31924059551022 882 76 6 6 NUM coo.31924059551022 882 77 ) ) PUNCT coo.31924059551022 882 78 + + NUM coo.31924059551022 882 79 32·52δ4 32·52δ4 NUM coo.31924059551022 882 80 + + PUNCT coo.31924059551022 882 81 -|#2δ2-|-|-δ#3 -|#2δ2-|-|-δ#3 NUM coo.31924059551022 882 82 — — PUNCT coo.31924059551022 882 83 ^^2coef ^^2coef PROPN coo.31924059551022 882 84 . . PUNCT coo.31924059551022 883 1 s2 s2 PROPN coo.31924059551022 883 2 is be AUX coo.31924059551022 883 3 6 6 NUM coo.31924059551022 883 4 ' ' PUNCT coo.31924059551022 883 5 ( ( PUNCT coo.31924059551022 883 6 3 3 NUM coo.31924059551022 883 7 δ2 δ2 PROPN coo.31924059551022 883 8 - - PUNCT coo.31924059551022 883 9 · · PUNCT coo.31924059551022 883 10 | | PROPN coo.31924059551022 883 11 & & CCONJ coo.31924059551022 883 12 ) ) PUNCT coo.31924059551022 883 13 = = VERB coo.31924059551022 883 14 6 6 NUM coo.31924059551022 883 15 „ „ NUM coo.31924059551022 883 16 5ϊ8 5ϊ8 NUM coo.31924059551022 883 17 - - NUM coo.31924059551022 883 18 9(-116»+|λ6-|λ)=9λ 9(-116»+|λ6-|λ)=9λ NUM coo.31924059551022 883 19 » » X coo.31924059551022 883 20 s s VERB coo.31924059551022 883 21 ° ° X coo.31924059551022 883 22 „ „ PUNCT coo.31924059551022 883 23 -4(3δ2-|λ)2 -4(3δ2-|λ)2 PROPN coo.31924059551022 883 24 = = SYM coo.31924059551022 883 25 -4 -4 PROPN coo.31924059551022 883 26 ^ ^ X coo.31924059551022 883 27 2 2 NUM coo.31924059551022 883 28 hence hence ADV coo.31924059551022 883 29 [ [ X coo.31924059551022 883 30 118 118 NUM coo.31924059551022 883 31 ] ] PUNCT coo.31924059551022 883 32 φ φ X coo.31924059551022 883 33 = = X coo.31924059551022 883 34 6 6 NUM coo.31924059551022 883 35 ( ( PUNCT coo.31924059551022 883 36 3δ2 3δ2 NUM coo.31924059551022 883 37 — — PUNCT coo.31924059551022 883 38 jg2 jg2 NOUN coo.31924059551022 883 39 ) ) PUNCT coo.31924059551022 883 40 s2 s2 PROPN coo.31924059551022 883 41 + + PROPN coo.31924059551022 883 42 9 9 NUM coo.31924059551022 883 43 ( ( PUNCT coo.31924059551022 883 44 11δ 11δ NUM coo.31924059551022 883 45 ® ® PROPN coo.31924059551022 883 46 + + CCONJ coo.31924059551022 883 47 ±gib ±gib PROPN coo.31924059551022 883 48 - - PUNCT coo.31924059551022 883 49 l.gt)s-4(sp-±gt l.gt)s-4(sp-±gt ADJ coo.31924059551022 883 50 ) ) PUNCT coo.31924059551022 883 51 ‘ ' PUNCT coo.31924059551022 883 52 = = PRON coo.31924059551022 883 53 6 6 NUM coo.31924059551022 883 54 j.2s2 j.2s2 NOUN coo.31924059551022 883 55 + + NUM coo.31924059551022 883 56 9aa8 9aa8 NUM coo.31924059551022 883 57 — — PUNCT coo.31924059551022 883 58 4 4 NUM coo.31924059551022 883 59 at at ADP coo.31924059551022 883 60 having having AUX coo.31924059551022 883 61 obtained obtain VERB coo.31924059551022 883 62 φ φ PROPN coo.31924059551022 883 63 , , PUNCT coo.31924059551022 883 64 the the DET coo.31924059551022 883 65 calculation calculation NOUN coo.31924059551022 883 66 of of ADP coo.31924059551022 883 67 ψ ψ PROPN coo.31924059551022 883 68 and and CCONJ coo.31924059551022 883 69 e e PROPN coo.31924059551022 883 70 is be AUX coo.31924059551022 883 71 simplified simplify VERB coo.31924059551022 883 72 by by ADP coo.31924059551022 883 73 the the DET coo.31924059551022 883 74 following follow VERB coo.31924059551022 883 75 considerations consideration NOUN coo.31924059551022 883 76 : : PUNCT coo.31924059551022 883 77 64 64 NUM coo.31924059551022 883 78 part part NOUN coo.31924059551022 883 79 y. y. NOUN coo.31924059551022 883 80 let let VERB coo.31924059551022 883 81 n n ADV coo.31924059551022 883 82 be be AUX coo.31924059551022 883 83 taken take VERB coo.31924059551022 883 84 odd odd ADJ coo.31924059551022 883 85 and and CCONJ coo.31924059551022 883 86 take take VERB coo.31924059551022 883 87 for for ADP coo.31924059551022 883 88 b b PROPN coo.31924059551022 883 89 a a DET coo.31924059551022 883 90 root root NOUN coo.31924059551022 883 91 of of ADP coo.31924059551022 883 92 the the DET coo.31924059551022 883 93 equation equation NOUN coo.31924059551022 883 94 qi qi PROPN coo.31924059551022 883 95 = = PROPN coo.31924059551022 883 96 0 0 NUM coo.31924059551022 883 97 . . PUNCT coo.31924059551022 884 1 in in ADP coo.31924059551022 884 2 this this DET coo.31924059551022 884 3 case case NOUN coo.31924059551022 884 4 ( ( PUNCT coo.31924059551022 884 5 see see VERB coo.31924059551022 884 6 p. p. NOUN coo.31924059551022 884 7 54 54 NUM coo.31924059551022 884 8 ) ) PUNCT coo.31924059551022 885 1 we we PRON coo.31924059551022 885 2 have have VERB coo.31924059551022 885 3 y y PROPN coo.31924059551022 885 4 as as ADP coo.31924059551022 885 5 a a DET coo.31924059551022 885 6 · · PUNCT coo.31924059551022 885 7 product product NOUN coo.31924059551022 885 8 of of ADP coo.31924059551022 885 9 t t PROPN coo.31924059551022 885 10 — — PUNCT coo.31924059551022 885 11 ei ei PROPN coo.31924059551022 885 12 by by ADP coo.31924059551022 885 13 a a DET coo.31924059551022 885 14 polynomial polynomial ADJ coo.31924059551022 885 15 tp tp PRON coo.31924059551022 885 16 where where SCONJ coo.31924059551022 885 17 u u PROPN coo.31924059551022 885 18 has have VERB coo.31924059551022 885 19 the the DET coo.31924059551022 885 20 degree degree NOUN coo.31924059551022 885 21 ~ ~ PUNCT coo.31924059551022 885 22 ( ( PUNCT coo.31924059551022 885 23 n n X coo.31924059551022 885 24 — — PUNCT coo.31924059551022 885 25 1 1 X coo.31924059551022 885 26 ) ) PUNCT coo.31924059551022 885 27 . . PUNCT coo.31924059551022 886 1 moreover moreover ADV coo.31924059551022 886 2 u u PROPN coo.31924059551022 886 3 enters enter VERB coo.31924059551022 886 4 as as ADP coo.31924059551022 886 5 a a DET coo.31924059551022 886 6 double double ADJ coo.31924059551022 886 7 factor factor NOUN coo.31924059551022 886 8 and and CCONJ coo.31924059551022 886 9 is be AUX coo.31924059551022 886 10 therefore therefore ADV coo.31924059551022 886 11 also also ADV coo.31924059551022 886 12 a a DET coo.31924059551022 886 13 factor factor NOUN coo.31924059551022 886 14 of of ADP coo.31924059551022 886 15 y\ y\ NOUN coo.31924059551022 886 16 whence whence NOUN coo.31924059551022 886 17 , , PUNCT coo.31924059551022 886 18 from from ADP coo.31924059551022 886 19 the the DET coo.31924059551022 886 20 form form NOUN coo.31924059551022 886 21 · · PUNCT coo.31924059551022 887 1 φ φ X coo.31924059551022 887 2 ~ ~ PUNCT coo.31924059551022 887 3 — — PUNCT coo.31924059551022 887 4 ψ ψ X coo.31924059551022 887 5 = = X coo.31924059551022 887 6 ey ey INTJ coo.31924059551022 887 7 at at ADP coo.31924059551022 887 8 we we PRON coo.31924059551022 887 9 find find VERB coo.31924059551022 887 10 that that SCONJ coo.31924059551022 887 11 u u PROPN coo.31924059551022 887 12 must must AUX coo.31924059551022 887 13 also also ADV coo.31924059551022 887 14 be be AUX coo.31924059551022 887 15 a a DET coo.31924059551022 887 16 factor factor NOUN coo.31924059551022 887 17 of of ADP coo.31924059551022 887 18 ψ ψ PROPN coo.31924059551022 887 19 . . PUNCT coo.31924059551022 888 1 this this PRON coo.31924059551022 888 2 , , PUNCT coo.31924059551022 888 3 however however ADV coo.31924059551022 888 4 , , PUNCT coo.31924059551022 888 5 we we PRON coo.31924059551022 888 6 know know VERB coo.31924059551022 888 7 to to PART coo.31924059551022 888 8 be be AUX coo.31924059551022 888 9 impossible impossible ADJ coo.31924059551022 888 10 since since SCONJ coo.31924059551022 888 11 the the DET coo.31924059551022 888 12 degree degree NOUN coo.31924059551022 888 13 of of ADP coo.31924059551022 888 14 u u PROPN coo.31924059551022 888 15 is be AUX coo.31924059551022 888 16 γ γ PROPN coo.31924059551022 888 17 ( ( PUNCT coo.31924059551022 888 18 n n NOUN coo.31924059551022 888 19 — — PUNCT coo.31924059551022 888 20 1 1 NUM coo.31924059551022 888 21 ) ) PUNCT coo.31924059551022 888 22 and and CCONJ coo.31924059551022 888 23 that that PRON coo.31924059551022 888 24 of of ADP coo.31924059551022 888 25 ψ ψ PROPN coo.31924059551022 888 26 only only ADV coo.31924059551022 888 27 y y PROPN coo.31924059551022 888 28 ( ( PUNCT coo.31924059551022 888 29 n n X coo.31924059551022 888 30 — — PUNCT coo.31924059551022 888 31 3 3 X coo.31924059551022 888 32 ) ) PUNCT coo.31924059551022 888 33 ( ( PUNCT coo.31924059551022 888 34 p. p. NOUN coo.31924059551022 888 35 60 60 NUM coo.31924059551022 888 36 ) ) PUNCT coo.31924059551022 888 37 . . PUNCT coo.31924059551022 889 1 the the DET coo.31924059551022 889 2 only only ADJ coo.31924059551022 889 3 conclusion conclusion NOUN coo.31924059551022 889 4 possible possible ADJ coo.31924059551022 889 5 then then ADV coo.31924059551022 889 6 is be AUX coo.31924059551022 889 7 that that SCONJ coo.31924059551022 889 8 ψ ψ PROPN coo.31924059551022 889 9 contains contain VERB coo.31924059551022 889 10 a a DET coo.31924059551022 889 11 zero zero NUM coo.31924059551022 889 12 factor factor NOUN coo.31924059551022 889 13 . . PUNCT coo.31924059551022 890 1 we we PRON coo.31924059551022 890 2 know know VERB coo.31924059551022 890 3 also also ADV coo.31924059551022 890 4 that that SCONJ coo.31924059551022 890 5 b b NOUN coo.31924059551022 890 6 being be AUX coo.31924059551022 890 7 any any DET coo.31924059551022 890 8 value value NOUN coo.31924059551022 890 9 whatever whatever PRON coo.31924059551022 890 10 , , PUNCT coo.31924059551022 890 11 ψ ψ PROPN coo.31924059551022 890 12 considered consider VERB coo.31924059551022 890 13 as as ADP coo.31924059551022 890 14 a a DET coo.31924059551022 890 15 function function NOUN coo.31924059551022 890 16 of of ADP coo.31924059551022 890 17 b b PROPN coo.31924059551022 890 18 contains contain VERB coo.31924059551022 890 19 the the DET coo.31924059551022 890 20 factors factor NOUN coo.31924059551022 890 21 ql7 ql7 ADJ coo.31924059551022 890 22 q2 q2 PROPN coo.31924059551022 890 23 and and CCONJ coo.31924059551022 890 24 q3 q3 PROPN coo.31924059551022 890 25 and and CCONJ coo.31924059551022 890 26 it it PRON coo.31924059551022 890 27 follows follow VERB coo.31924059551022 890 28 that that SCONJ coo.31924059551022 890 29 we we PRON coo.31924059551022 890 30 may may AUX coo.31924059551022 890 31 write write VERB coo.31924059551022 890 32 * * PUNCT coo.31924059551022 890 33 pnote pnote X coo.31924059551022 890 34 = = NOUN coo.31924059551022 890 35 q q NOUN coo.31924059551022 890 36 ® ® NOUN coo.31924059551022 890 37 where where SCONJ coo.31924059551022 890 38 q q PROPN coo.31924059551022 890 39 = = NOUN coo.31924059551022 890 40 0 0 NUM coo.31924059551022 890 41 , , PUNCT coo.31924059551022 890 42 if if SCONJ coo.31924059551022 890 43 b b NOUN coo.31924059551022 890 44 be be AUX coo.31924059551022 890 45 taken take VERB coo.31924059551022 890 46 as as ADP coo.31924059551022 890 47 a a DET coo.31924059551022 890 48 root root NOUN coo.31924059551022 890 49 of of ADP coo.31924059551022 890 50 qt qt PROPN coo.31924059551022 890 51 = = SYM coo.31924059551022 890 52 0 0 NUM coo.31924059551022 890 53 , , PUNCT coo.31924059551022 890 54 ( ( PUNCT coo.31924059551022 890 55 ) ) PUNCT coo.31924059551022 890 56 2=0 2=0 NUM coo.31924059551022 890 57 , , PUNCT coo.31924059551022 890 58 or or CCONJ coo.31924059551022 890 59 q3 q3 PROPN coo.31924059551022 890 60 = = PROPN coo.31924059551022 890 61 0 0 NUM coo.31924059551022 890 62 , , PUNCT coo.31924059551022 890 63 and and CCONJ coo.31924059551022 890 64 θ θ X coo.31924059551022 890 65 = = X coo.31924059551022 890 66 f f X coo.31924059551022 890 67 ® ® PROPN coo.31924059551022 890 68 ( ( PUNCT coo.31924059551022 890 69 t t PROPN coo.31924059551022 890 70 ) ) PUNCT coo.31924059551022 890 71 . . PUNCT coo.31924059551022 891 1 by by ADP coo.31924059551022 891 2 a a DET coo.31924059551022 891 3 similar similar ADJ coo.31924059551022 891 4 course course NOUN coo.31924059551022 891 5 of of ADP coo.31924059551022 891 6 reasoning reasoning NOUN coo.31924059551022 891 7 we we PRON coo.31924059551022 891 8 show show VERB coo.31924059551022 891 9 that that SCONJ coo.31924059551022 891 10 if if SCONJ coo.31924059551022 891 11 b b NOUN coo.31924059551022 891 12 be be AUX coo.31924059551022 891 13 taken take VERB coo.31924059551022 891 14 as as ADP coo.31924059551022 891 15 a a DET coo.31924059551022 891 16 root root NOUN coo.31924059551022 891 17 of of ADP coo.31924059551022 891 18 p p NOUN coo.31924059551022 891 19 , , PUNCT coo.31924059551022 891 20 n n CCONJ coo.31924059551022 891 21 being be AUX coo.31924059551022 891 22 even even ADV coo.31924059551022 891 23 , , PUNCT coo.31924059551022 891 24 y y PROPN coo.31924059551022 891 25 will will AUX coo.31924059551022 891 26 be be AUX coo.31924059551022 891 27 the the DET coo.31924059551022 891 28 square square NOUN coo.31924059551022 891 29 of of ADP coo.31924059551022 891 30 a a DET coo.31924059551022 891 31 polynomial polynomial ADJ coo.31924059551022 891 32 v v NOUN coo.31924059551022 891 33 of of ADP coo.31924059551022 891 34 degree degree NOUN coo.31924059551022 891 35 γ γ PROPN coo.31924059551022 891 36 n n NOUN coo.31924059551022 891 37 where where SCONJ coo.31924059551022 891 38 ψ ψ PROPN coo.31924059551022 891 39 is be AUX coo.31924059551022 891 40 only only ADV coo.31924059551022 891 41 of of ADP coo.31924059551022 891 42 degree degree NOUN coo.31924059551022 891 43 γ γ PROPN coo.31924059551022 891 44 n n PROPN coo.31924059551022 891 45 — — PUNCT coo.31924059551022 891 46 1 1 NUM coo.31924059551022 891 47 , , PUNCT coo.31924059551022 891 48 and and CCONJ coo.31924059551022 891 49 that that SCONJ coo.31924059551022 891 50 in in ADP coo.31924059551022 891 51 consequence consequence NOUN coo.31924059551022 891 52 one one NUM coo.31924059551022 891 53 has have VERB coo.31924059551022 891 54 uneven uneven ADJ coo.31924059551022 891 55 = = NOUN coo.31924059551022 891 56 p@ p@ NOUN coo.31924059551022 892 1 hence hence ADV coo.31924059551022 892 2 we we PRON coo.31924059551022 892 3 write write VERB coo.31924059551022 892 4 : : PUNCT coo.31924059551022 892 5 wodd wodd PROPN coo.31924059551022 892 6 : : PUNCT coo.31924059551022 892 7 0~-q@ 0~-q@ X coo.31924059551022 892 8 = = X coo.31924059551022 892 9 ey ey INTJ coo.31924059551022 893 1 n n CCONJ coo.31924059551022 893 2 even even ADV coo.31924059551022 893 3 : : PUNCT coo.31924059551022 893 4 φ φ X coo.31924059551022 893 5 — — PUNCT coo.31924059551022 893 6 ρθ ρθ NOUN coo.31924059551022 893 7 = = X coo.31924059551022 893 8 ey ey INTJ coo.31924059551022 893 9 dt dt INTJ coo.31924059551022 893 10 where where SCONJ coo.31924059551022 893 11 all all DET coo.31924059551022 893 12 the the DET coo.31924059551022 893 13 functions function NOUN coo.31924059551022 893 14 are be AUX coo.31924059551022 893 15 intire intire ADJ coo.31924059551022 893 16 in in ADP coo.31924059551022 893 17 t. t. PROPN coo.31924059551022 893 18 as as SCONJ coo.31924059551022 893 19 we we PRON coo.31924059551022 893 20 have have AUX coo.31924059551022 893 21 before before ADP coo.31924059551022 893 22 determined determine VERB coo.31924059551022 893 23 the the DET coo.31924059551022 893 24 first first ADJ coo.31924059551022 893 25 coefficient coefficient NOUN coo.31924059551022 893 26 of of ADP coo.31924059551022 893 27 φ φ PROPN coo.31924059551022 893 28 is be AUX coo.31924059551022 893 29 the the DET coo.31924059551022 893 30 determinant determinant NOUN coo.31924059551022 893 31 and and CCONJ coo.31924059551022 893 32 in in ADP coo.31924059551022 893 33 like like ADJ coo.31924059551022 893 34 manner manner NOUN coo.31924059551022 893 35 we we PRON coo.31924059551022 893 36 find find VERB coo.31924059551022 893 37 the the DET coo.31924059551022 893 38 first first ADJ coo.31924059551022 893 39 coefficient coefficient NOUN coo.31924059551022 893 40 of of ADP coo.31924059551022 893 41 ψ ψ PROPN coo.31924059551022 893 42 to to PART coo.31924059551022 893 43 be be AUX coo.31924059551022 893 44 [ [ X coo.31924059551022 893 45 120] 120] NUM coo.31924059551022 893 46 ............. ............. PUNCT coo.31924059551022 893 47 dv dv PROPN coo.31924059551022 893 48 = = PROPN coo.31924059551022 893 49 bvbv bvbv PROPN coo.31924059551022 893 50 -f~ -f~ NOUN coo.31924059551022 894 1 i i PRON coo.31924059551022 894 2 -{-···- -{-···- SPACE coo.31924059551022 894 3 [ [ X coo.31924059551022 894 4 “ " PUNCT coo.31924059551022 894 5 ^2vbq ^2vbq SPACE coo.31924059551022 894 6 . . PUNCT coo.31924059551022 895 1 hence hence ADV coo.31924059551022 895 2 if if SCONJ coo.31924059551022 895 3 we we PRON coo.31924059551022 895 4 divide divide VERB coo.31924059551022 895 5 δν δν ADV coo.31924059551022 895 6 by by ADP coo.31924059551022 895 7 q q PROPN coo.31924059551022 895 8 , , PUNCT coo.31924059551022 895 9 n n CCONJ coo.31924059551022 895 10 being be AUX coo.31924059551022 895 11 odd odd ADJ coo.31924059551022 895 12 we we PRON coo.31924059551022 895 13 will will AUX coo.31924059551022 895 14 have have VERB coo.31924059551022 895 15 γ7 γ7 VERB coo.31924059551022 895 16 the the DET coo.31924059551022 895 17 first first ADJ coo.31924059551022 895 18 coefficient coefficient NOUN coo.31924059551022 895 19 of of ADP coo.31924059551022 895 20 θ θ PROPN coo.31924059551022 895 21 . . PUNCT coo.31924059551022 896 1 [ [ X coo.31924059551022 896 2 119 119 NUM coo.31924059551022 896 3 ] ] PUNCT coo.31924059551022 896 4 65 65 NUM coo.31924059551022 896 5 reduction reduction NOUN coo.31924059551022 896 6 of of ADP coo.31924059551022 896 7 the the DET coo.31924059551022 896 8 forms form NOUN coo.31924059551022 896 9 when when SCONJ coo.31924059551022 896 10 n n SYM coo.31924059551022 896 11 equals equal VERB coo.31924059551022 896 12 three three NUM coo.31924059551022 896 13 . . PUNCT coo.31924059551022 897 1 to to PART coo.31924059551022 897 2 find find VERB coo.31924059551022 897 3 έ έ PROPN coo.31924059551022 897 4 , , PUNCT coo.31924059551022 897 5 n n CCONJ coo.31924059551022 897 6 = = SYM coo.31924059551022 897 7 3 3 X coo.31924059551022 897 8 . . PUNCT coo.31924059551022 898 1 the the DET coo.31924059551022 898 2 degree degree NOUN coo.31924059551022 898 3 of of ADP coo.31924059551022 898 4 φ φ PROPN coo.31924059551022 898 5 is be AUX coo.31924059551022 898 6 — — PUNCT coo.31924059551022 898 7 ( ( PUNCT coo.31924059551022 898 8 n n CCONJ coo.31924059551022 898 9 + + CCONJ coo.31924059551022 898 10 1 1 NUM coo.31924059551022 898 11 ) ) PUNCT coo.31924059551022 898 12 , , PUNCT coo.31924059551022 898 13 the the DET coo.31924059551022 898 14 degree degree NOUN coo.31924059551022 898 15 of of ADP coo.31924059551022 898 16 y y PROPN coo.31924059551022 898 17 is be AUX coo.31924059551022 898 18 n n ADJ coo.31924059551022 898 19 — — PUNCT coo.31924059551022 898 20 1 1 NUM coo.31924059551022 898 21 and and CCONJ coo.31924059551022 898 22 the the DET coo.31924059551022 898 23 degree degree NOUN coo.31924059551022 898 24 of of ADP coo.31924059551022 898 25 ψ ψ PROPN coo.31924059551022 898 26 is be AUX coo.31924059551022 898 27 ~{n ~{n NOUN coo.31924059551022 898 28 — — PUNCT coo.31924059551022 898 29 3 3 X coo.31924059551022 898 30 ) ) PUNCT coo.31924059551022 898 31 less less ADJ coo.31924059551022 898 32 than than ADP coo.31924059551022 898 33 y. y. NOUN coo.31924059551022 898 34 hence hence ADV coo.31924059551022 898 35 from from ADP coo.31924059551022 898 36 the the DET coo.31924059551022 898 37 relation relation NOUN coo.31924059551022 898 38 on on ADP coo.31924059551022 898 39 p(64 p(64 NOUN coo.31924059551022 898 40 ) ) PUNCT coo.31924059551022 898 41 , , PUNCT coo.31924059551022 898 42 the the DET coo.31924059551022 898 43 degree degree NOUN coo.31924059551022 898 44 of of ADP coo.31924059551022 898 45 ey ey PRON coo.31924059551022 898 46 must must AUX coo.31924059551022 898 47 be be AUX coo.31924059551022 898 48 j(«+l j(«+l X coo.31924059551022 898 49 ) ) PUNCT coo.31924059551022 899 1 + + CCONJ coo.31924059551022 899 2 ( ( PUNCT coo.31924059551022 899 3 w w NOUN coo.31924059551022 899 4 - - NOUN coo.31924059551022 899 5 l l NOUN coo.31924059551022 899 6 ) ) PUNCT coo.31924059551022 899 7 = = PUNCT coo.31924059551022 899 8 ί·(3«-1 ί·(3«-1 PROPN coo.31924059551022 899 9 ) ) PUNCT coo.31924059551022 899 10 . . PUNCT coo.31924059551022 900 1 but but CCONJ coo.31924059551022 900 2 the the DET coo.31924059551022 900 3 degree degree NOUN coo.31924059551022 900 4 of of ADP coo.31924059551022 900 5 y y PROPN coo.31924059551022 900 6 is be AUX coo.31924059551022 900 7 n n ADJ coo.31924059551022 900 8 and and CCONJ coo.31924059551022 900 9 hence hence ADV coo.31924059551022 900 10 the the DET coo.31924059551022 900 11 degree degree NOUN coo.31924059551022 900 12 of of ADP coo.31924059551022 900 13 έ έ PROPN coo.31924059551022 900 14 is be AUX coo.31924059551022 900 15 -~(w -~(w ADJ coo.31924059551022 900 16 — — PUNCT coo.31924059551022 900 17 1 1 X coo.31924059551022 900 18 ) ) PUNCT coo.31924059551022 900 19 . . PUNCT coo.31924059551022 901 1 we we PRON coo.31924059551022 901 2 have have VERB coo.31924059551022 901 3 then then ADV coo.31924059551022 901 4 [ [ X coo.31924059551022 901 5 121 121 NUM coo.31924059551022 901 6 ] ] PUNCT coo.31924059551022 901 7 æu3 æu3 NOUN coo.31924059551022 901 8 = = PUNCT coo.31924059551022 901 9 ηί+ηι ηί+ηι PROPN coo.31924059551022 901 10 and and CCONJ coo.31924059551022 901 11 ψ ψ PROPN coo.31924059551022 901 12 reduces reduce VERB coo.31924059551022 901 13 to to ADP coo.31924059551022 901 14 a a DET coo.31924059551022 901 15 constant constant ADJ coo.31924059551022 901 16 , , PUNCT coo.31924059551022 901 17 namely namely ADV coo.31924059551022 901 18 : : PUNCT coo.31924059551022 901 19 [ [ X coo.31924059551022 901 20 122 122 NUM coo.31924059551022 901 21 ] ] PUNCT coo.31924059551022 901 22 ψη==3 ψη==3 PUNCT coo.31924059551022 902 1 = = PUNCT coo.31924059551022 902 2 γρ γρ INTJ coo.31924059551022 902 3 we we PRON coo.31924059551022 902 4 have have VERB coo.31924059551022 902 5 : : PUNCT coo.31924059551022 902 6 r3 r3 PROPN coo.31924059551022 902 7 = = NOUN coo.31924059551022 902 8 s s NOUN coo.31924059551022 902 9 * * PUNCT coo.31924059551022 902 10 + + PUNCT coo.31924059551022 902 11 a2s a2s NOUN coo.31924059551022 902 12 + + CCONJ coo.31924059551022 902 13 a a X coo.31924059551022 902 14 , , PUNCT coo.31924059551022 902 15 γ3 γ3 PROPN coo.31924059551022 902 16 ' ' PUNCT coo.31924059551022 902 17 = = VERB coo.31924059551022 902 18 3^ 3^ NUM coo.31924059551022 902 19 + + NUM coo.31924059551022 902 20 λ λ X coo.31924059551022 902 21 φ φ X coo.31924059551022 902 22 = = PUNCT coo.31924059551022 902 23 — — PUNCT coo.31924059551022 903 1 6a2s 6a2s PROPN coo.31924059551022 903 2 * * PUNCT coo.31924059551022 903 3 + + PUNCT coo.31924059551022 903 4 — — PUNCT coo.31924059551022 903 5 â22 â22 NOUN coo.31924059551022 903 6 and and CCONJ coo.31924059551022 903 7 substituting substitute VERB coo.31924059551022 903 8 we we PRON coo.31924059551022 903 9 derive derive VERB coo.31924059551022 903 10 ( ( PUNCT coo.31924059551022 903 11 3^+λχ-6λ«2 3^+λχ-6λ«2 PROPN coo.31924059551022 903 12 + + NUM coo.31924059551022 903 13 9λ^4λ2)=(^ 9λ^4λ2)=(^ PROPN coo.31924059551022 903 14 + + CCONJ coo.31924059551022 903 15 ι?0(^+λ^ ι?0(^+λ^ PUNCT coo.31924059551022 903 16 + + CCONJ coo.31924059551022 903 17 λ)+^ λ)+^ X coo.31924059551022 903 18 « « PUNCT coo.31924059551022 903 19 . . PUNCT coo.31924059551022 904 1 and and CCONJ coo.31924059551022 904 2 from from ADP coo.31924059551022 904 3 these these PRON coo.31924059551022 904 4 we we PRON coo.31924059551022 904 5 have have VERB coo.31924059551022 904 6 r r NOUN coo.31924059551022 904 7 ¡ ¡ ADJ coo.31924059551022 904 8 = = NOUN coo.31924059551022 904 9 — — PUNCT coo.31924059551022 904 10 18 18 NUM coo.31924059551022 904 11 δ2·7 δ2·7 NOUN coo.31924059551022 904 12 ηί ηί ADP coo.31924059551022 904 13 = = SYM coo.31924059551022 904 14 27 27 NUM coo.31924059551022 904 15 a a PRON coo.31924059551022 904 16 ? ? NOUN coo.31924059551022 904 17 , , PUNCT coo.31924059551022 904 18 whence whence NOUN coo.31924059551022 904 19 [ [ X coo.31924059551022 904 20 123 123 NUM coo.31924059551022 904 21 ] ] PUNCT coo.31924059551022 904 22 es es X coo.31924059551022 904 23 = = PROPN coo.31924059551022 904 24 9[2a2s—3a3 9[2a2s—3a3 PROPN coo.31924059551022 904 25 ] ] X coo.31924059551022 904 26 . . PUNCT coo.31924059551022 905 1 returning return VERB coo.31924059551022 905 2 to to ADP coo.31924059551022 905 3 our our PRON coo.31924059551022 905 4 original original ADJ coo.31924059551022 905 5 form form NOUN coo.31924059551022 905 6 we we PRON coo.31924059551022 905 7 find find VERB coo.31924059551022 905 8 that that SCONJ coo.31924059551022 905 9 when when SCONJ coo.31924059551022 905 10 n n SYM coo.31924059551022 905 11 is be AUX coo.31924059551022 905 12 three three NUM coo.31924059551022 905 13 we we PRON coo.31924059551022 905 14 may may AUX coo.31924059551022 905 15 write write VERB coo.31924059551022 905 16 : : PUNCT coo.31924059551022 905 17 [ [ X coo.31924059551022 905 18 124 124 NUM coo.31924059551022 905 19 ] ] PUNCT coo.31924059551022 905 20 ( ( PUNCT coo.31924059551022 905 21 + + NOUN coo.31924059551022 905 22 * * PUNCT coo.31924059551022 905 23 ) ) PUNCT coo.31924059551022 905 24 _ _ PROPN coo.31924059551022 905 25 φ(ρη φ(ρη PROPN coo.31924059551022 905 26 ) ) PUNCT coo.31924059551022 906 1 l l X coo.31924059551022 906 2 j j PROPN coo.31924059551022 906 3 1 1 NUM coo.31924059551022 907 1 eaobec{6uy eaobec{6uy NOUN coo.31924059551022 907 2 * * SYM coo.31924059551022 907 3 2 2 NUM coo.31924059551022 907 4 c c NOUN coo.31924059551022 907 5 pu pu PROPN coo.31924059551022 907 6 w(pu w(pu PROPN coo.31924059551022 907 7 ) ) PUNCT coo.31924059551022 907 8 = = X coo.31924059551022 907 9 φ φ X coo.31924059551022 907 10 — — PUNCT coo.31924059551022 907 11 yçs'yq=(6λ yçs'yq=(6λ X coo.31924059551022 907 12 s2 s2 PROPN coo.31924059551022 907 13 + + CCONJ coo.31924059551022 907 14 9λ5 9λ5 NUM coo.31924059551022 907 15 4 4 NUM coo.31924059551022 907 16 λ λ NOUN coo.31924059551022 907 17 * * NOUN coo.31924059551022 907 18 ) ) PUNCT coo.31924059551022 907 19 + + CCONJ coo.31924059551022 907 20 ios ios X coo.31924059551022 907 21 ’ ' PUNCT coo.31924059551022 907 22 ( ( PUNCT coo.31924059551022 907 23 4 4 NUM coo.31924059551022 907 24 aj+21a aj+21a NUM coo.31924059551022 907 25 * * PUNCT coo.31924059551022 907 26 ) ) PUNCT coo.31924059551022 908 1 . . PUNCT coo.31924059551022 909 1 having have VERB coo.31924059551022 909 2 this this DET coo.31924059551022 909 3 development development NOUN coo.31924059551022 909 4 , , PUNCT coo.31924059551022 909 5 the the DET coo.31924059551022 909 6 determination determination NOUN coo.31924059551022 909 7 of of ADP coo.31924059551022 909 8 x x SYM coo.31924059551022 909 9 and and CCONJ coo.31924059551022 909 10 v v NOUN coo.31924059551022 909 11 is be AUX coo.31924059551022 909 12 made make VERB coo.31924059551022 909 13 possible possible ADJ coo.31924059551022 909 14 as as SCONJ coo.31924059551022 909 15 follows follow VERB coo.31924059551022 909 16 : : PUNCT coo.31924059551022 909 17 — — PUNCT coo.31924059551022 909 18 taking take VERB coo.31924059551022 909 19 the the DET coo.31924059551022 909 20 derivative derivative NOUN coo.31924059551022 909 21 of of ADP coo.31924059551022 909 22 the the DET coo.31924059551022 909 23 log log NOUN coo.31924059551022 909 24 . . PUNCT coo.31924059551022 910 1 of of ADP coo.31924059551022 910 2 the the DET coo.31924059551022 910 3 first first ADJ coo.31924059551022 910 4 member member NOUN coo.31924059551022 910 5 , , PUNCT coo.31924059551022 910 6 a a PRON coo.31924059551022 910 7 , , PUNCT coo.31924059551022 910 8 and and CCONJ coo.31924059551022 910 9 developing develop VERB coo.31924059551022 910 10 according accord VERB coo.31924059551022 910 11 to to ADP coo.31924059551022 910 12 the the DET coo.31924059551022 910 13 powers power NOUN coo.31924059551022 910 14 of of ADP coo.31924059551022 910 15 u u PROPN coo.31924059551022 910 16 we we PRON coo.31924059551022 910 17 write write VERB coo.31924059551022 910 18 in in ADP coo.31924059551022 910 19 general general ADJ coo.31924059551022 910 20 a a DET coo.31924059551022 910 21 = = NOUN coo.31924059551022 910 22 ci ci X coo.31924059551022 910 23 [ [ X coo.31924059551022 910 24 £ £ X coo.31924059551022 910 25 ( ( PUNCT coo.31924059551022 910 26 w w NOUN coo.31924059551022 910 27 — — PUNCT coo.31924059551022 910 28 a a X coo.31924059551022 910 29 ) ) PUNCT coo.31924059551022 911 1 + + CCONJ coo.31924059551022 911 2 g(w g(w PROPN coo.31924059551022 911 3 — — PUNCT coo.31924059551022 911 4 l l NOUN coo.31924059551022 911 5 · · PUNCT coo.31924059551022 911 6 ) ) PUNCT coo.31924059551022 911 7 + + CCONJ coo.31924059551022 911 8 g(w g(w PROPN coo.31924059551022 911 9 — — PUNCT coo.31924059551022 911 10 c c X coo.31924059551022 911 11 ) ) PUNCT coo.31924059551022 911 12 · · PUNCT coo.31924059551022 911 13 ■ ■ PUNCT coo.31924059551022 911 14 · · PUNCT coo.31924059551022 911 15 ξ(η ξ(η VERB coo.31924059551022 912 1 + + PUNCT coo.31924059551022 912 2 ν)—(η ν)—(η NUM coo.31924059551022 912 3 + + NUM coo.31924059551022 912 4 1 1 NUM coo.31924059551022 912 5 ) ) PUNCT coo.31924059551022 912 6 ζιι ζιι PROPN coo.31924059551022 912 7 . . PUNCT coo.31924059551022 913 1 but but CCONJ coo.31924059551022 913 2 the the DET coo.31924059551022 913 3 developments development NOUN coo.31924059551022 913 4 are be AUX coo.31924059551022 913 5 known know VERB coo.31924059551022 913 6 : : PUNCT coo.31924059551022 913 7 ξ(ιι ξ(ιι NUM coo.31924059551022 913 8 + + X coo.31924059551022 913 9 v v NOUN coo.31924059551022 913 10 ) ) PUNCT coo.31924059551022 913 11 — — PUNCT coo.31924059551022 914 1 % % INTJ coo.31924059551022 914 2 u u PROPN coo.31924059551022 914 3 = = X coo.31924059551022 914 4 ζ(ν ζ(ν PROPN coo.31924059551022 914 5 ) ) PUNCT coo.31924059551022 914 6 — — PUNCT coo.31924059551022 914 7 ì ì INTJ coo.31924059551022 914 8 — — PUNCT coo.31924059551022 914 9 up up ADV coo.31924059551022 914 10 ( ( PUNCT coo.31924059551022 914 11 v v NOUN coo.31924059551022 914 12 ) ) PUNCT coo.31924059551022 