id sid tid token lemma pos uiug.30112106882779 1 1 629 629 NUM uiug.30112106882779 1 2 . . PUNCT uiug.30112106882779 2 1 13 13 NUM uiug.30112106882779 2 2 12 12 NUM uiug.30112106882779 2 3 325th 325th NOUN uiug.30112106882779 2 4 and and CCONJ uiug.30112106882779 2 5 space space NOUN uiug.30112106882779 2 6 aeronautics aeronautics PROPN uiug.30112106882779 2 7 nasa nasa PROPN uiug.30112106882779 2 8 technical technical PROPN uiug.30112106882779 2 9 note note PROPN uiug.30112106882779 2 10 nasa nasa PROPN uiug.30112106882779 2 11 tn tn PROPN uiug.30112106882779 2 12 d-6677 d-6677 PROPN uiug.30112106882779 3 1 tvnotinn tvnotinn NOUN uiug.30112106882779 3 2 stration stration PROPN uiug.30112106882779 3 3 u.s.a u.s.a PROPN uiug.30112106882779 3 4 . . PROPN uiug.30112106882779 3 5 nasa nasa PROPN uiug.30112106882779 3 6 tn tn PROPN uiug.30112106882779 3 7 d-6677 d-6677 PROPN uiug.30112106882779 4 1 the the DET uiug.30112106882779 4 2 library library NOUN uiug.30112106882779 4 3 of of ADP uiug.30112106882779 4 4 the the DET uiug.30112106882779 4 5 apr apr PROPN uiug.30112106882779 4 6 2 2 NUM uiug.30112106882779 4 7 4 4 NUM uiug.30112106882779 4 8 1972 1972 NUM uiug.30112106882779 4 9 university university PROPN uiug.30112106882779 4 10 of of ADP uiug.30112106882779 4 11 illinois illinois PROPN uiug.30112106882779 4 12 at at ADP uiug.30112106882779 4 13 urbana urbana ADJ uiug.30112106882779 4 14 - - PUNCT uiug.30112106882779 4 15 champaign champaign NOUN uiug.30112106882779 4 16 vlasov vlasov NOUN uiug.30112106882779 4 17 equation equation NOUN uiug.30112106882779 4 18 eigenvalues eigenvalue NOUN uiug.30112106882779 4 19 and and CCONJ uiug.30112106882779 4 20 eigenvectors eigenvector NOUN uiug.30112106882779 4 21 for for ADP uiug.30112106882779 4 22 fourier fourier NOUN uiug.30112106882779 4 23 - - PUNCT uiug.30112106882779 4 24 hermite hermite NOUN uiug.30112106882779 4 25 dispersion dispersion NOUN uiug.30112106882779 4 26 matrices matrix NOUN uiug.30112106882779 4 27 of of ADP uiug.30112106882779 4 28 order order NOUN uiug.30112106882779 4 29 greater great ADJ uiug.30112106882779 4 30 than than ADP uiug.30112106882779 4 31 1000 1000 NUM uiug.30112106882779 4 32 by by ADP uiug.30112106882779 4 33 frederick frederick PROPN uiug.30112106882779 4 34 c. c. PROPN uiug.30112106882779 4 35 grant grant PROPN uiug.30112106882779 4 36 langley langley PROPN uiug.30112106882779 4 37 research research PROPN uiug.30112106882779 4 38 center center PROPN uiug.30112106882779 4 39 hampton hampton PROPN uiug.30112106882779 4 40 , , PUNCT uiug.30112106882779 4 41 va va PROPN uiug.30112106882779 4 42 . . PROPN uiug.30112106882779 5 1 23365 23365 NUM uiug.30112106882779 5 2 national national ADJ uiug.30112106882779 5 3 aeronautics aeronautic NOUN uiug.30112106882779 5 4 and and CCONJ uiug.30112106882779 5 5 space space PROPN uiug.30112106882779 5 6 administration administration PROPN uiug.30112106882779 5 7 • • CCONJ uiug.30112106882779 5 8 washington washington PROPN uiug.30112106882779 5 9 , , PUNCT uiug.30112106882779 5 10 d. d. PROPN uiug.30112106882779 5 11 c c PROPN uiug.30112106882779 5 12 .. .. PUNCT uiug.30112106882779 5 13 april april PROPN uiug.30112106882779 5 14 1972 1972 NUM uiug.30112106882779 5 15 university university PROPN uiug.30112106882779 5 16 of of ADP uiug.30112106882779 5 17 illinois illinois PROPN uiug.30112106882779 5 18 - - PUNCT uiug.30112106882779 5 19 urbana urbana ADJ uiug.30112106882779 5 20 30112 30112 NUM uiug.30112106882779 5 21 106882779 106882779 NUM uiug.30112106882779 5 22 3 3 NUM uiug.30112106882779 5 23 . . PROPN uiug.30112106882779 5 24 recipient recipient NOUN uiug.30112106882779 5 25 's 's PART uiug.30112106882779 5 26 catalog catalog NOUN uiug.30112106882779 5 27 no no NOUN uiug.30112106882779 5 28 . . NOUN uiug.30112106882779 6 1 1 1 NUM uiug.30112106882779 6 2 . . X uiug.30112106882779 6 3 report report VERB uiug.30112106882779 6 4 no no INTJ uiug.30112106882779 6 5 . . NOUN uiug.30112106882779 6 6 2 2 NUM uiug.30112106882779 6 7 . . X uiug.30112106882779 7 1 government government NOUN uiug.30112106882779 7 2 accession accession NOUN uiug.30112106882779 7 3 no no PRON uiug.30112106882779 7 4 . . PUNCT uiug.30112106882779 8 1 nasa nasa PROPN uiug.30112106882779 8 2 tn tn PROPN uiug.30112106882779 8 3 d-6677 d-6677 PROPN uiug.30112106882779 8 4 4 4 NUM uiug.30112106882779 8 5 . . X uiug.30112106882779 9 1 title title NOUN uiug.30112106882779 9 2 and and CCONJ uiug.30112106882779 9 3 subtitle subtitle NOUN uiug.30112106882779 9 4 vlasov vlasov NOUN uiug.30112106882779 9 5 equation equation NOUN uiug.30112106882779 9 6 eigenvalues eigenvalue NOUN uiug.30112106882779 9 7 and and CCONJ uiug.30112106882779 9 8 eigenvectors eigenvector NOUN uiug.30112106882779 9 9 for for ADP uiug.30112106882779 9 10 fourier fourier NOUN uiug.30112106882779 9 11 - - PUNCT uiug.30112106882779 9 12 hermite hermite NOUN uiug.30112106882779 9 13 dispersion dispersion NOUN uiug.30112106882779 9 14 matrices matrix NOUN uiug.30112106882779 9 15 of of ADP uiug.30112106882779 9 16 order order NOUN uiug.30112106882779 9 17 greater great ADJ uiug.30112106882779 9 18 than than ADP uiug.30112106882779 9 19 1000 1000 NUM uiug.30112106882779 9 20 5 5 NUM uiug.30112106882779 9 21 . . PUNCT uiug.30112106882779 10 1 report report NOUN uiug.30112106882779 10 2 date date NOUN uiug.30112106882779 10 3 april april PROPN uiug.30112106882779 10 4 1972 1972 NUM uiug.30112106882779 10 5 6 6 NUM uiug.30112106882779 10 6 . . PUNCT uiug.30112106882779 11 1 performing perform VERB uiug.30112106882779 11 2 organization organization NOUN uiug.30112106882779 11 3 code code PROPN uiug.30112106882779 11 4 7 7 NUM uiug.30112106882779 11 5 . . PUNCT uiug.30112106882779 12 1 author(s author(s PROPN uiug.30112106882779 12 2 ) ) PUNCT uiug.30112106882779 12 3 frederick frederick PROPN uiug.30112106882779 12 4 c. c. PROPN uiug.30112106882779 12 5 grant grant PROPN uiug.30112106882779 12 6 8 8 NUM uiug.30112106882779 12 7 . . PUNCT uiug.30112106882779 12 8 performing perform VERB uiug.30112106882779 12 9 organization organization NOUN uiug.30112106882779 12 10 report report NOUN uiug.30112106882779 12 11 no no INTJ uiug.30112106882779 12 12 . . PUNCT uiug.30112106882779 12 13 l-8141 l-8141 VERB uiug.30112106882779 12 14 10 10 NUM uiug.30112106882779 12 15 . . PUNCT uiug.30112106882779 13 1 work work NOUN uiug.30112106882779 13 2 unit unit NOUN uiug.30112106882779 13 3 no no NOUN uiug.30112106882779 13 4 . . NOUN uiug.30112106882779 13 5 188 188 NUM uiug.30112106882779 13 6 - - SYM uiug.30112106882779 13 7 36 36 NUM uiug.30112106882779 13 8 - - PUNCT uiug.30112106882779 13 9 56 56 NUM uiug.30112106882779 13 10 - - SYM uiug.30112106882779 13 11 02 02 NUM uiug.30112106882779 13 12 9 9 NUM uiug.30112106882779 13 13 . . PUNCT uiug.30112106882779 14 1 performing perform VERB uiug.30112106882779 14 2 organization organization NOUN uiug.30112106882779 14 3 name name NOUN uiug.30112106882779 14 4 and and CCONJ uiug.30112106882779 14 5 address address VERB uiug.30112106882779 14 6 nasa nasa PROPN uiug.30112106882779 14 7 langley langley PROPN uiug.30112106882779 14 8 research research PROPN uiug.30112106882779 14 9 center center PROPN uiug.30112106882779 14 10 hampton hampton PROPN uiug.30112106882779 14 11 , , PUNCT uiug.30112106882779 14 12 va va PROPN uiug.30112106882779 14 13 . . PROPN uiug.30112106882779 15 1 23365 23365 NUM uiug.30112106882779 15 2 11 11 NUM uiug.30112106882779 15 3 . . PUNCT uiug.30112106882779 16 1 contract contract NOUN uiug.30112106882779 16 2 or or CCONJ uiug.30112106882779 16 3 grant grant VERB uiug.30112106882779 16 4 no no NOUN uiug.30112106882779 16 5 . . PROPN uiug.30112106882779 16 6 13 13 NUM uiug.30112106882779 16 7 . . PUNCT uiug.30112106882779 17 1 type type NOUN uiug.30112106882779 17 2 of of ADP uiug.30112106882779 17 3 report report NOUN uiug.30112106882779 17 4 and and CCONJ uiug.30112106882779 17 5 period period NOUN uiug.30112106882779 17 6 covered cover VERB uiug.30112106882779 17 7 technical technical ADJ uiug.30112106882779 17 8 note note NOUN uiug.30112106882779 17 9 12 12 NUM uiug.30112106882779 17 10 . . PUNCT uiug.30112106882779 18 1 sponsoring sponsor VERB uiug.30112106882779 18 2 agency agency NOUN uiug.30112106882779 18 3 name name NOUN uiug.30112106882779 18 4 and and CCONJ uiug.30112106882779 18 5 address address