914 13 2 2 NUM coo.31924059551022 914 14 g g NOUN coo.31924059551022 914 15 ( ( PUNCT coo.31924059551022 914 16 w w NOUN coo.31924059551022 914 17 — — PUNCT coo.31924059551022 914 18 a a X coo.31924059551022 914 19 ) ) PUNCT coo.31924059551022 914 20 — — PUNCT coo.31924059551022 914 21 g g NOUN coo.31924059551022 914 22 ( ( PUNCT coo.31924059551022 914 23 m m NOUN coo.31924059551022 914 24 ) ) PUNCT coo.31924059551022 914 25 = = PUNCT coo.31924059551022 914 26 » » PUNCT coo.31924059551022 914 27 — — PUNCT coo.31924059551022 914 28 ga ga INTJ coo.31924059551022 914 29 — — PUNCT coo.31924059551022 914 30 ί ί X coo.31924059551022 914 31 — — PUNCT coo.31924059551022 914 32 « « PUNCT coo.31924059551022 914 33 pa pa PROPN coo.31924059551022 914 34 — — PUNCT coo.31924059551022 914 35 p p PROPN coo.31924059551022 914 36 a a X coo.31924059551022 914 37 ■ ■ NOUN coo.31924059551022 914 38 ■ ■ NOUN coo.31924059551022 914 39 ■ ■ PUNCT coo.31924059551022 914 40 g g NOUN coo.31924059551022 914 41 ( ( PUNCT coo.31924059551022 914 42 « « PUNCT coo.31924059551022 914 43 — — PUNCT coo.31924059551022 914 44 δ δ X coo.31924059551022 914 45 ) ) PUNCT coo.31924059551022 914 46 — — PUNCT coo.31924059551022 914 47 g g NOUN coo.31924059551022 914 48 ( ( PUNCT coo.31924059551022 914 49 w w NOUN coo.31924059551022 914 50 ) ) PUNCT coo.31924059551022 914 51 = = PUNCT coo.31924059551022 914 52 — — PUNCT coo.31924059551022 914 53 g6 g6 PROPN coo.31924059551022 914 54 — — PUNCT coo.31924059551022 914 55 ^ ^ PROPN coo.31924059551022 914 56 — — PUNCT coo.31924059551022 914 57 ~pb ~pb X coo.31924059551022 914 58 · · X coo.31924059551022 914 59 · · PUNCT coo.31924059551022 914 60 · · SYM coo.31924059551022 914 61 5 5 NUM coo.31924059551022 914 62 66 66 NUM coo.31924059551022 914 63 part part NOUN coo.31924059551022 914 64 v. v. ADP coo.31924059551022 915 1 and and CCONJ coo.31924059551022 915 2 we we PRON coo.31924059551022 915 3 may may AUX coo.31924059551022 915 4 write write VERB coo.31924059551022 915 5 α-*($ν α-*($ν PROPN coo.31924059551022 915 6 — — PUNCT coo.31924059551022 915 7 ξα ξα INTJ coo.31924059551022 915 8 — — PUNCT coo.31924059551022 915 9 ζό ζό INTJ coo.31924059551022 915 10 — — PUNCT coo.31924059551022 915 11 ξο ξο PROPN coo.31924059551022 915 12 · · PROPN coo.31924059551022 915 13 · · PUNCT coo.31924059551022 915 14 ) ) PUNCT coo.31924059551022 915 15 — — PUNCT coo.31924059551022 915 16 1 1 NUM coo.31924059551022 915 17 _ _ NOUN coo.31924059551022 915 18 ( ( PUNCT coo.31924059551022 915 19 pv pv INTJ coo.31924059551022 915 20 + + NOUN coo.31924059551022 915 21 « « PUNCT coo.31924059551022 915 22 + + CCONJ coo.31924059551022 915 23 β β X coo.31924059551022 915 24 + + CCONJ coo.31924059551022 915 25 γ γ NOUN coo.31924059551022 915 26 + + NOUN coo.31924059551022 915 27 .. .. PUNCT coo.31924059551022 915 28 ) ) PUNCT coo.31924059551022 915 29 « « PUNCT coo.31924059551022 916 1 ΐτ ΐτ VERB coo.31924059551022 916 2 ( ( PUNCT coo.31924059551022 916 3 ί»'ν ί»'ν PROPN coo.31924059551022 916 4 + + CCONJ coo.31924059551022 916 5 pa pa PROPN coo.31924059551022 916 6 + + VERB coo.31924059551022 916 7 p'b p'b ADJ coo.31924059551022 916 8 + + PUNCT coo.31924059551022 916 9 · · PUNCT coo.31924059551022 916 10 · · PUNCT coo.31924059551022 916 11 ) ) PUNCT coo.31924059551022 916 12 · · PUNCT coo.31924059551022 916 13 ■ ■ ADP coo.31924059551022 916 14 · · PUNCT coo.31924059551022 916 15 but but CCONJ coo.31924059551022 916 16 ζν ζν X coo.31924059551022 916 17 — — PUNCT coo.31924059551022 916 18 ζα ζα NOUN coo.31924059551022 916 19 — — PUNCT coo.31924059551022 916 20 ζό ζό INTJ coo.31924059551022 916 21 — — PUNCT coo.31924059551022 916 22 ζο ζο INTJ coo.31924059551022 916 23 — — PUNCT coo.31924059551022 916 24 — — PUNCT coo.31924059551022 916 25 x x PUNCT coo.31924059551022 916 26 and and CCONJ coo.31924059551022 916 27 _ _ PRON coo.31924059551022 916 28 ρ'α'+ ρ'α'+ PROPN coo.31924059551022 916 29 p'b p'b ADV coo.31924059551022 916 30 p'c p'c ADV coo.31924059551022 916 31 -1 -1 X coo.31924059551022 916 32 · · PUNCT coo.31924059551022 916 33 · · PUNCT coo.31924059551022 916 34 = = PUNCT coo.31924059551022 916 35 o o X coo.31924059551022 916 36 ( ( PUNCT coo.31924059551022 916 37 see see VERB coo.31924059551022 916 38 pages page NOUN coo.31924059551022 916 39 25 25 NUM coo.31924059551022 916 40 and and CCONJ coo.31924059551022 916 41 45 45 NUM coo.31924059551022 916 42 ) ) PUNCT coo.31924059551022 916 43 ; ; PUNCT coo.31924059551022 917 1 whence whence NOUN coo.31924059551022 917 2 [ [ X coo.31924059551022 917 3 125 125 NUM coo.31924059551022 917 4 ] ] PUNCT coo.31924059551022 917 5 a a DET coo.31924059551022 917 6 = = NOUN coo.31924059551022 917 7 — — PUNCT coo.31924059551022 917 8 + + CCONJ coo.31924059551022 917 9 a a PRON coo.31924059551022 917 10 : : PUNCT coo.31924059551022 917 11 — — PUNCT coo.31924059551022 917 12 ( ( PUNCT coo.31924059551022 917 13 a a X coo.31924059551022 917 14 + + NOUN coo.31924059551022 917 15 /3 /3 PUNCT coo.31924059551022 917 16 + + PUNCT coo.31924059551022 917 17 y y X coo.31924059551022 917 18 + + PUNCT coo.31924059551022 917 19 · · PUNCT coo.31924059551022 917 20 + + CCONJ coo.31924059551022 917 21 pv pv ADP coo.31924059551022 917 22 ) ) PUNCT coo.31924059551022 917 23 u u NOUN coo.31924059551022 917 24 — — PUNCT coo.31924059551022 917 25 \pv \pv PROPN coo.31924059551022 917 26 -f -f PUNCT coo.31924059551022 917 27 · · PUNCT coo.31924059551022 917 28 · · PUNCT coo.31924059551022 917 29 the the DET coo.31924059551022 917 30 degree degree NOUN coo.31924059551022 917 31 of of ADP coo.31924059551022 917 32 φ φ PROPN coo.31924059551022 917 33 is be AUX coo.31924059551022 917 34 γ γ PROPN coo.31924059551022 917 35 ( ( PUNCT coo.31924059551022 917 36 w w NOUN coo.31924059551022 917 37 + + NUM coo.31924059551022 917 38 1 1 NUM coo.31924059551022 917 39 ) ) PUNCT coo.31924059551022 917 40 , , PUNCT coo.31924059551022 917 41 ° ° PROPN coo.31924059551022 917 42 f f PROPN coo.31924059551022 917 43 b b NOUN coo.31924059551022 917 44 ’ ' PUNCT coo.31924059551022 917 45 , , PUNCT coo.31924059551022 917 46 3 3 NUM coo.31924059551022 917 47 , , PUNCT coo.31924059551022 917 48 of of ADP coo.31924059551022 917 49 ψ ψ PROPN coo.31924059551022 917 50 , , PUNCT coo.31924059551022 917 51 \ \ PROPN coo.31924059551022 917 52 ( ( PUNCT coo.31924059551022 917 53 n n NOUN coo.31924059551022 917 54 — — PUNCT coo.31924059551022 917 55 3 3 NUM coo.31924059551022 917 56 ) ) PUNCT coo.31924059551022 917 57 , , PUNCT coo.31924059551022 917 58 and and CCONJ coo.31924059551022 917 59 of of ADP coo.31924059551022 917 60 p p NOUN coo.31924059551022 917 61 , , PUNCT coo.31924059551022 917 62 γ γ PROPN coo.31924059551022 917 63 which which PRON coo.31924059551022 917 64 gives give VERB coo.31924059551022 917 65 the the DET coo.31924059551022 917 66 degree degree NOUN coo.31924059551022 917 67 of of ADP coo.31924059551022 917 68 the the DET coo.31924059551022 917 69 second second ADJ coo.31924059551022 917 70 member member NOUN coo.31924059551022 917 71 as as ADP coo.31924059551022 917 72 γ γ PROPN coo.31924059551022 917 73 ( ( PUNCT coo.31924059551022 917 74 w w PROPN coo.31924059551022 917 75 -f1 -f1 PROPN coo.31924059551022 917 76 ) ) PUNCT coo.31924059551022 917 77 , , PUNCT coo.31924059551022 917 78 also also ADV coo.31924059551022 917 79 1 1 NUM coo.31924059551022 917 80 . . PUNCT coo.31924059551022 917 81 . . PUNCT coo.31924059551022 918 1 - - PUNCT coo.31924059551022 918 2 < < X coo.31924059551022 918 3 * * PUNCT coo.31924059551022 919 1 + + PUNCT coo.31924059551022 919 2 » » PUNCT coo.31924059551022 920 1 > > X coo.31924059551022 920 2 1 1 NUM coo.31924059551022 920 3 i i PRON coo.31924059551022 920 4 _ _ PUNCT coo.31924059551022 920 5 1 1 NUM coo.31924059551022 920 6 , , PUNCT coo.31924059551022 920 7 * * PUNCT coo.31924059551022 920 8 « « NOUN coo.31924059551022 920 9 -*+ -*+ NOUN coo.31924059551022 920 10 · · PUNCT coo.31924059551022 920 11 · · PUNCT coo.31924059551022 920 12 · · PUNCT coo.31924059551022 920 13 whence whence ADP coo.31924059551022 920 14 p p NOUN coo.31924059551022 920 15 * * PUNCT coo.31924059551022 920 16 = = SYM coo.31924059551022 920 17 ‘ ' PUNCT coo.31924059551022 920 18 and and CCONJ coo.31924059551022 920 19 developing develop VERB coo.31924059551022 920 20 the the DET coo.31924059551022 920 21 second second ADJ coo.31924059551022 920 22 member member NOUN coo.31924059551022 920 23 ( ( PUNCT coo.31924059551022 920 24 b b NOUN coo.31924059551022 920 25 ) ) PUNCT coo.31924059551022 920 26 we we PRON coo.31924059551022 920 27 write write VERB coo.31924059551022 920 28 , , PUNCT coo.31924059551022 920 29 disregarding disregard VERB coo.31924059551022 920 30 the the DET coo.31924059551022 920 31 constant constant ADJ coo.31924059551022 920 32 factor factor NOUN coo.31924059551022 920 33 b b X coo.31924059551022 920 34 < < X coo.31924059551022 920 35 h h PROPN coo.31924059551022 920 36 , , PUNCT coo.31924059551022 920 37 i___?8 i___?8 PROPN coo.31924059551022 920 38 - - PUNCT coo.31924059551022 920 39 ---l ---l PROPN coo.31924059551022 920 40 . . PUNCT coo.31924059551022 921 1 + + NUM coo.31924059551022 921 2 77 77 NUM coo.31924059551022 921 3 + + CCONJ coo.31924059551022 921 4 , , PUNCT coo.31924059551022 921 5 , , PUNCT coo.31924059551022 921 6 η-1 η-1 X coo.31924059551022 921 7 ^ ^ X coo.31924059551022 921 8 ^ ^ X coo.31924059551022 921 9 „ „ PUNCT coo.31924059551022 921 10 " " PUNCT coo.31924059551022 921 11 +1 +1 ADJ coo.31924059551022 921 12 whence whence NOUN coo.31924059551022 921 13 [ [ X coo.31924059551022 921 14 126 126 NUM coo.31924059551022 921 15 ] ] PUNCT coo.31924059551022 921 16 rf rf PROPN coo.31924059551022 921 17 log log NOUN coo.31924059551022 921 18 b b PROPN coo.31924059551022 921 19 = = X coo.31924059551022 921 20 w w NOUN coo.31924059551022 921 21 + + PROPN coo.31924059551022 921 22 1 1 NUM coo.31924059551022 921 23 , , PUNCT coo.31924059551022 921 24 7”+2 7”+2 NUM coo.31924059551022 921 25 _ _ PUNCT coo.31924059551022 921 26 ¡ ¡ PROPN coo.31924059551022 921 27 5+ϊ 5+ϊ NUM coo.31924059551022 922 1 ( ( PUNCT coo.31924059551022 922 2 η η NOUN coo.31924059551022 922 3 — — PUNCT coo.31924059551022 922 4 1 1 X coo.31924059551022 922 5 ] ] PUNCT coo.31924059551022 922 6 _ _ PUNCT coo.31924059551022 922 7 _ _ PUNCT coo.31924059551022 922 8 _ _ PUNCT coo.31924059551022 922 9 ( ( PUNCT coo.31924059551022 922 10 m m NOUN coo.31924059551022 922 11 — — PUNCT coo.31924059551022 922 12 2 2 X coo.31924059551022 922 13 ) ) PUNCT coo.31924059551022 922 14 qs qs PROPN coo.31924059551022 922 15 ~ ~ X coo.31924059551022 922 16 u u NOUN coo.31924059551022 922 17 „ „ PUNCT coo.31924059551022 922 18 « « PUNCT coo.31924059551022 922 19 +1 +1 NOUN coo.31924059551022 922 20 + + ADJ coo.31924059551022 922 21 -^ -^ PUNCT coo.31924059551022 923 1 + + CCONJ coo.31924059551022 923 2 i i PRON coo.31924059551022 923 3 — — PUNCT coo.31924059551022 923 4 2 2 NUM coo.31924059551022 923 5 » » SYM coo.31924059551022 923 6 1 1 NUM coo.31924059551022 923 7 ( ( PUNCT coo.31924059551022 923 8 n n CCONJ coo.31924059551022 923 9 + + ADP coo.31924059551022 923 10 1 1 NUM coo.31924059551022 923 11 ) ) PUNCT coo.31924059551022 923 12 + + NUM coo.31924059551022 923 13 * * PUNCT coo.31924059551022 923 14 jigi_±i!l±i^,+,(v jigi_±i!l±i^,+,(v NOUN coo.31924059551022 923 15 : : PUNCT coo.31924059551022 923 16 2)-^^ 2)-^^ NUM coo.31924059551022 923 17 · · PUNCT coo.31924059551022 923 18 i--- i--- PROPN coo.31924059551022 923 19 ! ! PUNCT coo.31924059551022 923 20 4w 4w PROPN coo.31924059551022 924 1 + + PUNCT coo.31924059551022 924 2 3ΐ 3ΐ NUM coo.31924059551022 924 3 « « PUNCT coo.31924059551022 924 4 + + CCONJ coo.31924059551022 924 5 9c 9c X coo.31924059551022 924 6 “ " PUNCT coo.31924059551022 924 7 ■ ■ NOUN coo.31924059551022 924 8 + + NUM coo.31924059551022 924 9 · · PUNCT coo.31924059551022 924 10 · · PUNCT coo.31924059551022 924 11 · · PUNCT coo.31924059551022 924 12 = = PUNCT coo.31924059551022 924 13 _ _ PUNCT coo.31924059551022 924 14 » » PUNCT coo.31924059551022 925 1 + + CCONJ coo.31924059551022 925 2 i i PRON coo.31924059551022 926 1 i i PRON coo.31924059551022 926 2 s^(2gt s^(2gt ADJ coo.31924059551022 926 3 — — PUNCT coo.31924059551022 926 4 g/)u g/)u PROPN coo.31924059551022 926 5 + + CCONJ coo.31924059551022 926 6 ( ( PUNCT coo.31924059551022 926 7 3g3—3gtg,+&>?+ 3g3—3gtg,+&>?+ NUM coo.31924059551022 926 8 .. .. PUNCT coo.31924059551022 926 9 · · PUNCT coo.31924059551022 926 10 again again ADV coo.31924059551022 926 11 : : PUNCT coo.31924059551022 926 12 , , PUNCT coo.31924059551022 926 13 ... ... PUNCT coo.31924059551022 927 1 φ φ X coo.31924059551022 927 2 = = X coo.31924059551022 928 1 i i PRON coo.31924059551022 928 2 > > X coo.31924059551022 928 3 y2 y2 PROPN coo.31924059551022 928 4 1 1 NUM coo.31924059551022 928 5 .}(»+ .}(»+ NUM coo.31924059551022 928 6 » » PUNCT coo.31924059551022 928 7 _ _ PUNCT coo.31924059551022 928 8 f f X coo.31924059551022 928 9 _ _ X coo.31924059551022 928 10 ^ ^ SYM coo.31924059551022 928 11 2 2 NUM coo.31924059551022 928 12 . . PUNCT coo.31924059551022 929 1 íb íb X coo.31924059551022 929 2 — — PUNCT coo.31924059551022 929 3 3 3 NUM coo.31924059551022 929 4 > > X coo.31924059551022 929 5 θ θ X coo.31924059551022 929 6 = = X coo.31924059551022 929 7 y y PROPN coo.31924059551022 929 8 t2 t2 PROPN coo.31924059551022 929 9 p p PROPN coo.31924059551022 929 10 ’ ' PUNCT coo.31924059551022 929 11 = = NOUN coo.31924059551022 929 12 ( ( PUNCT coo.31924059551022 929 13 4 4 NUM coo.31924059551022 929 14 f f X coo.31924059551022 929 15 tfft tfft PROPN coo.31924059551022 929 16 + + CCONJ coo.31924059551022 929 17 & & CCONJ coo.31924059551022 929 18 ) ) PUNCT coo.31924059551022 929 19 + + CCONJ coo.31924059551022 929 20 _ _ PUNCT coo.31924059551022 930 1 l l X coo.31924059551022 930 2 ( ( PUNCT coo.31924059551022 930 3 rt rt PROPN coo.31924059551022 930 4 — — PUNCT coo.31924059551022 930 5 5 5 X coo.31924059551022 930 6 ) ) PUNCT coo.31924059551022 930 7 3)+1ί*2 3)+1ί*2 NUM coo.31924059551022 930 8 + + CCONJ coo.31924059551022 930 9 ¿ ¿ NUM coo.31924059551022 930 10 2 2 NUM coo.31924059551022 930 11 ' ' NUM coo.31924059551022 930 12 2 2 NUM coo.31924059551022 930 13 = = NOUN coo.31924059551022 930 14 = = SYM coo.31924059551022 930 15 — — PUNCT coo.31924059551022 930 16 ¡ ¡ X coo.31924059551022 930 17 te te X coo.31924059551022 930 18 + + CCONJ coo.31924059551022 930 19 whence whence NOUN coo.31924059551022 930 20 / / SYM coo.31924059551022 930 21 ì(*+1)i ì(*+1)i NUM coo.31924059551022 930 22 7}iï("_1,j 7}iï("_1,j NUM coo.31924059551022 930 23 . . PUNCT coo.31924059551022 930 24 ) ) PUNCT coo.31924059551022 931 1 _ _ PUNCT coo.31924059551022 931 2 γγ(4^—í#gβ=(ΰ0ί2 γγ(4^—í#gβ=(ΰ0ί2 PROPN coo.31924059551022 932 1 + + CCONJ coo.31924059551022 932 2 ^1 ^1 PUNCT coo.31924059551022 932 3 * * PUNCT coo.31924059551022 932 4 + + PUNCT coo.31924059551022 932 5 · · PUNCT coo.31924059551022 932 6 · · SYM coo.31924059551022 932 7 7 7 NUM coo.31924059551022 932 8 26 26 NUM coo.31924059551022 932 9 r,),/:(ytl r,),/:(ytl NOUN coo.31924059551022 933 1 ( ( PUNCT coo.31924059551022 933 2 η η X coo.31924059551022 933 3 -j -j PUNCT coo.31924059551022 933 4 - - PUNCT coo.31924059551022 933 5 yí2 yí2 NOUN coo.31924059551022 933 6 < < NUM coo.31924059551022 933 7 m m NOUN coo.31924059551022 933 8 5 5 NUM coo.31924059551022 933 9 ) ) PUNCT coo.31924059551022 933 10 -.«/d -.«/d PUNCT coo.31924059551022 934 1 + + PUNCT coo.31924059551022 934 2 _ _ PUNCT coo.31924059551022 935 1 υ0 υ0 PROPN coo.31924059551022 935 2 , , PUNCT coo.31924059551022 935 3 or.+ or.+ PROPN coo.31924059551022 935 4 -&-.+ττγ~ -&-.+ττγ~ NOUN coo.31924059551022 935 5 , , PUNCT coo.31924059551022 935 6 — — PUNCT coo.31924059551022 935 7 y+ï y+ï NUM coo.31924059551022 935 8 ^ ^ NOUN coo.31924059551022 935 9 cuk cuk VERB coo.31924059551022 935 10 “ " PUNCT coo.31924059551022 935 11 ( ( PUNCT coo.31924059551022 935 12 η η PROPN coo.31924059551022 935 13 ~ ~ SYM coo.31924059551022 935 14 ι ι X coo.31924059551022 935 15 ) ) PUNCT coo.31924059551022 935 16 οϊι~ οϊι~ X coo.31924059551022 935 17 4£7^ 4£7^ NUM coo.31924059551022 935 18 reduction reduction NUM coo.31924059551022 935 19 of of ADP coo.31924059551022 935 20 the the DET coo.31924059551022 935 21 forms form NOUN coo.31924059551022 935 22 when when SCONJ coo.31924059551022 935 23 n n SYM coo.31924059551022 935 24 equals equal VERB coo.31924059551022 935 25 three three NUM coo.31924059551022 935 26 . . PUNCT coo.31924059551022 936 1 67 67 NUM coo.31924059551022 936 2 and and CCONJ coo.31924059551022 936 3 [ [ X coo.31924059551022 936 4 127 127 NUM coo.31924059551022 936 5 ] ] PUNCT coo.31924059551022 936 6 dlog dlog NOUN coo.31924059551022 936 7 . . PUNCT coo.31924059551022 937 1 b b X coo.31924059551022 937 2 = = NOUN coo.31924059551022 937 3 b0[î±i b0[î±i NOUN coo.31924059551022 937 4 + + NUM coo.31924059551022 937 5 % % NOUN coo.31924059551022 937 6 y y X coo.31924059551022 937 7 + + CCONJ coo.31924059551022 937 8 ( ( PUNCT coo.31924059551022 937 9 2b 2b NUM coo.31924059551022 937 10 , , PUNCT coo.31924059551022 937 11 ^-)u+(^p^2?1 ^-)u+(^p^2?1 SPACE coo.31924059551022 937 12 + + NUM coo.31924059551022 937 13 2?1s)]m2 2?1s)]m2 NUM coo.31924059551022 937 14 + + CCONJ coo.31924059551022 937 15 · · PUNCT coo.31924059551022 937 16 prom prom PROPN coo.31924059551022 937 17 developments development NOUN coo.31924059551022 937 18 [ [ X coo.31924059551022 937 19 126 126 NUM coo.31924059551022 937 20 ] ] PUNCT coo.31924059551022 937 21 and and CCONJ coo.31924059551022 937 22 [ [ X coo.31924059551022 937 23 127 127 X coo.31924059551022 937 24 ] ] PUNCT coo.31924059551022 937 25 we we PRON coo.31924059551022 937 26 find find VERB coo.31924059551022 937 27 [ [ X coo.31924059551022 937 28 128 128 NUM coo.31924059551022 937 29 ] ] PUNCT coo.31924059551022 937 30 · · PUNCT coo.31924059551022 937 31 · · PUNCT coo.31924059551022 937 32 · · PUNCT coo.31924059551022 937 33 · · PUNCT coo.31924059551022 937 34 2 2 NUM coo.31924059551022 937 35 , , PUNCT coo.31924059551022 937 36 = = PROPN coo.31924059551022 937 37 ^jr ^jr PROPN coo.31924059551022 937 38 ; ; PUNCT coo.31924059551022 937 39 & & CCONJ coo.31924059551022 937 40 = = X coo.31924059551022 937 41 § § X coo.31924059551022 937 42 ‘ ' PUNCT coo.31924059551022 937 43 ; ; PUNCT coo.31924059551022 937 44 qs==bwo qs==bwo PROPN coo.31924059551022 937 45 ’ ' PUNCT coo.31924059551022 937 46 nhein9om nhein9om X coo.31924059551022 937 47 > > X coo.31924059551022 937 48 and and CCONJ coo.31924059551022 937 49 from from ADP coo.31924059551022 937 50 developments development NOUN coo.31924059551022 937 51 [ [ X coo.31924059551022 937 52 125 125 NUM coo.31924059551022 937 53 ] ] PUNCT coo.31924059551022 937 54 and and CCONJ coo.31924059551022 937 55 [ [ X coo.31924059551022 937 56 126 126 NUM coo.31924059551022 937 57 ] ] PUNCT coo.31924059551022 937 58 : : PUNCT coo.31924059551022 937 59 r r NOUN coo.31924059551022 937 60 — — PUNCT coo.31924059551022 937 61 n n X coo.31924059551022 937 62 — — PUNCT coo.31924059551022 937 63 9.t 9.t NUM coo.31924059551022 937 64 x x PUNCT coo.31924059551022 937 65 qi~ qi~ PROPN coo.31924059551022 937 66 uba uba PROPN coo.31924059551022 938 1 [ [ X coo.31924059551022 938 2 129 129 NUM coo.31924059551022 938 3 ] ] PUNCT coo.31924059551022 938 4 « « PUNCT coo.31924059551022 938 5 + + CCONJ coo.31924059551022 938 6 β β X coo.31924059551022 938 7 + + CCONJ coo.31924059551022 938 8 γ γ NOUN coo.31924059551022 938 9 η-----1pv η-----1pv SPACE coo.31924059551022 938 10 ) ) PUNCT coo.31924059551022 938 11 = = X coo.31924059551022 938 12 q q PROPN coo.31924059551022 938 13 * * PUNCT coo.31924059551022 938 14 — — PUNCT coo.31924059551022 938 15 2 2 NUM coo.31924059551022 938 16 q q X coo.31924059551022 938 17 < < X coo.31924059551022 938 18 ¡ ¡ NUM coo.31924059551022 938 19 p'v p'v NOUN coo.31924059551022 938 20 = = VERB coo.31924059551022 938 21 2(3qiq2 2(3qiq2 NUM coo.31924059551022 938 22 3qs 3qs NOUN coo.31924059551022 938 23 + + CCONJ coo.31924059551022 938 24 q q X coo.31924059551022 938 25 * * PUNCT coo.31924059551022 938 26 ) ) PUNCT coo.31924059551022 939 1 * * PUNCT coo.31924059551022 939 2 these these DET coo.31924059551022 939 3 forms form NOUN coo.31924059551022 939 4 are be AUX coo.31924059551022 939 5 transformed transform VERB coo.31924059551022 939 6 by by ADP coo.31924059551022 939 7 the the DET coo.31924059551022 939 8 aid aid NOUN coo.31924059551022 939 9 of of ADP coo.31924059551022 939 10 the the DET coo.31924059551022 939 11 relations relation NOUN coo.31924059551022 939 12 c c X coo.31924059551022 939 13 = = PUNCT coo.31924059551022 939 14 < < X coo.31924059551022 939 15 ? ? PUNCT coo.31924059551022 939 16 ypq ypq NOUN coo.31924059551022 939 17 ( ( PUNCT coo.31924059551022 939 18 p. p. NOUN coo.31924059551022 939 19 56 56 NUM coo.31924059551022 939 20 ) ) PUNCT coo.31924059551022 939 21 ; ; PUNCT coo.31924059551022 939 22 ( ( PUNCT coo.31924059551022 939 23 2η 2η NUM coo.31924059551022 939 24 — — PUNCT coo.31924059551022 940 1 1)(cc 1)(cc NUM coo.31924059551022 940 2 + + NUM coo.31924059551022 940 3 β β X coo.31924059551022 940 4 + + CCONJ coo.31924059551022 940 5 γ γ NOUN coo.31924059551022 940 6 + + NOUN coo.31924059551022 940 7 · · PUNCT coo.31924059551022 940 8 · · PUNCT coo.31924059551022 940 9 · · PUNCT coo.31924059551022 940 10 ) ) PUNCT coo.31924059551022 940 11 = = PROPN coo.31924059551022 940 12 b b X coo.31924059551022 940 13 ( ( PUNCT coo.31924059551022 940 14 p. p. NOUN coo.31924059551022 940 15 29 29 NUM coo.31924059551022 940 16 ) ) PUNCT coo.31924059551022 940 17 ( ( PUNCT coo.31924059551022 940 18 2η 2η NUM coo.31924059551022 940 19 1 1 NUM coo.31924059551022 940 20 ) ) PUNCT coo.31924059551022 940 21 α α NOUN coo.31924059551022 940 22 , , PUNCT coo.31924059551022 940 23 = = NOUN coo.31924059551022 940 24 — — PUNCT coo.31924059551022 940 25 b b X coo.31924059551022 940 26 ( ( PUNCT coo.31924059551022 940 27 p. p. NOUN coo.31924059551022 940 28 86 86 NUM coo.31924059551022 940 29 ) ) PUNCT coo.31924059551022 941 1 whence whence NOUN coo.31924059551022 941 2 ( ( PUNCT coo.31924059551022 941 3 « « PUNCT coo.31924059551022 941 4 + + CCONJ coo.31924059551022 941 5 β β X coo.31924059551022 941 6 + + CCONJ coo.31924059551022 941 7 γ γ NOUN coo.31924059551022 941 8 + + NOUN coo.31924059551022 941 9 · · PUNCT coo.31924059551022 941 10 · · PUNCT coo.31924059551022 941 11 · · PUNCT coo.31924059551022 941 12 ) ) PUNCT coo.31924059551022 941 13 = = PUNCT coo.31924059551022 941 14 — — PUNCT coo.31924059551022 941 15 α α X coo.31924059551022 941 16 , , PUNCT coo.31924059551022 941 17 = = SYM coo.31924059551022 941 18 2 2 NUM coo.31924059551022 941 19 χ χ X coo.31924059551022 941 20 giving giving NOUN coo.31924059551022 941 21 as as ADP coo.31924059551022 941 22 result result NOUN coo.31924059551022 941 23 : : PUNCT coo.31924059551022 941 24 _ _ PUNCT coo.31924059551022 941 25 qy qy INTJ coo.31924059551022 941 26 _ _ X coo.31924059551022 942 1 y y PROPN coo.31924059551022 942 2 i i PRON coo.31924059551022 942 3 / / SYM coo.31924059551022 942 4 q q PROPN coo.31924059551022 942 5 cb0 cb0 PROPN coo.31924059551022 943 1 c¿b0 c¿b0 PROPN coo.31924059551022 943 2 v v PROPN coo.31924059551022 943 3 p p PROPN coo.31924059551022 943 4 qyt qyt PROPN coo.31924059551022 943 5 ¿ ¿ PROPN coo.31924059551022 943 6 2βλ 2βλ PROPN coo.31924059551022 943 7 β β X coo.31924059551022 943 8 « « NOUN coo.31924059551022 943 9 v v NOUN coo.31924059551022 943 10 ■ ■ SYM coo.31924059551022 943 11 2 2 NUM coo.31924059551022 943 12 bl bl X coo.31924059551022 943 13 ¿ ¿ PROPN coo.31924059551022 943 14 v v NOUN coo.31924059551022 943 15 6qybi 6qybi NUM coo.31924059551022 943 16 sqyi sqyi NOUN coo.31924059551022 943 17 i i PRON coo.31924059551022 943 18 2 > X coo.31924059551022 952 32 2x 2x NUM coo.31924059551022 953 1 + + PUNCT coo.31924059551022 953 2 pv pv ADP coo.31924059551022 953 3 = = X coo.31924059551022 953 4 -j -j PUNCT coo.31924059551022 953 5 b0 b0 PROPN coo.31924059551022 953 6 2w 2w NUM coo.31924059551022 953 7 — — PUNCT coo.31924059551022 953 8 n n CCONJ coo.31924059551022 953 9 even even ADV coo.31924059551022 953 10 . . PUNCT coo.31924059551022 954 1 + + CCONJ coo.31924059551022 954 2 ψ\ν ψ\ν PROPN coo.31924059551022 954 3 the the DET coo.31924059551022 954 4 superiority superiority NOUN coo.31924059551022 954 5 of of ADP coo.31924059551022 954 6 these these DET coo.31924059551022 954 7 forms form NOUN coo.31924059551022 954 8 over over ADP coo.31924059551022 954 9 those those PRON coo.31924059551022 954 10 first first ADJ coo.31924059551022 954 11 derived derive VERB coo.31924059551022 954 12 , , PUNCT coo.31924059551022 954 13 showing show VERB coo.31924059551022 954 14 as as SCONJ coo.31924059551022 954 15 they they PRON coo.31924059551022 954 16 do do AUX coo.31924059551022 954 17 at at ADP coo.31924059551022 954 18 a a DET coo.31924059551022 954 19 glance glance NOUN coo.31924059551022 954 20 the the DET coo.31924059551022 954 21 synthetic synthetic ADJ coo.31924059551022 954 22 relations relation NOUN coo.31924059551022 954 23 , , PUNCT coo.31924059551022 954 24 is be AUX coo.31924059551022 954 25 unquestionable unquestionable ADJ coo.31924059551022 954 26 5 5 NUM coo.31924059551022 954 27 * * SYM coo.31924059551022 954 28 68 68 NUM coo.31924059551022 954 29 part part NOUN coo.31924059551022 954 30 v. v. ADP coo.31924059551022 954 31 and and CCONJ coo.31924059551022 954 32 the the DET coo.31924059551022 954 33 explicit explicit ADJ coo.31924059551022 954 34 forms form NOUN coo.31924059551022 954 35 for for ADP coo.31924059551022 954 36 our our PRON coo.31924059551022 954 37 case case NOUN coo.31924059551022 954 38 n n X coo.31924059551022 954 39 equals equal VERB coo.31924059551022 954 40 three three NUM coo.31924059551022 954 41 and and CCONJ coo.31924059551022 954 42 also also ADV coo.31924059551022 954 43 for for ADP coo.31924059551022 954 44 n n X coo.31924059551022 954 45 equals equal VERB coo.31924059551022 954 46 four four NUM coo.31924059551022 954 47 and and CCONJ coo.31924059551022 954 48 to to ADP coo.31924059551022 954 49 some some DET coo.31924059551022 954 50 extent extent NOUN coo.31924059551022 954 51 for for ADP coo.31924059551022 954 52 yet yet ADV coo.31924059551022 954 53 higher high ADJ coo.31924059551022 954 54 values value NOUN coo.31924059551022 954 55 , , PUNCT coo.31924059551022 954 56 are be AUX coo.31924059551022 954 57 obtainable obtainable ADJ coo.31924059551022 954 58 with with ADP coo.31924059551022 954 59 greater great ADJ coo.31924059551022 954 60 easy easy ADJ coo.31924059551022 954 61 than than ADP coo.31924059551022 954 62 by by ADP coo.31924059551022 954 63 the the DET coo.31924059551022 954 64 first first ADJ coo.31924059551022 954 65 method method NOUN coo.31924059551022 954 66 . . PUNCT coo.31924059551022 955 1 even even ADV coo.31924059551022 955 2 here here ADV coo.31924059551022 955 3 however however ADV coo.31924059551022 955 4 the the DET coo.31924059551022 955 5 forms form NOUN coo.31924059551022 955 6 increase increase VERB coo.31924059551022 955 7 in in ADP coo.31924059551022 955 8 complexity complexity NOUN coo.31924059551022 955 9 so so ADV coo.31924059551022 955 10 rapidly rapidly ADV coo.31924059551022 955 11 that that SCONJ coo.31924059551022 955 12 n n CCONJ coo.31924059551022 955 13 is be AUX coo.31924059551022 955 14 practically practically ADV coo.31924059551022 955 15 restricted restrict VERB coo.31924059551022 955 16 to to ADP coo.31924059551022 955 17 the the DET coo.31924059551022 955 18 lowest low ADJ coo.31924059551022 955 19 values value NOUN coo.31924059551022 955 20 . . PUNCT coo.31924059551022 956 1 for for ADP coo.31924059551022 956 2 case case NOUN coo.31924059551022 956 3 n n X coo.31924059551022 956 4 = = X coo.31924059551022 956 5 3 3 X coo.31924059551022 956 6 . . X coo.31924059551022 957 1 we we PRON coo.31924059551022 957 2 have have AUX coo.31924059551022 957 3 found find VERB coo.31924059551022 957 4 all all DET coo.31924059551022 957 5 the the DET coo.31924059551022 957 6 eliments eliment NOUN coo.31924059551022 957 7 except except SCONJ coo.31924059551022 957 8 γχ γχ PRON coo.31924059551022 957 9 which which PRON coo.31924059551022 957 10 is be AUX coo.31924059551022 957 11 derived derive VERB coo.31924059551022 957 12 from from ADP coo.31924059551022 957 13 development development NOUN coo.31924059551022 957 14 of of ADP coo.31924059551022 957 15 θ θ PROPN coo.31924059551022 957 16 , , PUNCT coo.31924059551022 957 17 or or CCONJ coo.31924059551022 957 18 more more ADV coo.31924059551022 957 19 easily easily ADV coo.31924059551022 957 20 as as SCONJ coo.31924059551022 957 21 follows follow NOUN coo.31924059551022 957 22 . . PUNCT coo.31924059551022 958 1 from from ADP coo.31924059551022 958 2 ( ( PUNCT coo.31924059551022 958 3 106 106 NUM coo.31924059551022 958 4 , , PUNCT coo.31924059551022 958 5 p. p. NOUN coo.31924059551022 958 6 59 59 NUM coo.31924059551022 958 7 ) ) PUNCT coo.31924059551022 958 8 « « PUNCT coo.31924059551022 958 9 = = X coo.31924059551022 958 10 ( ( PUNCT coo.31924059551022 958 11 15 15 NUM coo.31924059551022 958 12 ) ) PUNCT coo.31924059551022 958 13 » » PUNCT coo.31924059551022 959 1 [ [ X coo.31924059551022 959 2 4 4 NUM coo.31924059551022 959 3 4 4 NUM coo.31924059551022 959 4 + + NUM coo.31924059551022 959 5 27 27 NUM coo.31924059551022 959 6 4 4 NUM coo.31924059551022 959 7 ] ] PUNCT coo.31924059551022 959 8 and and CCONJ coo.31924059551022 959 9 from from ADP coo.31924059551022 959 10 ( ( PUNCT coo.31924059551022 959 11 p. p. NOUN coo.31924059551022 959 12 65 65 NUM coo.31924059551022 959 13 ) ) PUNCT coo.31924059551022 959 14 ψη= ψη= PROPN coo.31924059551022 959 15 * * PUNCT coo.31924059551022 959 16 = = ADP coo.31924059551022 959 17 qy qy ADV