VERB uiug.30112106882779 18 6 national national ADJ uiug.30112106882779 18 7 aeronautics aeronautic NOUN uiug.30112106882779 18 8 and and CCONJ uiug.30112106882779 18 9 space space PROPN uiug.30112106882779 18 10 administration administration PROPN uiug.30112106882779 18 11 washington washington PROPN uiug.30112106882779 18 12 , , PUNCT uiug.30112106882779 18 13 d.c d.c PROPN uiug.30112106882779 18 14 . . PROPN uiug.30112106882779 19 1 20546 20546 NUM uiug.30112106882779 19 2 14 14 NUM uiug.30112106882779 19 3 . . PUNCT uiug.30112106882779 20 1 sponsoring sponsor VERB uiug.30112106882779 20 2 agency agency PROPN uiug.30112106882779 20 3 code code PROPN uiug.30112106882779 20 4 15 15 NUM uiug.30112106882779 20 5 . . PUNCT uiug.30112106882779 21 1 supplementary supplementary ADJ uiug.30112106882779 21 2 notes note NOUN uiug.30112106882779 21 3 16 16 NUM uiug.30112106882779 21 4 . . PUNCT uiug.30112106882779 22 1 abstract abstract ADJ uiug.30112106882779 22 2 the the DET uiug.30112106882779 22 3 connection connection NOUN uiug.30112106882779 22 4 between between ADP uiug.30112106882779 22 5 the the DET uiug.30112106882779 22 6 van van PROPN uiug.30112106882779 22 7 kampen kampen PROPN uiug.30112106882779 22 8 and and CCONJ uiug.30112106882779 22 9 landau landau NOUN uiug.30112106882779 22 10 representations representation NOUN uiug.30112106882779 22 11 of of ADP uiug.30112106882779 22 12 the the DET uiug.30112106882779 22 13 vlasov vlasov NOUN uiug.30112106882779 22 14 equations equation NOUN uiug.30112106882779 22 15 has have AUX uiug.30112106882779 22 16 been be AUX uiug.30112106882779 22 17 extended extend VERB uiug.30112106882779 22 18 to to ADP uiug.30112106882779 22 19 fourier fourier NOUN uiug.30112106882779 22 20 - - PUNCT uiug.30112106882779 22 21 hermite hermite NOUN uiug.30112106882779 22 22 expansions expansion NOUN uiug.30112106882779 22 23 containing contain VERB uiug.30112106882779 22 24 more more ADJ uiug.30112106882779 22 25 than than ADP uiug.30112106882779 22 26 1000 1000 NUM uiug.30112106882779 22 27 terms term NOUN uiug.30112106882779 22 28 by by ADP uiug.30112106882779 22 29 taking take VERB uiug.30112106882779 22 30 advantage advantage NOUN uiug.30112106882779 22 31 of of ADP uiug.30112106882779 22 32 the the DET uiug.30112106882779 22 33 properties property NOUN uiug.30112106882779 22 34 of of ADP uiug.30112106882779 22 35 tridiagonal tridiagonal ADJ uiug.30112106882779 22 36 matrices matrix NOUN uiug.30112106882779 22 37 . . PUNCT uiug.30112106882779 23 1 these these DET uiug.30112106882779 23 2 numerical numerical ADJ uiug.30112106882779 23 3 results result NOUN uiug.30112106882779 23 4 are be AUX uiug.30112106882779 23 5 regarded regard VERB uiug.30112106882779 23 6 as as ADP uiug.30112106882779 23 7 conclusive conclusive ADJ uiug.30112106882779 23 8 indications indication NOUN uiug.30112106882779 23 9 of of ADP uiug.30112106882779 23 10 the the DET uiug.30112106882779 23 11 nonuniformly nonuniformly ADV uiug.30112106882779 23 12 convergent convergent ADJ uiug.30112106882779 23 13 behavior behavior NOUN uiug.30112106882779 23 14 of of ADP uiug.30112106882779 23 15 the the DET uiug.30112106882779 23 16 approximation approximation NOUN uiug.30112106882779 23 17 curve curve NOUN uiug.30112106882779 23 18 in in ADP uiug.30112106882779 23 19 the the DET uiug.30112106882779 23 20 limit limit NOUN uiug.30112106882779 23 21 of of ADP uiug.30112106882779 23 22 an an DET uiug.30112106882779 23 23 infinite infinite ADJ uiug.30112106882779 23 24 number number NOUN uiug.30112106882779 23 25 of of ADP uiug.30112106882779 23 26 terms term NOUN uiug.30112106882779 23 27 and and CCONJ uiug.30112106882779 23 28 represent represent VERB uiug.30112106882779 23 29 an an DET uiug.30112106882779 23 30 extension extension NOUN uiug.30112106882779 23 31 of of ADP uiug.30112106882779 23 32 work work NOUN uiug.30112106882779 23 33 begun begin VERB uiug.30112106882779 23 34 by by ADP uiug.30112106882779 23 35 grant grant NOUN uiug.30112106882779 23 36 ( ( PUNCT uiug.30112106882779 23 37 1967 1967 NUM uiug.30112106882779 23 38 ) ) PUNCT uiug.30112106882779 23 39 and and CCONJ uiug.30112106882779 23 40 by by ADP uiug.30112106882779 23 41 grant grant NOUN uiug.30112106882779 23 42 and and CCONJ uiug.30112106882779 23 43 feix feix PRON uiug.30112106882779 23 44 ( ( PUNCT uiug.30112106882779 23 45 1967 1967 NUM uiug.30112106882779 23 46 ) ) PUNCT uiug.30112106882779 23 47 . . PUNCT uiug.30112106882779 24 1 18 18 NUM uiug.30112106882779 24 2 . . X uiug.30112106882779 24 3 distribution distribution NOUN uiug.30112106882779 24 4 statement statement NOUN uiug.30112106882779 24 5 unclassified unclassifie VERB uiug.30112106882779 24 6 unlimited unlimited ADJ uiug.30112106882779 24 7 17 17 NUM uiug.30112106882779 24 8 . . PUNCT uiug.30112106882779 25 1 key key ADJ uiug.30112106882779 25 2 words word NOUN uiug.30112106882779 25 3 ( ( PUNCT uiug.30112106882779 25 4 suggested suggest VERB uiug.30112106882779 25 5 by by ADP uiug.30112106882779 25 6 author(s author(s PROPN uiug.30112106882779 25 7 ) ) PUNCT uiug.30112106882779 25 8 ) ) PUNCT uiug.30112106882779 25 9 plasma plasma NOUN uiug.30112106882779 25 10 oscillations oscillation NOUN uiug.30112106882779 25 11 transform transform VERB uiug.30112106882779 25 12 methods method NOUN uiug.30112106882779 25 13 in in ADP uiug.30112106882779 25 14 plasma plasma NOUN uiug.30112106882779 25 15 physics physics NOUN uiug.30112106882779 25 16 fourier fourier NOUN uiug.30112106882779 25 17 - - PUNCT uiug.30112106882779 25 18 hermite hermite NOUN uiug.30112106882779 25 19 transform transform NOUN uiug.30112106882779 25 20 * * PUNCT uiug.30112106882779 25 21 22 22 NUM uiug.30112106882779 25 22 . . PUNCT uiug.30112106882779 26 1 price price NOUN uiug.30112106882779 26 2 * * SYM uiug.30112106882779 26 3 19 19 NUM uiug.30112106882779 26 4 . . PUNCT uiug.30112106882779 27 1 security security NOUN uiug.30112106882779 27 2 classif classif NOUN uiug.30112106882779 27 3 . . PUNCT uiug.30112106882779 28 1 ( ( PUNCT uiug.30112106882779 28 2 of of ADP uiug.30112106882779 28 3 this this DET uiug.30112106882779 28 4 report report NOUN uiug.30112106882779 28 5 ) ) PUNCT uiug.30112106882779 28 6 unclassified unclassified ADJ uiug.30112106882779 28 7 20 20 NUM uiug.30112106882779 28 8 . . PUNCT uiug.30112106882779 29 1 security security NOUN uiug.30112106882779 29 2 classif classif NOUN uiug.30112106882779 29 3 . . PUNCT uiug.30112106882779 30 1 ( ( PUNCT uiug.30112106882779 30 2 of of ADP uiug.30112106882779 30 3 this this DET uiug.30112106882779 30 4 page page NOUN uiug.30112106882779 30 5 ) ) PUNCT uiug.30112106882779 30 6 unclassified unclassified ADJ uiug.30112106882779 30 7 21 21 NUM uiug.30112106882779 30 8 . . PUNCT uiug.30112106882779 31 1 no no INTJ uiug.30112106882779 31 2 . . NOUN uiug.30112106882779 31 3 of of ADP uiug.30112106882779 31 4 pages page NOUN uiug.30112106882779 31 5 21 21 NUM uiug.30112106882779 31 6 $ $ SYM uiug.30112106882779 31 7 3.00 3.00 NUM uiug.30112106882779 31 8 for for ADP uiug.30112106882779 31 9 sale sale NOUN uiug.30112106882779 31 10 by by ADP uiug.30112106882779 31 11 the the DET uiug.30112106882779 31 12 national national ADJ uiug.30112106882779 31 13 technical technical ADJ uiug.30112106882779 31 14 information information NOUN uiug.30112106882779 31 15 service service NOUN uiug.30112106882779 31 16 , , PUNCT uiug.30112106882779 31 17 springfield springfield PROPN uiug.30112106882779 31 18 , , PUNCT uiug.30112106882779 31 19 virginia virginia PROPN uiug.30112106882779 31 20 22151 22151 NUM uiug.30112106882779 32 1 i i PRON uiug.30112106882779 32 2 vlasov vlasov VERB uiug.30112106882779 32 3 equation equation NOUN uiug.30112106882779 32 4 eigenvalues eigenvalue NOUN uiug.30112106882779 32 5 and and CCONJ uiug.30112106882779 32 6 eigenvectors eigenvector NOUN uiug.30112106882779 32 7 for for ADP uiug.30112106882779 32 8 fourier fourier NOUN uiug.30112106882779 32 9 - - PUNCT uiug.30112106882779 32 10 hermite hermite NOUN uiug.30112106882779 32 11 dispersion dispersion NOUN uiug.30112106882779 32 12 matrices matrix NOUN uiug.30112106882779 32 13 of of ADP uiug.30112106882779 32 14 order order NOUN uiug.30112106882779 32 15 greater great ADJ uiug.30112106882779 32 16 than than ADP uiug.30112106882779 32 17 1000 1000 NUM uiug.30112106882779 32 18 by by ADP uiug.30112106882779 