coo.31924059551022 959 18 = = ADJ coo.31924059551022 959 19 ( ( PUNCT coo.31924059551022 959 20 3s 3s NOUN coo.31924059551022 959 21 * * PUNCT coo.31924059551022 959 22 + + CCONJ coo.31924059551022 959 23 a a X coo.31924059551022 959 24 ) ) PUNCT coo.31924059551022 959 25 ( ( PUNCT coo.31924059551022 959 26 — — PUNCT coo.31924059551022 959 27 6 6 NUM coo.31924059551022 959 28 a¿s2 a¿s2 PROPN coo.31924059551022 959 29 + + CCONJ coo.31924059551022 959 30 9a^8 9a^8 NUM coo.31924059551022 959 31 4 4 NUM coo.31924059551022 959 32 λ3 λ3 NOUN coo.31924059551022 959 33 ) ) PUNCT coo.31924059551022 959 34 + + CCONJ coo.31924059551022 960 1 9(2α,8 9(2α,8 NUM coo.31924059551022 960 2 3 3 NUM coo.31924059551022 960 3 + + NUM coo.31924059551022 960 4 3)(s3 3)(s3 NUM coo.31924059551022 960 5 + + CCONJ coo.31924059551022 960 6 λ λ NOUN coo.31924059551022 960 7 « « SYM coo.31924059551022 960 8 + + CCONJ coo.31924059551022 960 9 aÿ aÿ ADV coo.31924059551022 960 10 ) ) PUNCT coo.31924059551022 960 11 = = PUNCT coo.31924059551022 960 12 -(4j32 -(4j32 PUNCT coo.31924059551022 960 13 + + NUM coo.31924059551022 960 14 27^ 27^ NUM coo.31924059551022 960 15 ) ) PUNCT coo.31924059551022 960 16 and and CCONJ coo.31924059551022 960 17 a a DET coo.31924059551022 960 18 comparison comparison NOUN coo.31924059551022 960 19 gives give VERB coo.31924059551022 960 20 immediately immediately ADV coo.31924059551022 960 21 i132! i132! VERB coo.31924059551022 960 22 ....................... ....................... PUNCT coo.31924059551022 960 23 y=~(í5)s y=~(í5)s SPACE coo.31924059551022 960 24 ' ' PART coo.31924059551022 961 1 the the DET coo.31924059551022 961 2 other other ADJ coo.31924059551022 961 3 values value NOUN coo.31924059551022 961 4 for for ADP coo.31924059551022 961 5 the the DET coo.31924059551022 961 6 eliments eliment NOUN coo.31924059551022 961 7 have have AUX coo.31924059551022 961 8 been be AUX coo.31924059551022 961 9 found find VERB coo.31924059551022 961 10 , , PUNCT coo.31924059551022 961 11 namely namely ADV coo.31924059551022 961 12 c c PROPN coo.31924059551022 961 13 = = SYM coo.31924059551022 961 14 k k PROPN coo.31924059551022 961 15 yi== yi== NOUN coo.31924059551022 961 16 0 0 PUNCT coo.31924059551022 962 1 φ'=12δ2-<72 φ'=12δ2-<72 ADP coo.31924059551022 962 2 p= p= VERB coo.31924059551022 962 3 156 156 NUM coo.31924059551022 962 4 λ λ NOUN coo.31924059551022 962 5 - - NOUN coo.31924059551022 962 6 τφ τφ NOUN coo.31924059551022 962 7 ' ' PUNCT coo.31924059551022 962 8 ï ï PROPN coo.31924059551022 962 9 = = SYM coo.31924059551022 962 10 36 36 NUM coo.31924059551022 962 11 j5o=-l«p j5o=-l«p PROPN coo.31924059551022 962 12 ' ' PUNCT coo.31924059551022 962 13 λ= λ= NOUN coo.31924059551022 962 14 j9 j9 PROPN coo.31924059551022 962 15 > > X coo.31924059551022 962 16 ~ ~ PUNCT coo.31924059551022 962 17 è9 è9 SPACE coo.31924059551022 962 18 > > X coo.31924059551022 962 19 ' ' PUNCT coo.31924059551022 962 20 « « PUNCT coo.31924059551022 962 21 i i PRON coo.31924059551022 962 22 = = X coo.31924059551022 962 23 χλ χλ PROPN coo.31924059551022 962 24 βί=^φ βί=^φ PROPN coo.31924059551022 962 25 — — PUNCT coo.31924059551022 962 26 6bq 6bq PROPN coo.31924059551022 962 27 ) ) PUNCT coo.31924059551022 962 28 ' ' PUNCT coo.31924059551022 963 1 φ φ X coo.31924059551022 963 2 = = NOUN coo.31924059551022 963 3 = = PROPN coo.31924059551022 963 4 463 463 NUM coo.31924059551022 963 5 — — PUNCT coo.31924059551022 963 6 — — PUNCT coo.31924059551022 963 7 h h NOUN coo.31924059551022 963 8 = = PUNCT coo.31924059551022 963 9 — — PUNCT coo.31924059551022 963 10 ” " PUNCT coo.31924059551022 963 11 ít3 ít3 VERB coo.31924059551022 963 12 . . PUNCT coo.31924059551022 964 1 we we PRON coo.31924059551022 964 2 have have AUX coo.31924059551022 964 3 then then ADV coo.31924059551022 964 4 for for ADP coo.31924059551022 964 5 w w PROPN coo.31924059551022 964 6 equals equal VERB coo.31924059551022 964 7 three three NUM coo.31924059551022 964 8 ■ ■ NOUN coo.31924059551022 964 9 x x PUNCT coo.31924059551022 965 1 = = PUNCT coo.31924059551022 965 2 /q /q PUNCT coo.31924059551022 965 3 2 2 NUM coo.31924059551022 965 4 ( ( PUNCT coo.31924059551022 965 5 15)2 15)2 NUM coo.31924059551022 965 6 ί ί AUX coo.31924059551022 965 7 p p X coo.31924059551022 965 8 f f X coo.31924059551022 965 9 ( ( PUNCT coo.31924059551022 965 10 15)a 15)a NUM coo.31924059551022 965 11 * * SYM coo.31924059551022 965 12 3φ/ 3φ/ NUM coo.31924059551022 965 13 1 1 NUM coo.31924059551022 965 14 1 1 NUM coo.31924059551022 965 15 /(lñ)3(443 /(lñ)3(443 SPACE coo.31924059551022 966 1 + + NUM coo.31924059551022 966 2 2742 2742 NUM coo.31924059551022 966 3 ) ) PUNCT coo.31924059551022 967 1 r r NOUN coo.31924059551022 967 2 156 156 NUM coo.31924059551022 967 3 -ì7ì -ì7ì NOUN coo.31924059551022 967 4 /¿λ3 /¿λ3 PUNCT coo.31924059551022 968 1 + + PROPN coo.31924059551022 968 2 27 27 NUM coo.31924059551022 968 3 ( ( PUNCT coo.31924059551022 968 4 compair compair NOUN coo.31924059551022 968 5 109 109 NUM coo.31924059551022 968 6 , , PUNCT coo.31924059551022 968 7 p. p. NOUN coo.31924059551022 968 8 1 1 NUM coo.31924059551022 969 1 ί ί X coo.31924059551022 969 2 ψ ψ PROPN coo.31924059551022 969 3 3 3 NUM coo.31924059551022 969 4 27φ2 27φ2 NUM coo.31924059551022 969 5 — — PUNCT coo.31924059551022 969 6 .8(27 .8(27 PROPN coo.31924059551022 969 7 ) ) PUNCT coo.31924059551022 970 1 1)φφ 1)φφ NUM coo.31924059551022 970 2 ' ' NUM coo.31924059551022 970 3 16(27)b2 16(27)b2 NUM coo.31924059551022 970 4 φ φ NOUN coo.31924059551022 970 5 ' ' PART coo.31924059551022 970 6 2 2 NUM coo.31924059551022 970 7 \ \ PROPN coo.31924059551022 970 8 2 2 NUM coo.31924059551022 970 9 6φ 6φ VERB coo.31924059551022 970 10 ' ' PUNCT coo.31924059551022 970 11 i i PRON coo.31924059551022 970 12 b b X coo.31924059551022 970 13 j j PROPN coo.31924059551022 970 14 squaring square VERB coo.31924059551022 970 15 we we PRON coo.31924059551022 970 16 have have VERB coo.31924059551022 970 17 : : PUNCT coo.31924059551022 970 18 [134 [134 NUM coo.31924059551022 970 19 ] ] X coo.31924059551022 970 20 · · PUNCT coo.31924059551022 970 21 reduction reduction NOUN coo.31924059551022 970 22 of of ADP coo.31924059551022 970 23 the the DET coo.31924059551022 970 24 forms form NOUN coo.31924059551022 970 25 when when SCONJ coo.31924059551022 970 26 n n SYM coo.31924059551022 970 27 equals equal VERB coo.31924059551022 970 28 three three NUM coo.31924059551022 970 29 . . PUNCT coo.31924059551022 971 1 ; ; PUNCT coo.31924059551022 971 2 = = SYM coo.31924059551022 971 3 = = PROPN coo.31924059551022 971 4 4(3b*|g,)8 4(3b*|g,)8 NUM coo.31924059551022 971 5 + + NUM coo.31924059551022 971 6 27(1163 27(1163 NUM coo.31924059551022 971 7 , , PUNCT coo.31924059551022 971 8 36b(3b 36b(3b NUM coo.31924059551022 971 9 * * SYM coo.31924059551022 971 10 -\9i -\9i PROPN coo.31924059551022 971 11 ) ) PUNCT coo.31924059551022 971 12 ' ' PUNCT coo.31924059551022 971 13 ¡ ¡ NUM coo.31924059551022 971 14 _ _ NOUN coo.31924059551022 971 15 4(p 4(p NUM coo.31924059551022 971 16 — — PUNCT coo.31924059551022 971 17 a,)3 a,)3 ADJ coo.31924059551022 971 18 -f -f PUNCT coo.31924059551022 971 19 ( ( PUNCT coo.31924059551022 971 20 116 116 NUM coo.31924059551022 971 21 * * PUNCT coo.31924059551022 971 22 90,6 90,6 NUM coo.31924059551022 971 23 , , PUNCT coo.31924059551022 971 24 — — PUNCT coo.31924059551022 971 25 6,)2 6,)2 NUM coo.31924059551022 971 26 69 69 NUM coo.31924059551022 971 27 36 36 NUM coo.31924059551022 971 28 l(p l(p PROPN coo.31924059551022 971 29 — — PUNCT coo.31924059551022 971 30 a,)2 a,)2 X coo.31924059551022 971 31 φ(1 φ(1 SPACE coo.31924059551022 971 32 ) ) PUNCT coo.31924059551022 971 33 361 361 NUM coo.31924059551022 971 34 ( ( PUNCT coo.31924059551022 971 35 p p PROPN coo.31924059551022 971 36 a,)2 a,)2 X coo.31924059551022 971 37 φ φ PROPN coo.31924059551022 971 38 , , PUNCT coo.31924059551022 971 39 φ φ PROPN coo.31924059551022 971 40 , , PUNCT coo.31924059551022 971 41 φ3 φ3 PROPN coo.31924059551022 971 42 ( ( PUNCT coo.31924059551022 971 43 compair compair NOUN coo.31924059551022 971 44 82 82 NUM coo.31924059551022 971 45 , , PUNCT coo.31924059551022 971 46 p. p. NOUN coo.31924059551022 971 47 4.9 4.9 NUM coo.31924059551022 971 48 . . PUNCT coo.31924059551022 971 49 ) ) PUNCT coo.31924059551022 972 1 [ [ PUNCT coo.31924059551022 972 2 135 135 NUM coo.31924059551022 972 3 ] ] PUNCT coo.31924059551022 972 4 _ _ PUNCT coo.31924059551022 972 5 _ _ PUNCT coo.31924059551022 973 1 _ _ PUNCT coo.31924059551022 973 2 _ _ PUNCT coo.31924059551022 974 1 _ _ PUNCT coo.31924059551022 974 2 _ _ PUNCT coo.31924059551022 975 1 _ _ PUNCT coo.31924059551022 975 2 _ _ PUNCT coo.31924059551022 976 1 _ _ PUNCT coo.31924059551022 976 2 _ _ PUNCT coo.31924059551022 977 1 _ _ PUNCT coo.31924059551022 977 2 _ _ PUNCT coo.31924059551022 978 1 _ _ PUNCT coo.31924059551022 978 2 _ _ PUNCT coo.31924059551022 979 1 _ _ PUNCT coo.31924059551022 980 1 36z(/2 36z(/2 NUM coo.31924059551022 980 2 — — PUNCT coo.31924059551022 980 3 o,)2 o,)2 NUM coo.31924059551022 980 4 5362z 5362z NUM coo.31924059551022 980 5 ( ( PUNCT coo.31924059551022 980 6 í2 í2 PROPN coo.31924059551022 980 7 — — PUNCT coo.31924059551022 980 8 a,)2 a,)2 NUM coo.31924059551022 980 9 ~ ~ PUNCT coo.31924059551022 980 10 , , PUNCT coo.31924059551022 980 11 s’jj2 s’jj2 PROPN coo.31924059551022 980 12 — — PUNCT coo.31924059551022 980 13 ’ ' PUNCT coo.31924059551022 980 14 ' ' PUNCT coo.31924059551022 980 15 again again ADV coo.31924059551022 980 16 we we PRON coo.31924059551022 980 17 have have AUX coo.31924059551022 980 18 : : PUNCT coo.31924059551022 980 19 _ _ X coo.31924059551022 980 20 < < X coo.31924059551022 980 21 2y2 2y2 NUM coo.31924059551022 980 22 2p 2p NOUN coo.31924059551022 980 23 , , PUNCT coo.31924059551022 980 24 b b PROPN coo.31924059551022 980 25 1 1 NUM coo.31924059551022 980 26 > > X coo.31924059551022 980 27 v v NOUN coo.31924059551022 980 28 ~ ~ PROPN coo.31924059551022 980 29 c4pjb„2 c4pjb„2 PROPN coo.31924059551022 980 30 b b NOUN coo.31924059551022 980 31 „ „ PUNCT coo.31924059551022 980 32 2w 2w NUM coo.31924059551022 980 33 — — PUNCT coo.31924059551022 980 34 1 1 NUM coo.31924059551022 980 35 4[4λ3 4[4λ3 NUM coo.31924059551022 980 36 + + NUM coo.31924059551022 980 37 2742 2742 NUM coo.31924059551022 980 38 ] ] PUNCT coo.31924059551022 980 39 4(| 4(| NUM coo.31924059551022 980 40 φ φ PROPN coo.31924059551022 980 41 — — PUNCT coo.31924059551022 980 42 66φ 66φ NUM coo.31924059551022 980 43 ' ' PART coo.31924059551022 980 44 ) ) PUNCT coo.31924059551022 980 45 9φ'2δ 9φ'2δ NUM coo.31924059551022 980 46 + + PROPN coo.31924059551022 980 47 3φ 3φ NOUN coo.31924059551022 980 48 ' ' PART coo.31924059551022 980 49 u u PROPN coo.31924059551022 980 50 whence whence PROPN coo.31924059551022 980 51 „ „ PUNCT coo.31924059551022 980 52 οβη οβη VERB coo.31924059551022 980 53 7 7 NUM coo.31924059551022 980 54 ^[¿φ'3 ^[¿φ'3 NOUN coo.31924059551022 980 55 + + NUM coo.31924059551022 980 56 27(¿v2 27(¿v2 NUM coo.31924059551022 980 57 } } PUNCT coo.31924059551022 980 58 6φφ'+ 6φφ'+ NOUN coo.31924059551022 980 59 62φ'2 62φ'2 NUM coo.31924059551022 980 60 ) ) PUNCT coo.31924059551022 980 61 i i PRON coo.31924059551022 980 62 + + NOUN coo.31924059551022 980 63 ^ψφ'6 ^ψφ'6 PUNCT coo.31924059551022 980 64 -·7262ψ'2 -·7262ψ'2 X coo.31924059551022 981 1 [ [ X coo.31924059551022 981 2 í3b]pv í3b]pv X coo.31924059551022 981 3 b b NOUN coo.31924059551022 981 4 = = PUNCT coo.31924059551022 981 5 l---------------------—--------------------------- l---------------------—--------------------------- SPACE coo.31924059551022 981 6 _ _ PUNCT coo.31924059551022 981 7 _ _ PUNCT coo.31924059551022 981 8 φ'3 φ'3 X coo.31924059551022 982 1 + + ADP coo.31924059551022 982 2 ‘ ' PUNCT coo.31924059551022 982 3 27φ2 27φ2 NUM coo.31924059551022 982 4 — — PUNCT coo.31924059551022 982 5 108δφφ 108δφφ NUM coo.31924059551022 982 6 ' ' NUM coo.31924059551022 982 7 36 36 NUM coo.31924059551022 982 8 δ δ PROPN coo.31924059551022 982 9 φ’2 φ’2 NOUN coo.31924059551022 982 10 writing write VERB coo.31924059551022 982 11 φ φ PROPN coo.31924059551022 982 12 and and CCONJ coo.31924059551022 982 13 φ φ X coo.31924059551022 982 14 ' ' PUNCT coo.31924059551022 982 15 in in ADP coo.31924059551022 982 16 terms term NOUN coo.31924059551022 982 17 of of ADP coo.31924059551022 982 18 g2g3 g2g3 PRON coo.31924059551022 982 19 and and CCONJ coo.31924059551022 982 20 l l NOUN coo.31924059551022 982 21 · · PUNCT coo.31924059551022 982 22 we we PRON coo.31924059551022 982 23 have have VERB coo.31924059551022 982 24 : : PUNCT coo.31924059551022 982 25 φ φ X coo.31924059551022 982 26 · · PUNCT coo.31924059551022 982 27 ’ ' PUNCT coo.31924059551022 982 28 = = NOUN coo.31924059551022 982 29 17285 17285 NUM coo.31924059551022 982 30 * * PUNCT coo.31924059551022 982 31 — — PUNCT coo.31924059551022 982 32 4325^ 4325^ NUM coo.31924059551022 982 33 + + NUM coo.31924059551022 982 34 36b*g\ 36b*g\ NUM coo.31924059551022 982 35 g\ g\ SYM coo.31924059551022 982 36 27 27 NUM coo.31924059551022 982 37 φ= φ= X coo.31924059551022 982 38 432 432 NUM coo.31924059551022 982 39 6 6 NUM coo.31924059551022 982 40 ® ® NOUN coo.31924059551022 982 41 — — PUNCT coo.31924059551022 982 42 216 216 NUM coo.31924059551022 982 43 54»<«- -1)-*,·<“—>»<«- X coo.31924059551022 996 31 » » X coo.31924059551022 996 32 > > X coo.31924059551022 996 33 · · PUNCT coo.31924059551022 996 34 _ _ NOUN coo.31924059551022 996 35 ¿ ¿ NUM coo.31924059551022 996 36 „ „ PUNCT coo.31924059551022 996 37 w w X coo.31924059551022 996 38 ( ( PUNCT coo.31924059551022 996 39 * * PROPN coo.31924059551022 996 40 , , PUNCT coo.31924059551022 996 41 „ „ PUNCT coo.31924059551022 996 42 ) ) PUNCT coo.31924059551022 996 43 . . PUNCT coo.31924059551022 997 1 caco caco NOUN coo.31924059551022 997 2 · · PUNCT coo.31924059551022 997 3 · · PUNCT coo.31924059551022 997 4 cv(pu cv(pu PROPN coo.31924059551022 997 5 ) ) PUNCT coo.31924059551022 997 6 “ " PUNCT coo.31924059551022 997 7 also also ADV coo.31924059551022 997 8 rc(4 rc(4 PROPN coo.31924059551022 997 9 t t PROPN coo.31924059551022 997 10 a)~j a)~j PUNCT coo.31924059551022 997 11 _ _ PUNCT coo.31924059551022 997 12 _ _ PUNCT coo.31924059551022 998 1 j j X coo.31924059551022 999 1 l l NOUN coo.31924059551022 999 2 ca can AUX coo.31924059551022 999 3 jm jm PROPN coo.31924059551022 999 4 = = NOUN coo.31924059551022 999 5 o o NOUN coo.31924059551022 999 6 whence whence SCONJ coo.31924059551022 999 7 it it PRON coo.31924059551022 999 8 follows follow VERB coo.31924059551022 999 9 that that SCONJ coo.31924059551022 999 10 the the DET coo.31924059551022 999 11 left left ADJ coo.31924059551022 999 12 hand hand NOUN coo.31924059551022 999 13 member member NOUN coo.31924059551022 999 14 of of ADP coo.31924059551022 999 15 ( ( PUNCT coo.31924059551022 999 16 139 139 NUM coo.31924059551022 999 17 ) ) PUNCT coo.31924059551022 999 18 depends depend VERB coo.31924059551022 999 19 for for ADP coo.31924059551022 999 20 its its PRON coo.31924059551022 999 21 value value NOUN coo.31924059551022 999 22 on on ADP coo.31924059551022 999 23 the the DET coo.31924059551022 999 24 terms term NOUN coo.31924059551022 999 25 ( ( PUNCT coo.31924059551022 999 26 o"*i o"*i PROPN coo.31924059551022 999 27 . . PUNCT coo.31924059551022 1000 1 c{u)n c{u)n X coo.31924059551022 1001 1 + + PROPN coo.31924059551022 1001 2 1 1 NUM coo.31924059551022 1002 1 but but CCONJ coo.31924059551022 1002 2 we we PRON coo.31924059551022 1002 3 have have VERB coo.31924059551022 1002 4 again again ADV coo.31924059551022 1002 5 γ—1 γ—1 NOUN coo.31924059551022 1002 6 = = PUNCT coo.31924059551022 1003 1 i i PRON coo.31924059551022 1003 2 l l X coo.31924059551022 1003 3 w w X coo.31924059551022 1003 4 ju ju PROPN coo.31924059551022 1003 5 = = X coo.31924059551022 1003 6 o o X coo.31924059551022 1003 7 whence whence SCONJ coo.31924059551022 1003 8 we we PRON coo.31924059551022 1003 9 may may AUX coo.31924059551022 1003 10 write write VERB coo.31924059551022 1003 11 , , PUNCT coo.31924059551022 1003 12 taking take VERB coo.31924059551022 1003 13 n n CCONJ coo.31924059551022 1003 14 odd odd ADJ coo.31924059551022 1003 15 [ [ PUNCT coo.31924059551022 1003 16 ( ( PUNCT coo.31924059551022 1003 17 _ _ NOUN coo.31924059551022 1003 18 6(u 6(u NUM coo.31924059551022 1003 19 + + ADP coo.31924059551022 1003 20 a)-'~c(u a)-'~c(u ADJ coo.31924059551022 1003 21 + + NUM coo.31924059551022 1003 22 v v NOUN coo.31924059551022 1003 23 ) ) PUNCT coo.31924059551022 1003 24 ί ί X coo.31924059551022 1003 25 = = X coo.31924059551022 1003 26 \ \ PROPN coo.31924059551022 1003 27 , , PUNCT coo.31924059551022 1003 28 _ _ PUNCT coo.31924059551022 1003 29 _ _ PUNCT coo.31924059551022 1003 30 ] ] PUNCT coo.31924059551022 1003 31 } } PUNCT coo.31924059551022 1003 32 1 1 NUM coo.31924059551022 1003 33 < < X coo.31924059551022 1003 34 > > PUNCT coo.31924059551022 1003 35 ( ( PUNCT coo.31924059551022 1003 36 ά ά PROPN coo.31924059551022 1003 37 ) ) PUNCT coo.31924059551022 1003 38 βψ βψ PROPN coo.31924059551022 1003 39 ) ) PUNCT coo.31924059551022 1003 40 · · PUNCT coo.31924059551022 1003 41 · · PUNCT coo.31924059551022 1003 42 · · PUNCT coo.31924059551022 1003 43 0(.v)(tftt)""h1jm 0(.v)(tftt)""h1jm NUM coo.31924059551022 1003 44 = = NOUN coo.31924059551022 1003 45 o o X coo.31924059551022 1003 46 ww+1 ww+1 NOUN coo.31924059551022 1003 47 and and CCONJ coo.31924059551022 1003 48 from from ADP coo.31924059551022 1003 49 p. p. NOUN coo.31924059551022 1003 50 66 66 NUM coo.31924059551022 1004 1 k k PROPN coo.31924059551022 1004 2 = = X coo.31924059551022 1004 3 4c 4c PROPN coo.31924059551022 1004 4 that that PRON coo.31924059551022 1004 5 is be AUX coo.31924059551022 1004 6 n n ADP coo.31924059551022 1004 7 being be AUX coo.31924059551022 1004 8 odd odd ADJ coo.31924059551022 1004 9 kt kt PROPN coo.31924059551022 1004 10 = = NOUN coo.31924059551022 1004 11 b0 b0 PROPN coo.31924059551022 1004 12 . . PUNCT coo.31924059551022 1005 1 and and CCONJ coo.31924059551022 1005 2 a a DET coo.31924059551022 1005 3 similar similar ADJ coo.31924059551022 1005 4 investigation investigation NOUN coo.31924059551022 1005 5 gives give VERB coo.31924059551022 1005 6 n n ADP coo.31924059551022 1005 7 being be AUX coo.31924059551022 1005 8 even even ADV coo.31924059551022 1005 9 k k PROPN coo.31924059551022 1005 10 py py PROPN coo.31924059551022 1005 11 . . PROPN coo.31924059551022 1005 12 i-----cqv i-----cqv PROPN coo.31924059551022 1005 13 i i PRON coo.31924059551022 1005 14 + + CCONJ coo.31924059551022 1005 15 reduction reduction NUM coo.31924059551022 1005 16 of of ADP coo.31924059551022 1005 17 the the DET coo.31924059551022 1005 18 forms form NOUN coo.31924059551022 1005 19 when when SCONJ coo.31924059551022 1005 20 n n SYM coo.31924059551022 1005 21 equals equal VERB coo.31924059551022 1005 22 three three NUM coo.31924059551022 1005 23 . . PUNCT coo.31924059551022 1006 1 71 71 NUM coo.31924059551022 1006 2 since since SCONJ coo.31924059551022 1006 3 v v NOUN coo.31924059551022 1006 4 = = NOUN coo.31924059551022 1006 5 = = NOUN coo.31924059551022 1006 6 a a DET coo.31924059551022 1006 7 b b NOUN coo.31924059551022 1006 8 c c NOUN coo.31924059551022 1006 9 we we PRON coo.31924059551022 1006 10 may may AUX coo.31924059551022 1006 11 write write VERB coo.31924059551022 1006 12 p p PROPN coo.31924059551022 1006 13 — — PUNCT coo.31924059551022 1006 14 a-\-b a-\-b PROPN coo.31924059551022 1006 15 - - PUNCT coo.31924059551022 1006 16 f f X coo.31924059551022 1006 17 - - PUNCT coo.31924059551022 1006 18 c c PROPN coo.31924059551022 1006 19 - - PUNCT coo.31924059551022 1006 20 j j NOUN coo.31924059551022 1006 21 -- -- X coo.31924059551022 1006 22 v v NOUN coo.31924059551022 1006 23 ) ) PUNCT coo.31924059551022 1006 24 ^ ^ X coo.31924059551022 1006 25 ^ ^ X coo.31924059551022 1007 1 and and CCONJ coo.31924059551022 1007 2 multiplying multiply VERB coo.31924059551022 1007 3 by by ADP coo.31924059551022 1007 4 this this DET coo.31924059551022 1007 5 factor factor NOUN coo.31924059551022 1007 6 we we PRON coo.31924059551022 1007 7 can can AUX coo.31924059551022 1007 8 separate separate VERB coo.31924059551022 1007 9 the the DET coo.31924059551022 1007 10 left left ADJ coo.31924059551022 1007 11 hand hand NOUN coo.31924059551022 1007 12 member member NOUN coo.31924059551022 1007 13 into into ADP coo.31924059551022 1007 14 factors factor NOUN coo.31924059551022 1007 15 of of ADP coo.31924059551022 1007 16 the the DET coo.31924059551022 1007 17 form form NOUN coo.31924059551022 1007 18 1140 1140 NUM coo.31924059551022 1007 19 ! ! PUNCT coo.31924059551022 1008 1 .................. .................. PUNCT coo.31924059551022 1009 1 + + PUNCT coo.31924059551022 1009 2 ou ou PUNCT coo.31924059551022 1009 3 g g PROPN coo.31924059551022 1010 1 a a DET coo.31924059551022 1010 2 g g NOUN coo.31924059551022 1010 3 a a NOUN coo.31924059551022 1010 4 for for ADP coo.31924059551022 1010 5 u u PROPN coo.31924059551022 1010 6 = = PROPN coo.31924059551022 1010 7 wv wv PROPN coo.31924059551022 1011 1 but but CCONJ coo.31924059551022 1011 2 for for ADP coo.31924059551022 1011 3 this this DET coo.31924059551022 1011 4 value value NOUN coo.31924059551022 1011 5 p\w^ p\w^ SPACE coo.31924059551022 1011 6 ) ) PUNCT coo.31924059551022 1011 7 = = PROPN coo.31924059551022 1011 8 0 0 NUM coo.31924059551022 1012 1 and and CCONJ coo.31924059551022 1012 2 our our PRON coo.31924059551022 1012 3 relation relation NOUN coo.31924059551022 1012 4 becomes become VERB coo.31924059551022 1012 5 and and CCONJ coo.31924059551022 1012 6 h h PROPN coo.31924059551022 1012 7 o1aoxb o1aoxb NOUN coo.31924059551022 1012 8 • • PUNCT coo.31924059551022 1012 9 · · PUNCT coo.31924059551022 1012 10 · · PUNCT coo.31924059551022 1012 11 v v ADP coo.31924059551022 1012 12 6aeb 6aeb NUM coo.31924059551022 1012 13 · · PUNCT coo.31924059551022 1012 14 • • PUNCT coo.31924059551022 1012 15 gv gv PROPN coo.31924059551022 1012 16 t t PROPN coo.31924059551022 1012 17 in in ADP coo.31924059551022 1012 18 a a DET coo.31924059551022 1012 19 similar similar ADJ coo.31924059551022 1012 20 < < X coo.31924059551022 1012 21 > > X coo.31924059551022 1012 22 2 2 NUM coo.31924059551022 1012 23 a a DET coo.31924059551022 1012 24 a2 a2 X coo.31924059551022 1012 25 b b NOUN coo.31924059551022 1012 26 • • PUNCT coo.31924059551022 1012 27 · · PUNCT coo.31924059551022 1012 28 · · PUNCT coo.31924059551022 1012 29 6 6 NUM coo.31924059551022 1012 30 t t PROPN coo.31924059551022 1012 31 v v PROPN coo.31924059551022 1012 32 aacb aacb PROPN coo.31924059551022 1012 33 • • PUNCT coo.31924059551022 1012 34 · · PUNCT coo.31924059551022 1012 35 · · PUNCT coo.31924059551022 1012 36 gv gv PRON coo.31924059551022 1012 37 αά αά INTJ coo.31924059551022 1013 1 ao3b ao3b ADV coo.31924059551022 1013 2 ■ ■ NOUN coo.31924059551022 1013 3 · · PUNCT coo.31924059551022 1013 4 ■ ■ NOUN coo.31924059551022 1013 5 6.0v 6.0v NUM coo.31924059551022 1013 6 6aob 6aob NUM coo.31924059551022 1013 7 • • SYM coo.31924059551022 1013 8 · · PUNCT coo.31924059551022 1013 9 · · PUNCT coo.31924059551022 1013 10 gv gv X coo.31924059551022 1013 11 = = X coo.31924059551022 1013 12 φ(ρ φ(ρ SPACE coo.31924059551022 1013 13 ™ ™ VERB coo.31924059551022 1013 14 2 2 NUM coo.31924059551022 1013 15 ) ) PUNCT coo.31924059551022 1013 16 ■ ■ NOUN coo.31924059551022 1013 17 = = SYM coo.31924059551022 1013 18 φ φ X coo.31924059551022 1013 19 < < X coo.31924059551022 1013 20 δ δ PROPN coo.31924059551022 1013 21 ) ) PUNCT coo.31924059551022 1013 22 = = VERB coo.31924059551022 1013 23 φ2 φ2 PROPN coo.31924059551022 1013 24 = = X coo.31924059551022 1013 25 φ(ρν)ά φ(ρν)ά SPACE coo.31924059551022 1013 26 ) ) PUNCT coo.31924059551022 1013 27 = = X coo.31924059551022 1013 28 φ(% φ(% PROPN coo.31924059551022 1013 29 ) ) PUNCT coo.31924059551022 1013 30 = = PROPN coo.31924059551022 1013 31 φ8 φ8 PROPN coo.31924059551022 1013 32 . . PUNCT coo.31924059551022 1014 1 recalling recall VERB coo.31924059551022 1014 2 the the DET coo.31924059551022 1014 3 known know VERB coo.31924059551022 1014 4 relation relation NOUN coo.31924059551022 1014 5 t t PROPN coo.31924059551022 1014 6 ^ ^ NOUN coo.31924059551022 1015 1 6,u 6,u PROPN coo.31924059551022 1015 2 69u 69u NUM coo.31924059551022 1016 1 6„u 6„u NUM coo.31924059551022 1016 2 p p NOUN coo.31924059551022 1016 3 u u NOUN coo.31924059551022 1016 4 = = PUNCT coo.31924059551022 1016 5 — — PUNCT coo.31924059551022 1016 6 2 2 NUM coo.31924059551022 1016 7 -—i -—i NOUN coo.31924059551022 1016 8 — — PUNCT coo.31924059551022 1016 9 — — PUNCT coo.31924059551022 1016 10 l l NOUN coo.31924059551022 1016 11 60u 60u NOUN coo.31924059551022 1016 12 we we PRON coo.31924059551022 1016 13 have have VERB coo.31924059551022 1016 14 upon upon SCONJ coo.31924059551022 1016 15 taking take VERB coo.31924059551022 1016 16 the the DET coo.31924059551022 1016 17 product product NOUN coo.31924059551022 1016 18 of of ADP coo.31924059551022 1016 19 the the DET coo.31924059551022 1016 20 above above ADJ coo.31924059551022 1016 21 equations equation NOUN coo.31924059551022 1016 22 [ [ PUNCT coo.31924059551022 1016 23 142 142 NUM coo.31924059551022 1016 24 ] ] PUNCT coo.31924059551022 1016 25 . . PUNCT coo.31924059551022 1016 26 . . PUNCT coo.31924059551022 1016 27 . . PUNCT coo.31924059551022 1017 1 · · PUNCT coo.31924059551022 1017 2 . . PUNCT coo.31924059551022 1018 1 tfp'apb tfp'apb NOUN coo.31924059551022 1018 2 · · PUNCT coo.31924059551022 1018 3 · · PUNCT coo.31924059551022 1018 4 · · PUNCT coo.31924059551022 1018 5 pv pv ADP coo.31924059551022 1018 6 = = X coo.31924059551022 1018 7 ( ( PUNCT coo.31924059551022 1018 8 — — PUNCT coo.31924059551022 1018 9 2)”+1 2)”+1 NUM coo.31924059551022 1018 10 φχ φχ X coo.31924059551022 1018 11 φ2φ3 φ2φ3 SPACE coo.31924059551022 1018 12 . . PUNCT coo.31924059551022 1019 1 again again ADV coo.31924059551022 1019 2 from from ADP coo.31924059551022 1019 3 the the DET coo.31924059551022 1019 4 relations relation NOUN coo.31924059551022 1019 5 ( ( PUNCT coo.31924059551022 1019 6 65 65 NUM coo.31924059551022 1019 7 ) ) PUNCT coo.31924059551022 1019 8 “ " PUNCT coo.31924059551022 1019 9 -(*-(i -(*-(i X coo.31924059551022 1019 10 ) ) PUNCT coo.31924059551022 1019 11 ( ( PUNCT coo.31924059551022 1019 12 « « X coo.31924059551022 1019 13 y y PROPN coo.31924059551022 1019 14 ) ) PUNCT coo.31924059551022 1019 15 ( ( PUNCT coo.31924059551022 1019 16 « « X coo.31924059551022 1019 17 í í X coo.31924059551022 1019 18 ) ) PUNCT coo.31924059551022 1019 19 . . PUNCT coo.31924059551022 1019 20 . . PUNCT coo.31924059551022 1019 21 . . PUNCT coo.31924059551022 1020 1 etc etc X coo.31924059551022 1020 2 · · PUNCT coo.31924059551022 1020 3 to to ADP coo.31924059551022 1020 4 n n CCONJ coo.31924059551022 1020 5 terms term NOUN coo.31924059551022 1020 6 and and CCONJ coo.31924059551022 1020 7 we we PRON coo.31924059551022 1020 8 obtain obtain VERB coo.31924059551022 1020 9 the the DET coo.31924059551022 1020 10 product product NOUN coo.31924059551022 1020 11 a"e\ a"e\ VERB coo.31924059551022 1020 12 ! ! PUNCT coo.31924059551022 1020 13 ) ) PUNCT coo.31924059551022 1021 1 » » PUNCT coo.31924059551022 1021 2 · · PUNCT coo.31924059551022 1021 3 * * PUNCT coo.31924059551022 1021 4 · · PUNCT coo.31924059551022 1021 5 · · PUNCT coo.31924059551022 1021 6 · · PUNCT coo.31924059551022 1021 7 — — PUNCT coo.31924059551022 1021 8 » » PUNCT coo.31924059551022 1021 9 _ _ PROPN coo.31924059551022 1021 10 ( ( PUNCT coo.31924059551022 1021 11 _ _ X coo.31924059551022 1021 12 1)1 1)1 NUM coo.31924059551022 1021 13 [ [ X coo.31924059551022 1021 14 143 143 NUM coo.31924059551022 1021 15 ] ] PUNCT coo.31924059551022 1021 16 α'/τ/------(α α'/τ/------(α NUM coo.31924059551022 1021 17 _ _ NOUN coo.31924059551022 1021 18 ( ( PUNCT coo.31924059551022 1021 19 } } PUNCT coo.31924059551022 1021 20 ) ) PUNCT coo.31924059551022 1021 21 * * PUNCT coo.31924059551022 1021 22 ■ ■ X coo.31924059551022 1021 23 ( ( PUNCT coo.31924059551022 1021 24 * * PUNCT coo.31924059551022 1021 25 _ _ PUNCT coo.31924059551022 1021 26 y y X coo.31924059551022 1021 27 ) ) PUNCT coo.31924059551022 1021 28 * * PUNCT coo.31924059551022 1022 1 ( ( PUNCT coo.31924059551022 1022 2 « « PUNCT coo.31924059551022 1022 3 _ _ X coo.31924059551022 1022 4 d d X coo.31924059551022 1022 5 ) ) PUNCT coo.31924059551022 1022 6 * * PUNCT coo.31924059551022 1023 1 ■ ■ PUNCT coo.31924059551022 1023 2 ■ ■ PUNCT coo.31924059551022 1023 3 ■ ■ PUNCT coo.31924059551022 1023 4 ( ( PUNCT coo.31924059551022 1023 5 β β X coo.31924059551022 1023 6 — — PUNCT coo.31924059551022 1023 7 y)2 y)2 NOUN coo.31924059551022 1023 8 ( ( PUNCT coo.31924059551022 1023 9 β β PROPN coo.31924059551022 1023 10 - - NOUN coo.31924059551022 1023 11 d d NOUN coo.31924059551022 1023 12 ) ) PUNCT coo.31924059551022 1023 13 * * PUNCT coo.31924059551022 1023 14 · · PUNCT coo.31924059551022 1023 15 · · PUNCT coo.31924059551022 1023 16 · · PUNCT coo.31924059551022 1023 17 ( ( PUNCT coo.31924059551022 1023 18 y y PROPN coo.31924059551022 1023 19 d)2 d)2 PROPN coo.31924059551022 1023 20 · · PUNCT coo.31924059551022 1023 21 : : PUNCT coo.31924059551022 1023 22 ~ ~ PUNCT coo.31924059551022 1023 23 δ δ X coo.31924059551022 1023 24 δ δ PROPN coo.31924059551022 1023 25 being be AUX coo.31924059551022 1023 26 the the DET coo.31924059551022 1023 27 discriminant discriminant NOUN coo.31924059551022 1023 28 of of ADP coo.31924059551022 1023 29 y. y. PROPN coo.31924059551022 1023 30 substituting substitute VERB coo.31924059551022 1023 31 this this DET coo.31924059551022 1023 32 value value NOUN coo.31924059551022 1023 33 in in ADP coo.31924059551022 1023 34 [ [ X coo.31924059551022 1023 35 142 142 NUM coo.31924059551022 1023 36 ] ] PUNCT coo.31924059551022 1023 37 we we PRON coo.31924059551022 1023 38 derive derive VERB coo.31924059551022 1023 39 [ [ PUNCT coo.31924059551022 1023 40 144 144 NUM coo.31924059551022 1023 41 ] ] PUNCT coo.31924059551022 1023 42 · · PUNCT coo.31924059551022 1023 43 · · PUNCT coo.31924059551022 1023 44 · · PUNCT coo.31924059551022 1023 45 · · PUNCT coo.31924059551022 1023 46 ( ( PUNCT coo.31924059551022 1023 47 — — PUNCT coo.31924059551022 1023 48 l)t”(”-,)2“cvv l)t”(”-,)2“cvv ADV coo.31924059551022 1023 49 = = SYM coo.31924059551022 1023 50 ( ( PUNCT coo.31924059551022 1023 51 — — PUNCT coo.31924059551022 1023 52 1)’,+12φ 1)’,+12φ NUM coo.31924059551022 1023 53 , , PUNCT coo.31924059551022 1023 54 φ2φ8δ φ2φ8δ SPACE coo.31924059551022 1023 55 . . PUNCT coo.31924059551022 1024 1 again again ADV coo.31924059551022 1024 2 squaring square VERB coo.31924059551022 1024 3 we we PRON coo.31924059551022 1024 4 get get VERB coo.31924059551022 1024 5 a a DET coo.31924059551022 1024 6 cib cib NOUN coo.31924059551022 1024 7 · · PUNCT coo.31924059551022 1024 8 · · PUNCT coo.31924059551022 1024 9 < < X coo.31924059551022 1024 10 > > X coo.31924059551022 1024 11 or or CCONJ coo.31924059551022 1024 12 ( ( PUNCT coo.31924059551022 1024 13 see see VERB coo.31924059551022 1024 14 [ [ X coo.31924059551022 1024 15 89 89 NUM coo.31924059551022 1024 16 ] ] PUNCT coo.31924059551022 1024 17 ) ) PUNCT coo.31924059551022 1025 1 k k X coo.31924059551022 1025 2 * * PUNCT coo.31924059551022 1025 3 = = SYM coo.31924059551022 1025 4 φ*(βι φ*(βι PROPN coo.31924059551022 1025 5 ) ) PUNCT coo.31924059551022 1026 1 = = PROPN coo.31924059551022 1026 2 x)*w(pa x)*w(pa PUNCT coo.31924059551022 1026 3 — — PUNCT coo.31924059551022 1026 4 ei ei PROPN coo.31924059551022 1026 5 ) ) PUNCT coo.31924059551022 1026 6 0 0 NUM coo.31924059551022 1026 7 & & CCONJ coo.31924059551022 1026 8 — — PUNCT coo.31924059551022 1026 9 e e NOUN coo.31924059551022 1026 10 1 1 NUM coo.31924059551022 1026 11 ) ) PUNCT coo.31924059551022 1026 12 · · PUNCT coo.31924059551022 1026 13 · · PUNCT coo.31924059551022 1026 14 ( ( PUNCT coo.31924059551022 1026 15 pv pv INTJ coo.31924059551022 1026 16 — — PUNCT coo.31924059551022 1026 17 e e NOUN coo.31924059551022 1026 18 , , PUNCT coo.31924059551022 1026 19 ) ) PUNCT coo.31924059551022 1027 1 o*a o*a X coo.31924059551022 1027 2 < < X coo.31924059551022 1027 3 r r X coo.31924059551022 1027 4 0 0 NUM coo.31924059551022 1027 5 · · PUNCT coo.31924059551022 1027 6 · · PUNCT coo.31924059551022 1027 7 · · PUNCT coo.31924059551022 1027 8 < < X coo.31924059551022 1027 9 > > X coo.31924059551022 1027 10 v v ADP coo.31924059551022 1027 11 [ [ X coo.31924059551022 1027 12 145 145 NUM coo.31924059551022 1027 13 ] ] PUNCT coo.31924059551022 1027 14 ............... ............... PUNCT coo.31924059551022 1027 15 ( ( PUNCT coo.31924059551022 1027 16 — — PUNCT coo.31924059551022 1027 17 l)“/c2 l)“/c2 PROPN coo.31924059551022 1027 18 ffa ffa PROPN coo.31924059551022 1027 19 ) ) PUNCT coo.31924059551022 1027 20 ( ( PUNCT coo.31924059551022 1027 21 pv pv PROPN coo.31924059551022 1027 22 e e PROPN coo.31924059551022 1027 23 , , PUNCT coo.31924059551022 1027 24 ) ) PUNCT coo.31924059551022 1027 25 = = PROPN coo.31924059551022 1027 26 ® ® VERB coo.31924059551022 1027 27 2(e 2(e NUM coo.31924059551022 1027 28 , , PUNCT coo.31924059551022 1027 29 ) ) PUNCT coo.31924059551022 1027 30 · · PUNCT coo.31924059551022 1027 31 and and CCONJ coo.31924059551022 1027 32 we we PRON coo.31924059551022 1027 33 have have VERB coo.31924059551022 1027 34 also also ADV coo.31924059551022 1027 35 the the DET coo.31924059551022 1027 36 two two NUM coo.31924059551022 1027 37 corresponding corresponding ADJ coo.31924059551022 1027 38 expressions expression NOUN coo.31924059551022 1027 39 . . PUNCT coo.31924059551022 1028 1 72 72 X coo.31924059551022 1028 2 part part NOUN coo.31924059551022 1028 3 y. y. NOUN coo.31924059551022 1028 4 we we PRON coo.31924059551022 1028 5 have have AUX coo.31924059551022 1028 6 shown show VERB coo.31924059551022 1028 7 ( ( PUNCT coo.31924059551022 1028 8 see see VERB coo.31924059551022 1028 9 p. p. NOUN coo.31924059551022 1028 10 58 58 NUM coo.31924059551022 1028 11 ) ) PUNCT coo.31924059551022 1029 1 that that SCONJ coo.31924059551022 1029 2 when when SCONJ coo.31924059551022 1029 3 t t NOUN coo.31924059551022 1029 4 = = ADP coo.31924059551022 1029 5 et et INTJ coo.31924059551022 1029 6 we we PRON coo.31924059551022 1029 7 have have VERB coo.31924059551022 1029 8 y(e y(e PROPN coo.31924059551022 1029 9 1 1 NUM coo.31924059551022 1029 10 ) ) PUNCT coo.31924059551022 1029 11 = = PUNCT coo.31924059551022 1029 12 — — PUNCT coo.31924059551022 1029 13 c2pq c2pq X coo.31924059551022 1029 14 whence whence ADV coo.31924059551022 1029 15 it it PRON coo.31924059551022 1029 16 follows follow VERB coo.31924059551022 1029 17 from from ADP coo.31924059551022 1029 18 this this PRON coo.31924059551022 1029 19 and and CCONJ coo.31924059551022 1029 20 relation relation NOUN coo.31924059551022 1029 21 [ [ X coo.31924059551022 1029 22 145 145 NUM coo.31924059551022 1029 23 ] ] PUNCT coo.31924059551022 1029 24 that that SCONJ coo.31924059551022 1029 25 φ(βj φ(βj SPACE coo.31924059551022 1029 26 ) ) PUNCT coo.31924059551022 1029 27 is be AUX coo.31924059551022 1029 28 divisable divisable ADJ coo.31924059551022 1029 29 by by ADP coo.31924059551022 1029 30 qt qt NOUN coo.31924059551022 1029 31 and and CCONJ coo.31924059551022 1029 32 in in ADP coo.31924059551022 1029 33 general general ADJ coo.31924059551022 1029 34 φ(βχ φ(βχ SPACE coo.31924059551022 1029 35 ) ) PUNCT coo.31924059551022 1029 36 by by ADP coo.31924059551022 1029 37 qx qx PROPN coo.31924059551022 1029 38 . . PUNCT coo.31924059551022 1030 1 we we PRON coo.31924059551022 1030 2 thus thus ADV coo.31924059551022 1030 3 derive derive VERB coo.31924059551022 1030 4 the the DET coo.31924059551022 1030 5 relations relation NOUN coo.31924059551022 1030 6 [ [ X coo.31924059551022 1030 7 146 146 NUM coo.31924059551022 1030 8 ] ] PUNCT coo.31924059551022 1030 9 . . PUNCT coo.31924059551022 1030 10 . . PUNCT coo.31924059551022 1030 11 . . PUNCT coo.31924059551022 1030 12 . . PUNCT coo.31924059551022 1031 1 φ^&ρ φ^&ρ X coo.31924059551022 1032 1 ] ] PUNCT coo.31924059551022 1032 2 : : PUNCT coo.31924059551022 1032 3 φ2 φ2 PROPN coo.31924059551022 1032 4 = = X coo.31924059551022 1032 5 çÿf2 çÿf2 PROPN coo.31924059551022 1032 6 : : PUNCT coo.31924059551022 1032 7 φ3 φ3 PROPN coo.31924059551022 1032 8 = = PROPN coo.31924059551022 1032 9 çsf3 çsf3 PROPN coo.31924059551022 1032 10 . . PUNCT coo.31924059551022 1033 1 we we PRON coo.31924059551022 1033 2 have have AUX coo.31924059551022 1033 3 also also ADV coo.31924059551022 1033 4 found find VERB coo.31924059551022 1033 5 n n ADP coo.31924059551022 1033 6 being be AUX coo.31924059551022 1033 7 odd odd ADJ coo.31924059551022 1033 8 : : PUNCT coo.31924059551022 1033 9 n n X coo.31924059551022 1033 10 — — PUNCT coo.31924059551022 1033 11 1 1 NUM coo.31924059551022 1033 12 k k X coo.31924059551022 1033 13 = = NOUN coo.31924059551022 1033 14 b0 b0 NOUN coo.31924059551022 1033 15 : : PUNCT coo.31924059551022 1033 16 c c X coo.31924059551022 1033 17 = = PUNCT coo.31924059551022 1033 18 : : PUNCT coo.31924059551022 1033 19 j j X coo.31924059551022 1033 20 = = SYM coo.31924059551022 1033 21 ( ( PUNCT coo.31924059551022 1033 22 1 1 NUM coo.31924059551022 1033 23 ) ) PUNCT coo.31924059551022 1033 24 2 2 NUM coo.31924059551022 1033 25 c*»-»p*3 qy>3 PROPN coo.31924059551022 1039 50 p0p p0p PROPN coo.31924059551022 1039 51 , , PUNCT coo.31924059551022 1039 52 pc pc NOUN coo.31924059551022 1039 53 * * PUNCT coo.31924059551022 1039 54 ) ) PUNCT coo.31924059551022 1039 55 . . PUNCT coo.31924059551022 1040 1 c3p03p c3p03p PROPN coo.31924059551022 1041 1 w w X coo.31924059551022 1041 2 odd odd ADJ coo.31924059551022 1041 3 . . PUNCT coo.31924059551022 1042 1 reduction reduction NUM coo.31924059551022 1042 2 of of ADP coo.31924059551022 1042 3 the the DET coo.31924059551022 1042 4 forms form NOUN coo.31924059551022 1042 5 when when SCONJ coo.31924059551022 1042 6 n n SYM coo.31924059551022 1042 7 equals equal VERB coo.31924059551022 1042 8 three three NUM coo.31924059551022 1042 9 . . PUNCT coo.31924059551022 1043 1 73 73 NUM coo.31924059551022 1043 2 substituting substitute VERB coo.31924059551022 1043 3 the the DET coo.31924059551022 1043 4 values value NOUN coo.31924059551022 1043 5 n n CCONJ coo.31924059551022 1043 6 — — PUNCT coo.31924059551022 1043 7 3 3 NUM coo.31924059551022 1043 8 ( ( PUNCT coo.31924059551022 1043 9 p. p. NOUN coo.31924059551022 1043 10 68 68 NUM coo.31924059551022 1043 11 ) ) PUNCT coo.31924059551022 1043 12 and and CCONJ coo.31924059551022 1044 1 refering refer VERB coo.31924059551022 1044 2 to to ADP coo.31924059551022 1044 3 the the DET coo.31924059551022 1044 4 value value NOUN coo.31924059551022 1044 5 of of ADP coo.31924059551022 1044 6 χ χ X coo.31924059551022 1044 7 ( ( PUNCT coo.31924059551022 1044 8 p. p. NOUN coo.31924059551022 1044 9 51 51 NUM coo.31924059551022 1044 10 ) ) PUNCT coo.31924059551022 1045 1 we we PRON coo.31924059551022 1045 2 find find VERB coo.31924059551022 1045 3 the the DET coo.31924059551022 1045 4 relation relation NOUN coo.31924059551022 1045 5 [ [ X coo.31924059551022 1045 6 160 160 NUM coo.31924059551022 1045 7 ] ] PUNCT coo.31924059551022 1045 8 · · PUNCT coo.31924059551022 1045 9 · · PUNCT coo.31924059551022 1045 10 · · PUNCT coo.31924059551022 1045 11 · · PUNCT coo.31924059551022 1045 12 f,=1 f,=1 NOUN coo.31924059551022 1045 13 = = X coo.31924059551022 1045 14 [ [ X coo.31924059551022 1045 15 fjilfj fjilfj PROPN coo.31924059551022 1045 16 , , PUNCT coo.31924059551022 1045 17 » » PUNCT coo.31924059551022 1045 18 , , PUNCT coo.31924059551022 1045 19 = = X coo.31924059551022 1045 20 ¿ ¿ PROPN coo.31924059551022 1045 21 456 456 NUM coo.31924059551022 1045 22 ’ ' PUNCT coo.31924059551022 1045 23 . . PUNCT coo.31924059551022 1046 1 it it PRON coo.31924059551022 1046 2 follows follow VERB coo.31924059551022 1046 3 then then ADV coo.31924059551022 1046 4 that that SCONJ coo.31924059551022 1046 5 χ χ X coo.31924059551022 1046 6 , , PUNCT coo.31924059551022 1046 7 if if SCONJ coo.31924059551022 1046 8 expressed express VERB coo.31924059551022 1046 9 in in ADP coo.31924059551022 1046 10 terms term NOUN coo.31924059551022 1046 11 of of ADP coo.31924059551022 1046 12 the the DET coo.31924059551022 1046 13 modulus modulus NOUN coo.31924059551022 1046 14 k k PROPN coo.31924059551022 1046 15 and and CCONJ coo.31924059551022 1046 16 δ δ PROPN coo.31924059551022 1046 17 or or CCONJ coo.31924059551022 1046 18 as as ADP coo.31924059551022 1046 19 a a DET coo.31924059551022 1046 20 function function NOUN coo.31924059551022 1046 21 of of ADP coo.31924059551022 1046 22 δ δ PROPN coo.31924059551022 1046 23 , , PUNCT coo.31924059551022 1046 24 βχ βχ PROPN coo.31924059551022 1046 25 , , PUNCT coo.31924059551022 1046 26 g2 g2 PROPN coo.31924059551022 1046 27 and and CCONJ coo.31924059551022 1046 28 g3f g3f PRON coo.31924059551022 1046 29 will will AUX coo.31924059551022 1046 30 be be AUX coo.31924059551022 1046 31 separable separable ADJ coo.31924059551022 1046 32 into into ADP coo.31924059551022 1046 33 three three NUM coo.31924059551022 1046 34 factors factor NOUN coo.31924059551022 1046 35 which which PRON coo.31924059551022 1046 36 from from ADP coo.31924059551022 1046 37 the the DET coo.31924059551022 1046 38 expressions expression NOUN coo.31924059551022 1046 39 for for ADP coo.31924059551022 1046 40 φ φ X coo.31924059551022 1046 41 are be AUX coo.31924059551022 1046 42 seen see VERB coo.31924059551022 1046 43 to to PART coo.31924059551022 1046 44 be be AUX coo.31924059551022 1046 45 of of ADP coo.31924059551022 1046 46 the the DET coo.31924059551022 1046 47 same same ADJ coo.31924059551022 1046 48 degree degree NOUN coo.31924059551022 1046 49 in in ADP coo.31924059551022 1046 50 6 6 NUM coo.31924059551022 1046 51 , , PUNCT coo.31924059551022 1046 52 namely namely ADV coo.31924059551022 1046 53 , , PUNCT coo.31924059551022 1046 54 the the DET coo.31924059551022 1046 55 second second ADJ coo.31924059551022 1046 56 . . PUNCT coo.31924059551022 1047 1 the the DET coo.31924059551022 1047 2 factors factor NOUN coo.31924059551022 1047 3 of of ADP coo.31924059551022 1047 4 χ χ NOUN coo.31924059551022 1047 5 which which PRON coo.31924059551022 1047 6 we we PRON coo.31924059551022 1047 7 before before ADV coo.31924059551022 1047 8 obtained obtain VERB coo.31924059551022 1047 9 by by ADP coo.31924059551022 1047 10 . . PUNCT coo.31924059551022 1048 1 inspection inspection NOUN coo.31924059551022 1048 2 ( ( PUNCT coo.31924059551022 1048 3 see see VERB coo.31924059551022 1048 4 p. p. NOUN coo.31924059551022 1048 5 51 51 NUM coo.31924059551022 1049 1 [ [ PUNCT coo.31924059551022 1049 2 87 87 NUM coo.31924059551022 1049 3 ] ] PUNCT coo.31924059551022 1049 4 ) ) PUNCT coo.31924059551022 1049 5 are be AUX coo.31924059551022 1049 6 a a DET coo.31924059551022 1049 7 = = NOUN coo.31924059551022 1049 8 l2 l2 NOUN coo.31924059551022 1049 9 ( ( PUNCT coo.31924059551022 1049 10 i i NOUN coo.31924059551022 1049 11 + + CCONJ coo.31924059551022 1050 1 k2)l-3k2 k2)l-3k2 INTJ coo.31924059551022 1051 1 [ [ X coo.31924059551022 1051 2 161 161 NUM coo.31924059551022 1051 3 ] ] PUNCT coo.31924059551022 1051 4 ............ ............ PUNCT coo.31924059551022 1051 5 b b X coo.31924059551022 1051 6 = = X coo.31924059551022 1051 7 l2 l2 PROPN coo.31924059551022 1051 8 — — PUNCT coo.31924059551022 1051 9 { { PUNCT coo.31924059551022 1051 10 \ \ X coo.31924059551022 1051 11 — — PUNCT coo.31924059551022 1051 12 21c2 21c2 X coo.31924059551022 1051 13 ) ) PUNCT coo.31924059551022 1051 14 l l NOUN coo.31924059551022 1051 15 + + CCONJ coo.31924059551022 1051 16 3(4 3(4 PUNCT coo.31924059551022 1051 17 * * PUNCT coo.31924059551022 1051 18 — — PUNCT coo.31924059551022 1051 19 £ £ SYM coo.31924059551022 1051 20 4 4 NUM coo.31924059551022 1051 21 ) ) PUNCT coo.31924059551022 1051 22 c c NOUN coo.31924059551022 1051 23 = = SYM coo.31924059551022 1051 24 l2 l2 PROPN coo.31924059551022 1051 25 — — PUNCT coo.31924059551022 1051 26 ( ( PUNCT coo.31924059551022 1051 27 ik2 ik2 PROPN coo.31924059551022 1051 28 — — PUNCT coo.31924059551022 1051 29 2)1 2)1 NUM coo.31924059551022 1051 30 — — PUNCT coo.31924059551022 1051 31 3(1 3(1 NUM coo.31924059551022 1051 32 — — PUNCT coo.31924059551022 1051 33 k2 k2 PROPN coo.31924059551022 1051 34 ) ) PUNCT coo.31924059551022 1051 35 and and CCONJ coo.31924059551022 1051 36 we we PRON coo.31924059551022 1051 37 find find VERB coo.31924059551022 1051 38 the the DET coo.31924059551022 1051 39 relations relation NOUN coo.31924059551022 1051 40 : : PUNCT coo.31924059551022 1051 41 [ [ X coo.31924059551022 1051 42 162 162 NUM coo.31924059551022 1051 43 ] ] PUNCT coo.31924059551022 1051 44 . . PUNCT coo.31924059551022 1052 1 ft ft NOUN coo.31924059551022 1052 2 = = X coo.31924059551022 1052 3 ^a ^a PROPN coo.31924059551022 1052 4 · · PROPN coo.31924059551022 1052 5 , , PUNCT coo.31924059551022 1052 6 ^ ^ X coo.31924059551022 1052 7 = = PUNCT coo.31924059551022 1052 8 ¿ ¿ NUM coo.31924059551022 1052 9 2 2 NUM coo.31924059551022 1052 10 * * NUM coo.31924059551022 1052 11 ; ; PUNCT coo.31924059551022 1052 12 fa fa PROPN coo.31924059551022 1052 13 = = NOUN coo.31924059551022 1052 14 lq lq PROPN coo.31924059551022 1052 15 . . PUNCT coo.31924059551022 1053 1 taking take VERB coo.31924059551022 1053 2 now now ADV coo.31924059551022 1053 3 s s NOUN coo.31924059551022 1053 4 = = PROPN coo.31924059551022 1053 5 361 361 NUM coo.31924059551022 1053 6 and and CCONJ coo.31924059551022 1053 7 d d NOUN coo.31924059551022 1053 8 = = X coo.31924059551022 1053 9 l2 l2 PROPN coo.31924059551022 1053 10 — — PUNCT coo.31924059551022 1053 11 a1 a1 PROPN coo.31924059551022 1053 12 = = SYM coo.31924059551022 1053 13 l2 l2 PROPN coo.31924059551022 1053 14 find find VERB coo.31924059551022 1053 15 the the DET coo.31924059551022 1053 16 following follow VERB coo.31924059551022 1053 17 relations relation NOUN coo.31924059551022 1053 18 of of ADP coo.31924059551022 1053 19 m. m. NOUN coo.31924059551022 1053 20 hermite hermite PROPN coo.31924059551022 1053 21 2 2 NUM coo.31924059551022 1053 22 φ(ζ φ(ζ SPACE coo.31924059551022 1053 23 ) ) PUNCT coo.31924059551022 1053 24 pqb pqb PROPN coo.31924059551022 1054 1 x x PUNCT coo.31924059551022 1054 2 36z(z*—sb2 36z(z*—sb2 NUM coo.31924059551022 1054 3 — — PUNCT coo.31924059551022 1054 4 pv pv ADP coo.31924059551022 1054 5 = = X coo.31924059551022 1054 6 £ £ SYM coo.31924059551022 1054 7 li li PROPN coo.31924059551022 1054 8 = = PUNCT coo.31924059551022 1054 9 k2 k2 PROPN coo.31924059551022 1054 10 snu snu NOUN coo.31924059551022 1054 11 cnu cnu PROPN coo.31924059551022 1054 12 dnu dnu PROPN coo.31924059551022 1054 13 — — PUNCT coo.31924059551022 1054 14 1 1 NUM coo.31924059551022 1054 15 + + CCONJ coo.31924059551022 1054 16 k2 k2 PROPN coo.31924059551022 1054 17 — — PUNCT coo.31924059551022 1054 18 ί ί X coo.31924059551022 1054 19 & & CCONJ coo.31924059551022 1054 20 we we PRON coo.31924059551022 1054 21 [ [ X coo.31924059551022 1054 22 163 163 NUM coo.31924059551022 1054 23 ] ] PUNCT coo.31924059551022 1054 24 zd)x zd)x NUM coo.31924059551022 1054 25 abcx abcx PROPN coo.31924059551022 1054 26 sb2 sb2 ADJ coo.31924059551022 1054 27 361^ 361^ PROPN coo.31924059551022 1054 28 * * PROPN coo.31924059551022 1054 29 — — PUNCT coo.31924059551022 1054 30 at at ADP coo.31924059551022 1054 31 ) ) PUNCT coo.31924059551022 1054 32 1 1 NUM coo.31924059551022 1055 1 + + NUM coo.31924059551022 1055 2 4 4 NUM coo.31924059551022 1055 3 * * PUNCT coo.31924059551022 1055 4 * * PUNCT coo.31924059551022 1055 5 ψ ψ X coo.31924059551022 1055 6 _ _ PROPN coo.31924059551022 1055 7 12ϊ(ρ 12ϊ(ρ NUM coo.31924059551022 1055 8 — — PUNCT coo.31924059551022 1055 9 α1υ(1 α1υ(1 PROPN coo.31924059551022 1055 10 + + PROPN coo.31924059551022 1055 11 & & CCONJ coo.31924059551022 1055 12 ) ) PUNCT coo.31924059551022 1055 13 — — PUNCT coo.31924059551022 1055 14 ' ' PUNCT coo.31924059551022 1055 15 ψ{1 ψ{1 SPACE coo.31924059551022 1055 16 ) ) PUNCT coo.31924059551022 1055 17 whence whence ADP coo.31924059551022 1055 18 3 3 NUM coo.31924059551022 1055 19 36 36 NUM coo.31924059551022 1055 20 ιψ ιψ PROPN coo.31924059551022 1055 21 — — PUNCT coo.31924059551022 1055 22 α α INTJ coo.31924059551022 1055 23 , , PUNCT coo.31924059551022 1055 24 υ υ NOUN coo.31924059551022 1055 25 · · SYM coo.31924059551022 1055 26 36ζ(ζ 36ζ(ζ NUM coo.31924059551022 1055 27 * * PUNCT coo.31924059551022 1055 28 — — PUNCT coo.31924059551022 1055 29 « « PUNCT coo.31924059551022 1055 30 λ λ X coo.31924059551022 1055 31 * * SYM coo.31924059551022 1055 32 121 121 NUM coo.31924059551022 1055 33 ( ( PUNCT coo.31924059551022 1055 34 p p NOUN coo.31924059551022 1055 35 — — PUNCT coo.31924059551022 1055 36 α{γ α{γ NUM coo.31924059551022 1055 37 ( ( PUNCT coo.31924059551022 1055 38 2k 2k NUM coo.31924059551022 1055 39 ' ' NUM coo.31924059551022 1055 40 ¿ ¿ NUM coo.31924059551022 1055 41 — — PUNCT coo.31924059551022 1055 42 1 1 X coo.31924059551022 1055 43 ) ) PUNCT coo.31924059551022 1056 1 + + NUM coo.31924059551022 1056 2 ( ( PUNCT coo.31924059551022 1056 3 ¿ ¿ X coo.31924059551022 1056 4 b2 b2 PROPN coo.31924059551022 1056 5 361 361 NUM coo.31924059551022 1056 6 { { PUNCT coo.31924059551022 1056 7 v v NUM coo.31924059551022 1056 8 ¿ ¿ NOUN coo.31924059551022 1056 9 — — PUNCT coo.31924059551022 1056 10 axy axy PROPN coo.31924059551022 1056 11 ( ( PUNCT coo.31924059551022 1056 12 2 2 NUM coo.31924059551022 1056 13 * * NOUN coo.31924059551022 1056 14 * * PUNCT coo.31924059551022 1056 15 ) ) PUNCT coo.31924059551022 1057 1 + + CCONJ coo.31924059551022 1058 1 j j X coo.31924059551022 1058 2 , , PUNCT coo.31924059551022 1058 3 ® ® PROPN coo.31924059551022 1058 4 _ _ X coo.31924059551022 1059 1 bc bc X coo.31924059551022 1059 2 > > X coo.31924059551022 1059 3 . . PUNCT coo.31924059551022 1060 1 ® ® NOUN coo.31924059551022 1060 2 36 36 NUM coo.31924059551022 1060 3 î î PROPN coo.31924059551022 1060 4 ( ( PUNCT coo.31924059551022 1060 5 ? ? PUNCT coo.31924059551022 1060 6 * * PUNCT coo.31924059551022 1060 7 — — PUNCT coo.31924059551022 1060 8 « « PUNCT coo.31924059551022 1060 9 , , PUNCT coo.31924059551022 1060 10 ) ) PUNCT coo.31924059551022 1060 11 * * PUNCT coo.31924059551022 1060 12 — — PUNCT coo.31924059551022 1060 13 fin fin NOUN coo.31924059551022 1060 14 * * PUNCT coo.31924059551022 1061 1 where where SCONJ coo.31924059551022 1061 2 x x PUNCT coo.31924059551022 1061 3 = = X coo.31924059551022 1061 4 λ λ NOUN coo.31924059551022 1061 5 and and CCONJ coo.31924059551022 1061 6 at at ADP coo.31924059551022 1061 7 = = NOUN coo.31924059551022 1061 8 a a PRON coo.31924059551022 1061 9 and and CCONJ coo.31924059551022 1061 10 ω ω PROPN coo.31924059551022 1061 11 = = PUNCT coo.31924059551022 1061 12 v. v. NOUN coo.31924059551022 1061 13 sb2 sb2 NOUN coo.31924059551022 1061 14 sc2 sc2 ADP coo.31924059551022 1061 15 ¿ ¿ NUM coo.31924059551022 1061 16 > > PUNCT coo.31924059551022 1061 17 ’ ' PUNCT coo.31924059551022 1061 18 z)2 z)2 NOUN coo.31924059551022 1061 19 pa2 pa2 CCONJ coo.31924059551022 1061 20 £ £ SYM coo.31924059551022 1061 21 z)2 z)2 NOUN coo.31924059551022 1061 22 ( ( PUNCT coo.31924059551022 1061 23 see see VERB coo.31924059551022 1061 24 also also ADV coo.31924059551022 1061 25 note note VERB coo.31924059551022 1061 26 p. p. NOUN coo.31924059551022 1061 27 69 69 NUM coo.31924059551022 1061 28 ) ) PUNCT coo.31924059551022 1061 29 general general ADJ coo.31924059551022 1061 30 discussion discussion NOUN coo.31924059551022 1061 31 . . PUNCT coo.31924059551022 1062 1 reviewing review VERB coo.31924059551022 1062 2 the the DET coo.31924059551022 1062 3 foregoing forego VERB coo.31924059551022 1062 4 theory theory NOUN coo.31924059551022 1062 5 we we PRON coo.31924059551022 1062 6 have have AUX coo.31924059551022 1062 7 found find VERB coo.31924059551022 1062 8 that that SCONJ coo.31924059551022 1062 9 when when SCONJ coo.31924059551022 1062 10 n n ADP coo.31924059551022 1062 11 = = VERB coo.31924059551022 1062 12 3 3 NUM coo.31924059551022 1062 13 y y NOUN coo.31924059551022 1062 14 = = PRON coo.31924059551022 1062 15 f'—uf f'—uf X coo.31924059551022 1062 16 and and CCONJ coo.31924059551022 1062 17 that that SCONJ coo.31924059551022 1062 18 in in ADP coo.31924059551022 1062 19 general general PROPN coo.31924059551022 1062 20 y y PROPN coo.31924059551022 1062 21 is be AUX coo.31924059551022 1062 22 a a DET coo.31924059551022 1062 23 function function NOUN coo.31924059551022 1062 24 of of ADP coo.31924059551022 1062 25 f f PROPN coo.31924059551022 1062 26 where where SCONJ coo.31924059551022 1062 27 we we PRON coo.31924059551022 1062 28 write write VERB coo.31924059551022 1062 29 ƒ ƒ X coo.31924059551022 1062 30 = = PUNCT coo.31924059551022 1062 31 c(u c(u PROPN coo.31924059551022 1062 32 + + NUM coo.31924059551022 1062 33 v v NOUN coo.31924059551022 1062 34 ) ) PUNCT coo.31924059551022 1062 35 e{x_k„)u e{x_k„)u NOUN coo.31924059551022 1062 36 the the DET coo.31924059551022 1062 37 one one NUM coo.31924059551022 1062 38 exception exception NOUN coo.31924059551022 1062 39 occurring occur VERB coo.31924059551022 1062 40 where where SCONJ coo.31924059551022 1062 41 v v NOUN coo.31924059551022 1062 42 equals equal VERB coo.31924059551022 1062 43 zero zero NUM coo.31924059551022 1062 44 . . PUNCT coo.31924059551022 1063 1 74 74 NUM coo.31924059551022 1063 2 part part NOUN coo.31924059551022 1063 3 v. v. ADP coo.31924059551022 1063 4 we we PRON coo.31924059551022 1063 5 find find VERB coo.31924059551022 1063 6 further far ADV coo.31924059551022 1063 7 , , PUNCT coo.31924059551022 1063 8 that that SCONJ coo.31924059551022 1063 9 where where SCONJ coo.31924059551022 1063 10 q q PROPN coo.31924059551022 1063 11 or or CCONJ coo.31924059551022 1063 12 φ φ X coo.31924059551022 1063 13 vanish vanish VERB coo.31924059551022 1063 14 in in ADP coo.31924059551022 1063 15 which which DET coo.31924059551022 1063 16 case case NOUN coo.31924059551022 1063 17 x x PUNCT coo.31924059551022 1063 18 and and CCONJ coo.31924059551022 1063 19 p'v p'v AUX coo.31924059551022 1063 20 also also ADV coo.31924059551022 1063 21 vanish vanish VERB coo.31924059551022 1063 22 , , PUNCT coo.31924059551022 1063 23 our our PRON coo.31924059551022 1063 24 integrals integral NOUN coo.31924059551022 1063 25 , , PUNCT coo.31924059551022 1063 26 six six NUM coo.31924059551022 1063 27 in in ADP coo.31924059551022 1063 28 number number NOUN coo.31924059551022 1063 29 ( ( PUNCT coo.31924059551022 1063 30 n n CCONJ coo.31924059551022 1063 31 = = SYM coo.31924059551022 1063 32 3 3 NUM coo.31924059551022 1063 33 ) ) PUNCT coo.31924059551022 1063 34 , , PUNCT coo.31924059551022 1063 35 become become VERB coo.31924059551022 1063 36 doubly doubly ADV coo.31924059551022 1063 37 periodic periodic ADJ coo.31924059551022 1063 38 and and CCONJ coo.31924059551022 1063 39 are be AUX coo.31924059551022 1063 40 in in ADP coo.31924059551022 1063 41 fact fact NOUN coo.31924059551022 1063 42 the the DET coo.31924059551022 1063 43 original original ADJ coo.31924059551022 1063 44 special special ADJ coo.31924059551022 1063 45 functions function NOUN coo.31924059551022 1063 46 of of ADP coo.31924059551022 1063 47 lamé lamé NOUN coo.31924059551022 1063 48 of of ADP coo.31924059551022 1063 49 the the DET coo.31924059551022 1063 50 second second ADJ coo.31924059551022 1063 51 and and CCONJ coo.31924059551022 1063 52 third third ADJ coo.31924059551022 1063 53 sort sort NOUN coo.31924059551022 1063 54 . . PUNCT coo.31924059551022 1064 1 we we PRON coo.31924059551022 1064 2 have have AUX coo.31924059551022 1064 3 found find VERB coo.31924059551022 1064 4 for for ADP coo.31924059551022 1064 5 x x PUNCT coo.31924059551022 1064 6 the the DET coo.31924059551022 1064 7 general general ADJ coo.31924059551022 1064 8 value value NOUN coo.31924059551022 1064 9 a;==_l_|/v a;==_l_|/v ADP coo.31924059551022 1064 10 e2b e2b PROPN coo.31924059551022 1064 11 , , PUNCT coo.31924059551022 1064 12 v v NOUN coo.31924059551022 1064 13 p p NOUN coo.31924059551022 1064 14 from from ADP coo.31924059551022 1064 15 which which PRON coo.31924059551022 1064 16 form form NOUN coo.31924059551022 1064 17 we we PRON coo.31924059551022 1064 18 see see VERB coo.31924059551022 1064 19 that that PRON coo.31924059551022 1064 20 x x PUNCT coo.31924059551022 1064 21 will will AUX coo.31924059551022 1064 22 be be AUX coo.31924059551022 1064 23 zero zero NUM coo.31924059551022 1064 24 when when SCONJ coo.31924059551022 1064 25 γ γ PROPN coo.31924059551022 1064 26 and and CCONJ coo.31924059551022 1064 27 q q X coo.31924059551022 1064 28 vanish vanish VERB coo.31924059551022 1064 29 and and CCONJ coo.31924059551022 1064 30 will will AUX coo.31924059551022 1064 31 be be AUX coo.31924059551022 1064 32 infinite infinite ADJ coo.31924059551022 1064 33 where where SCONJ coo.31924059551022 1064 34 b b PROPN coo.31924059551022 1064 35 or or CCONJ coo.31924059551022 1064 36 p p NOUN coo.31924059551022 1064 37 vanish vanish VERB coo.31924059551022 1064 38 . . PUNCT coo.31924059551022 1065 1 but but CCONJ coo.31924059551022 1065 2 from from ADP coo.31924059551022 1065 3 the the DET coo.31924059551022 1065 4 form form NOUN coo.31924059551022 1065 5 qy2 qy2 VERB coo.31924059551022 1065 6 2 2 NUM coo.31924059551022 1065 7 b1 b1 PROPN coo.31924059551022 1065 8 b b PROPN coo.31924059551022 1065 9 ï ï PROPN coo.31924059551022 1065 10 > > X coo.31924059551022 1065 11 v v PROPN coo.31924059551022 1065 12 c*pb0 c*pb0 X coo.31924059551022 1065 13 * * NOUN coo.31924059551022 1065 14 b b NOUN coo.31924059551022 1065 15 2w 2w NOUN coo.31924059551022 1066 1 + + CCONJ coo.31924059551022 1066 2 l l INTJ coo.31924059551022 1066 3 we we PRON coo.31924059551022 1066 4 observe observe VERB coo.31924059551022 1066 5 that that SCONJ coo.31924059551022 1066 6 pv pv NOUN coo.31924059551022 1066 7 is be AUX coo.31924059551022 1066 8 also also ADV coo.31924059551022 1066 9 infinite infinite ADJ coo.31924059551022 1066 10 where where SCONJ coo.31924059551022 1066 11 x x PROPN coo.31924059551022 1066 12 becomes become VERB coo.31924059551022 1066 13 infinite infinite ADJ coo.31924059551022 1066 14 through through ADP coo.31924059551022 1066 15 the the DET coo.31924059551022 1066 16 vanishing vanishing NOUN coo.31924059551022 1066 17 of of ADP coo.31924059551022 1066 18 b0 b0 PROPN coo.31924059551022 1066 19 . . PUNCT coo.31924059551022 1067 1 we we PRON coo.31924059551022 1067 2 have have VERB coo.31924059551022 1067 3 further far ADV coo.31924059551022 1067 4 that that SCONJ coo.31924059551022 1067 5 in in ADP coo.31924059551022 1067 6 case case NOUN coo.31924059551022 1067 7 p p NOUN coo.31924059551022 1067 8 vanish vanish VERB coo.31924059551022 1067 9 the the DET coo.31924059551022 1067 10 integral integral NOUN coo.31924059551022 1067 11 becomes become VERB coo.31924059551022 1067 12 a a DET coo.31924059551022 1067 13 function function NOUN coo.31924059551022 1067 14 of of ADP coo.31924059551022 1067 15 lamé lamé NOUN coo.31924059551022 1067 16 of of ADP coo.31924059551022 1067 17 the the DET coo.31924059551022 1067 18 first first ADJ coo.31924059551022 1067 19 sort sort NOUN coo.31924059551022 1067 20 in in ADP coo.31924059551022 1067 21 which which PRON coo.31924059551022 1067 22 p p PROPN coo.31924059551022 1067 23 takes take VERB coo.31924059551022 1067 24 the the DET coo.31924059551022 1067 25 place place NOUN coo.31924059551022 1067 26 of of ADP coo.31924059551022 1067 27 f f PROPN coo.31924059551022 1067 28 in in ADP coo.31924059551022 1067 29 the the DET coo.31924059551022 1067 30 general general ADJ coo.31924059551022 1067 31 solution solution NOUN coo.31924059551022 1067 32 the the DET coo.31924059551022 1067 33 form form NOUN coo.31924059551022 1067 34 being be AUX coo.31924059551022 