32 19 frederick frederick PROPN uiug.30112106882779 32 20 c. c. PROPN uiug.30112106882779 32 21 grant grant PROPN uiug.30112106882779 32 22 langley langley PROPN uiug.30112106882779 32 23 research research NOUN uiug.30112106882779 32 24 center center NOUN uiug.30112106882779 32 25 summary summary VERB uiug.30112106882779 32 26 the the DET uiug.30112106882779 32 27 connection connection NOUN uiug.30112106882779 32 28 between between ADP uiug.30112106882779 32 29 the the DET uiug.30112106882779 32 30 van van PROPN uiug.30112106882779 32 31 kampen kampen PROPN uiug.30112106882779 32 32 and and CCONJ uiug.30112106882779 32 33 landau landau NOUN uiug.30112106882779 32 34 representations representation NOUN uiug.30112106882779 32 35 of of ADP uiug.30112106882779 32 36 the the DET uiug.30112106882779 32 37 vlasov vlasov NOUN uiug.30112106882779 32 38 equations equation NOUN uiug.30112106882779 32 39 has have AUX uiug.30112106882779 32 40 been be AUX uiug.30112106882779 32 41 extended extend VERB uiug.30112106882779 32 42 to to ADP uiug.30112106882779 32 43 fourier fourier NOUN uiug.30112106882779 32 44 - - PUNCT uiug.30112106882779 32 45 hermite hermite NOUN uiug.30112106882779 32 46 expansions expansion NOUN uiug.30112106882779 32 47 containing contain VERB uiug.30112106882779 32 48 more more ADJ uiug.30112106882779 32 49 than than ADP uiug.30112106882779 32 50 1000 1000 NUM uiug.30112106882779 32 51 terms term NOUN uiug.30112106882779 32 52 by by ADP uiug.30112106882779 32 53 taking take VERB uiug.30112106882779 32 54 advantage advantage NOUN uiug.30112106882779 32 55 of of ADP uiug.30112106882779 32 56 the the DET uiug.30112106882779 32 57 properties property NOUN uiug.30112106882779 32 58 of of ADP uiug.30112106882779 32 59 tridiagonal tridiagonal ADJ uiug.30112106882779 32 60 matrices matrix NOUN uiug.30112106882779 32 61 . . PUNCT uiug.30112106882779 33 1 these these DET uiug.30112106882779 33 2 numerical numerical ADJ uiug.30112106882779 33 3 results result NOUN uiug.30112106882779 33 4 are be AUX uiug.30112106882779 33 5 regarded regard VERB uiug.30112106882779 33 6 as as ADP uiug.30112106882779 33 7 conclusive conclusive ADJ uiug.30112106882779 33 8 indications indication NOUN uiug.30112106882779 33 9 of of ADP uiug.30112106882779 33 10 the the DET uiug.30112106882779 33 11 nonuniformly nonuniformly ADV uiug.30112106882779 33 12 convergent convergent ADJ uiug.30112106882779 33 13 behavior behavior NOUN uiug.30112106882779 33 14 of of ADP uiug.30112106882779 33 15 the the DET uiug.30112106882779 33 16 approximation approximation NOUN uiug.30112106882779 33 17 curve curve NOUN uiug.30112106882779 33 18 in in ADP uiug.30112106882779 33 19 the the DET uiug.30112106882779 33 20 limit limit NOUN uiug.30112106882779 33 21 of of ADP uiug.30112106882779 33 22 an an DET uiug.30112106882779 33 23 infinite infinite ADJ uiug.30112106882779 33 24 number number NOUN uiug.30112106882779 33 25 of of ADP uiug.30112106882779 33 26 terms term NOUN uiug.30112106882779 33 27 and and CCONJ uiug.30112106882779 33 28 represent represent VERB uiug.30112106882779 33 29 an an DET uiug.30112106882779 33 30 extension extension NOUN uiug.30112106882779 33 31 of of ADP uiug.30112106882779 33 32 work work NOUN uiug.30112106882779 33 33 begun begin VERB uiug.30112106882779 33 34 by by ADP uiug.30112106882779 33 35 grant grant NOUN uiug.30112106882779 33 36 ( ( PUNCT uiug.30112106882779 33 37 1967 1967 NUM uiug.30112106882779 33 38 ) ) PUNCT uiug.30112106882779 33 39 and and CCONJ uiug.30112106882779 33 40 by by ADP uiug.30112106882779 33 41 grant grant NOUN uiug.30112106882779 33 42 and and CCONJ uiug.30112106882779 33 43 feix feix PRON uiug.30112106882779 33 44 ( ( PUNCT uiug.30112106882779 33 45 1967 1967 NUM uiug.30112106882779 33 46 ) ) PUNCT uiug.30112106882779 33 47 . . PUNCT uiug.30112106882779 34 1 introduction introduction NOUN uiug.30112106882779 34 2 in in ADP uiug.30112106882779 34 3 a a DET uiug.30112106882779 34 4 fully fully ADV uiug.30112106882779 34 5 ionized ionized ADJ uiug.30112106882779 34 6 plasma plasma NOUN uiug.30112106882779 34 7 such such ADJ uiug.30112106882779 34 8 as as ADP uiug.30112106882779 34 9 the the