1067 35 [ [ X coo.31924059551022 1067 36 164 164 NUM coo.31924059551022 1067 37 ] ] PUNCT coo.31924059551022 1067 38 ( ( PUNCT coo.31924059551022 1067 39 — — PUNCT coo.31924059551022 1067 40 1 1 X coo.31924059551022 1067 41 ) ) PUNCT coo.31924059551022 1067 42 ny ny PROPN coo.31924059551022 1067 43 = = SYM coo.31924059551022 1067 44 j^è-^^n j^è-^^n NOUN coo.31924059551022 1067 45 ~ ~ NOUN coo.31924059551022 1067 46 ì)u ì)u NOUN coo.31924059551022 1067 47 + + PUNCT coo.31924059551022 1067 48 ( ( PUNCT coo.31924059551022 1067 49 ¿ ¿ PROPN coo.31924059551022 1067 50 3 3 NUM coo.31924059551022 1067 51 ) ) PUNCT coo.31924059551022 1067 52 ! ! PUNCT coo.31924059551022 1067 53 m>(b-4)m m>(b-4)m X coo.31924059551022 1068 1 + + CCONJ coo.31924059551022 1068 2 ( ( PUNCT coo.31924059551022 1068 3 ^ztg ^ztg SPACE coo.31924059551022 1068 4 ) ) PUNCT coo.31924059551022 1068 5 ! ! PUNCT coo.31924059551022 1069 1 î41>(b-6)w î41>(b-6)w X coo.31924059551022 1070 1 + + PUNCT coo.31924059551022 1070 2 · · PUNCT coo.31924059551022 1070 3 · · PUNCT coo.31924059551022 1070 4 · · PUNCT coo.31924059551022 1070 5 the the DET coo.31924059551022 1070 6 values value NOUN coo.31924059551022 1070 7 of of ADP coo.31924059551022 1070 8 b b NOUN coo.31924059551022 1070 9 conforming conform VERB coo.31924059551022 1070 10 with with ADP coo.31924059551022 1070 11 the the DET coo.31924059551022 1070 12 above above ADJ coo.31924059551022 1070 13 cases case NOUN coo.31924059551022 1070 14 being be AUX coo.31924059551022 1070 15 roots root NOUN coo.31924059551022 1070 16 of of ADP coo.31924059551022 1070 17 the the DET coo.31924059551022 1070 18 equations equation NOUN coo.31924059551022 1070 19 p p PROPN coo.31924059551022 1070 20 = = SYM coo.31924059551022 1070 21 0 0 NUM coo.31924059551022 1070 22 , , PUNCT coo.31924059551022 1070 23 qx qx PROPN coo.31924059551022 1070 24 = = PROPN coo.31924059551022 1070 25 0 0 NUM coo.31924059551022 1070 26 , , PUNCT coo.31924059551022 1070 27 q2 q2 NOUN coo.31924059551022 1070 28 = = SYM coo.31924059551022 1070 29 0 0 NUM coo.31924059551022 1070 30 , , PUNCT coo.31924059551022 1070 31 q3 q3 PROPN coo.31924059551022 1070 32 = = SYM coo.31924059551022 1070 33 0 0 NUM coo.31924059551022 1070 34 . . PUNCT coo.31924059551022 1071 1 moreover moreover ADV coo.31924059551022 1071 2 when when SCONJ coo.31924059551022 1071 3 q q PROPN coo.31924059551022 1071 4 vanishes vanish VERB coo.31924059551022 1071 5 x x PUNCT coo.31924059551022 1071 6 and and CCONJ coo.31924059551022 1071 7 p'v p'v PROPN coo.31924059551022 1071 8 will will AUX coo.31924059551022 1071 9 vanish vanish VERB coo.31924059551022 1071 10 simultaniously simultaniously ADV coo.31924059551022 1071 11 which which PRON coo.31924059551022 1071 12 makes make VERB coo.31924059551022 1071 13 v v ADP coo.31924059551022 1071 14 one one NUM coo.31924059551022 1071 15 of of ADP coo.31924059551022 1071 16 the the DET coo.31924059551022 1071 17 semi semi ADJ coo.31924059551022 1071 18 - - ADJ coo.31924059551022 1071 19 periods periods ADJ coo.31924059551022 1071 20 ωχ ωχ NOUN coo.31924059551022 1071 21 , , PUNCT coo.31924059551022 1071 22 and and CCONJ coo.31924059551022 1071 23 f f PROPN coo.31924059551022 1071 24 may may AUX coo.31924059551022 1071 25 be be AUX coo.31924059551022 1071 26 written write VERB coo.31924059551022 1071 27 μ μ PROPN coo.31924059551022 1071 28 · · PUNCT coo.31924059551022 1071 29 · · PUNCT coo.31924059551022 1071 30 ..................... ..................... PUNCT coo.31924059551022 1071 31 /«-«±sr /«-«±sr PUNCT coo.31924059551022 1071 32 again again ADV coo.31924059551022 1071 33 , , PUNCT coo.31924059551022 1071 34 observing observe VERB coo.31924059551022 1071 35 the the DET coo.31924059551022 1071 36 last last ADJ coo.31924059551022 1071 37 forms form NOUN coo.31924059551022 1071 38 obtained obtain VERB coo.31924059551022 1071 39 , , PUNCT coo.31924059551022 1071 40 we we PRON coo.31924059551022 1071 41 see see VERB coo.31924059551022 1071 42 that that SCONJ coo.31924059551022 1071 43 v v NOUN coo.31924059551022 1071 44 can can AUX coo.31924059551022 1071 45 also also ADV coo.31924059551022 1071 46 be be AUX coo.31924059551022 1071 47 a a DET coo.31924059551022 1071 48 half half ADJ coo.31924059551022 1071 49 period period NOUN coo.31924059551022 1071 50 if if SCONJ coo.31924059551022 1071 51 fx9 fx9 NOUN coo.31924059551022 1071 52 n n ADP coo.31924059551022 1071 53 being be AUX coo.31924059551022 1071 54 odd odd ADJ coo.31924059551022 1071 55 , , PUNCT coo.31924059551022 1071 56 or or CCONJ coo.31924059551022 1071 57 φχ φχ PROPN coo.31924059551022 1071 58 , , PUNCT coo.31924059551022 1071 59 n n CCONJ coo.31924059551022 1071 60 being be AUX coo.31924059551022 1071 61 even even ADV coo.31924059551022 1071 62 , , PUNCT coo.31924059551022 1071 63 vanish vanish VERB coo.31924059551022 1071 64 , , PUNCT coo.31924059551022 1071 65 but but CCONJ coo.31924059551022 1071 66 it it PRON coo.31924059551022 1071 67 does do AUX coo.31924059551022 1071 68 not not PART coo.31924059551022 1071 69 follow follow VERB coo.31924059551022 1071 70 that that PRON coo.31924059551022 1071 71 x x PUNCT coo.31924059551022 1071 72 will will AUX coo.31924059551022 1071 73 also also ADV coo.31924059551022 1071 74 reduce reduce VERB coo.31924059551022 1071 75 to to ADP coo.31924059551022 1071 76 zero zero NUM coo.31924059551022 1071 77 . . PUNCT coo.31924059551022 1072 1 that that PRON coo.31924059551022 1072 2 is be AUX coo.31924059551022 1072 3 the the DET coo.31924059551022 1072 4 integral integral ADJ coo.31924059551022 1072 5 will will NOUN coo.31924059551022 1072 6 in in ADP coo.31924059551022 1072 7 general general ADJ coo.31924059551022 1072 8 have have VERB coo.31924059551022 1072 9 the the DET coo.31924059551022 1072 10 form form NOUN coo.31924059551022 1072 11 [ [ X coo.31924059551022 1072 12 166] 166] NUM coo.31924059551022 1072 13 ............. ............. PUNCT coo.31924059551022 1072 14 /j /j PUNCT coo.31924059551022 1073 1 = = PROPN coo.31924059551022 1073 2 ΰ(η ΰ(η PROPN coo.31924059551022 1073 3 e(*—£ e(*—£ PROPN coo.31924059551022 1073 4 ( ( PUNCT coo.31924059551022 1073 5 « « PROPN coo.31924059551022 1073 6 > > X coo.31924059551022 1073 7 * * PUNCT coo.31924059551022 1073 8 ) ) PUNCT coo.31924059551022 1073 9 ) ) PUNCT coo.31924059551022 1073 10 “ " PUNCT coo.31924059551022 1073 11 = = PROPN coo.31924059551022 1073 12 aj^l aj^l PROPN coo.31924059551022 1073 13 ¿ ¿ X coo.31924059551022 1073 14 cu cu PROPN coo.31924059551022 1074 1 l l X coo.31924059551022 1074 2 j j PROPN coo.31924059551022 1074 3 11 11 NUM coo.31924059551022 1074 4 6u 6u NUM coo.31924059551022 1074 5 6u 6u NUM coo.31924059551022 1074 6 when when SCONJ coo.31924059551022 1074 7 fx fx PROPN coo.31924059551022 1074 8 = = NOUN coo.31924059551022 1074 9 = = PUNCT coo.31924059551022 1074 10 0 0 NUM coo.31924059551022 1074 11 , , PUNCT coo.31924059551022 1074 12 or or CCONJ coo.31924059551022 1074 13 φχ φχ X coo.31924059551022 1074 14 = = NOUN coo.31924059551022 1074 15 0 0 NUM coo.31924059551022 1074 16 , , PUNCT coo.31924059551022 1074 17 or or CCONJ coo.31924059551022 1074 18 χ χ ADP coo.31924059551022 1074 19 = = SYM coo.31924059551022 1074 20 0 0 NUM coo.31924059551022 1074 21 , , PUNCT coo.31924059551022 1074 22 or or CCONJ coo.31924059551022 1074 23 a a DET coo.31924059551022 1074 24 = = NOUN coo.31924059551022 1074 25 0 0 NUM coo.31924059551022 1074 26 , , PUNCT coo.31924059551022 1074 27 or or CCONJ coo.31924059551022 1074 28 b0 b0 NOUN coo.31924059551022 1074 29 = = PUNCT coo.31924059551022 1074 30 0 0 NUM coo.31924059551022 1074 31 , , PUNCT coo.31924059551022 1074 32 or or CCONJ coo.31924059551022 1074 33 c c X coo.31924059551022 1074 34 = = SYM coo.31924059551022 1074 35 0 0 NUM coo.31924059551022 1074 36 . . PUNCT coo.31924059551022 1075 1 in in ADP coo.31924059551022 1075 2 this this DET coo.31924059551022 1075 3 case case NOUN coo.31924059551022 1075 4 as as SCONJ coo.31924059551022 1075 5 in in ADP coo.31924059551022 1075 6 general general ADJ coo.31924059551022 1075 7 two two NUM coo.31924059551022 1075 8 distinct distinct ADJ coo.31924059551022 1075 9 integrals integral NOUN coo.31924059551022 1075 10 exist exist VERB coo.31924059551022 1075 11 which which PRON coo.31924059551022 1075 12 are be AUX coo.31924059551022 1075 13 doubly doubly ADV coo.31924059551022 1075 14 periodic periodic ADJ coo.31924059551022 1075 15 of of ADP coo.31924059551022 1075 16 the the DET coo.31924059551022 1075 17 second second ADJ coo.31924059551022 1075 18 species species NOUN coo.31924059551022 1075 19 the the DET coo.31924059551022 1075 20 second second ADJ coo.31924059551022 1075 21 integral integral ADJ coo.31924059551022 1075 22 being being NOUN coo.31924059551022 1075 23 • • PUNCT coo.31924059551022 1075 24 / / PUNCT coo.31924059551022 1075 25 * * PUNCT coo.31924059551022 1076 1 = = PRON coo.31924059551022 1076 2 axu axu PROPN coo.31924059551022 1076 3 gu gu PROPN coo.31924059551022 1076 4 e e PROPN coo.31924059551022 1076 5 - - PROPN coo.31924059551022 1076 6 xu xu PROPN coo.31924059551022 1076 7 a a DET coo.31924059551022 1076 8 form form NOUN coo.31924059551022 1076 9 which which PRON coo.31924059551022 1076 10 does do AUX coo.31924059551022 1076 11 not not PART coo.31924059551022 1076 12 differ differ VERB coo.31924059551022 1076 13 from from ADP coo.31924059551022 1076 14 ƒ ƒ PROPN coo.31924059551022 1076 15 * * PUNCT coo.31924059551022 1076 16 a a DET coo.31924059551022 1076 17 peculiarity peculiarity NOUN coo.31924059551022 1076 18 which which PRON coo.31924059551022 1076 19 does do AUX coo.31924059551022 1076 20 not not PART coo.31924059551022 1076 21 appear appear VERB coo.31924059551022 1076 22 in in ADP coo.31924059551022 1076 23 the the DET coo.31924059551022 1076 24 special special ADJ coo.31924059551022 1076 25 functions function NOUN coo.31924059551022 1076 26 of of ADP coo.31924059551022 1076 27 lamé lamé NOUN coo.31924059551022 1076 28 . . PUNCT coo.31924059551022 1077 1 reduction reduction NUM coo.31924059551022 1077 2 of of ADP coo.31924059551022 1077 3 the the DET coo.31924059551022 1077 4 forms form NOUN coo.31924059551022 1077 5 when when SCONJ coo.31924059551022 1077 6 n n SYM coo.31924059551022 1077 7 equals equal VERB coo.31924059551022 1077 8 three three NUM coo.31924059551022 1077 9 . . PUNCT coo.31924059551022 1078 1 75 75 NUM coo.31924059551022 1078 2 we we PRON coo.31924059551022 1078 3 have have VERB coo.31924059551022 1078 4 finally finally ADV coo.31924059551022 1078 5 but but CCONJ coo.31924059551022 1078 6 one one NUM coo.31924059551022 1078 7 more more ADJ coo.31924059551022 1078 8 case case NOUN coo.31924059551022 1078 9 to to PART coo.31924059551022 1078 10 consider consider VERB coo.31924059551022 1078 11 , , PUNCT coo.31924059551022 1078 12 namely namely ADV coo.31924059551022 1078 13 when when SCONJ coo.31924059551022 1078 14 v v ADJ coo.31924059551022 1078 15 — — PUNCT coo.31924059551022 1078 16 0 0 NUM coo.31924059551022 1078 17 , , PUNCT coo.31924059551022 1078 18 a a DET coo.31924059551022 1078 19 condition condition NOUN coo.31924059551022 1078 20 arising arise VERB coo.31924059551022 1078 21 when when SCONJ coo.31924059551022 1078 22 b0 b0 PROPN coo.31924059551022 1078 23 or or CCONJ coo.31924059551022 1078 24 γ γ PROPN coo.31924059551022 1078 25 , , PUNCT coo.31924059551022 1078 26 common common ADJ coo.31924059551022 1078 27 to to ADP coo.31924059551022 1078 28 the the DET coo.31924059551022 1078 29 functions function NOUN coo.31924059551022 1078 30 xf xf X coo.31924059551022 1078 31 pv pv ADP coo.31924059551022 1078 32 and and CCONJ coo.31924059551022 1078 33 p'v p'v SPACE coo.31924059551022 1078 34 , , PUNCT coo.31924059551022 1078 35 vanish vanish VERB coo.31924059551022 1078 36 , , PUNCT coo.31924059551022 1078 37 in in ADP coo.31924059551022 1078 38 which which DET coo.31924059551022 1078 39 case case NOUN coo.31924059551022 1078 40 the the DET coo.31924059551022 1078 41 integrals integral NOUN coo.31924059551022 1078 42 become become VERB coo.31924059551022 1078 43 functions function NOUN coo.31924059551022 1078 44 named name VERB coo.31924059551022 1078 45 after after ADP coo.31924059551022 1078 46 their their PRON coo.31924059551022 1078 47 discoverer discoverer NOUN coo.31924059551022 1078 48 . . PUNCT coo.31924059551022 1078 49 * * SYM coo.31924059551022 1078 50 ) ) PUNCT coo.31924059551022 1078 51 functions function NOUN coo.31924059551022 1078 52 of of ADP coo.31924059551022 1078 53 m. m. NOUN coo.31924059551022 1078 54 mittag mittag ADJ coo.31924059551022 1078 55 - - PUNCT coo.31924059551022 1078 56 leif leif NOUN coo.31924059551022 1078 57 1er 1er NOUN coo.31924059551022 1078 58 . . PUNCT coo.31924059551022 1079 1 as as SCONJ coo.31924059551022 1079 2 m. m. NOUN coo.31924059551022 1079 3 hermite hermite PROPN coo.31924059551022 1079 4 observes observe VERB coo.31924059551022 1079 5 ( ( PUNCT coo.31924059551022 1079 6 p. p. NOUN coo.31924059551022 1079 7 28 28 NUM coo.31924059551022 1079 8 ) ) PUNCT coo.31924059551022 1079 9 the the DET coo.31924059551022 1079 10 vanishing vanishing NOUN coo.31924059551022 1079 11 of of ADP coo.31924059551022 1079 12 a a DET coo.31924059551022 1079 13 , , PUNCT coo.31924059551022 1079 14 b b NOUN coo.31924059551022 1079 15 , , PUNCT coo.31924059551022 1079 16 c c PROPN coo.31924059551022 1079 17 and and CCONJ coo.31924059551022 1079 18 d d NOUN coo.31924059551022 1079 19 are be AUX coo.31924059551022 1079 20 necessary necessary ADJ coo.31924059551022 1079 21 conditions condition NOUN coo.31924059551022 1079 22 that that PRON coo.31924059551022 1079 23 the the DET coo.31924059551022 1079 24 integrals integral NOUN coo.31924059551022 1079 25 shall shall AUX coo.31924059551022 1079 26 be be AUX coo.31924059551022 1079 27 functions function NOUN coo.31924059551022 1079 28 which which PRON coo.31924059551022 1079 29 he he PRON coo.31924059551022 1079 30 first first ADV coo.31924059551022 1079 31 called call VERB coo.31924059551022 1079 32 functions function NOUN coo.31924059551022 1079 33 of of ADP coo.31924059551022 1079 34 m. m. NOUN coo.31924059551022 1079 35 mittag mittag ADJ coo.31924059551022 1079 36 - - PUNCT coo.31924059551022 1079 37 leffler leffler NOUN coo.31924059551022 1079 38 , , PUNCT coo.31924059551022 1079 39 but but CCONJ coo.31924059551022 1079 40 they they PRON coo.31924059551022 1079 41 are be AUX coo.31924059551022 1079 42 not not PART coo.31924059551022 1079 43 sufficient sufficient ADJ coo.31924059551022 1079 44 conditions condition NOUN coo.31924059551022 1079 45 . . PUNCT coo.31924059551022 1080 1 the the DET coo.31924059551022 1080 2 functions function NOUN coo.31924059551022 1080 3 are be AUX coo.31924059551022 1080 4 in in ADP coo.31924059551022 1080 5 fact fact NOUN coo.31924059551022 1080 6 special special ADJ coo.31924059551022 1080 7 cases case NOUN coo.31924059551022 1080 8 of of ADP coo.31924059551022 1080 9 /i /i PROPN coo.31924059551022 1080 10 and and CCONJ coo.31924059551022 1080 11 f2 f2 PROPN coo.31924059551022 1080 12 having have VERB coo.31924059551022 1080 13 the the DET coo.31924059551022 1080 14 additional additional ADJ coo.31924059551022 1080 15 property property NOUN coo.31924059551022 1080 16 that that PRON coo.31924059551022 1080 17 the the DET coo.31924059551022 1080 18 logarithms logarithm NOUN coo.31924059551022 1080 19 of of ADP coo.31924059551022 1080 20 the the DET coo.31924059551022 1080 21 so so ADV coo.31924059551022 1080 22 called call VERB coo.31924059551022 1080 23 multiplicators multiplicator NOUN coo.31924059551022 1080 24 are be AUX coo.31924059551022 1080 25 proportional proportional ADJ coo.31924059551022 1080 26 to to ADP coo.31924059551022 1080 27 the the DET coo.31924059551022 1080 28 corresponding correspond VERB coo.31924059551022 1080 29 periods period NOUN coo.31924059551022 1080 30 . . PUNCT coo.31924059551022 1081 1 in in ADP coo.31924059551022 1081 2 this this DET coo.31924059551022 1081 3 case case NOUN coo.31924059551022 1081 4 the the DET coo.31924059551022 1081 5 integrals integral NOUN coo.31924059551022 1081 6 assume assume VERB coo.31924059551022 1081 7 a a DET coo.31924059551022 1081 8 special special ADJ coo.31924059551022 1081 9 form form NOUN coo.31924059551022 1081 10 where where SCONJ coo.31924059551022 1081 11 the the DET coo.31924059551022 1081 12 elimentary elimentary NOUN coo.31924059551022 1081 13 function function NOUN coo.31924059551022 1081 14 is be AUX coo.31924059551022 1081 15 a a DET coo.31924059551022 1081 16 function function NOUN coo.31924059551022 1081 17 of of ADP coo.31924059551022 1081 18 p p PROPN coo.31924059551022 1081 19 and and CCONJ coo.31924059551022 1081 20 p p NOUN coo.31924059551022 1081 21 ' ' PUNCT coo.31924059551022 1081 22 multiplied multiply VERB coo.31924059551022 1081 23 by by ADP coo.31924059551022 1081 24 a a DET coo.31924059551022 1081 25 determinate determinate ADJ coo.31924059551022 1081 26 exponential exponential NOUN coo.31924059551022 1081 27 having have VERB coo.31924059551022 1081 28 the the DET coo.31924059551022 1081 29 above above ADJ coo.31924059551022 1081 30 property property NOUN coo.31924059551022 1081 31 . . PUNCT coo.31924059551022 1082 1 we we PRON coo.31924059551022 1082 2 can can AUX coo.31924059551022 1082 3 show show VERB coo.31924059551022 1082 4 that that SCONJ coo.31924059551022 1082 5 these these PRON coo.31924059551022 1082 6 are be AUX coo.31924059551022 1082 7 but but CCONJ coo.31924059551022 1082 8 special special ADJ coo.31924059551022 1082 9 cases case NOUN coo.31924059551022 1082 10 of of ADP coo.31924059551022 1082 11 the the DET coo.31924059551022 1082 12 general general ADJ coo.31924059551022 1082 13 doubly doubly ADV coo.31924059551022 1082 14 periodic periodic ADJ coo.31924059551022 1082 15 function function NOUN coo.31924059551022 1082 16 of of ADP coo.31924059551022 1082 17 the the DET coo.31924059551022 1082 18 second second ADJ coo.31924059551022 1082 19 species specie NOUN coo.31924059551022 1082 20 of of ADP coo.31924059551022 1082 21 m. m. NOUN coo.31924059551022 1082 22 hermite hermite PROPN coo.31924059551022 1082 23 as as SCONJ coo.31924059551022 1082 24 follows follow VERB coo.31924059551022 1082 25 : : PUNCT coo.31924059551022 1082 26 we we PRON coo.31924059551022 1082 27 have have VERB coo.31924059551022 1082 28 as as ADP coo.31924059551022 1082 29 the the DET coo.31924059551022 1082 30 general general ADJ coo.31924059551022 1082 31 form form NOUN coo.31924059551022 1082 32 γ1β7ί γ1β7ί PUNCT coo.31924059551022 1083 1 ίρf ίρf PROPN coo.31924059551022 1083 2 \ \ PROPN coo.31924059551022 1083 3 < < PROPN coo.31924059551022 1083 4 ? ? PUNCT coo.31924059551022 1083 5 ( ( PUNCT coo.31924059551022 1083 6 w w X coo.31924059551022 1083 7 ax ax PROPN coo.31924059551022 1083 8 ) ) PUNCT coo.31924059551022 1083 9 a(u a(u PROPN coo.31924059551022 1083 10 a a PRON coo.31924059551022 1083 11 , , PUNCT coo.31924059551022 1083 12 ) ) PUNCT coo.31924059551022 1084 1 [ [ X coo.31924059551022 1084 2 16 16 NUM coo.31924059551022 1084 3 ] ] PUNCT coo.31924059551022 1084 4 ■ ■ PUNCT coo.31924059551022 1084 5 · · PUNCT coo.31924059551022 1084 6 f(u f(u NOUN coo.31924059551022 1084 7 ) ) PUNCT coo.31924059551022 1084 8 — — PUNCT coo.31924059551022 1084 9 a(u a(u X coo.31924059551022 1084 10 _ _ PUNCT coo.31924059551022 1084 11 _ _ PUNCT coo.31924059551022 1085 1 bj bj VERB coo.31924059551022 1085 2 ■ ■ NOUN coo.31924059551022 1086 1 g g X coo.31924059551022 1086 2 ( ( PUNCT coo.31924059551022 1086 3 « « PUNCT coo.31924059551022 1086 4 — — PUNCT coo.31924059551022 1086 5 a„-l a„-l PROPN coo.31924059551022 1086 6 ) ) PUNCT coo.31924059551022 1086 7 ----.------,----- ----.------,----- PROPN coo.31924059551022 1086 8 ( ( PUNCT coo.31924059551022 1086 9 , , PUNCT coo.31924059551022 1086 10 · · PUNCT coo.31924059551022 1086 11 ' ' PUNCT coo.31924059551022 1086 12 · · PUNCT coo.31924059551022 1086 13 ’ ' PUNCT coo.31924059551022 1086 14 " " PUNCT coo.31924059551022 1086 15 ( ( PUNCT coo.31924059551022 1086 16 808 808 NUM coo.31924059551022 1086 17 ( ( PUNCT coo.31924059551022 1086 18 16 16 NUM coo.31924059551022 1086 19 ) ) PUNCT coo.31924059551022 1086 20 p. p. NOUN coo.31924059551022 1086 21 17 17 NUM coo.31924059551022 1086 22 . . PUNCT coo.31924059551022 1086 23 ) ) PUNCT coo.31924059551022 1087 1 • • PUNCT coo.31924059551022 1087 2 « « PUNCT coo.31924059551022 1087 3 ( ( PUNCT coo.31924059551022 1087 4 u u PROPN coo.31924059551022 1087 5 & & CCONJ coo.31924059551022 1087 6 , , PUNCT coo.31924059551022 1087 7 _ _ PROPN coo.31924059551022 1087 8 ! ! PUNCT coo.31924059551022 1087 9 ) ) PUNCT coo.31924059551022 1088 1 and and CCONJ coo.31924059551022 1088 2 as as ADP coo.31924059551022 1088 3 a a DET coo.31924059551022 1088 4 function function NOUN coo.31924059551022 1088 5 of of ADP coo.31924059551022 1088 6 the the DET coo.31924059551022 1088 7 second second ADJ coo.31924059551022 1088 8 species specie NOUN coo.31924059551022 1088 9 upon upon SCONJ coo.31924059551022 1088 10 the the DET coo.31924059551022 1088 11 addition addition NOUN coo.31924059551022 1088 12 to to ADP coo.31924059551022 1088 13 the the DET coo.31924059551022 1088 14 arguments argument NOUN coo.31924059551022 1088 15 of of ADP coo.31924059551022 1088 16 the the DET coo.31924059551022 1088 17 periods period NOUN coo.31924059551022 1088 18 2w 2w NUM coo.31924059551022 1088 19 and and CCONJ coo.31924059551022 1088 20 2w 2w NUM coo.31924059551022 1088 21 ' ' PUNCT coo.31924059551022 1088 22 the the DET coo.31924059551022 1088 23 function function NOUN coo.31924059551022 1088 24 remains remain VERB coo.31924059551022 1088 25 unchanged unchanged ADJ coo.31924059551022 1088 26 save save NOUN coo.31924059551022 1088 27 in in ADP coo.31924059551022 1088 28 the the DET coo.31924059551022 1088 29 exponential exponential ADJ coo.31924059551022 1088 30 factor factor NOUN coo.31924059551022 1088 31 which which PRON coo.31924059551022 1088 32 takes take VERB coo.31924059551022 1088 33 the the DET coo.31924059551022 1088 34 forms form NOUN coo.31924059551022 1088 35 respectively respectively ADV coo.31924059551022 1088 36 μ μ PROPN coo.31924059551022 1088 37 = = PROPN coo.31924059551022 1088 38 e2yi(b e2yi(b X coo.31924059551022 1088 39 — — PUNCT coo.31924059551022 1088 40 a)-\-2qw a)-\-2qw PROPN coo.31924059551022 1088 41 μ μ NOUN coo.31924059551022 1088 42 = = NOUN coo.31924059551022 1088 43 = = X coo.31924059551022 1088 44 e2ìi e2ìi NOUN coo.31924059551022 1088 45 ' ' PUNCT coo.31924059551022 1088 46 ( ( PUNCT coo.31924059551022 1088 47 b b NOUN coo.31924059551022 1088 48 — — PUNCT coo.31924059551022 1088 49 a a X coo.31924059551022 1088 50 ) ) PUNCT coo.31924059551022 1088 51 + + NUM coo.31924059551022 1088 52 2qw 2qw ADJ coo.31924059551022 1088 53 ' ' PUNCT coo.31924059551022 1088 54 when when SCONJ coo.31924059551022 1088 55 b b PROPN coo.31924059551022 1088 56 = = X coo.31924059551022 1088 57 bi bi PROPN coo.31924059551022 1088 58 bn bn PROPN coo.31924059551022 1088 59 — — PUNCT coo.31924059551022 1088 60 i i PRON coo.31924059551022 1088 61 a a PRON coo.31924059551022 1088 62 = = PUNCT coo.31924059551022 1088 63 “ " PUNCT coo.31924059551022 1088 64 iftg iftg ADJ coo.31924059551022 1088 65 · · PUNCT coo.31924059551022 1088 66 · · PUNCT coo.31924059551022 1088 67 “ " PUNCT coo.31924059551022 1088 68 | | ADV coo.31924059551022 1088 69 “ " PUNCT coo.31924059551022 1088 70 ( ( PUNCT coo.31924059551022 1088 71 in in ADP coo.31924059551022 1088 72 — — PUNCT coo.31924059551022 1088 73 1 1 NUM coo.31924059551022 1088 74 ( ( PUNCT coo.31924059551022 1088 75 see see VERB coo.31924059551022 1088 76 p p NOUN coo.31924059551022 1088 77 · · SYM coo.31924059551022 1088 78 17·^ 17·^ NUM coo.31924059551022 1088 79 and and CCONJ coo.31924059551022 1088 80 η η PROPN coo.31924059551022 1088 81 and and CCONJ coo.31924059551022 1088 82 η η PROPN coo.31924059551022 1088 83 are be AUX coo.31924059551022 1088 84 constants constant NOUN coo.31924059551022 1088 85 . . PUNCT coo.31924059551022 1089 1 the the DET coo.31924059551022 1089 2 factors factor NOUN coo.31924059551022 1089 3 μ μ PROPN coo.31924059551022 1089 4 and and CCONJ coo.31924059551022 1089 5 μ μ NOUN coo.31924059551022 1089 6 ' ' PUNCT coo.31924059551022 1089 7 are be AUX coo.31924059551022 1089 8 general general ADJ coo.31924059551022 1089 9 and and CCONJ coo.31924059551022 1089 10 we we PRON coo.31924059551022 1089 11 may may AUX coo.31924059551022 1089 12 if if SCONJ coo.31924059551022 1089 13 we we PRON coo.31924059551022 1089 14 choose choose VERB coo.31924059551022 1089 15 take take VERB coo.31924059551022 1089 16 them they PRON coo.31924059551022 1089 17 at at ADP coo.31924059551022 1089 18 pleasure pleasure NOUN coo.31924059551022 1089 19 and and CCONJ coo.31924059551022 1089 20 then then ADV coo.31924059551022 1089 21 seek seek VERB coo.31924059551022 1089 22 the the DET coo.31924059551022 1089 23 corresponding corresponding ADJ coo.31924059551022 1089 24 function function NOUN coo.31924059551022 1089 25 . . PUNCT coo.31924059551022 1090 1 doing do VERB coo.31924059551022 1090 2 this this PRON coo.31924059551022 1090 3 we we PRON coo.31924059551022 1090 4 have have VERB coo.31924059551022 1090 5 μ μ PRON coo.31924059551022 1090 6 and and CCONJ coo.31924059551022 1090 7 μ μ NOUN coo.31924059551022 1090 8 ' ' PUNCT coo.31924059551022 1090 9 given give VERB coo.31924059551022 1090 10 and and CCONJ coo.31924059551022 1090 11 also also ADV coo.31924059551022 1090 12 ρ ρ ADJ coo.31924059551022 1090 13 to to PART coo.31924059551022 1090 14 determine determine VERB coo.31924059551022 1090 15 b b PROPN coo.31924059551022 1090 16 — — PUNCT coo.31924059551022 1090 17 a a PRON coo.31924059551022 1090 18 from from ADP coo.31924059551022 1090 19 the the DET coo.31924059551022 1090 20 relations relation NOUN coo.31924059551022 1090 21 [ [ X coo.31924059551022 1090 22 170 170 NUM coo.31924059551022 1090 23 ] ] PUNCT coo.31924059551022 1090 24 . . PUNCT coo.31924059551022 1091 1 solving solve VERB coo.31924059551022 1091 2 we we PRON coo.31924059551022 1091 3 have have AUX coo.31924059551022 1091 4 log log VERB coo.31924059551022 1091 5 μ μ NOUN coo.31924059551022 1091 6 = = SYM coo.31924059551022 1091 7 2η(β 2η(β NUM coo.31924059551022 1091 8 — — PUNCT coo.31924059551022 1091 9 a a X coo.31924059551022 1091 10 ) ) PUNCT coo.31924059551022 1091 11 + + PUNCT coo.31924059551022 1091 12 2qw 2qw ADJ coo.31924059551022 1091 13 log log VERB coo.31924059551022 1091 14 μ μ PROPN coo.31924059551022 1091 15 ' ' PUNCT coo.31924059551022 1091 16 = = PROPN coo.31924059551022 1091 17 2η 2η NUM coo.31924059551022 1091 18 ( ( PUNCT coo.31924059551022 1091 19 b b X coo.31924059551022 1091 20 — — PUNCT coo.31924059551022 1091 21 a a X coo.31924059551022 1091 22 ) ) PUNCT coo.31924059551022 1091 23 -|2qw -|2qw SPACE coo.31924059551022 1091 24 ' ' PUNCT coo.31924059551022 1091 25 * * PUNCT coo.31924059551022 1091 26 ) ) PUNCT coo.31924059551022 1091 27 see see VERB coo.31924059551022 1091 28 mittag mittag ADJ coo.31924059551022 1091 29 - - PUNCT coo.31924059551022 1091 30 leffler leffler NOUN coo.31924059551022 1091 31 , , PUNCT coo.31924059551022 1091 32 comptes compte NOUN coo.31924059551022 1091 33 rendus rendus PROPN coo.31924059551022 1091 34 t. t. PROPN coo.31924059551022 1091 35 xc xc PROPN coo.31924059551022 1091 36 , , PUNCT coo.31924059551022 1091 37 1880 1880 NUM coo.31924059551022 1091 38 , , PUNCT coo.31924059551022 1091 39 p. p. NOUN coo.31924059551022 1091 40 178 178 NUM coo.31924059551022 1091 41 . . PUNCT coo.31924059551022 1092 1 76 76 NUM coo.31924059551022 1092 2 part part NOUN coo.31924059551022 1092 3 v. v. ADP coo.31924059551022 1092 4 [ [ X coo.31924059551022 1092 5 171 171 NUM coo.31924059551022 1092 6 ] ] PUNCT coo.31924059551022 1093 1 [ [ X coo.31924059551022 1093 2 172 172 NUM coo.31924059551022 1093 3 ] ] PUNCT coo.31924059551022 1094 1 [ [ X coo.31924059551022 1094 2 173 173 NUM coo.31924059551022 1094 3 ] ] PUNCT coo.31924059551022 1094 4 whence whence SCONJ coo.31924059551022 1094 5 η η PROPN coo.31924059551022 1094 6 log log VERB coo.31924059551022 1094 7 μ μ PROPN coo.31924059551022 1094 8 ' ' PUNCT coo.31924059551022 1094 9 — — PUNCT coo.31924059551022 1094 10 η η X coo.31924059551022 1094 11 ' ' PUNCT coo.31924059551022 1094 12 log log NOUN coo.31924059551022 1094 13 μ μ NOUN coo.31924059551022 1094 14 = = NOUN coo.31924059551022 1094 15 2g(yw 2g(yw NUM coo.31924059551022 1094 16 ' ' PUNCT coo.31924059551022 1094 17 — — PUNCT coo.31924059551022 1094 18 r¡'w r¡'w NOUN coo.31924059551022 1094 19 ) ) PUNCT coo.31924059551022 1094 20 — — PUNCT coo.31924059551022 1094 21 ρπί ρπί PROPN coo.31924059551022 1094 22 ] ] PUNCT coo.31924059551022 1094 23 ( ( PUNCT coo.31924059551022 1094 24 r¡w r¡w VERB coo.31924059551022 1094 25 ' ' PUNCT coo.31924059551022 1094 26 — — PUNCT coo.31924059551022 1094 27 y¡'w y¡'w NOUN coo.31924059551022 1094 28 = = X coo.31924059551022 1094 29 w w X coo.31924059551022 1094 30 ' ' PUNCT coo.31924059551022 1094 31 log log NOUN coo.31924059551022 1094 32 μ μ NOUN coo.31924059551022 1094 33 — — PUNCT coo.31924059551022 1094 34 w w X coo.31924059551022 1094 35 log log VERB coo.31924059551022 1094 36 μ μ NOUN coo.31924059551022 1094 37 = = SYM coo.31924059551022 1094 38 2(b 2(b NUM coo.31924059551022 1094 39 — — PUNCT coo.31924059551022 1094 40 a a X coo.31924059551022 1094 41 ) ) PUNCT coo.31924059551022 1094 42 ( ( PUNCT coo.31924059551022 1094 43 r¡w r¡w VERB coo.31924059551022 1094 44 ' ' PUNCT coo.31924059551022 1094 45 — — PUNCT coo.31924059551022 1094 46 r¡'w r¡'w NOUN coo.31924059551022 1094 47 ) ) PUNCT coo.31924059551022 1094 48 = = PROPN coo.31924059551022 1095 1 ( ( PUNCT coo.31924059551022 1095 2 b b X coo.31924059551022 1095 3 — — PUNCT coo.31924059551022 1095 4 a a X coo.31924059551022 1095 