DET uiug.30112106882779 34 10 solar solar ADJ uiug.30112106882779 34 11 corona corona PROPN uiug.30112106882779 34 12 , , PUNCT uiug.30112106882779 34 13 which which PRON uiug.30112106882779 34 14 has have VERB uiug.30112106882779 34 15 a a DET uiug.30112106882779 34 16 large large ADJ uiug.30112106882779 34 17 number number NOUN uiug.30112106882779 34 18 of of ADP uiug.30112106882779 34 19 electrons electron NOUN uiug.30112106882779 34 20 in in ADP uiug.30112106882779 34 21 a a DET uiug.30112106882779 34 22 debye debye ADJ uiug.30112106882779 34 23 cube cube NOUN uiug.30112106882779 34 24 ( ( PUNCT uiug.30112106882779 34 25 the the DET uiug.30112106882779 34 26 edge edge NOUN uiug.30112106882779 34 27 of of ADP uiug.30112106882779 34 28 which which PRON uiug.30112106882779 34 29 measures measure VERB uiug.30112106882779 34 30 the the DET uiug.30112106882779 34 31 screening screening NOUN uiug.30112106882779 34 32 distance distance NOUN uiug.30112106882779 34 33 about about ADP uiug.30112106882779 34 34 an an DET uiug.30112106882779 34 35 introduced introduce VERB uiug.30112106882779 34 36 charge charge NOUN uiug.30112106882779 34 37 ) ) PUNCT uiug.30112106882779 34 38 , , PUNCT uiug.30112106882779 34 39 the the DET uiug.30112106882779 34 40 effect effect NOUN uiug.30112106882779 34 41 of of ADP uiug.30112106882779 34 42 collisions collision NOUN uiug.30112106882779 34 43 is be AUX uiug.30112106882779 34 44 negligible negligible ADJ uiug.30112106882779 34 45 and and CCONJ uiug.30112106882779 34 46 the the DET uiug.30112106882779 34 47 vlasov vlasov NOUN uiug.30112106882779 34 48 equations equation NOUN uiug.30112106882779 34 49 describe describe VERB uiug.30112106882779 34 50 the the DET uiug.30112106882779 34 51 space space NOUN uiug.30112106882779 34 52 - - PUNCT uiug.30112106882779 34 53 time time NOUN uiug.30112106882779 34 54 evolution evolution NOUN uiug.30112106882779 34 55 of of ADP uiug.30112106882779 34 56 the the DET uiug.30112106882779 34 57 single single ADJ uiug.30112106882779 34 58 - - PUNCT uiug.30112106882779 34 59 particle particle NOUN uiug.30112106882779 34 60 distribution distribution NOUN uiug.30112106882779 34 61 function function NOUN uiug.30112106882779 34 62 . . PUNCT uiug.30112106882779 35 1 the the DET uiug.30112106882779 35 2 nonlinear nonlinear ADJ uiug.30112106882779 35 3 vlasov vlasov NOUN uiug.30112106882779 35 4 equations equation NOUN uiug.30112106882779 35 5 have have AUX uiug.30112106882779 35 6 been be AUX uiug.30112106882779 35 7 studied study VERB uiug.30112106882779 35 8 only only ADV uiug.30112106882779 35 9 for for ADP uiug.30112106882779 35 10 special special ADJ uiug.30112106882779 35 11 cases case NOUN uiug.30112106882779 35 12 , , PUNCT uiug.30112106882779 35 13 a a DET uiug.30112106882779 35 14 common common ADJ uiug.30112106882779 35 15 one one NUM uiug.30112106882779 35 16 of of ADP uiug.30112106882779 35 17 which which PRON uiug.30112106882779 35 18 is be AUX uiug.30112106882779 35 19 assumed assume VERB uiug.30112106882779 35 20 herein herein ADV uiug.30112106882779 35 21 : : PUNCT uiug.30112106882779 35 22 a a DET uiug.30112106882779 35 23 single single ADJ uiug.30112106882779 35 24 space space NOUN uiug.30112106882779 35 25 and and CCONJ uiug.30112106882779 35 26 velocity velocity NOUN uiug.30112106882779 35 27 variable variable NOUN uiug.30112106882779 35 28 , , PUNCT uiug.30112106882779 35 29 periodic periodic ADJ uiug.30112106882779 35 30 spatial spatial ADJ uiug.30112106882779 35 31 boundary boundary ADJ uiug.30112106882779 35 32 conditions condition NOUN uiug.30112106882779 35 33 , , PUNCT uiug.30112106882779 35 34 a a DET uiug.30112106882779 35 35 uniform uniform ADJ uiug.30112106882779 35 36 steady steady ADJ uiug.30112106882779 35 37 ion ion NOUN uiug.30112106882779 35 38 background background NOUN uiug.30112106882779 35 39 against against ADP uiug.30112106882779 35 40 which which PRON uiug.30112106882779 35 41 the the DET uiug.30112106882779 35 42 electrons electron NOUN uiug.30112106882779 35 43 move move VERB uiug.30112106882779 35 44 , , PUNCT uiug.30112106882779 35 45 and and CCONJ uiug.30112106882779 35 46 an an DET uiug.30112106882779 35 47 