5 ) ) PUNCT coo.31924059551022 1095 6 m. m. NOUN coo.31924059551022 1095 7 this this DET coo.31924059551022 1095 8 solution solution NOUN coo.31924059551022 1095 9 however however ADV coo.31924059551022 1095 10 becomes become VERB coo.31924059551022 1095 11 indeterminate indeterminate ADJ coo.31924059551022 1095 12 when when SCONJ coo.31924059551022 1095 13 f(x f(x PROPN coo.31924059551022 1095 14 ) ) PUNCT coo.31924059551022 1095 15 becomes become VERB coo.31924059551022 1095 16 doubly doubly ADV coo.31924059551022 1095 17 periodic periodic ADJ coo.31924059551022 1095 18 , , PUNCT coo.31924059551022 1095 19 for for ADP coo.31924059551022 1095 20 then then ADV coo.31924059551022 1095 21 ρ ρ NOUN coo.31924059551022 1095 22 = = SYM coo.31924059551022 1095 23 0 0 NUM coo.31924059551022 1095 24 and and CCONJ coo.31924059551022 1095 25 b b X coo.31924059551022 1095 26 — — PUNCT coo.31924059551022 1095 27 a a X coo.31924059551022 1095 28 — — PUNCT coo.31924059551022 1095 29 2mw 2mw NOUN coo.31924059551022 1095 30 + + CCONJ coo.31924059551022 1095 31 2 2 NUM coo.31924059551022 1095 32 m m PRON coo.31924059551022 1095 33 w\ w\ PROPN coo.31924059551022 1095 34 this this PRON coo.31924059551022 1095 35 gives gives AUX coo.31924059551022 1095 36 in(2mw in(2mw VERB coo.31924059551022 1095 37 + + PROPN coo.31924059551022 1095 38 2m'w 2m'w NOUN coo.31924059551022 1095 39 ' ' NUM coo.31924059551022 1095 40 ) ) PUNCT coo.31924059551022 1095 41 = = X coo.31924059551022 1095 42 w w X coo.31924059551022 1095 43 ' ' PUNCT coo.31924059551022 1095 44 log log NOUN coo.31924059551022 1095 45 μ μ NOUN coo.31924059551022 1095 46 — — PUNCT coo.31924059551022 1095 47 w w X coo.31924059551022 1095 48 log log VERB coo.31924059551022 1095 49 μ μ PRON coo.31924059551022 1095 50 ' ' PUNCT coo.31924059551022 1095 51 whence whence NOUN coo.31924059551022 1095 52 w w ADP coo.31924059551022 1095 53 _ _ PUNCT coo.31924059551022 1095 54 _ _ PUNCT coo.31924059551022 1096 1 _ _ PUNCT coo.31924059551022 1096 2 log log VERB coo.31924059551022 1096 3 a a DET coo.31924059551022 1096 4 — — PUNCT coo.31924059551022 1096 5 2inm 2inm NUM coo.31924059551022 1096 6 w w NOUN coo.31924059551022 1096 7 ’ ' PUNCT coo.31924059551022 1096 8 log log VERB coo.31924059551022 1096 9 μ μ NOUN coo.31924059551022 1096 10 + + NUM coo.31924059551022 1096 11 2iπm 2iπm NUM coo.31924059551022 1096 12 ' ' PART coo.31924059551022 1096 13 which which PRON coo.31924059551022 1096 14 means mean VERB coo.31924059551022 1096 15 that that SCONJ coo.31924059551022 1096 16 the the DET coo.31924059551022 1096 17 logs log NOUN coo.31924059551022 1096 18 of of ADP coo.31924059551022 1096 19 the the DET coo.31924059551022 1096 20 multiplicators multiplicator NOUN coo.31924059551022 1096 21 are be AUX coo.31924059551022 1096 22 proportional proportional ADJ coo.31924059551022 1096 23 to to ADP coo.31924059551022 1096 24 their their PRON coo.31924059551022 1096 25 corresponding correspond VERB coo.31924059551022 1096 26 periods period NOUN coo.31924059551022 1096 27 . . PUNCT coo.31924059551022 1097 1 returning return VERB coo.31924059551022 1097 2 to to ADP coo.31924059551022 1097 3 the the DET coo.31924059551022 1097 4 form form NOUN coo.31924059551022 1097 5 f f X coo.31924059551022 1097 6 _ _ X coo.31924059551022 1098 1 g(u g(u PROPN coo.31924059551022 1099 1 + + CCONJ coo.31924059551022 1099 2 v v NOUN coo.31924059551022 1099 3 ) ) PUNCT coo.31924059551022 1099 4 u£9 u£9 NOUN coo.31924059551022 1099 5 ' ' PUNCT coo.31924059551022 1099 6 a(u a(u NOUN coo.31924059551022 1099 7 ) ) PUNCT coo.31924059551022 1099 8 we we PRON coo.31924059551022 1099 9 observe observe VERB coo.31924059551022 1099 10 that that SCONJ coo.31924059551022 1099 11 when when SCONJ coo.31924059551022 1099 12 we we PRON coo.31924059551022 1099 13 have have VERB coo.31924059551022 1099 14 v v NOUN coo.31924059551022 1099 15 = = NOUN coo.31924059551022 1099 16 ai ai VERB coo.31924059551022 1099 17 + + CCONJ coo.31924059551022 1099 18 a a DET coo.31924059551022 1099 19 2 2 NUM coo.31924059551022 1100 1 + + NUM coo.31924059551022 1100 2 * * PUNCT coo.31924059551022 1100 3 * * PUNCT coo.31924059551022 1100 4 “ " PUNCT coo.31924059551022 1100 5 0 0 PUNCT coo.31924059551022 1101 1 y y PROPN coo.31924059551022 1101 2 = = X coo.31924059551022 1101 3 2mw 2mw PROPN coo.31924059551022 1102 1 + + CCONJ coo.31924059551022 1102 2 2 2 NUM coo.31924059551022 1102 3 m m NOUN coo.31924059551022 1102 4 w w PROPN coo.31924059551022 1102 5 ' ' PUNCT coo.31924059551022 1102 6 and and CCONJ coo.31924059551022 1102 7 f f PROPN coo.31924059551022 1102 8 vanishes vanish VERB coo.31924059551022 1102 9 showing show VERB coo.31924059551022 1102 10 that that SCONJ coo.31924059551022 1102 11 this this DET coo.31924059551022 1102 12 eliment eliment NOUN coo.31924059551022 1102 13 can can AUX coo.31924059551022 1102 14 not not PART coo.31924059551022 1102 15 be be AUX coo.31924059551022 1102 16 utilized utilize VERB coo.31924059551022 1102 17 in in ADP coo.31924059551022 1102 18 this this DET coo.31924059551022 1102 19 case case NOUN coo.31924059551022 1102 20 . . PUNCT coo.31924059551022 1103 1 written write VERB coo.31924059551022 1103 2 as as ADP coo.31924059551022 1103 3 a a DET coo.31924059551022 1103 4 product product NOUN coo.31924059551022 1103 5 however however ADV coo.31924059551022 1103 6 and and CCONJ coo.31924059551022 1103 7 for for ADP coo.31924059551022 1103 8 u u PROPN coo.31924059551022 1103 9 = = AUX coo.31924059551022 1103 10 3 3 NUM coo.31924059551022 1103 11 we we PRON coo.31924059551022 1103 12 have have VERB coo.31924059551022 1103 13 where where SCONJ coo.31924059551022 1103 14 = = PUNCT coo.31924059551022 1104 1 * * PUNCT coo.31924059551022 1105 1 ( ( PUNCT coo.31924059551022 1105 2 * * PUNCT coo.31924059551022 1105 3 + + CCONJ coo.31924059551022 1105 4 v v X coo.31924059551022 1105 5 ) ) PUNCT coo.31924059551022 1105 6 * * PUNCT coo.31924059551022 1105 7 ( ( PUNCT coo.31924059551022 1105 8 « « PUNCT coo.31924059551022 1105 9 + + CCONJ coo.31924059551022 1105 10 b b X coo.31924059551022 1105 11 ) ) PUNCT coo.31924059551022 1105 12 c(u c(u PROPN coo.31924059551022 1105 13 + + NUM coo.31924059551022 1105 14 c c NOUN coo.31924059551022 1105 15 ) ) PUNCT coo.31924059551022 1105 16 + + CCONJ coo.31924059551022 1105 17 j j X coo.31924059551022 1105 18 gbu gbu PROPN coo.31924059551022 1106 1 a a DET coo.31924059551022 1106 2 -1 -1 PROPN coo.31924059551022 1106 3 - - PUNCT coo.31924059551022 1106 4 6 6 NUM coo.31924059551022 1106 5 + + PROPN coo.31924059551022 1106 6 c c X coo.31924059551022 1106 7 — — PUNCT coo.31924059551022 1106 8 v v NOUN coo.31924059551022 1106 9 = = SYM coo.31924059551022 1106 10 0 0 NUM coo.31924059551022 1106 11 and and CCONJ coo.31924059551022 1106 12 our our PRON coo.31924059551022 1106 13 eliment eliment NOUN coo.31924059551022 1106 14 may may AUX coo.31924059551022 1106 15 be be AUX coo.31924059551022 1106 16 taken take VERB coo.31924059551022 1106 17 as as ADP coo.31924059551022 1106 18 a a DET coo.31924059551022 1106 19 rational rational ADJ coo.31924059551022 1106 20 function function NOUN coo.31924059551022 1106 21 of of ADP coo.31924059551022 1106 22 pu pu PROPN coo.31924059551022 1106 23 and and CCONJ coo.31924059551022 1106 24 p'u p'u ADV coo.31924059551022 1106 25 multiplied multiply VERB coo.31924059551022 1106 26 by by ADP coo.31924059551022 1106 27 a a DET coo.31924059551022 1106 28 factor factor NOUN coo.31924059551022 1106 29 of of ADP coo.31924059551022 1106 30 the the DET coo.31924059551022 1106 31 form form NOUN coo.31924059551022 1106 32 e$u e$u PROPN coo.31924059551022 1106 33 . . PUNCT coo.31924059551022 1107 1 it it PRON coo.31924059551022 1107 2 is be AUX coo.31924059551022 1107 3 moreover moreover ADV coo.31924059551022 1107 4 known know VERB coo.31924059551022 1107 5 that that SCONJ coo.31924059551022 1107 6 any any DET coo.31924059551022 1107 7 function function NOUN coo.31924059551022 1107 8 f(u f(u NOUN coo.31924059551022 1107 9 ) ) PUNCT coo.31924059551022 1107 10 of of ADP coo.31924059551022 1107 11 p p PROPN coo.31924059551022 1107 12 and and CCONJ coo.31924059551022 1107 13 p p PROPN coo.31924059551022 1107 14 may may AUX coo.31924059551022 1107 15 be be AUX coo.31924059551022 1107 16 resolved resolve VERB coo.31924059551022 1107 17 in in ADP coo.31924059551022 1107 18 the the DET coo.31924059551022 1107 19 form form NOUN coo.31924059551022 1107 20 f(u f(u NOUN coo.31924059551022 1107 21 ) ) PUNCT coo.31924059551022 1107 22 = = X coo.31924059551022 1108 1 l l NOUN coo.31924059551022 1108 2 + + CCONJ coo.31924059551022 1108 3 p p NOUN coo.31924059551022 1108 4 where where SCONJ coo.31924059551022 1108 5 l l NOUN coo.31924059551022 1108 6 = = VERB coo.31924059551022 1108 7 11ξ(η 11ξ(η NUM coo.31924059551022 1108 8 — — PUNCT coo.31924059551022 1108 9 vt vt NOUN coo.31924059551022 1108 10 ) ) PUNCT coo.31924059551022 1108 11 + + CCONJ coo.31924059551022 1108 12 ( ( PUNCT coo.31924059551022 1108 13 w w ADJ coo.31924059551022 1108 14 — — PUNCT coo.31924059551022 1108 15 v2 v2 NOUN coo.31924059551022 1108 16 ) ) PUNCT coo.31924059551022 1108 17 + + CCONJ coo.31924059551022 1108 18 13ξ(u 13ξ(u NUM coo.31924059551022 1108 19 — — PUNCT coo.31924059551022 1108 20 v.ò v.ò PROPN coo.31924059551022 1108 21 ) ) PUNCT coo.31924059551022 1108 22 -f -f PUNCT coo.31924059551022 1108 23 · · PUNCT coo.31924059551022 1108 24 · · PUNCT coo.31924059551022 1108 25 p p NOUN coo.31924059551022 1108 26 = = X coo.31924059551022 1108 27 c c PROPN coo.31924059551022 1108 28 + + PROPN coo.31924059551022 1108 29 σηιρμ σηιρμ PROPN coo.31924059551022 1108 30 ( ( PUNCT coo.31924059551022 1108 31 u u PROPN coo.31924059551022 1108 32 — — PUNCT coo.31924059551022 1108 33 v v NOUN coo.31924059551022 1108 34 ) ) PUNCT coo.31924059551022 1108 35 where where SCONJ coo.31924059551022 1108 36 h h PROPN coo.31924059551022 1108 37 + + CCONJ coo.31924059551022 1108 38 h h NOUN coo.31924059551022 1108 39 4 4 NUM coo.31924059551022 1108 40 “ " PUNCT coo.31924059551022 1108 41 h h NOUN coo.31924059551022 1108 42 + + CCONJ coo.31924059551022 1108 43 * * PUNCT coo.31924059551022 1108 44 ' ' PUNCT coo.31924059551022 1108 45 = = PRON coo.31924059551022 1108 46 0 0 X coo.31924059551022 1108 47 . . PUNCT coo.31924059551022 1109 1 this this DET coo.31924059551022 1109 2 property property NOUN coo.31924059551022 1109 3 being be AUX coo.31924059551022 1109 4 general general ADJ coo.31924059551022 1109 5 , , PUNCT coo.31924059551022 1109 6 we we PRON coo.31924059551022 1109 7 have have VERB coo.31924059551022 1109 8 , , PUNCT coo.31924059551022 1109 9 f f PROPN coo.31924059551022 1109 10 being be AUX coo.31924059551022 1109 11 doubly doubly ADV coo.31924059551022 1109 12 periodic periodic ADJ coo.31924059551022 1109 13 , , PUNCT coo.31924059551022 1109 14 but but CCONJ coo.31924059551022 1109 15 to to PART coo.31924059551022 1109 16 multiply multiply VERB coo.31924059551022 1109 17 by by ADP coo.31924059551022 1109 18 e$u e$u PROPN coo.31924059551022 1109 19 to to PART coo.31924059551022 1109 20 find find VERB coo.31924059551022 1109 21 a a DET coo.31924059551022 1109 22 development development NOUN coo.31924059551022 1109 23 for for ADP coo.31924059551022 1109 24 the the DET coo.31924059551022 1109 25 eliment eliment NOUN coo.31924059551022 1109 26 required require VERB coo.31924059551022 1109 27 in in ADP coo.31924059551022 1109 28 [ [ X coo.31924059551022 1109 29 172 172 NUM coo.31924059551022 1109 30 ] ] PUNCT coo.31924059551022 1110 1 namely namely ADV coo.31924059551022 1110 2 • • PUNCT coo.31924059551022 1110 3 · · PUNCT coo.31924059551022 1110 4 · · PUNCT coo.31924059551022 1110 5 ............... ............... PUNCT coo.31924059551022 1110 6 φ(μ φ(μ PROPN coo.31924059551022 1110 7 ) ) PUNCT coo.31924059551022 1110 8 = = X coo.31924059551022 1110 9 tfu£(u tfu£(u SPACE coo.31924059551022 1110 10 ) ) PUNCT coo.31924059551022 1110 11 deduction deduction NUM coo.31924059551022 1110 12 of of ADP coo.31924059551022 1110 13 the the DET coo.31924059551022 1110 14 forms form NOUN coo.31924059551022 1110 15 when when SCONJ coo.31924059551022 1110 16 n n SYM coo.31924059551022 1110 17 equals equal VERB coo.31924059551022 1110 18 three three NUM coo.31924059551022 1110 19 . . PUNCT coo.31924059551022 1111 1 77 77 NUM coo.31924059551022 1112 1 we we PRON coo.31924059551022 1112 2 have have VERB coo.31924059551022 1112 3 then then ADV coo.31924059551022 1112 4 ξ(η ξ(η PROPN coo.31924059551022 1112 5 ) ) PUNCT coo.31924059551022 1112 6 = = PUNCT coo.31924059551022 1112 7 0(u)e 0(u)e NUM coo.31924059551022 1113 1 ~ ~ PUNCT coo.31924059551022 1113 2 vu vu PROPN coo.31924059551022 1113 3 ξ ξ X coo.31924059551022 1113 4 ' ' PUNCT coo.31924059551022 1113 5 ( ( PUNCT coo.31924059551022 1113 6 u u PROPN coo.31924059551022 1113 7 ) ) PUNCT coo.31924059551022 1113 8 φ'(η φ'(η ADV coo.31924059551022 1113 9 ) ) PUNCT coo.31924059551022 1113 10 e~^u e~^u PROPN coo.31924059551022 1113 11 — — PUNCT coo.31924059551022 1113 12 ρ ρ INTJ coo.31924059551022 1113 13 φ φ X coo.31924059551022 1113 14 ( ( PUNCT coo.31924059551022 1113 15 m m NOUN coo.31924059551022 1113 16 ) ) PUNCT coo.31924059551022 1113 17 < < X coo.31924059551022 1113 18 r~'qu r~'qu X coo.31924059551022 1113 19 ζ ζ NOUN coo.31924059551022 1113 20 " " PUNCT coo.31924059551022 1113 21 ( ( PUNCT coo.31924059551022 1113 22 u u PROPN coo.31924059551022 1113 23 ) ) PUNCT coo.31924059551022 1113 24 = = PUNCT coo.31924059551022 1113 25 q>"(u)e q>"(u)e PROPN coo.31924059551022 1113 26 — — PUNCT coo.31924059551022 1113 27 qu qu PROPN coo.31924059551022 1113 28 — — PUNCT coo.31924059551022 1113 29 2ρφ\η)€γ^η 2ρφ\η)€γ^η NOUN coo.31924059551022 1113 30 -fρ2φ{ιι)ο~^η -fρ2φ{ιι)ο~^η X coo.31924059551022 1113 31 ξ(3 ξ(3 PROPN coo.31924059551022 1113 32 ) ) PUNCT coo.31924059551022 1113 33 = = PROPN coo.31924059551022 1113 34 φ"'(ιι φ"'(ιι SPACE coo.31924059551022 1113 35 ) ) PUNCT coo.31924059551022 1113 36 e~ e~ PROPN coo.31924059551022 1113 37 — — PUNCT coo.31924059551022 1113 38 3 3 NUM coo.31924059551022 1113 39 ρ ρ X coo.31924059551022 1113 40 φ φ X coo.31924059551022 1113 41 " " PUNCT coo.31924059551022 1113 42 ( ( PUNCT coo.31924059551022 1113 43 u u PROPN coo.31924059551022 1113 44 ) ) PUNCT coo.31924059551022 1113 45 e~~ e~~ PROPN coo.31924059551022 1113 46 qu qu PROPN coo.31924059551022 1113 47 -f3 -f3 PROPN coo.31924059551022 1113 48 ρ2 ρ2 PROPN coo.31924059551022 1113 49 φ\η φ\η SPACE coo.31924059551022 1113 50 ) ) PUNCT coo.31924059551022 1113 51 e~~vu e~~vu PROPN coo.31924059551022 1113 52 — — PUNCT coo.31924059551022 1113 53 ρ3 ρ3 PROPN coo.31924059551022 1113 54 φ φ X coo.31924059551022 1113 55 ( ( PUNCT coo.31924059551022 1113 56 w w PROPN coo.31924059551022 1113 57 , , PUNCT coo.31924059551022 1113 58 ) ) PUNCT coo.31924059551022 1113 59 e~~ e~~ PROPN coo.31924059551022 1113 60 c c PROPN coo.31924059551022 1113 61 u. u. PROPN coo.31924059551022 1113 62 whence whence PROPN coo.31924059551022 1113 63 [ [ X coo.31924059551022 1113 64 174 174 NUM coo.31924059551022 1113 65 ] ] PUNCT coo.31924059551022 1113 66 βρ“6 βρ“6 PUNCT coo.31924059551022 1113 67 < < X coo.31924059551022 1113 68 · · PUNCT coo.31924059551022 1113 69 > > X coo.31924059551022 1113 70 ( ( PUNCT coo.31924059551022 1113 71 « « NOUN coo.31924059551022 1113 72 ) ) PUNCT coo.31924059551022 1113 73 = = X coo.31924059551022 1113 74 φ<»)(μ φ<»)(μ SPACE coo.31924059551022 1113 75 ) ) PUNCT coo.31924059551022 1113 76 — — PUNCT coo.31924059551022 1113 77 j j PROPN coo.31924059551022 1113 78 ρφί»-1)^ ρφί»-1)^ NUM coo.31924059551022 1113 79 ) ) PUNCT coo.31924059551022 1113 80 + + CCONJ coo.31924059551022 1113 81 5í!lzjí 5í!lzjí X coo.31924059551022 1113 82 . . PUNCT coo.31924059551022 1113 83 ρ*φ(»-2)(μ ρ*φ(»-2)(μ NUM coo.31924059551022 1113 84 ) ) PUNCT coo.31924059551022 1113 85 _ _ X coo.31924059551022 1113 86 |we |we PRON coo.31924059551022 1113 87 have have VERB coo.31924059551022 1113 88 then then ADV coo.31924059551022 1113 89 a a DET coo.31924059551022 1113 90 decomposition decomposition NOUN coo.31924059551022 1113 91 in in ADP coo.31924059551022 1113 92 the the DET coo.31924059551022 1113 93 form form NOUN coo.31924059551022 1113 94 [ [ X coo.31924059551022 1113 95 175 175 NUM coo.31924059551022 1113 96 ] ] PUNCT coo.31924059551022 1113 97 ........ ........ PUNCT coo.31924059551022 1113 98 /í(m /í(m X coo.31924059551022 1113 99 ) ) PUNCT coo.31924059551022 1113 100 = = PUNCT coo.31924059551022 1114 1 c^“+22’a.v c^“+22’a.v VERB coo.31924059551022 1114 2 ® ® NOUN coo.31924059551022 1114 3 w(m w(m PROPN coo.31924059551022 1114 4 v. v. ADP coo.31924059551022 1114 5 ) ) PUNCT coo.31924059551022 1114 6 • • X coo.31924059551022 1114 7 m m PUNCT coo.31924059551022 1114 8 v v ADP coo.31924059551022 1114 9 where where SCONJ coo.31924059551022 1114 10 vn vn PROPN coo.31924059551022 1114 11 stands stand VERB coo.31924059551022 1114 12 for for ADP coo.31924059551022 1114 13 the the DET coo.31924059551022 1114 14 several several ADJ coo.31924059551022 1114 15 infinites infinite NOUN coo.31924059551022 1114 16 of of ADP coo.31924059551022 1114 17 fx fx PROPN coo.31924059551022 1114 18 ( ( PUNCT coo.31924059551022 1114 19 u u PROPN coo.31924059551022 1114 20 ) ) PUNCT coo.31924059551022 1114 21 and and CCONJ coo.31924059551022 1114 22 φ φ X coo.31924059551022 1114 23 ( ( PUNCT coo.31924059551022 1114 24 * * PUNCT coo.31924059551022 1114 25 > > X coo.31924059551022 1114 26 for for ADP coo.31924059551022 1114 27 the the DET coo.31924059551022 1114 28 derivatives derivative NOUN coo.31924059551022 1114 29 where where SCONJ coo.31924059551022 1114 30 v v PROPN coo.31924059551022 1114 31 must must AUX coo.31924059551022 1114 32 be be AUX coo.31924059551022 1114 33 of of ADP coo.31924059551022 1114 34 an an DET coo.31924059551022 1114 35 order order NOUN coo.31924059551022 1114 36 one one NUM coo.31924059551022 1114 37 degree degree NOUN coo.31924059551022 1114 38 less less ADJ coo.31924059551022 1114 39 than than ADP coo.31924059551022 1114 40 the the DET coo.31924059551022 1114 41 multiplicity multiplicity NOUN coo.31924059551022 1114 42 of of ADP coo.31924059551022 1114 43 the the DET coo.31924059551022 1114 44 infinites infinite NOUN coo.31924059551022 1114 45 . . PUNCT coo.31924059551022 1115 1 the the DET coo.31924059551022 1115 2 coefficients coefficient NOUN coo.31924059551022 1115 3 a a PRON coo.31924059551022 1115 4 will will AUX coo.31924059551022 1115 5 be be AUX coo.31924059551022 1115 6 determined determine VERB coo.31924059551022 1115 7 in in ADP coo.31924059551022 1115 8 general general ADJ coo.31924059551022 1115 9 by by ADP coo.31924059551022 1115 10 developing develop VERB coo.31924059551022 1115 11 fx fx PROPN coo.31924059551022 1115 12 ( ( PUNCT coo.31924059551022 1115 13 u u PROPN coo.31924059551022 1115 14 ) ) PUNCT coo.31924059551022 1115 15 according accord VERB coo.31924059551022 1115 16 to to ADP coo.31924059551022 1115 17 the the DET coo.31924059551022 1115 18 powers power NOUN coo.31924059551022 1115 19 of of ADP coo.31924059551022 1115 20 ( ( PUNCT coo.31924059551022 1115 21 u u PROPN coo.31924059551022 1115 22 — — PUNCT coo.31924059551022 1115 23 vn vn PROPN coo.31924059551022 1115 24 ) ) PUNCT coo.31924059551022 1115 25 while while SCONJ coo.31924059551022 1115 26 c c PROPN coo.31924059551022 1115 27 will will AUX coo.31924059551022 1115 28 be be AUX coo.31924059551022 1115 29 a a DET coo.31924059551022 1115 30 fixed fix VERB coo.31924059551022 1115 31 value value NOUN coo.31924059551022 1115 32 depending depend VERB coo.31924059551022 1115 33 upon upon SCONJ coo.31924059551022 1115 34 the the DET coo.31924059551022 1115 35 given give VERB coo.31924059551022 1115 36 conditions condition NOUN coo.31924059551022 1115 37 . . PUNCT coo.31924059551022 1116 1 in in ADP coo.31924059551022 1116 2 our our PRON coo.31924059551022 1116 3 * * NOUN coo.31924059551022 1116 4 case case NOUN coo.31924059551022 1116 5 then then ADV coo.31924059551022 1116 6 we we PRON coo.31924059551022 1116 7 may may AUX coo.31924059551022 1116 8 write write VERB coo.31924059551022 1116 9 [ [ X coo.31924059551022 1116 10 176 176 NUM coo.31924059551022 1116 11 ] ] PUNCT coo.31924059551022 1116 12 ................. ................. PUNCT coo.31924059551022 1117 1 fi(u)ce#u fi(u)ce#u PROPN coo.31924059551022 1117 2 + + CCONJ coo.31924059551022 1117 3 ζη ζη SYM coo.31924059551022 1117 4 · · PUNCT coo.31924059551022 1117 5 eüu eüu VERB coo.31924059551022 1117 6 . . PUNCT coo.31924059551022 1118 1 this this DET coo.31924059551022 1118 2 function function NOUN coo.31924059551022 1118 3 when when SCONJ coo.31924059551022 1118 4 v v ADP coo.31924059551022 1118 5 is be AUX coo.31924059551022 1118 6 zero zero NUM coo.31924059551022 1118 7 , , PUNCT coo.31924059551022 1118 8 in in ADP coo.31924059551022 1118 9 which which DET coo.31924059551022 1118 10 case case NOUN coo.31924059551022 1118 11 φ φ X coo.31924059551022 1118 12 = = X coo.31924059551022 1118 13 0 0 NUM coo.31924059551022 1118 14 and and CCONJ coo.31924059551022 1118 15 d d X coo.31924059551022 1118 16 = = NOUN coo.31924059551022 1118 17 0 0 NUM coo.31924059551022 1118 18 , , PUNCT coo.31924059551022 1118 19 takes take VERB coo.31924059551022 1118 20 the the DET coo.31924059551022 1118 21 place place NOUN coo.31924059551022 1118 22 of of ADP coo.31924059551022 1118 23 f(u f(u NOUN coo.31924059551022 1118 24 ) ) PUNCT coo.31924059551022 1118 25 and and CCONJ coo.31924059551022 1118 26 hence hence ADV coo.31924059551022 1118 27 the the DET coo.31924059551022 1118 28 general general ADJ coo.31924059551022 1118 29 solution solution NOUN coo.31924059551022 1118 30 is be AUX coo.31924059551022 1118 31 vi vi PROPN coo.31924059551022 1118 32 = = X coo.31924059551022 1118 33 f f X coo.31924059551022 1118 34 " " PUNCT coo.31924059551022 1118 35 m m PROPN coo.31924059551022 1118 36 — — PUNCT coo.31924059551022 1118 37 3 3 NUM coo.31924059551022 1118 38 bftu bftu ADJ coo.31924059551022 1118 39 = = PUNCT coo.31924059551022 1118 40 ( ( PUNCT coo.31924059551022 1118 41 ce$u ce$u PROPN coo.31924059551022 1118 42 + + NOUN coo.31924059551022 1118 43 · · PUNCT coo.31924059551022 1118 44 e8u)'f e8u)'f NUM coo.31924059551022 1118 45 — — PUNCT coo.31924059551022 1118 46 3 3 NUM coo.31924059551022 1118 47 δ δ NOUN coo.31924059551022 1118 48 ( ( PUNCT coo.31924059551022 1118 49 ζη ζη PROPN coo.31924059551022 1118 50 · · PUNCT coo.31924059551022 1118 51 ( ( PUNCT coo.31924059551022 1118 52 # # SYM coo.31924059551022 1118 53 u u X coo.31924059551022 1118 54 + + NUM coo.31924059551022 1118 55 ceeu ceeu NOUN coo.31924059551022 1118 56 ) ) PUNCT coo.31924059551022 1118 57 fi(u fi(u PROPN coo.31924059551022 1118 58 ) ) PUNCT coo.31924059551022 1119 1 = = PROPN coo.31924059551022 1119 2 ççeeu ççeeu VERB coo.31924059551022 1119 3 + + PUNCT coo.31924059551022 1119 4 £ £ NOUN coo.31924059551022 1119 5 ' ' PUNCT coo.31924059551022 1119 6 uevu uevu NOUN coo.31924059551022 1119 7 + + CCONJ coo.31924059551022 1119 8 qi(u)e$u qi(u)e$u INTJ coo.31924059551022 1119 9 — — PUNCT coo.31924059551022 1119 10 ç2ce£m ç2ce£m PROPN coo.31924059551022 1120 1 + + CCONJ coo.31924059551022 1120 2 ζ’u&u ζ’u&u NUM coo.31924059551022 1120 3 -f2ρξ -f2ρξ SPACE coo.31924059551022 1120 4 ’ ' PUNCT coo.31924059551022 1120 5 ( ( PUNCT coo.31924059551022 1120 6 u)a#u u)a#u PROPN coo.31924059551022 1120 7 -|ç2ç2(ii)equ -|ç2ç2(ii)equ PROPN coo.31924059551022 1120 8 whence whence NOUN coo.31924059551022 1120 9 ( ( PUNCT coo.31924059551022 1120 10 & & CCONJ coo.31924059551022 1120 11 u&u u&u PROPN coo.31924059551022 1120 12 ) ) PUNCT coo.31924059551022 1120 13 " " PUNCT coo.31924059551022 1120 14 = = X coo.31924059551022 1120 15 g’u(#u g’u(#u X coo.31924059551022 1120 16 + + CCONJ coo.31924059551022 1120 17 2ρο<,ηξη 2ρο<,ηξη NUM coo.31924059551022 1120 18 + + NOUN coo.31924059551022 1120 19 ρ ρ ADJ coo.31924059551022 1120 20 v v NOUN coo.31924059551022 1120 21 ηξη ηξη PROPN coo.31924059551022 1121 1 and and CCONJ coo.31924059551022 1121 2 we we PRON coo.31924059551022 1121 3 have have VERB coo.31924059551022 1121 4 [ [ X coo.31924059551022 1121 5 177 177 NUM coo.31924059551022 1121 6 ] ] PUNCT coo.31924059551022 1121 7 · · PUNCT coo.31924059551022 1121 8 · · PUNCT coo.31924059551022 1121 9 · · PUNCT coo.31924059551022 1121 10 · · PUNCT coo.31924059551022 1121 11 yx yx X coo.31924059551022 1121 12 = = X coo.31924059551022 1121 13 ( ( PUNCT coo.31924059551022 1121 14 ζη ζη X coo.31924059551022 1121 15 · · PUNCT coo.31924059551022 1121 16 eeu eeu PROPN coo.31924059551022 1121 17 — — PUNCT coo.31924059551022 1121 18 · · PUNCT coo.31924059551022 1121 19 3b£uc#u 3b£uc#u NUM coo.31924059551022 1121 20 -f -f PUNCT coo.31924059551022 1121 21 c c PROPN coo.31924059551022 1121 22 evu evu PROPN coo.31924059551022 1121 23 = = X coo.31924059551022 1121 24 rf rf PROPN coo.31924059551022 1121 25 * * PUNCT coo.31924059551022 1121 26 [ [ X coo.31924059551022 1121 27 é"w é"w X coo.31924059551022 1121 28 + + CCONJ coo.31924059551022 1121 29 2 2 NUM coo.31924059551022 1121 30 ρ£'^ ρ£'^ NUM coo.31924059551022 1122 1 + + PUNCT coo.31924059551022 1122 2 ( ( PUNCT coo.31924059551022 1122 3 ρ2 ρ2 PROPN coo.31924059551022 1122 4 — — PUNCT coo.31924059551022 1122 5 3 3 NUM coo.31924059551022 1122 6 ft ft NOUN coo.31924059551022 1122 7 ) ) PUNCT coo.31924059551022 1122 8 git git NOUN coo.31924059551022 1122 9 + + CCONJ coo.31924059551022 1122 10 c\. c\. PROPN coo.31924059551022 1123 1 but but CCONJ coo.31924059551022 1123 2 from from ADP coo.31924059551022 1123 3 the the DET coo.31924059551022 1123 4 foregoing forego VERB coo.31924059551022 1123 5 theory theory NOUN coo.31924059551022 1123 6 in in ADP coo.31924059551022 1123 7 this this DET coo.31924059551022 1123 8 case case NOUN coo.31924059551022 1123 9 we we PRON coo.31924059551022 1123 10 have have VERB coo.31924059551022 1123 11 the the DET coo.31924059551022 1123 12 coefficients coefficient NOUN coo.31924059551022 1123 13 of of ADP coo.31924059551022 1123 14 ξ(η ξ(η NOUN coo.31924059551022 1123 15 ) ) PUNCT coo.31924059551022 1123 16 equal equal ADJ coo.31924059551022 1123 17 to to ADP coo.31924059551022 1123 18 zero zero NUM coo.31924059551022 1123 19 , , PUNCT coo.31924059551022 1123 20 i. i. PROPN coo.31924059551022 1123 21 e. e. PROPN coo.31924059551022 1123 22 or or CCONJ coo.31924059551022 1123 23 ρ2 ρ2 PROPN coo.31924059551022 1123 24 — — PUNCT coo.31924059551022 1123 25 3 3 NUM coo.31924059551022 1123 26 ft ft NOUN coo.31924059551022 1123 27 = = SYM coo.31924059551022 1123 28 0 0 NUM coo.31924059551022 1124 1 ρ2 ρ2 PROPN coo.31924059551022 1124 2 = = VERB coo.31924059551022 1124 3 3 3 NUM coo.31924059551022 1124 4 ft ft NOUN coo.31924059551022 1124 5 . . PUNCT coo.31924059551022 1125 1 [ [ X coo.31924059551022 1125 2 178 178 NUM coo.31924059551022 1125 3 ] ] PUNCT coo.31924059551022 1125 4 [179 [179 NUM coo.31924059551022 1125 5 ] ] PUNCT coo.31924059551022 1125 6 78 78 NUM coo.31924059551022 1125 7 part part NOUN coo.31924059551022 1125 8 v. v. ADP coo.31924059551022 1125 9 reduction reduction NOUN coo.31924059551022 1125 10 of of ADP coo.31924059551022 1125 11 the the DET coo.31924059551022 1125 12 forms form NOUN coo.31924059551022 1125 13 when when SCONJ coo.31924059551022 1125 14 n n ADP coo.31924059551022 1125 15 equals equal VERB coo.31924059551022 1125 16 three three NUM coo.31924059551022 1125 17 to to PART coo.31924059551022 1125 18 find find VERB coo.31924059551022 1125 19 c c ADP coo.31924059551022 1125 20 we we PRON coo.31924059551022 1125 21 proceed proceed VERB coo.31924059551022 1125 22 as as SCONJ coo.31924059551022 1125 23 follows follow VERB coo.31924059551022 1125 24 : : PUNCT coo.31924059551022 1125 25 — — PUNCT coo.31924059551022 1125 26 s s VERB coo.31924059551022 1125 27 ' ' PUNCT coo.31924059551022 1125 28 « « PUNCT coo.31924059551022 1125 29 = = X coo.31924059551022 1125 30 — — PUNCT coo.31924059551022 1125 31 a a X coo.31924059551022 1125 32 * * NOUN coo.31924059551022 1125 33 : : PUNCT coo.31924059551022 1125 34 « « PUNCT coo.31924059551022 1125 35 = = PRON coo.31924059551022 1125 36 i i NOUN coo.31924059551022 1125 37 + + CCONJ coo.31924059551022 1125 38 p p NOUN coo.31924059551022 1125 39 « « PUNCT coo.31924059551022 1125 40 + + CCONJ coo.31924059551022 1125 41 ^== ^== SYM coo.31924059551022 1125 42 ^e+ ^e+ NUM coo.31924059551022 1125 43 1 1 NUM coo.31924059551022 1125 44 92 92 NUM coo.31924059551022 1125 45 u u PROPN coo.31924059551022 1125 46 20 20 NUM coo.31924059551022 1125 47 t t NOUN coo.31924059551022 1125 48 1 1 NUM coo.31924059551022 1125 49 u2 u2 PROPN coo.31924059551022 1125 50 u2 u2 PROPN coo.31924059551022 1125 51 20 20 NUM coo.31924059551022 1125 52 las las PROPN coo.31924059551022 1125 53 2 2 PROPN coo.31924059551022 1125 54 & & CCONJ coo.31924059551022 1125 55 ua ua PROPN coo.31924059551022 1125 56 10 10 NUM coo.31924059551022 1125 57 it it PRON coo.31924059551022 1125 58 hence hence ADV coo.31924059551022 1125 59 , , PUNCT coo.31924059551022 1125 60 _ _ PUNCT coo.31924059551022 1126 1 [ [ X coo.31924059551022 1126 2 i i NOUN coo.31924059551022 1126 3 + + CCONJ coo.31924059551022 1126 4 „ „ PUNCT coo.31924059551022 1127 1 + + CCONJ coo.31924059551022 1127 2 ö ö X coo.31924059551022 1127 3 : : PUNCT coo.31924059551022 1127 4 + + SYM coo.31924059551022 1127 5 ! ! PUNCT coo.31924059551022 1128 1 s s PUNCT coo.31924059551022 1129 1 + + CCONJ coo.31924059551022 1129 2 .. .. PUNCT coo.31924059551022 1129 3 ] ] X coo.31924059551022 1130 1 ( ( PUNCT coo.31924059551022 1130 2 [ [ X coo.31924059551022 1130 3 j j X coo.31924059551022 1130 4 - - PUNCT coo.31924059551022 1130 5 s. s. X coo.31924059551022 1130 6 _ _ X coo.31924059551022 1130 7 ] ] PUNCT coo.31924059551022 1130 8 “ " PUNCT coo.31924059551022 1130 9 2ρ[έ 2ρ[έ NUM coo.31924059551022 1130 10 + + CCONJ coo.31924059551022 1130 11 