initial initial ADJ uiug.30112106882779 35 48 maxwellian maxwellian ADJ uiug.30112106882779 35 49 electronic electronic ADJ uiug.30112106882779 35 50 distribution distribution NOUN uiug.30112106882779 35 51 function function NOUN uiug.30112106882779 35 52 . . PUNCT uiug.30112106882779 36 1 because because SCONJ uiug.30112106882779 36 2 of of ADP uiug.30112106882779 36 3 their their PRON uiug.30112106882779 36 4 formidable formidable ADJ uiug.30112106882779 36 5 nature nature NOUN uiug.30112106882779 36 6 , , PUNCT uiug.30112106882779 36 7 the the DET uiug.30112106882779 36 8 vlasov vlasov NOUN uiug.30112106882779 36 9 équations équation NOUN uiug.30112106882779 36 10 have have AUX uiug.30112106882779 36 11 been be AUX uiug.30112106882779 36 12 treated treat VERB uiug.30112106882779 36 13 mostly mostly ADV uiug.30112106882779 36 14 by by ADP uiug.30112106882779 36 15 numerical numerical ADJ uiug.30112106882779 36 16 techniques technique NOUN uiug.30112106882779 36 17 . . PUNCT uiug.30112106882779 37 1 however however ADV uiug.30112106882779 37 2 , , PUNCT uiug.30112106882779 37 3 when when SCONJ uiug.30112106882779 37 4 ordinary ordinary ADJ uiug.30112106882779 37 5 x x NOUN uiug.30112106882779 37 6 - - NOUN uiug.30112106882779 37 7 v v ADJ uiug.30112106882779 37 8 - - PUNCT uiug.30112106882779 37 9 t t NOUN uiug.30112106882779 37 10 space space NOUN uiug.30112106882779 37 11 is be AUX uiug.30112106882779 37 12 used use VERB uiug.30112106882779 37 13 , , PUNCT uiug.30112106882779 37 14 an an DET uiug.30112106882779 37 15 insuperable insuperable ADJ uiug.30112106882779 37 16 difficulty difficulty NOUN uiug.30112106882779 37 17 arises arise VERB uiug.30112106882779 37 18 in in ADP uiug.30112106882779 37 19 the the DET uiug.30112106882779 37 20 velocity velocity NOUN uiug.30112106882779 37 21 space space NOUN uiug.30112106882779 37 22 . . PUNCT uiug.30112106882779 38 1 increasingly increasingly ADV uiug.30112106882779 38 2 steep steep ADJ uiug.30112106882779 38 3 oscillatory oscillatory ADJ uiug.30112106882779 38 4 gradients gradient NOUN uiug.30112106882779 38 5 with with ADP uiug.30112106882779 38 6 evershorter evershorter ADJ uiug.30112106882779 38 7 wavelengths wavelength NOUN uiug.30112106882779 38 8 develop develop VERB uiug.30112106882779 38 9 in in ADP uiug.30112106882779 38 10 the the DET uiug.30112106882779 38 11 distribution distribution NOUN uiug.30112106882779 38 12 function function NOUN uiug.30112106882779 38 13 . . PUNCT uiug.30112106882779 39 1 to to PART uiug.30112106882779 39 2 circumvent circumvent VERB uiug.30112106882779 39 3 the the DET uiug.30112106882779 39 4 difficulty difficulty NOUN uiug.30112106882779 39 5 , , PUNCT uiug.30112106882779 39 6 transform transform NOUN uiug.30112106882779 39 7 methods method NOUN uiug.30112106882779 39 8 have have AUX uiug.30112106882779 39 9 been be AUX uiug.30112106882779 39 10 introduced introduce VERB uiug.30112106882779 39 11 , , PUNCT uiug.30112106882779 39 12 and and CCONJ uiug.30112106882779 39 13 among among ADP uiug.30112106882779 39 14 these these PRON uiug.30112106882779 39 15 is be AUX uiug.30112106882779 39 16 the the DET uiug.30112106882779 39 17 fourier fourier NOUN uiug.30112106882779 39 18 expansion expansion NOUN uiug.30112106882779 39 19 on on ADP uiug.30112106882779 39 20 space space NOUN uiug.30112106882779 39 21 and and CCONJ uiug.30112106882779 39 22 the the DET uiug.30112106882779 39 23 hermite hermite ADJ uiug.30112106882779 39 24 expansion expansion NOUN uiug.30112106882779 39 25 on on ADP uiug.30112106882779 39 26 velocity velocity NOUN uiug.30112106882779 39 27 which which PRON uiug.30112106882779 39 28 lead lead VERB uiug.30112106882779 39 29 , , PUNCT uiug.30112106882779 39 30 in in ADP uiug.30112106882779 39 31 the the DET uiug.30112106882779 39 32 nonlinear nonlinear ADJ uiug.30112106882779 39 33 case case NOUN uiug.30112106882779 39 34 , , PUNCT uiug.30112106882779 39 35 to to ADP uiug.30112106882779 39 36 a a DET uiug.30112106882779 39 37 set set NOUN uiug.30112106882779 39 38 of of ADP uiug.30112106882779 39 39 coupled couple VERB uiug.30112106882779 39 40 ordinary ordinary ADJ uiug.30112106882779 39 41 differential