í)u2 í)u2 NOUN coo.31924059551022 1130 12 η---- η---- SPACE coo.31924059551022 1130 13 ] ] PUNCT coo.31924059551022 1130 14 + + PUNCT coo.31924059551022 1130 15 c c X coo.31924059551022 1130 16 η---1 η---1 NOUN coo.31924059551022 1130 17 and and CCONJ coo.31924059551022 1130 18 taking take VERB coo.31924059551022 1130 19 c c NOUN coo.31924059551022 1130 20 so so SCONJ coo.31924059551022 1130 21 that that SCONJ coo.31924059551022 1130 22 the the DET coo.31924059551022 1130 23 constant constant ADJ coo.31924059551022 1130 24 term term NOUN coo.31924059551022 1130 25 equal equal ADJ coo.31924059551022 1130 26 zero zero NUM coo.31924059551022 1130 27 we we PRON coo.31924059551022 1130 28 have have VERB coo.31924059551022 1130 29 ................. ................. PUNCT coo.31924059551022 1131 1 c c X coo.31924059551022 1131 2 = = SYM coo.31924059551022 1131 3 t03 t03 NOUN coo.31924059551022 1131 4 = = SYM coo.31924059551022 1131 5 2 2 NUM coo.31924059551022 1131 6 ρδ ρδ PROPN coo.31924059551022 1131 7 . . PUNCT coo.31924059551022 1132 1 the the DET coo.31924059551022 1132 2 general general ADJ coo.31924059551022 1132 3 solution solution NOUN coo.31924059551022 1132 4 ( ( PUNCT coo.31924059551022 1132 5 v v NOUN coo.31924059551022 1132 6 = = SYM coo.31924059551022 1132 7 0 0 NUM coo.31924059551022 1132 8 ) ) PUNCT coo.31924059551022 1132 9 is be AUX coo.31924059551022 1132 10 then then ADV coo.31924059551022 1132 11 : : PUNCT coo.31924059551022 1132 12 yi yi PROPN coo.31924059551022 1132 13 = = PROPN coo.31924059551022 1132 14 ( ( PUNCT coo.31924059551022 1132 15 £ £ SYM coo.31924059551022 1132 16 ueeu ueeu NOUN coo.31924059551022 1132 17 ) ) PUNCT coo.31924059551022 1132 18 " " PUNCT coo.31924059551022 1132 19 — — PUNCT coo.31924059551022 1132 20 3 3 NUM coo.31924059551022 1132 21 b(£u b(£u NOUN coo.31924059551022 1132 22 · · PUNCT coo.31924059551022 1132 23 equ equ PROPN coo.31924059551022 1132 24 ) ) PUNCT coo.31924059551022 1132 25 -f2çbequ -f2çbequ ADJ coo.31924059551022 1132 26 where where SCONJ coo.31924059551022 1132 27 1/36 1/36 NUM coo.31924059551022 1132 28 . . PUNCT coo.31924059551022 1132 29 finis fini NOUN coo.31924059551022 1132 30 . . PUNCT coo.31924059551022 1133 1 table table NOUN coo.31924059551022 1133 2 of of ADP coo.31924059551022 1133 3 forms form NOUN coo.31924059551022 1133 4 η η PROPN coo.31924059551022 1133 5 = = SYM coo.31924059551022 1133 6 3 3 NUM coo.31924059551022 1133 7 . . PUNCT coo.31924059551022 1133 8   PUNCT coo.31924059551022 1134 1 forms form NOUN coo.31924059551022 1134 2 for for ADP coo.31924059551022 1134 3 n n CCONJ coo.31924059551022 1134 4 = = SYM coo.31924059551022 1134 5 3 3 NUM coo.31924059551022 1134 6 . . PUNCT coo.31924059551022 1135 1 where where SCONJ coo.31924059551022 1135 2 and and CCONJ coo.31924059551022 1135 3 the the DET coo.31924059551022 1135 4 complete complete ADJ coo.31924059551022 1135 5 integral integral NOUN coo.31924059551022 1135 6 is be AUX coo.31924059551022 1135 7 yt yt PROPN coo.31924059551022 1135 8 = = ADJ coo.31924059551022 1135 9 cf(u cf(u NOUN coo.31924059551022 1135 10 ) ) PUNCT coo.31924059551022 1135 11 + + CCONJ coo.31924059551022 1135 12 c'f(u c'f(u ADJ coo.31924059551022 1135 13 ) ) PUNCT coo.31924059551022 1135 14 y y PROPN coo.31924059551022 1135 15 — — PUNCT coo.31924059551022 1135 16 f(u f(u NOUN coo.31924059551022 1135 17 ) ) PUNCT coo.31924059551022 1135 18 = = X coo.31924059551022 1135 19 f f X coo.31924059551022 1135 20 " " PUNCT coo.31924059551022 1135 21 ( ( PUNCT coo.31924059551022 1135 22 w w PROPN coo.31924059551022 1135 23 ) ) PUNCT coo.31924059551022 1135 24 — — PUNCT coo.31924059551022 1135 25 3 3 NUM coo.31924059551022 1135 26 bf(u bf(u SPACE coo.31924059551022 1135 27 ) ) PUNCT coo.31924059551022 1135 28 ° ° NOUN coo.31924059551022 1136 1 ( ( PUNCT coo.31924059551022 1136 2 u u PROPN coo.31924059551022 1136 3 + + CCONJ coo.31924059551022 1136 4 v v NOUN coo.31924059551022 1136 5 ) ) PUNCT coo.31924059551022 1136 6 .fa .fa PROPN coo.31924059551022 1136 7 - - PUNCT coo.31924059551022 1136 8 i i PROPN coo.31924059551022 1136 9 f(u f(u PROPN coo.31924059551022 1136 10 ) ) PUNCT coo.31924059551022 1136 11 e(x e(x NUM coo.31924059551022 1136 12 — — PUNCT coo.31924059551022 1136 13 çv)u çv)u PUNCT coo.31924059551022 1136 14 the the DET coo.31924059551022 1136 15 ordinary ordinary ADJ coo.31924059551022 1136 16 form form NOUN coo.31924059551022 1136 17 of of ADP coo.31924059551022 1136 18 the the DET coo.31924059551022 1136 19 equation equation NOUN coo.31924059551022 1136 20 of of ADP coo.31924059551022 1136 21 hermite hermite NOUN coo.31924059551022 1136 22 for for ADP coo.31924059551022 1136 23 n n CCONJ coo.31924059551022 1136 24 = = SYM coo.31924059551022 1136 25 3 3 NUM coo.31924059551022 1136 26 being be AUX coo.31924059551022 1136 27 : : PUNCT coo.31924059551022 1136 28 g g X coo.31924059551022 1136 29 = = PUNCT coo.31924059551022 1137 1 [ [ X coo.31924059551022 1137 2 l l NOUN coo.31924059551022 1137 3 2p(u 2p(u NUM coo.31924059551022 1137 4 ) ) PUNCT coo.31924059551022 1138 1 + + CCONJ coo.31924059551022 1139 1 b]y b]y PROPN coo.31924059551022 1139 2 . . PUNCT coo.31924059551022 1140 1 a a DET coo.31924059551022 1140 2 second second ADJ coo.31924059551022 1140 3 form form NOUN coo.31924059551022 1140 4 of of ADP coo.31924059551022 1140 5 the the DET coo.31924059551022 1140 6 integral integral NOUN coo.31924059551022 1140 7 is be AUX coo.31924059551022 1140 8 : : PUNCT coo.31924059551022 1140 9 — — PUNCT coo.31924059551022 1140 10 y y NOUN coo.31924059551022 1140 11 - - PUNCT coo.31924059551022 1140 12 tl^ tl^ ADJ coo.31924059551022 1140 13 cl cl NOUN coo.31924059551022 1140 14 0 0 NUM coo.31924059551022 1140 15 g g PROPN coo.31924059551022 1140 16 ( ( PUNCT coo.31924059551022 1140 17 u u NOUN coo.31924059551022 1140 18 + + CCONJ coo.31924059551022 1140 19 a a PRON coo.31924059551022 1140 20 ) ) PUNCT coo.31924059551022 1140 21 _ _ NOUN coo.31924059551022 1140 22 ν ν PROPN coo.31924059551022 1140 23 , , PUNCT coo.31924059551022 1140 24 ζα ζα PROPN coo.31924059551022 1140 25 = = NOUN coo.31924059551022 1140 26 ua ua PROPN coo.31924059551022 1140 27 — — PUNCT coo.31924059551022 1140 28 a a PRON coo.31924059551022 1140 29 , , PUNCT coo.31924059551022 1140 30 by by ADP coo.31924059551022 1140 31 c c PROPN coo.31924059551022 1140 32 _ _ PUNCT coo.31924059551022 1140 33 _ _ PUNCT coo.31924059551022 1140 34 _ _ PUNCT coo.31924059551022 1140 35 _ _ PUNCT coo.31924059551022 1140 36 _ _ PUNCT coo.31924059551022 1141 1 al al PROPN coo.31924059551022 1141 2 ρΐιζα ρΐιζα NOUN coo.31924059551022 1141 3 •where •where ADV coo.31924059551022 1141 4 _ _ PUNCT coo.31924059551022 1142 1 g(u g(u PROPN coo.31924059551022 1142 2 - - PUNCT coo.31924059551022 1142 3 a)e(u a)e(u NOUN coo.31924059551022 1142 4 - - PUNCT coo.31924059551022 1142 5 b)g(u b)g(u X coo.31924059551022 1142 6 - - PUNCT coo.31924059551022 1142 7 c c NOUN coo.31924059551022 1142 8 ) ) PUNCT coo.31924059551022 1142 9 β(ζα+ζ,+ζ(:)ΐί β(ζα+ζ,+ζ(:)ΐί PUNCT coo.31924059551022 1143 1 g g ADP coo.31924059551022 1143 2 a a DET coo.31924059551022 1143 3 cb cb PROPN coo.31924059551022 1143 4 oc(gu)3 oc(gu)3 NOUN coo.31924059551022 1144 1 c c X coo.31924059551022 1144 2 = = X coo.31924059551022 1144 3 ζν ζν PROPN coo.31924059551022 1144 4 — — PUNCT coo.31924059551022 1144 5 la la INTJ coo.31924059551022 1144 6 — — PUNCT coo.31924059551022 1144 7 ζό ζό INTJ coo.31924059551022 1144 8 — — PUNCT coo.31924059551022 1144 9 ξ0 ξ0 PROPN coo.31924059551022 1144 10 v v NOUN coo.31924059551022 1144 11 = = SYM coo.31924059551022 1144 12 er+ er+ PROPN coo.31924059551022 1144 13 b b PROPN coo.31924059551022 1144 14 + + CCONJ coo.31924059551022 1144 15 c c PROPN coo.31924059551022 1144 16 and and CCONJ coo.31924059551022 1144 17 b b PROPN coo.31924059551022 1144 18 = = NOUN coo.31924059551022 1144 19 15 15 NUM coo.31924059551022 1144 20 b b NOUN coo.31924059551022 1144 21 which which PRON coo.31924059551022 1144 22 is be AUX coo.31924059551022 1144 23 intirely intirely ADV coo.31924059551022 1144 24 arbitrary arbitrary ADJ coo.31924059551022 1145 1 and and CCONJ coo.31924059551022 1145 2 is be AUX coo.31924059551022 1145 3 originally originally ADV coo.31924059551022 1145 4 expressed express VERB coo.31924059551022 1145 5 in in ADP coo.31924059551022 1145 6 the the DET coo.31924059551022 1145 7 form form PROPN coo.31924059551022 1145 8 b b PROPN coo.31924059551022 1145 9 — — PUNCT coo.31924059551022 1145 10 h(et h(et PROPN coo.31924059551022 1145 11 — — PUNCT coo.31924059551022 1145 12 e3 e3 PROPN coo.31924059551022 1145 13 ) ) PUNCT coo.31924059551022 1145 14 — — PUNCT coo.31924059551022 1145 15 n n NOUN coo.31924059551022 1145 16 ( ( PUNCT coo.31924059551022 1145 17 n n X coo.31924059551022 1145 18 + + CCONJ coo.31924059551022 1145 19 1 1 X coo.31924059551022 1145 20 ) ) PUNCT coo.31924059551022 1145 21 e3 e3 PROPN coo.31924059551022 1145 22 in in ADP coo.31924059551022 1145 23 which which DET coo.31924059551022 1145 24 case case NOUN coo.31924059551022 1145 25 the the DET coo.31924059551022 1145 26 equation equation NOUN coo.31924059551022 1145 27 of of ADP coo.31924059551022 1145 28 hermite hermite PROPN coo.31924059551022 1145 29 is be AUX coo.31924059551022 1145 30 g g NOUN coo.31924059551022 1145 31 = = X coo.31924059551022 1146 1 [ [ X coo.31924059551022 1146 2 12 12 NUM coo.31924059551022 1146 3 * * PUNCT coo.31924059551022 1146 4 » » PUNCT coo.31924059551022 1146 5 « « PUNCT coo.31924059551022 1146 6 » » NOUN coo.31924059551022 1146 7 * * NOUN coo.31924059551022 1146 8 * * PUNCT coo.31924059551022 1146 9 + + PUNCT coo.31924059551022 1146 10 * * PUNCT coo.31924059551022 1146 11 ] ] X coo.31924059551022 1146 12 . . PUNCT coo.31924059551022 1147 1 we we PRON coo.31924059551022 1147 2 have have VERB coo.31924059551022 1147 3 also also ADV coo.31924059551022 1147 4 the the DET coo.31924059551022 1147 5 general general ADJ coo.31924059551022 1147 6 form form NOUN coo.31924059551022 1147 7 : : PUNCT coo.31924059551022 1147 8 — — PUNCT coo.31924059551022 1147 9 y y NOUN coo.31924059551022 1147 10 = = PUNCT coo.31924059551022 1148 1 + + X coo.31924059551022 1148 2 vy vy X coo.31924059551022 1148 3 = = NOUN coo.31924059551022 1148 4 1/(pu 1/(pu NUM coo.31924059551022 1148 5 — — PUNCT coo.31924059551022 1148 6 e±y e±y PROPN coo.31924059551022 1148 7 ( ( PUNCT coo.31924059551022 1148 8 pu pu PROPN coo.31924059551022 1148 9 — — PUNCT coo.31924059551022 1148 10 e2y(pu e2y(pu PROPN coo.31924059551022 1148 11 — — PUNCT coo.31924059551022 1148 12 e3)s e3)s PROPN coo.31924059551022 1148 13 " " PUNCT coo.31924059551022 1148 14 j j X coo.31924059551022 1148 15 j j PROPN coo.31924059551022 1148 16 ( ( PUNCT coo.31924059551022 1148 17 pu pu PROPN coo.31924059551022 1148 18 — — PUNCT coo.31924059551022 1148 19 pa pa PROPN coo.31924059551022 1148 20 ) ) PUNCT coo.31924059551022 1148 21 e e PROPN coo.31924059551022 1148 22 , , PUNCT coo.31924059551022 1148 23 e e NOUN coo.31924059551022 1148 24 , , PUNCT coo.31924059551022 1148 25 e e NOUN coo.31924059551022 1148 26 0 0 NUM coo.31924059551022 1148 27 or or CCONJ coo.31924059551022 1148 28 1 1 NUM coo.31924059551022 1148 29 . . NOUN coo.31924059551022 1148 30 6 6 NUM coo.31924059551022 1148 31 82 82 NUM coo.31924059551022 1148 32 table table NOUN coo.31924059551022 1148 33 of of ADP coo.31924059551022 1148 34 forms form NOUN coo.31924059551022 1148 35 n n CCONJ coo.31924059551022 1148 36 = = X coo.31924059551022 1148 37 3 3 NUM coo.31924059551022 1148 38 . . PUNCT coo.31924059551022 1149 1 the the DET coo.31924059551022 1149 2 functions function NOUN coo.31924059551022 1149 3 developed develop VERB coo.31924059551022 1149 4 in in ADP coo.31924059551022 1149 5 the the DET coo.31924059551022 1149 6 general general ADJ coo.31924059551022 1149 7 theory theory NOUN coo.31924059551022 1149 8 have have VERB coo.31924059551022 1149 9 values value NOUN coo.31924059551022 1149 10 as as SCONJ coo.31924059551022 1149 11 follows follow VERB coo.31924059551022 1149 12 : : PUNCT coo.31924059551022 1150 1 9 9 NUM coo.31924059551022 1150 2 = = SYM coo.31924059551022 1150 3 463 463 NUM coo.31924059551022 1150 4 6 6 NUM coo.31924059551022 1150 5 ^ ^ NUM coo.31924059551022 1150 6 2—9i 2—9i NUM coo.31924059551022 1150 7 c c NOUN coo.31924059551022 1150 8 = = SYM coo.31924059551022 1150 9 1 1 NUM coo.31924059551022 1150 10 15 15 NUM coo.31924059551022 1150 11 a2 a2 PROPN coo.31924059551022 1150 12 1 1 NUM coo.31924059551022 1150 13 λ λ NOUN coo.31924059551022 1150 14 = = NOUN coo.31924059551022 1150 15 τ9 τ9 PROPN coo.31924059551022 1150 16 9 9 NUM coo.31924059551022 1150 17 = = SYM coo.31924059551022 1150 18 1262 1262 NUM coo.31924059551022 1150 19 g2 g2 PROPN coo.31924059551022 1150 20 p p PROPN coo.31924059551022 1150 21 = = SYM coo.31924059551022 1150 22 15 15 NUM coo.31924059551022 1150 23 6 6 NUM coo.31924059551022 1150 24 a a DET coo.31924059551022 1150 25 1 1 NUM coo.31924059551022 1150 26 = = SYM coo.31924059551022 1150 27 τ9 τ9 PROPN coo.31924059551022 1150 28 btp btp PROPN coo.31924059551022 1150 29 ' ' PART coo.31924059551022 1150 30 z z PROPN coo.31924059551022 1150 31 = = NOUN coo.31924059551022 1150 32 -36 -36 PROPN coo.31924059551022 1151 1 = = SYM coo.31924059551022 1151 2 } } PUNCT coo.31924059551022 1151 3 p p PROPN coo.31924059551022 1151 4 j5o j5o PROPN coo.31924059551022 1151 5 = = PROPN coo.31924059551022 1151 6 3 3 NUM coo.31924059551022 1151 7 y y X coo.31924059551022 1151 8 φ φ X coo.31924059551022 1151 9 ζ ζ NOUN coo.31924059551022 1151 10 = = SYM coo.31924059551022 1151 11 ρ ρ PROPN coo.31924059551022 1151 12 ( ( PUNCT coo.31924059551022 1151 13 « « NOUN coo.31924059551022 1151 14 ) ) PUNCT coo.31924059551022 1151 15 a. a. NOUN coo.31924059551022 1151 16 = = SYM coo.31924059551022 1151 17 p,= p,= PROPN coo.31924059551022 1151 18 9 9 NUM coo.31924059551022 1151 19 ï*66φ ï*66φ SPACE coo.31924059551022 1151 20 ' ' PART coo.31924059551022 1151 21 t t PROPN coo.31924059551022 1151 22 ’ ' PUNCT coo.31924059551022 1151 23 = = PROPN coo.31924059551022 1151 24 ρ ρ PROPN coo.31924059551022 1151 25 u u NOUN coo.31924059551022 1151 26 = = NOUN coo.31924059551022 1151 27 os os ADV coo.31924059551022 1151 28 1 1 NUM coo.31924059551022 1151 29 & & CCONJ coo.31924059551022 1151 30 i i PRON coo.31924059551022 1151 31 sh sh PROPN coo.31924059551022 1151 32 ii ii PROPN coo.31924059551022 1151 33 ri ri PROPN coo.31924059551022 1151 34 = = NOUN coo.31924059551022 1151 35 0 0 NUM coo.31924059551022 1151 36 8 8 NUM coo.31924059551022 1151 37 = = SYM coo.31924059551022 1151 38 ¿ ¿ NUM coo.31924059551022 1151 39 δ δ PROPN coo.31924059551022 1151 40 9 9 NUM coo.31924059551022 1151 41 ( ( PUNCT coo.31924059551022 1151 42 í í NOUN coo.31924059551022 1151 43 ) ) PUNCT coo.31924059551022 1151 44 = = PROPN coo.31924059551022 1151 45 4£3 4£3 NUM coo.31924059551022 1151 46 + + NUM coo.31924059551022 1151 47 12 12 NUM coo.31924059551022 1151 48 bs2 bs2 NOUN coo.31924059551022 1151 49 + + CCONJ coo.31924059551022 1151 50 ( ( PUNCT coo.31924059551022 1151 51 12 12 NUM coo.31924059551022 1151 52 62 62 NUM coo.31924059551022 1151 53 λ λ NOUN coo.31924059551022 1151 54 ) ) PUNCT coo.31924059551022 1151 55 g g PROPN coo.31924059551022 1152 1 + + NUM coo.31924059551022 1152 2 4δ3 4δ3 NUM coo.31924059551022 1152 3 bg2 bg2 SYM coo.31924059551022 1152 4 gs gs PROPN coo.31924059551022 1152 5 = = SYM coo.31924059551022 1152 6 4 4 NUM coo.31924059551022 1152 7 s8 s8 PROPN coo.31924059551022 1152 8 + + NUM coo.31924059551022 1152 9 12 12 NUM coo.31924059551022 1152 10 6s2 6s2 NUM coo.31924059551022 1152 11 + + NOUN coo.31924059551022 1152 12 φ'^+φ φ'^+φ VERB coo.31924059551022 1152 13 5=|φ(ί)-3δ^2 5=|φ(ί)-3δ^2 NUM coo.31924059551022 1152 14 - - PUNCT coo.31924059551022 1152 15 ίφ'5-|φ ίφ'5-|φ NOUN coo.31924059551022 1152 16 . . PUNCT coo.31924059551022 1153 1 γ γ PROPN coo.31924059551022 1153 2 = = SYM coo.31924059551022 1153 3 ηλ^+4 ηλ^+4 SPACE coo.31924059551022 1153 4 = = NOUN coo.31924059551022 1153 5 η|φ's+ η|φ's+ NOUN coo.31924059551022 1153 6 |·φ |·φ NOUN coo.31924059551022 1153 7 δφ δφ PROPN coo.31924059551022 1153 8 ' ' PUNCT coo.31924059551022 1153 9 = = PUNCT coo.31924059551022 1153 10 sì+(m*-\g2)s-\(ub*-3g2b+gs)=±9(t)-b(tp'+3s sì+(m*-\g2)s-\(ub*-3g2b+gs)=±9(t)-b(tp'+3s PROPN coo.31924059551022 1153 11 * * PUNCT coo.31924059551022 1153 12 ) ) PUNCT coo.31924059551022 1154 1 = = X coo.31924059551022 1154 2 τ τ X coo.31924059551022 1154 3 ψ ψ PROPN coo.31924059551022 1154 4 ( ( PUNCT coo.31924059551022 1154 5 0 0 NUM coo.31924059551022 1154 6 — — PUNCT coo.31924059551022 1154 7 δ δ X coo.31924059551022 1155 1 [ [ X coo.31924059551022 1155 2 ç>'+ ç>'+ X coo.31924059551022 1155 3 3 3 NUM coo.31924059551022 1155 4 ( ( PUNCT coo.31924059551022 1155 5 ί ί X coo.31924059551022 1155 6 — — PUNCT coo.31924059551022 1155 7 δ)2 δ)2 PROPN coo.31924059551022 1155 8 ] ] X coo.31924059551022 1155 9 = = SYM coo.31924059551022 1155 10 ¿ ¿ VERB coo.31924059551022 1155 11 3 3 NUM coo.31924059551022 1155 12 _ _ NOUN coo.31924059551022 1155 13 36ί 36ί NOUN coo.31924059551022 1155 14 » » X coo.31924059551022 1155 15 + + NUM coo.31924059551022 1155 16 ( ( PUNCT coo.31924059551022 1155 17 6δ2{λ 6δ2{λ NUM coo.31924059551022 1155 18 ) ) PUNCT coo.31924059551022 1155 19 ί ί X coo.31924059551022 1155 20 ( ( PUNCT coo.31924059551022 1155 21 156s 156s NUM coo.31924059551022 1155 22 -g2b -g2b X coo.31924059551022 1155 23 + + CCONJ coo.31924059551022 1155 24 ± ± PROPN coo.31924059551022 1155 25 & & CCONJ coo.31924059551022 1155 26 ) ) PUNCT coo.31924059551022 1155 27 f(e f(e PROPN coo.31924059551022 1155 28 , , PUNCT coo.31924059551022 1155 29 ) ) PUNCT coo.31924059551022 1155 30 = = X coo.31924059551022 1156 1 b b X coo.31924059551022 1157 1 [ [ X coo.31924059551022 1157 2 φ'+ φ'+ NOUN coo.31924059551022 1157 3 3 3 NUM coo.31924059551022 1157 4 ( ( PUNCT coo.31924059551022 1157 5 e e PROPN coo.31924059551022 1157 6 , , PUNCT coo.31924059551022 1157 7 δ)2 δ)2 PROPN coo.31924059551022 1157 8 ] ] X coo.31924059551022 1157 9 = = PROPN coo.31924059551022 1157 10 b b X coo.31924059551022 1157 11 [ [ X coo.31924059551022 1157 12 15δ2 15δ2 NUM coo.31924059551022 1157 13 + + NUM coo.31924059551022 1157 14 3e,26e 3e,26e NUM coo.31924059551022 1157 15 , , PUNCT coo.31924059551022 1157 16 δ δ PROPN coo.31924059551022 1157 17 λ λ PROPN coo.31924059551022 1157 18 ] ] X coo.31924059551022 1157 19 · · PUNCT coo.31924059551022 1157 20 1 1 X coo.31924059551022 1157 21 ? ? PUNCT coo.31924059551022 1158 1 γβ2 γβ2 DET coo.31924059551022 1158 2 15 15 NUM coo.31924059551022 1158 3 l15 l15 NOUN coo.31924059551022 1158 4 6et 6et NOUN coo.31924059551022 1158 5 -b -b PUNCT coo.31924059551022 1158 6 15 15 NUM coo.31924059551022 1158 7 + + NUM coo.31924059551022 1158 8 3ei2~ 3ei2~ NUM coo.31924059551022 1158 9 λ λ NOUN coo.31924059551022 1158 10 ] ] X coo.31924059551022 1158 11 = = PUNCT coo.31924059551022 1158 12 — — PUNCT coo.31924059551022 1158 13 cl cl NOUN coo.31924059551022 1158 14 ? ? PUNCT coo.31924059551022 1159 1 [ [ X coo.31924059551022 1159 2 b2 b2 X coo.31924059551022 1159 3 — — PUNCT coo.31924059551022 1159 4 6e 6e X coo.31924059551022 1159 5 , , PUNCT coo.31924059551022 1159 6 p p NOUN coo.31924059551022 1159 7 + + PROPN coo.31924059551022 1159 8 45e,2 45e,2 NUM coo.31924059551022 1159 9 — — PUNCT coo.31924059551022 1159 10 15<¡r2 15<¡r2 NUM coo.31924059551022 1159 11 ] ] PUNCT coo.31924059551022 1159 12 = = PUNCT coo.31924059551022 1159 13 -c2^p -c2^p X coo.31924059551022 1159 14 125z3 125z3 NUM coo.31924059551022 1159 15 — — PUNCT coo.31924059551022 1159 16 210v4 210v4 NUM coo.31924059551022 1159 17 — — PUNCT coo.31924059551022 1159 18 226 226 NUM coo.31924059551022 1159 19 , , PUNCT coo.31924059551022 1159 20 z3 z3 NUM coo.31924059551022 1159 21 + + NUM coo.31924059551022 1159 22 93a,2z2 93a,2z2 NUM coo.31924059551022 1159 23 - - SYM coo.31924059551022 1159 24 f f PROPN coo.31924059551022 1159 25 18a,6 18a,6 PROPN coo.31924059551022 1159 26 , , PUNCT coo.31924059551022 1159 27 j j PROPN coo.31924059551022 1159 28 + + PROPN coo.31924059551022 1159 29 δ,2 δ,2 NUM coo.31924059551022 1159 30 — — PUNCT coo.31924059551022 1159 31 4a,3 4a,3 NUM coo.31924059551022 1159 32 — — PUNCT coo.31924059551022 1159 33 ^ ^ NOUN coo.31924059551022 1159 34 361 361 NUM coo.31924059551022 1159 35 ( ( PUNCT coo.31924059551022 1159 36 z2 z2 PROPN coo.31924059551022 1159 37 — — PUNCT coo.31924059551022 1159 38 a,)2 a,)2 PROPN coo.31924059551022 1159 39 4 4 NUM coo.31924059551022 1159 40 ( ( PUNCT coo.31924059551022 1159 41 z2a,)8 z2a,)8 X coo.31924059551022 1159 42 + + NOUN coo.31924059551022 1159 43 ( ( PUNCT coo.31924059551022 1159 44 hz3 hz3 PROPN coo.31924059551022 1159 45 — — PUNCT coo.31924059551022 1159 46 9 9 NUM coo.31924059551022 1159 47 a a PRON coo.31924059551022 1159 48 , , PUNCT coo.31924059551022 1159 49 z z X coo.31924059551022 1159 50 - - NOUN coo.31924059551022 1159 51 δ,)2 δ,)2 PROPN coo.31924059551022 1159 52 — — PUNCT coo.31924059551022 1159 53 36z 36z NUM coo.31924059551022 1159 54 ( ( PUNCT coo.31924059551022 1159 55 z2 z2 PROPN coo.31924059551022 1159 56 — — PUNCT coo.31924059551022 1159 57 a,)2 a,)2 NUM coo.31924059551022 1159 58 φ(ζ φ(ζ SPACE coo.31924059551022 1159 59 ) ) PUNCT coo.31924059551022 1160 1 ~ ~ PUNCT coo.31924059551022 1160 2 ' ' PUNCT coo.31924059551022 1160 3 sd2 sd2 PUNCT coo.31924059551022 1160 4 where where SCONJ coo.31924059551022 1160 5 φ(z φ(z SPACE coo.31924059551022 1160 6 ) ) PUNCT coo.31924059551022 1160 7 = = VERB coo.31924059551022 1160 8 125z6 125z6 NUM coo.31924059551022 1160 9 210a 210a NUM coo.31924059551022 1160 10 , , PUNCT coo.31924059551022 1160 11 z4 z4 PROPN coo.31924059551022 1160 12 226,z8 226,z8 NUM coo.31924059551022 1160 13 + + NUM coo.31924059551022 1160 14 93a,2z2 93a,2z2 NUM coo.31924059551022 1160 15 + + SYM coo.31924059551022 1160 16 18a,6,z 18a,6,z NUM coo.31924059551022 1160 17 + + NUM coo.31924059551022 1160 18 6,3 6,3 NUM coo.31924059551022 1160 19 4a,3 4a,3 NUM coo.31924059551022 1160 20 or or CCONJ coo.31924059551022 1160 21 φ(ξ φ(ξ SPACE coo.31924059551022 1160 22 , , PUNCT coo.31924059551022 1160 23 ) ) PUNCT coo.31924059551022 1160 24 = = VERB coo.31924059551022 1160 25 1251e 1251e NUM coo.31924059551022 1160 26 — — PUNCT coo.31924059551022 1160 27 210c|4 210c|4 NUM coo.31924059551022 1160 28 — — PUNCT coo.31924059551022 1160 29 22|3 22|3 NUM coo.31924059551022 1160 30 + + NUM coo.31924059551022 1160 31 93c2£2 93c2£2 NUM coo.31924059551022 1160 32 + + NUM coo.31924059551022 1160 33 18c| 18c| NUM coo.31924059551022 1160 34 + + NUM coo.31924059551022 1160 35 1 1 NUM coo.31924059551022 1160 36 — — PUNCT coo.31924059551022 1160 37 4c3 4c3 NUM coo.31924059551022 1160 38 8 8 NUM coo.31924059551022 1160 39 = = NOUN coo.31924059551022 1160 40 36z 36z NUM coo.31924059551022 1161 1 p p NOUN coo.31924059551022 1161 2 = = PROPN coo.31924059551022 1161 3 z2 z2 PROPN coo.31924059551022 1161 4 — — PUNCT coo.31924059551022 1161 5 a a PRON coo.31924059551022 1161 6 , , PUNCT coo.31924059551022 1161 7 ξ ξ X coo.31924059551022 1161 8 = = X coo.31924059551022 1161 9 δ δ PROPN coo.31924059551022 1161 10 ~ ~ PROPN coo.31924059551022 1161 11 τζ τζ PROPN coo.31924059551022 1161 12 3 3 NUM coo.31924059551022 1161 13 a,3 a,3 NUM coo.31924059551022 1161 14 1 1 NUM coo.31924059551022 1161 15 v v NOUN coo.31924059551022 1161 16 _ _ PRON coo.31924059551022 1161 17 ( ( PUNCT coo.31924059551022 1161 18 1 1 NUM coo.31924059551022 1161 19 — — PUNCT coo.31924059551022 1161 20 fc2+z;4)3 fc2+z;4)3 PROPN coo.31924059551022 1161 21 c c NOUN coo.31924059551022 1161 22 δ;2 δ;2 NOUN coo.31924059551022 1161 23 108 108 NUM coo.31924059551022 1161 24 v v NOUN coo.31924059551022 1161 25 ( ( PUNCT coo.31924059551022 1161 26 1 1 NUM coo.31924059551022 1161 27 + + PROPN coo.31924059551022 1161 28 fc2)2 fc2)2 PROPN coo.31924059551022 1161 29 ( ( PUNCT coo.31924059551022 1161 30 2 2 NUM coo.31924059551022 1161 31 — — PUNCT coo.31924059551022 1161 32 a2)2 a2)2 PROPN coo.31924059551022 1161 33 ( ( PUNCT coo.31924059551022 1161 34 1 1 NUM coo.31924059551022 1161 35 2 2 NUM coo.31924059551022 1161 36 fc2)2 fc2)2 PROPN coo.31924059551022 1161 37 forms forms PROPN coo.31924059551022 1161 38 for for ADP coo.31924059551022 1161 39 n n NOUN coo.31924059551022 1161 40 — — PUNCT coo.31924059551022 1161 41 3 3 X coo.31924059551022 1161 42 . . SYM coo.31924059551022 1161 43 83 83 NUM coo.31924059551022 1161 44 also also ADV coo.31924059551022 1161 45 : : PUNCT coo.31924059551022 1161 46 „ „ PUNCT coo.31924059551022 1161 47 _ _ PUNCT coo.31924059551022 1161 48 qv______ria qv______ria X coo.31924059551022 1161 49 ? ? PUNCT coo.31924059551022 1162 1 _ _ NOUN coo.31924059551022 1162 2 2 2 NUM coo.31924059551022 1163 1 ι ι NOUN coo.31924059551022 1163 2 αλ8 αλ8 SPACE coo.31924059551022 1163 3 + + NUM coo.31924059551022 1163 4 27a,8 27a,8 NUM coo.31924059551022 1163 5 j2 j2 NOUN coo.31924059551022 1163 6 _ _ X coo.31924059551022 1163 7 /p /p PUNCT coo.31924059551022 1163 8 x x PUNCT coo.31924059551022 1163 9 cb0 cb0 NOUN coo.31924059551022 1163 10 c2b0k c2b0k PRON coo.31924059551022 1163 11 p p NOUN coo.31924059551022 1163 12 3 3 NUM coo.31924059551022 1163 13 φ φ X coo.31924059551022 1163 14 r r PROPN coo.31924059551022 1163 15 b b PROPN coo.31924059551022 1163 16 3 3 NUM coo.31924059551022 1163 17 φ φ X coo.31924059551022 1163 18 ' ' PUNCT coo.31924059551022 1163 19 � � VERB coo.31924059551022 1163 20 / / SYM coo.31924059551022 1163 21 jl jl PROPN coo.31924059551022 1163 22 _ _ X coo.31924059551022 1163 23 _ _ PUNCT coo.31924059551022 1164 1 1 1 NUM coo.31924059551022 1164 2 ίφ'3 ίφ'3 NOUN coo.31924059551022 1164 3 + + NUM coo.31924059551022 1164 4 27φ2 27φ2 NUM coo.31924059551022 1164 5 — — PUNCT coo.31924059551022 1164 6 8(27 8(27 NUM coo.31924059551022 1164 7 ) ) PUNCT coo.31924059551022 1164 8 & & CCONJ coo.31924059551022 1164 9 φφ φφ NOUN coo.31924059551022 1164 10 ' ' PUNCT coo.31924059551022 1164 11 + + NUM coo.31924059551022 1164 12 16(27 16(27 NUM coo.31924059551022 1164 13 ) ) PUNCT coo.31924059551022 1165 1 6vfl 6vfl NUM coo.31924059551022 1165 2 " " PUNCT coo.31924059551022 1165 3 * * SYM coo.31924059551022 1165 4 6 6 NUM coo.31924059551022 1165 5 ςρ ςρ VERB coo.31924059551022 1165 6 ι ι PROPN coo.31924059551022 1165 7 δ δ PROPN coo.31924059551022 1165 8 j j X coo.31924059551022 1165 9 where where SCONJ coo.31924059551022 1165 10 y<2 y<2 PROPN coo.31924059551022 1165 11 = = PUNCT coo.31924059551022 1166 1 -(4 -(4 X coo.31924059551022 1166 2 +28 +28 NUM coo.31924059551022 1166 3 = = SYM coo.31924059551022 1166 4 27 27 NUM coo.31924059551022 1166 5 +32 +32 PROPN coo.31924059551022 1166 6 ) ) PUNCT coo.31924059551022 1166 7 = = PROPN coo.31924059551022 1166 8 -^ -^ PUNCT coo.31924059551022 1166 9 c^àpq^q c^àpq^q PROPN coo.31924059551022 1166 10 , , PUNCT coo.31924059551022 1166 11 . . PUNCT coo.31924059551022 1167 1 q q X coo.31924059551022 1167 2 - - PUNCT coo.31924059551022 1167 3 qi qi PROPN coo.31924059551022 1167 4 qtq qtq PROPN coo.31924059551022 1167 5 » » PROPN coo.31924059551022 1167 6 φ(0 φ(0 VERB coo.31924059551022 1167 7 = = NOUN coo.31924059551022 1167 8 ® ® VERB coo.31924059551022 1168 1 i i PRON coo.31924059551022 1168 2 φ2φ3 φ2φ3 X coo.31924059551022 1169 1 y y PROPN coo.31924059551022 1169 2 = = PROPN coo.31924059551022 1169 3 ¿ ¿ PROPN coo.31924059551022 1169 4 3 3 NUM coo.31924059551022 1169 5 = = SYM coo.31924059551022 1169 6 ( ( PUNCT coo.31924059551022 1169 7 15)3 15)3 NUM coo.31924059551022 1169 8 = = PUNCT coo.31924059551022 1170 1 [ [ X coo.31924059551022 1170 2 4α28 4α28 NUM coo.31924059551022 1170 3 + + NUM coo.31924059551022 1170 4 27 27 NUM coo.31924059551022 1170 5 λ λ NOUN coo.31924059551022 1170 6 * * PUNCT coo.31924059551022 1170 7 ] ] X coo.31924059551022 1170 8 & & CCONJ coo.31924059551022 1170 9 = = PRON coo.31924059551022 1170 10 32 32 NUM coo.31924059551022 1170 11 · · SYM coo.31924059551022 1170 12 5 5 NUM coo.31924059551022 1171 1 [ [ X coo.31924059551022 1171 2 < < X coo.31924059551022 1171 3 * * PUNCT coo.31924059551022 1171 4 > > X coo.31924059551022 1171 5 ' ' PUNCT coo.31924059551022 1171 6 + + CCONJ coo.31924059551022 1171 7 3 3 NUM coo.31924059551022 1171 8 ( ( PUNCT coo.31924059551022 1171 9 ft ft PROPN coo.31924059551022 1171 10 — — PUNCT coo.31924059551022 1171 11 δ)2 δ)2 PROPN coo.31924059551022 1171 12 ] ] X coo.31924059551022 1171 13 = = PROPN coo.31924059551022 1171 14 5φλ 5φλ PROPN coo.31924059551022 1171 15 < < X coo.31924059551022 1171 16 ? ? PUNCT coo.31924059551022 1172 1 χ χ NOUN coo.31924059551022 1172 2 = = X coo.31924059551022 1172 3 b2 b2 NOUN coo.31924059551022 1172 4 - - PUNCT coo.31924059551022 1172 5 6eib 6eib NUM coo.31924059551022 1172 6 + + NUM coo.31924059551022 1172 7 45ex2—15&,= 45ex2—15&,= NUM coo.31924059551022 1172 8 5 5 NUM coo.31924059551022 1172 9 [ [ X coo.31924059551022 1172 10 öl2—2(¥—2 öl2—2(¥—2 PROPN coo.31924059551022 1172 11 ) ) PUNCT coo.31924059551022 1172 12 7 7 NUM coo.31924059551022 1172 13 3^ 3^ NUM coo.31924059551022 1172 14 ] ] PUNCT coo.31924059551022 1172 15 = = ADP coo.31924059551022 1172 16 5φχ 5φχ NOUN coo.31924059551022 1172 17 q2 q2 PROPN coo.31924059551022 1172 18 = = SYM coo.31924059551022 1172 19 β2 β2 PROPN coo.31924059551022 1172 20 — — PUNCT coo.31924059551022 1172 21 6e2 6e2 NUM coo.31924059551022 1172 22 £ £ SYM coo.31924059551022 1172 23 + + NUM coo.31924059551022 1172 24 45 45 NUM coo.31924059551022 1172 25 e22—15^ e22—15^ PROPN coo.31924059551022 1172 26 = = SYM coo.31924059551022 1172 27 5 5 NUM coo.31924059551022 1173 1 [ [ X coo.31924059551022 1173 2 572 572 NUM coo.31924059551022 1173 3 — — PUNCT coo.31924059551022 1173 4 2 2 NUM coo.31924059551022 1173 5 ( ( PUNCT coo.31924059551022 1173 6 1 1 NUM coo.31924059551022 1173 7 — — PUNCT coo.31924059551022 1173 8 2¥)1 2¥)1 NUM coo.31924059551022 1173 9 — — PUNCT coo.31924059551022 1173 10 3 3 X coo.31924059551022 1173 11 ] ] PUNCT coo.31924059551022 1173 12 = = SYM coo.31924059551022 1173 13 5φ2 5φ2 NUM coo.31924059551022 1174 1 ρ3 ρ3 NOUN coo.31924059551022 1174 2 = = VERB coo.31924059551022 1174 3 52 52 NUM coo.31924059551022 1174 4 _ _ NOUN coo.31924059551022 1174 5 6esb 6esb NUM coo.31924059551022 1174 6 + + SYM coo.31924059551022 1174 7 45e32 45e32 NUM coo.31924059551022 1174 8 — — PUNCT coo.31924059551022 1175 1 lòg2 lòg2 PROPN coo.31924059551022 1175 2 = = PUNCT coo.31924059551022 1175 3 5[5722 5[5722 NOUN coo.31924059551022 1175 4 ( ( PUNCT coo.31924059551022 1175 5 1 1 NUM coo.31924059551022 1175 6 + + CCONJ coo.31924059551022 1175 7 ¥ ¥ X coo.31924059551022 1175 8 ) ) PUNCT coo.31924059551022 1175 9 i i PRON coo.31924059551022 1175 10 — — PUNCT coo.31924059551022 1175 11 3 3 NUM coo.31924059551022 1175 12 ( ( PUNCT coo.31924059551022 1175 13 1 1 NUM coo.31924059551022 1175 14 — — PUNCT coo.31924059551022 1175 15 f)2 f)2 NOUN coo.31924059551022 1175 16 ] ] PUNCT coo.31924059551022 1175 17 = = PUNCT coo.31924059551022 1175 18 5φ3 5φ3 NUM coo.31924059551022 1175 19 . . PUNCT coo.31924059551022 1176 1 ei ei PROPN coo.31924059551022 1176 2 = = PROPN coo.31924059551022 1176 3 31 31 NUM coo.31924059551022 1176 4 ( ( PUNCT coo.31924059551022 1176 5 2 2 NUM coo.31924059551022 1176 6 * * PUNCT coo.31924059551022 1176 7 ) ) PUNCT coo.31924059551022 1176 8 % % NOUN coo.31924059551022 1176 9 = = X coo.31924059551022 1176 10 à à X coo.31924059551022 1176 11 ^ ^ X coo.31924059551022 1176 12 ! ! PUNCT coo.31924059551022 1176 13 ) ) PUNCT coo.31924059551022 1177 1 % % NOUN coo.31924059551022 1177 2 = = PUNCT coo.31924059551022 1177 3 ( ( PUNCT coo.31924059551022 1177 4 ! ! PUNCT coo.31924059551022 1178 1 + + CCONJ coo.31924059551022 1178 2 fc2 fc2 NUM coo.31924059551022 1178 3 ) ) PUNCT coo.31924059551022 1179 1 λ λ NOUN coo.31924059551022 1179 2 = = SYM coo.31924059551022 1179 3 ¿ ¿ NUM coo.31924059551022 1180 1 i i PRON coo.31924059551022 1180 2 ( ( PUNCT coo.31924059551022 1180 3 1 1 NUM coo.31924059551022 1180 4 — — PUNCT coo.31924059551022 1180 5 + + NUM coo.31924059551022 1180 6 & & CCONJ coo.31924059551022 1180 7 4 4 NUM coo.31924059551022 1180 8 ) ) PUNCT coo.31924059551022 1180 9 ρθ ρθ NOUN coo.31924059551022 1180 10 ) ) PUNCT coo.31924059551022 1180 11 = = PUNCT coo.31924059551022 1180 12 öζ6 öζ6 PUNCT coo.31924059551022 1180 13 — — PUNCT coo.31924059551022 1180 14 ( ( PUNCT coo.31924059551022 1180 15 — — PUNCT coo.31924059551022 1180 16 6α 6α NOUN coo.31924059551022 1180 17 , , PUNCT coo.31924059551022 1180 18 7 7 NUM coo.31924059551022 1180 19 — — PUNCT coo.31924059551022 1180 20 10&χ73 10&χ73 NUM coo.31924059551022 1180 21 — — PUNCT coo.31924059551022 1180 22 3α,272 3α,272 NUM coo.31924059551022 1180 23 + + NUM coo.31924059551022 1180 24 66χï 66χï ADJ coo.31924059551022 1180 25 + + CCONJ coo.31924059551022 1180 26 6,2 6,2 NUM coo.31924059551022 1180 27 — — PUNCT coo.31924059551022 1180 28 4α,3 4α,3 NUM coo.31924059551022 1180 29 367 367 NUM coo.31924059551022 1180 30 ( ( PUNCT coo.31924059551022 1180 31 72 72 NUM coo.31924059551022 1180 32 — — PUNCT coo.31924059551022 1180 33 α,)2 α,)2 NOUN coo.31924059551022 1180 34 = = PUNCT coo.31924059551022 1180 35 k2sn2w k2sn2w NUM coo.31924059551022 1180 36 — — PUNCT coo.31924059551022 1180 37 î î PROPN coo.31924059551022 1180 38 - - PUNCT coo.31924059551022 1180 39 ia ia PROPN coo.31924059551022 1180 40 o o X coo.31924059551022 1180 41 y>(i y>(i SPACE coo.31924059551022 1180 42 ) ) PUNCT coo.31924059551022 1180 43 367 367 NUM coo.31924059551022 1180 44 ( ( PUNCT coo.31924059551022 1180 45 72 72 NUM coo.31924059551022 1180 46 α,)2 α,)2 NUM coo.31924059551022 1180 47 çy2 çy2 NUM coo.31924059551022 1180 48 2β 2β NUM coo.31924059551022 1180 49 , , PUNCT coo.31924059551022 1180 50 p p PROPN coo.31924059551022 1180 51 _ _ NOUN coo.31924059551022 1180 52 qx^x2 qx^x2 VERB coo.31924059551022 1180 53 c*pb2 c*pb2 PROPN coo.31924059551022 1180 54 -b -b PUNCT coo.31924059551022 1180 55 » » X coo.31924059551022 1180 56 2w 2w NUM coo.31924059551022 1180 57 — — PUNCT coo.31924059551022 1180 58 1 1 NUM coo.31924059551022 1180 59 c2p2p c2p2p SYM coo.31924059551022 1181 1 + + PUNCT coo.31924059551022 1181 2 e e NOUN coo.31924059551022 1181 3 , , PUNCT coo.31924059551022 1181 4 î î PROPN coo.31924059551022 1181 5 21606 21606 NUM coo.31924059551022 1181 6 ° ° NOUN coo.31924059551022 1181 7 + + NUM coo.31924059551022 1181 8 816b«gl+ 816b«gl+ NUM coo.31924059551022 1181 9 1080¿r363 1080¿r363 NUM coo.31924059551022 1181 10 w‘g2 w‘g2 PROPN coo.31924059551022 1181 11 - - PUNCT coo.31924059551022 1181 12 hibg.g hibg.g PROPN coo.31924059551022 1181 13 . . PROPN coo.31924059551022 1181 14 , , PUNCT coo.31924059551022 1181 15 g,3 g,3 X coo.31924059551022 1181 16 + + PROPN coo.31924059551022 1181 17 2ίg 2ίg PROPN coo.31924059551022 1181 18 ¿ ¿ NUM coo.31924059551022 1181 19 36 36 NUM coo.31924059551022 1181 20 6(144 6(144 PROPN coo.31924059551022 1181 21 6 6 NUM coo.31924059551022 1181 22 * * NUM coo.31924059551022 1181 23 — — PUNCT coo.31924059551022 1181 24 24 24 NUM coo.31924059551022 1181 25 62í?2+ír22)2 62í?2+ír22)2 NUM coo.31924059551022 1181 26 φ'3 φ'3 NOUN coo.31924059551022 1181 27 + + NUM coo.31924059551022 1181 28 27 27 NUM coo.31924059551022 1181 29 φ2 φ2 PROPN coo.31924059551022 1181 30 — — PUNCT coo.31924059551022 1181 31 1086φφ'+ 1086φφ'+ NUM coo.31924059551022 1181 32 3662φ'2 3662φ'2 NUM coo.31924059551022 1181 33 36 36 NUM coo.31924059551022 1181 34 6 6 NUM coo.31924059551022 1181 35 φ φ PROPN coo.31924059551022 1181 36 ' ' NUM coo.31924059551022 1181 37 2 2 NUM coo.31924059551022 1181 38 βυν βυν NOUN coo.31924059551022 1181 39 ) ) PUNCT coo.31924059551022 1181 40 = = PUNCT coo.31924059551022 1181 41 — — PUNCT coo.31924059551022 1182 1 λ2 λ2 PROPN coo.31924059551022 1182 2 sw2v sw2v NOUN coo.31924059551022 1182 3 cw2v cw2v VERB coo.31924059551022 1182 4 dn2v dn2v VERB coo.31924059551022 1182 5 — — PUNCT coo.31924059551022 1182 6 -0 -0 PROPN coo.31924059551022 1182 7 7 7 NUM coo.31924059551022 1182 8 * * NUM coo.31924059551022 1182 9 7γ 7γ NUM coo.31924059551022 1182 10 - - PUNCT coo.31924059551022 1182 11 χ χ PROPN coo.31924059551022 1182 12 — — PUNCT coo.31924059551022 1182 13 ν ν PROPN coo.31924059551022 1182 14 ' ' PUNCT coo.31924059551022 1182 15 18ζ 18ζ NUM coo.31924059551022 1183 1 ( ( PUNCT coo.31924059551022 1183 2 ζ2 ζ2 PROPN coo.31924059551022 1183 3 — — PUNCT coo.31924059551022 1183 4 αχ αχ NOUN coo.31924059551022 1183 5 ) ) PUNCT coo.31924059551022 1183 6 = = X coo.31924059551022 1184 1 1β26ίρφ 1β26ίρφ NUM coo.31924059551022 1184 2 ' ' PUNCT coo.31924059551022 1184 3 — — PUNCT coo.31924059551022 1184 4 27φ2 27φ2 NUM coo.31924059551022 1184 5 — — PUNCT coo.31924059551022 1184 6 φ,:ί|/φμ φ,:ί|/φμ PROPN coo.31924059551022 1184 7 + + CCONJ coo.31924059551022 1184 8 27φ2 27φ2 NUM coo.31924059551022 1184 9 21()δφφ 21()δφφ NUM coo.31924059551022 1184 10 ' ' PART coo.31924059551022 1184 11 + + NUM coo.31924059551022 1184 12 432 432 NUM coo.31924059551022 1184 13 ¿ ¿ NUM coo.31924059551022 1184 14 v v NOUN coo.31924059551022 1184 15 * * PUNCT coo.31924059551022 1184 16 108φ'36τ 108φ'36τ NUM coo.31924059551022 1184 17 = = SYM coo.31924059551022 1184 18 2 2 NUM coo.31924059551022 1184 19 / / SYM coo.31924059551022 1184 20 ' ' NOUN coo.31924059551022 1184 21 ■ ■ VERB coo.31924059551022 1184 22 , , PUNCT coo.31924059551022 1184 23 η η PROPN coo.31924059551022 1184 24 7 7 NUM coo.31924059551022 1184 25 · · PUNCT coo.31924059551022 1184 26 ; ; PUNCT coo.31924059551022 1184 27 ι ι X coo.31924059551022 1184 28 / / SYM coo.31924059551022 1184 29 ι ι PROPN coo.31924059551022 1184 30 c3pb c3pb SPACE coo.31924059551022 1184 31 ® ® PROPN coo.31924059551022 1184 32 ' ' PUNCT coo.31924059551022 1184 33 -ρ -ρ PUNCT coo.31924059551022 1184 34 6 6 NUM coo.31924059551022 1184 35 84 84 NUM coo.31924059551022 1184 36 table table NOUN coo.31924059551022 1184 37 of of ADP coo.31924059551022 1184 38 forms form NOUN coo.31924059551022 1184 39 n n CCONJ coo.31924059551022 1184 40 — — PUNCT coo.31924059551022 1184 41 3 3 X coo.31924059551022 1184 42 . . X coo.31924059551022 1185 1 pv pv X coo.31924059551022 1185 2 — — PUNCT coo.31924059551022 1185 3 l l NOUN coo.31924059551022 1185 4 : : PUNCT coo.31924059551022 1185 5 φ φ X coo.31924059551022 1185 6 ' ' NUM coo.31924059551022 1185 7 3 3 NUM coo.31924059551022 1185 8 — — PUNCT coo.31924059551022 1185 9 27qp2 27qp2 NUM coo.31924059551022 1185 10 — — PUNCT coo.31924059551022 1185 11 108qpg/ 108qpg/ NUM coo.31924059551022 1185 12 36 36 NUM coo.31924059551022 1185 13 φ'*ϋ φ'*ϋ ADV coo.31924059551022 1185 14 pv pv ADP coo.31924059551022 1185 15 — — PUNCT coo.31924059551022 1185 16 e¿= e¿= NOUN coo.31924059551022 1185 17 qx*y qx*y VERB coo.31924059551022 1185 18 c*bíp c*bíp X coo.31924059551022 1185 19 _ _ PUNCT coo.31924059551022 1185 20 _ _ PUNCT coo.31924059551022 1186 1 |φ'+ |φ'+ NOUN coo.31924059551022 1186 2 » » PUNCT coo.31924059551022 1186 3 ( ( PUNCT coo.31924059551022 1186 4 ' ' PUNCT coo.31924059551022 1186 5 * * SYM coo.31924059551022 1186 6 ψ ψ X coo.31924059551022 1186 7 ] ] X coo.31924059551022 1187 1 [ [ X coo.31924059551022 1187 2 12(&-e,)(2 12(&-e,)(2 PROPN coo.31924059551022 1187 3 & & CCONJ coo.31924059551022 1187 4 cx)~ cx)~ PROPN coo.31924059551022 1187 5 ψ ψ PROPN coo.31924059551022 1187 6 - - PROPN coo.31924059551022 1187 7 γ γ PROPN coo.31924059551022 1187 8 36 36 NUM coo.31924059551022 1187 9 φ φ PROPN coo.31924059551022 1187 10 ' ' NUM coo.31924059551022 1187 11 2 2 NUM coo.31924059551022 1187 12 b b NOUN coo.31924059551022 1187 13 ρ'ν ρ'ν PROPN coo.31924059551022 1187 14 7 7 NUM coo.31924059551022 1187 15 3 3 NUM coo.31924059551022 1187 16 φ φ X coo.31924059551022 1187 17 ^--pv ^--pv PROPN coo.31924059551022 1187 18 ~ ~ SYM coo.31924059551022 1187 19 b b NOUN coo.31924059551022 1187 20 - - PUNCT coo.31924059551022 1187 21 tf tf X coo.31924059551022 1187 22 where where SCONJ coo.31924059551022 1187 23 ψ(1 ψ(1 PUNCT coo.31924059551022 1187 24 ) ) PUNCT coo.31924059551022 1187 25 = = NOUN coo.31924059551022 1187 26 φ(τ φ(τ SPACE coo.31924059551022 1187 27 ) ) PUNCT coo.31924059551022 1187 28 — — PUNCT coo.31924059551022 1187 29 12l(jp 12l(jp INTJ coo.31924059551022 1187 30 — — PUNCT coo.31924059551022 1187 31 flj flj PROPN coo.31924059551022 1187 32 ) ) PUNCT coo.31924059551022 1187 33 ( ( PUNCT coo.31924059551022 1187 34 io?3 io?3 PROPN coo.31924059551022 1187 35 — — PUNCT coo.31924059551022 1187 36 8aj 8aj ADJ coo.31924059551022 1187 37 — — PUNCT coo.31924059551022 1187 38 & & CCONJ coo.31924059551022 1187 39 x x X coo.31924059551022 1187 40 ) ) PUNCT coo.31924059551022 1187 41 = = PUNCT coo.31924059551022 1187 42 5z6 5z6 NUM coo.31924059551022 1187 43 + + NUM coo.31924059551022 1187 44 6«xz 6«xz NUM coo.31924059551022 1187 45 — — PUNCT coo.31924059551022 1187 46 loij loij PROPN coo.31924059551022 1187 47 * * PUNCT coo.31924059551022 1187 48 — — PUNCT coo.31924059551022 1187 49 3αχ2ί2 3αχ2ί2 NUM coo.31924059551022 1187 50 + + NUM coo.31924059551022 1187 51 6axfcx7 6axfcx7 NUM coo.31924059551022 1187 52 + + PUNCT coo.31924059551022 1187 53 ? ? PUNCT coo.31924059551022 1187 54 > > X coo.31924059551022 1188 1 x2 x2 PROPN coo.31924059551022 1188 2 — — PUNCT coo.31924059551022 1188 3 4ax3 4ax3 X coo.31924059551022 1188 4 z(l z(l PRON coo.31924059551022 1188 5 ) ) PUNCT coo.31924059551022 1189 1 = = VERB coo.31924059551022 1189 2 |[φ(0 |[φ(0 NUM coo.31924059551022 1189 3 3ψ(0 3ψ(0 NUM coo.31924059551022 1189 4 — — PUNCT coo.31924059551022 1189 5 108ζ2(τ 108ζ2(τ NUM coo.31924059551022 1189 6 — — PUNCT coo.31924059551022 1189 7 αχ)2 αχ)2 PROPN coo.31924059551022 1189 8 = = SYM coo.31924059551022 1189 9 ie ie ADV coo.31924059551022 1189 10 — — PUNCT coo.31924059551022 1189 11 qa qa PROPN coo.31924059551022 1189 12 xz4 xz4 PROPN coo.31924059551022 1189 13 + + CCONJ coo.31924059551022 1190 1 mj mj ADP coo.31924059551022 1190 2 » » PUNCT coo.31924059551022 1190 3 — — PUNCT coo.31924059551022 1190 4 3atn 3atn NUM coo.31924059551022 1190 5 — — PUNCT coo.31924059551022 1190 6 v v NOUN coo.31924059551022 1190 7 + + NOUN coo.31924059551022 1190 8 4ax3 4ax3 NUM coo.31924059551022 1190 9 = = PUNCT coo.31924059551022 1190 10 a a X coo.31924059551022 1190 11 · · PUNCT coo.31924059551022 1190 12 j5 j5 PROPN coo.31924059551022 1190 13 · · PUNCT coo.31924059551022 1190 14 c c SYM coo.31924059551022 1190 15 a a DET coo.31924059551022 1190 16 = = NOUN coo.31924059551022 1190 17 p-0 p-0 PROPN coo.31924059551022 1190 18 . . PUNCT coo.31924059551022 1191 1 + + CCONJ coo.31924059551022 1191 2 v¡)1 v¡)1 PROPN coo.31924059551022 1191 3 - - PUNCT coo.31924059551022 1191 4 sv-*fi sv-*fi PROPN coo.31924059551022 1191 5 * * PROPN coo.31924059551022 1191 6 ( ( PUNCT coo.31924059551022 1191 7 1 1 NUM coo.31924059551022 1191 8 2 2 NUM coo.31924059551022 1191 9 ¥ ¥ NUM coo.31924059551022 1191 10 ) ) PUNCT coo.31924059551022 1191 11 l l NOUN coo.31924059551022 1191 12 + + NUM coo.31924059551022 1191 13 3(7c2 3(7c2 NUM coo.31924059551022 1191 14 ¥ ¥ X coo.31924059551022 1191 15 ) ) PUNCT coo.31924059551022 1191 16 = = X coo.31924059551022 1191 17 f f PROPN coo.31924059551022 1191 18 f f X coo.31924059551022 1191 19 , , PUNCT coo.31924059551022 1191 20 b b PROPN coo.31924059551022 1191 21 c-=p c-=p PROPN coo.31924059551022 1191 22 — — PUNCT coo.31924059551022 1191 23 ( ( PUNCT coo.31924059551022 1191 24 λ λ NOUN coo.31924059551022 1191 25 * * PUNCT coo.31924059551022 1191 26 — — PUNCT coo.31924059551022 1191 27 2)7 2)7 NUM coo.31924059551022 1191 28 3(1 3(1 NOUN coo.31924059551022 1191 29 — — PUNCT coo.31924059551022 1191 30 & & CCONJ coo.31924059551022 1191 31 2 2 X coo.31924059551022 1191 32 ) ) PUNCT coo.31924059551022 1191 33 = = PUNCT coo.31924059551022 1191 34 fi fi NOUN coo.31924059551022 1191 35 ; ; PUNCT coo.31924059551022 1191 36 8 8 NUM coo.31924059551022 1191 37 8 8 NUM coo.31924059551022 1191 38 = = SYM coo.31924059551022 1191 39 3653 3653 NUM coo.31924059551022 1191 40 λ λ NOUN coo.31924059551022 1191 41 3653 3653 NUM coo.31924059551022 1191 42 f f X coo.31924059551022 1191 43 = = NOUN coo.31924059551022 1191 44 f1f2fs f1f2fs NOUN coo.31924059551022 1191 45 = = SYM coo.31924059551022 1191 46 ¿ ¿ NOUN coo.31924059551022 1191 47 χ χ NOUN coo.31924059551022 1191 48 = = SYM coo.31924059551022 1191 49 ■ ■ PUNCT coo.31924059551022 1191 50 b b NOUN coo.31924059551022 1191 51 ■ ■ SYM coo.31924059551022 1191 52 c c PROPN coo.31924059551022 1191 53 case case NOUN coo.31924059551022 1191 54 1 1 NUM coo.31924059551022 1191 55 . . PUNCT coo.31924059551022 1192 1 p p NOUN coo.31924059551022 1192 2 = = PUNCT coo.31924059551022 1192 3 0 0 NUM coo.31924059551022 1192 4 . . PUNCT coo.31924059551022 1192 5 integrai integrai PROPN coo.31924059551022 1192 6 a a DET coo.31924059551022 1192 7 special special ADJ coo.31924059551022 1192 8 function function NOUN coo.31924059551022 1192 9 of of ADP coo.31924059551022 1192 10 lamé lamé NOUN coo.31924059551022 1192 11 of of ADP coo.31924059551022 1192 12 the the DET coo.31924059551022 1192 13 first first ADJ coo.31924059551022 1192 14 sort sort NOUN coo.31924059551022 1192 15 . . PUNCT coo.31924059551022 1193 1 y y PROPN coo.31924059551022 1193 2 = = X coo.31924059551022 1193 3 p p PROPN coo.31924059551022 1193 4 ' ' PUNCT coo.31924059551022 1193 5 , , PUNCT coo.31924059551022 1193 6 b b NOUN coo.31924059551022 1193 7 = = X coo.31924059551022 1193 8 ö. ö. PROPN coo.31924059551022 1193 9 owe owe PROPN coo.31924059551022 1193 10 & & CCONJ coo.31924059551022 1193 11 ç ç PROPN coo.31924059551022 1193 12 = = PROPN coo.31924059551022 1193 13 0 0 NUM coo.31924059551022 1193 14 ; ; PUNCT coo.31924059551022 1193 15 φ(ζ φ(ζ SPACE coo.31924059551022 1193 16 ) ) PUNCT coo.31924059551022 1193 17 = = PROPN coo.31924059551022 1193 18 0 0 NUM coo.31924059551022 1193 19 ; ; PUNCT coo.31924059551022 1193 20 & & CCONJ coo.31924059551022 1193 21 — — PUNCT coo.31924059551022 1193 22 0 0 NUM coo.31924059551022 1193 23 ; ; PUNCT coo.31924059551022 1193 24 q2 q2 NOUN coo.31924059551022 1193 25 = = SYM coo.31924059551022 1193 26 0 0 NUM coo.31924059551022 1193 27 ; ; PUNCT coo.31924059551022 1193 28 ç3 ç3 PROPN coo.31924059551022 1193 29 = = NOUN coo.31924059551022 1193 30 0 0 NUM coo.31924059551022 1193 31 ; ; PUNCT coo.31924059551022 1193 32 x x PUNCT coo.31924059551022 1193 33 = = PUNCT coo.31924059551022 1193 34 0 0 NUM coo.31924059551022 1193 35 ; ; PUNCT coo.31924059551022 1193 36 29'î 29'î NUM coo.31924059551022 1193 37 ; ; PUNCT coo.31924059551022 1193 38 = = PUNCT coo.31924059551022 1193 39 0 0 NUM coo.31924059551022 1193 40 ; ; PUNCT coo.31924059551022 1193 41 7 7 NUM coo.31924059551022 1193 42 ; ; PUNCT coo.31924059551022 1193 43 — — PUNCT coo.31924059551022 1193 44 integrals integral NOUN coo.31924059551022 1193 45 , , PUNCT coo.31924059551022 1193 46 six six NUM coo.31924059551022 1193 47 in in ADP coo.31924059551022 1193 48 number number NOUN coo.31924059551022 1193 49 , , PUNCT coo.31924059551022 1193 50 of of ADP coo.31924059551022 1193 51 the the DET coo.31924059551022 1193 52 second second ADJ coo.31924059551022 1193 53 sort sort NOUN coo.31924059551022 1193 54 . . PUNCT coo.31924059551022 1193 55 ' ' PUNCT coo.31924059551022 1194 1 f f X coo.31924059551022 1194 2 — — PUNCT coo.31924059551022 1194 3 i i PRON coo.31924059551022 1194 4 = = PUNCT coo.31924059551022 1194 5 * * PUNCT coo.31924059551022 1194 6 ( ( PUNCT coo.31924059551022 1194 7 “ " PUNCT coo.31924059551022 1194 8 + + CCONJ coo.31924059551022 1194 9 ” " PUNCT coo.31924059551022 1194 10 * * NOUN coo.31924059551022 1194 11 ) ) PUNCT coo.31924059551022 1194 12 g-«£ g-«£ NOUN coo.31924059551022 1194 13 ( ( PUNCT coo.31924059551022 1194 14 « « PUNCT coo.31924059551022 1194 15 * * PUNCT coo.31924059551022 1194 16 ) ) PUNCT coo.31924059551022 1194 17 ' ' PUNCT coo.31924059551022 1194 18 — — PUNCT coo.31924059551022 1194 19 σ σ PROPN coo.31924059551022 1194 20 μ μ PROPN coo.31924059551022 1194 21 σ σ PROPN coo.31924059551022 1194 22 vt vt PROPN coo.31924059551022 1194 23 g g PROPN coo.31924059551022 1195 1 a a DET coo.31924059551022 1195 2 = = NOUN coo.31924059551022 1195 3 1 1 NUM coo.31924059551022 1195 4 , , PUNCT coo.31924059551022 1195 5 2 2 NUM coo.31924059551022 1195 6 , , PUNCT coo.31924059551022 1195 7 3 3 NUM coo.31924059551022 1195 8 ■ ■ NOUN coo.31924059551022 1195 9 ■ ■ NOUN coo.31924059551022 1195 10 z z PROPN coo.31924059551022 1195 11 y y PROPN coo.31924059551022 1195 12 pu pu PROPN coo.31924059551022 1195 13 — — PUNCT coo.31924059551022 1195 14 ea ea NOUN coo.31924059551022 1195 15 where where SCONJ coo.31924059551022 1195 16 £ £ SYM coo.31924059551022 1195 17 = = SYM coo.31924059551022 1195 18 jum jum PROPN coo.31924059551022 1195 19 — — PUNCT coo.31924059551022 1195 20 - - PUNCT coo.31924059551022 1195 21 ■ ■ NOUN coo.31924059551022 1195 22 ìj3 ìj3 PROPN coo.31924059551022 1195 23 ( ( PUNCT coo.31924059551022 1195 24 a a X coo.31924059551022 1195 25 ) ) PUNCT coo.31924059551022 1195 26 q q NOUN coo.31924059551022 1195 27 , , PUNCT coo.31924059551022 1195 28 = = SYM coo.31924059551022 1195 29 0 0 PUNCT coo.31924059551022 1195 30 ' ' PUNCT coo.31924059551022 1195 31 · · PUNCT coo.31924059551022 1195 32 _ _ PUNCT coo.31924059551022 1195 33 _ _ PUNCT coo.31924059551022 1195 34 _ _ PUNCT coo.31924059551022 1195 35 = = PUNCT coo.31924059551022 1196 1 3ex 3ex ADJ coo.31924059551022 1196 2 + + CCONJ coo.31924059551022 1196 3 /3(^ï27f /3(^ï27f NOUN coo.31924059551022 1196 4 t^/a t^/a NOUN coo.31924059551022 1196 5 ) ) PUNCT coo.31924059551022 1197 1 = = PROPN coo.31924059551022 1198 1 w w PROPN coo.31924059551022 1198 2 — — PUNCT coo.31924059551022 1198 3 2 2 NUM coo.31924059551022 1198 4 ± ± NOUN coo.31924059551022 1198 5 2f 2f NUM coo.31924059551022 1198 6 + + CCONJ coo.31924059551022 1198 7 \h¥ \h¥ NUM coo.31924059551022 1198 8 y y PROPN coo.31924059551022 1198 9 = = X coo.31924059551022 1198 10 u u PROPN coo.31924059551022 1198 11 > > X coo.31924059551022 1198 12 + + X coo.31924059551022 1198 13 y y PROPN coo.31924059551022 1198 14 ex ex PROPN coo.31924059551022 1198 15 ¿ ¿ PROPN coo.31924059551022 1199 1 ( ( PUNCT coo.31924059551022 1199 2 3ex 3ex NOUN coo.31924059551022 1199 3 + + CCONJ coo.31924059551022 1199 4 v3 v3 PROPN coo.31924059551022 1199 5 ( ( PUNCT coo.31924059551022 1199 6 5 5 NUM coo.31924059551022 1199 7 & & CCONJ coo.31924059551022 1199 8 ~ ~ PROPN coo.31924059551022 1199 9 12ei 12ei PROPN coo.31924059551022 1199 10 ) ) PUNCT coo.31924059551022 1199 11 ) ) PUNCT coo.31924059551022 1200 1 f f PROPN coo.31924059551022 1200 2 vp vp PROPN coo.31924059551022 1200 3 ex ex X coo.31924059551022 1200 4 = = X coo.31924059551022 1200 5 { { PUNCT coo.31924059551022 1200 6 ï5 ï5 PROPN coo.31924059551022 1200 7 + + CCONJ coo.31924059551022 1200 8 à à ADP coo.31924059551022 1200 9 ( ( PUNCT coo.31924059551022 1200 10 fc2 fc2 NUM coo.31924059551022 1200 11 — — PUNCT coo.31924059551022 1200 12 2 2 X coo.31924059551022 1200 13 ) ) PUNCT coo.31924059551022 1200 14 ± ± NOUN coo.31924059551022 1200 15 è^ è^ VERB coo.31924059551022 1200 16 2)2 2)2 NUM coo.31924059551022 1201 1 + + NUM coo.31924059551022 1201 2 15^ 15^ NUM coo.31924059551022 1201 3 } } PUNCT coo.31924059551022 1201 4 vp2 vp2 NOUN coo.31924059551022 1201 5 ) ) PUNCT coo.31924059551022 1201 6 . . PUNCT coo.31924059551022 1202 1 forme forme X coo.31924059551022 1202 2 for for ADP coo.31924059551022 1202 3 η η PROPN coo.31924059551022 1202 4 — — PUNCT coo.31924059551022 1202 5 3 3 NUM coo.31924059551022 1202 6 . . SYM coo.31924059551022 1202 7 85 85 NUM coo.31924059551022 1202 8 ( ( PUNCT coo.31924059551022 1202 9 b b NOUN coo.31924059551022 1202 10 ) ) PUNCT coo.31924059551022 1202 11 & & CCONJ coo.31924059551022 1202 12 = = X coo.31924059551022 1202 13 0 0 X coo.31924059551022 1202 14 b b PROPN coo.31924059551022 1202 15 = = PUNCT coo.31924059551022 1202 16 3e2 3e2 VERB coo.31924059551022 1202 17 +1/3(5λ +1/3(5λ ADJ coo.31924059551022 1202 18 12ea 12ea ADJ coo.31924059551022 1202 19 ) ) PUNCT coo.31924059551022 1202 20 = = PROPN coo.31924059551022 1202 21 1 1 NUM coo.31924059551022 1202 22 2 2 NUM coo.31924059551022 1202 23 f f PROPN coo.31924059551022 1202 24 + + CCONJ coo.31924059551022 1202 25 ycí^ft+iõ ycí^ft+iõ X coo.31924059551022 1202 26 y y NOUN coo.31924059551022 1202 27 = = PUNCT coo.31924059551022 1203 1 [ [ X coo.31924059551022 1203 2 ÿ ÿ X coo.31924059551022 1203 3 + + PUNCT coo.31924059551022 1203 4 — — PUNCT coo.31924059551022 1203 5 ì ì INTJ coo.31924059551022 1203 6 ( ( PUNCT coo.31924059551022 1203 7 3e2 3e2 NUM coo.31924059551022 1203 8 + + INTJ coo.31924059551022 1203 9 ys ys PROPN coo.31924059551022 1203 10 ( ( PUNCT coo.31924059551022 1203 11 bg2 bg2 NOUN coo.31924059551022 1203 12 — — PUNCT coo.31924059551022 1203 13 12 12 NUM coo.31924059551022 1203 14 e e NOUN coo.31924059551022 1203 15 * * PUNCT coo.31924059551022 1203 16 ) ) PUNCT coo.31924059551022 1203 17 ) ) PUNCT coo.31924059551022 1203 18 } } PUNCT coo.31924059551022 1203 19 = = X coo.31924059551022 1203 20 { { PUNCT coo.31924059551022 1203 21 p p NOUN coo.31924059551022 1203 22 + + PROPN coo.31924059551022 1203 23 ¿ ¿ NUM coo.31924059551022 1203 24 ( ( PUNCT coo.31924059551022 1203 25 1 1 NUM coo.31924059551022 1203 26 2f 2f NUM coo.31924059551022 1203 27 ) ) PUNCT coo.31924059551022 1203 28 + + CCONJ coo.31924059551022 1203 29 f0 f0 NUM coo.31924059551022 1203 30 y(ï-2ff+î5 y(ï-2ff+î5 NOUN coo.31924059551022 1203 31 } } PUNCT coo.31924059551022 1203 32 ] ] X coo.31924059551022 1203 33 /7 /7 NOUN coo.31924059551022 1203 34 - - PUNCT coo.31924059551022 1203 35 171 171 NUM coo.31924059551022 1203 36 - - SYM coo.31924059551022 1203 37 2/ 2/ NUM coo.31924059551022 1203 38 ? ? PUNCT coo.31924059551022 1203 39 ) ) PUNCT coo.31924059551022 1204 1 ( ( PUNCT coo.31924059551022 1204 2 c c X coo.31924059551022 1204 3 ) ) PUNCT coo.31924059551022 1204 4 ' ' PUNCT coo.31924059551022 1204 5 qì= qì= VERB coo.31924059551022 1204 6 o o X coo.31924059551022 1204 7 i i NOUN coo.31924059551022 1204 8 ? ? PUNCT coo.31924059551022 1204 9 = = SYM coo.31924059551022 1205 1 3e3 3e3 NUM coo.31924059551022 1205 2 ± ± NOUN coo.31924059551022 1205 3 y3 y3 PROPN coo.31924059551022 1205 4 ( ( PUNCT coo.31924059551022 1205 5 5μ e(*—ί·(ω^>μ NOUN coo.31924059551022 1210 43 ) ) PUNCT coo.31924059551022 1210 44 1 1 NUM coo.31924059551022 1210 45 6u 6u NUM coo.31924059551022 1210 46 6u 6u NUM coo.31924059551022 1210 47 six six NUM coo.31924059551022 1210 48 values value NOUN coo.31924059551022 1210 49 of of ADP coo.31924059551022 1210 50 this this DET coo.31924059551022 1210 51 form form NOUN coo.31924059551022 1210 52 corresponding correspond VERB coo.31924059551022 1210 53 tó tó ADP coo.31924059551022 1210 54 the the DET coo.31924059551022 1210 55 roots root NOUN coo.31924059551022 1210 56 of of ADP coo.31924059551022 1210 57 ^4 ^4 ADJ coo.31924059551022 1210 58 = = SYM coo.31924059551022 1210 59 οι οι NOUN coo.31924059551022 1210 60 ? ? PUNCT coo.31924059551022 1211 1 = = PROPN coo.31924059551022 1211 2 0 0 NUM coo.31924059551022 1211 3 ; ; PUNCT coo.31924059551022 1211 4 c c X coo.31924059551022 1211 5 — — PUNCT coo.31924059551022 1211 6 0 0 NUM coo.31924059551022 1211 7 , , PUNCT coo.31924059551022 1211 8 namely namely ADV coo.31924059551022 1211 9 b b NOUN coo.31924059551022 1211 10 = = SYM coo.31924059551022 1211 11 4 4 NUM coo.31924059551022 1211 12 ( ( PUNCT coo.31924059551022 1211 13 1 1 NUM coo.31924059551022 1211 14 + + CCONJ coo.31924059551022 1211 15 f f X coo.31924059551022 1211 16 ) ) PUNCT coo.31924059551022 1211 17 + + PUNCT coo.31924059551022 1211 18 ? ? PUNCT coo.31924059551022 1212 1 y(t+ y(t+ NUM coo.31924059551022 1212 2 7c*)*'+ 7c*)*'+ NUM coo.31924059551022 1212 3 6f 6f NUM coo.31924059551022 1212 4 or or CCONJ coo.31924059551022 1212 5 b b X coo.31924059551022 1212 6 = = SYM coo.31924059551022 1212 7 4(1 4(1 PROPN coo.31924059551022 1212 8 -2f -2f PROPN coo.31924059551022 1212 9 ) ) PUNCT coo.31924059551022 1213 1 + + CCONJ coo.31924059551022 1213 2 f f PROPN coo.31924059551022 1213 3 y(l y(l PROPN coo.31924059551022 1213 4 2f 2f NOUN coo.31924059551022 1213 5 ) ) PUNCT coo.31924059551022 1213 6 — — PUNCT coo.31924059551022 1213 7 6(f^= 6(f^= NUM coo.31924059551022 1213 8 f f PROPN coo.31924059551022 1213 9 ) ) PUNCT coo.31924059551022 1213 10 ór ór PROPN coo.31924059551022 1213 11 b b PROPN coo.31924059551022 1213 12 = = PROPN coo.31924059551022 1213 13 1 1 NUM coo.31924059551022 1213 14 ( ( PUNCT coo.31924059551022 1213 15 f f X coo.31924059551022 1213 16 — — PUNCT coo.31924059551022 1213 17 2 2 X coo.31924059551022 1213 18 ) ) PUNCT coo.31924059551022 1213 19 + + NUM coo.31924059551022 1213 20 -|y(f -|y(f PUNCT coo.31924059551022 1213 21 2 2 X coo.31924059551022 1213 22 ) ) PUNCT coo.31924059551022 1213 23 + + NUM coo.31924059551022 1213 24 6 6 NUM coo.31924059551022 1213 25 ( ( PUNCT coo.31924059551022 1213 26 1 1 NUM coo.31924059551022 1213 27 — — PUNCT coo.31924059551022 1213 28 f f PROPN coo.31924059551022 1213 29 ) ) PUNCT coo.31924059551022 1213 30 which which PRON coo.31924059551022 1213 31 determine determine VERB coo.31924059551022 1213 32 corresponding corresponding ADJ coo.31924059551022 1213 33 values value NOUN coo.31924059551022 1213 34 for for ADP coo.31924059551022 1213 35 x. x. PROPN coo.31924059551022 1213 36 case case PROPN coo.31924059551022 1213 37 á á PROPN coo.31924059551022 1213 38 . . PUNCT coo.31924059551022 1214 1 conditions condition NOUN coo.31924059551022 1214 2 as as ADP coo.31924059551022 1214 3 in in ADP coo.31924059551022 1214 4 case case NOUN coo.31924059551022 1214 5 ( ( PUNCT coo.31924059551022 1214 6 3 3 NUM coo.31924059551022 1214 7 ) ) PUNCT coo.31924059551022 1214 8 with with ADP coo.31924059551022 1214 9 the the DET coo.31924059551022 1214 10 additional additional ADJ coo.31924059551022 1214 11 condition condition NOUN coo.31924059551022 1214 12 of of ADP coo.31924059551022 1214 13 the the DET coo.31924059551022 1214 14 functions function NOUN coo.31924059551022 1214 15 of of ADP coo.31924059551022 1214 16 m. m. NOUN coo.31924059551022 1214 17 mittag mittag ADJ coo.31924059551022 1214 18 - - PUNCT coo.31924059551022 1214 19 leffler leffler NOUN coo.31924059551022 1214 20 . . PUNCT coo.31924059551022 1215 1 the the DET coo.31924059551022 1215 2 integral integral NOUN coo.31924059551022 1215 3 is be AUX coo.31924059551022 1215 4 : : PUNCT coo.31924059551022 1215 5 vi vi X coo.31924059551022 1215 6 = = SYM coo.31924059551022 1215 7 ( ( PUNCT coo.31924059551022 1215 8 g«e g«e VERB coo.31924059551022 1215 9 ? ? PUNCT coo.31924059551022 1215 10 “ " PUNCT coo.31924059551022 1215 11 ) ) PUNCT coo.31924059551022 1215 12 " " PUNCT coo.31924059551022 1215 13 — — PUNCT coo.31924059551022 1215 14 36(gme 36(gme NOUN coo.31924059551022 1215 15 ? ? PUNCT coo.31924059551022 1215 16 “ " PUNCT coo.31924059551022 1215 17 ) ) PUNCT coo.31924059551022 1215 18 -f2p6eij -f2p6eij PROPN coo.31924059551022 1215 19 “ " PUNCT coo.31924059551022 1215 20 where where SCONJ coo.31924059551022 1215 21 _ _ PUNCT coo.31924059551022 1215 22 _ _ PUNCT coo.31924059551022 1215 23 q q X coo.31924059551022 1216 1 = = NOUN coo.31924059551022 1216 2 yu yu PROPN coo.31924059551022 1216 3 φ φ X coo.31924059551022 1216 4 = = NOUN coo.31924059551022 1216 5 = = PROPN coo.31924059551022 1216 6 6^s2 6^s2 NUM coo.31924059551022 1216 7 + + NUM coo.31924059551022 1216 8 9ass 9ass NUM coo.31924059551022 1216 9 — — PUNCT coo.31924059551022 1216 10 al al PROPN coo.31924059551022 1216 11 e= e= PROPN coo.31924059551022 1216 12 — — PUNCT coo.31924059551022 1216 13 9[2a2s—3a3 9[2a2s—3a3 NUM coo.31924059551022 1216 14 ] ] X coo.31924059551022 1216 15 w w NOUN coo.31924059551022 1216 16 ‘ ' PUNCT coo.31924059551022 1216 17 = = NOUN coo.31924059551022 1216 18 yq yq INTJ coo.31924059551022 1216 19 . . PUNCT