differential ADJ uiug.30112106882779 39 42 equations equation NOUN uiug.30112106882779 39 43 for for ADP uiug.30112106882779 39 44 the the DET uiug.30112106882779 39 45 elements element NOUN uiug.30112106882779 39 46 of of ADP uiug.30112106882779 39 47 a a DET uiug.30112106882779 39 48 matrix matrix NOUN uiug.30112106882779 39 49 , , PUNCT uiug.30112106882779 39 50 the the DET uiug.30112106882779 39 51 fourierhermite fourierhermite NOUN uiug.30112106882779 39 52 expansion expansion NOUN uiug.30112106882779 39 53 coefficients coefficient NOUN uiug.30112106882779 39 54 of of ADP uiug.30112106882779 39 55 the the DET uiug.30112106882779 39 56 fourier fourier ADJ uiug.30112106882779 39 57 - - PUNCT uiug.30112106882779 39 58 hermite hermite NOUN uiug.30112106882779 39 59 representation representation NOUN uiug.30112106882779 39 60 . . PUNCT uiug.30112106882779 40 1 ( ( PUNCT uiug.30112106882779 40 2 each each DET uiug.30112106882779 40 3 transformed transform VERB uiug.30112106882779 40 4 set set NOUN uiug.30112106882779 40 5 of of ADP uiug.30112106882779 40 6 equations equation NOUN uiug.30112106882779 40 7 is be AUX uiug.30112106882779 40 8 called call VERB uiug.30112106882779 40 9 a a DET uiug.30112106882779 40 10 representation representation NOUN uiug.30112106882779 40 11 of of ADP uiug.30112106882779 40 12 the the DET uiug.30112106882779 40 13 original original ADJ uiug.30112106882779 40 14 x x NOUN uiug.30112106882779 40 15 - - NOUN uiug.30112106882779 40 16 v v ADJ uiug.30112106882779 40 17 - - PUNCT uiug.30112106882779 40 18 t t NOUN uiug.30112106882779 40 19 equations equation NOUN uiug.30112106882779 40 20 . . PUNCT uiug.30112106882779 40 21 ) ) PUNCT uiug.30112106882779 41 1 when when SCONJ uiug.30112106882779 41 2 the the DET uiug.30112106882779 41 3 nonlinear nonlinear ADJ uiug.30112106882779 41 4 fourier fourier ADJ uiug.30112106882779 41 5 - - PUNCT uiug.30112106882779 41 6 hermite hermite NOUN uiug.30112106882779 41 7 equations equation NOUN uiug.30112106882779 41 8 are be AUX uiug.30112106882779 41 9 linearized linearize VERB uiug.30112106882779 41 10 and and CCONJ uiug.30112106882779 41 11 an an DET uiug.30112106882779 41 12 eigenvalueeigenvector eigenvalueeigenvector NOUN uiug.30112106882779 41 13 solution solution NOUN uiug.30112106882779 41 14 is be AUX uiug.30112106882779 41 15 sought seek VERB uiug.30112106882779 41 16 , , PUNCT uiug.30112106882779 41 17 another another DET uiug.30112106882779 41 18 matrix matrix NOUN uiug.30112106882779 41 19 appears appear VERB uiug.30112106882779 41 20 , , PUNCT uiug.30112106882779 41 21 the the DET uiug.30112106882779 41 22 fourier fourier ADJ uiug.30112106882779 41 23 - - PUNCT uiug.30112106882779 41 24 hermite hermite NOUN uiug.30112106882779 41 25 dispersion dispersion NOUN uiug.30112106882779 41 26 matrix matrix NOUN uiug.30112106882779 41 27 . . PUNCT uiug.30112106882779 42 1 at at ADP uiug.30112106882779 42 2 this this DET uiug.30112106882779 42 3 point point NOUN uiug.30112106882779 42 4 contact contact NOUN uiug.30112106882779 42 5 is be AUX uiug.30112106882779 42 6 made make VERB uiug.30112106882779 42 7 with with ADP uiug.30112106882779 42 8 two two NUM uiug.30112106882779 42 9 classical classical ADJ uiug.30112106882779 42 10 linearized linearize VERB uiug.30112106882779 42 11 representations representation NOUN uiug.30112106882779 42 12 : : PUNCT uiug.30112106882779 42 13 that that PRON uiug.30112106882779 42 14 of of ADP uiug.30112106882779 42 15 landau landau NOUN uiug.30112106882779 42 16 ( ( PUNCT uiug.30112106882779 42 17 ref ref PROPN uiug.30112106882779 42 18 . . PUNCT uiug.30112106882779 43 1 1 1 X uiug.30112106882779 43 2 ) ) PUNCT uiug.30112106882779 43 3 and and CCONJ uiug.30112106882779 43 4 that that PRON uiug.30112106882779 43 5 of of ADP uiug.30112106882779 43 6 van van PROPN uiug.30112106882779 43 7 kampen kampen PROPN uiug.30112106882779 43 8 ( ( PUNCT uiug.30112106882779 43 9 ref ref PROPN uiug.30112106882779 43 10 . . PUNCT uiug.30112106882779 44 1 2 2 X uiug.30112106882779 44 2 ) ) PUNCT uiug.30112106882779 44 3 . . PUNCT uiug.30112106882779 45 1 landau landau NOUN uiug.30112106882779 45 2 uses use VERB uiug.30112106882779 45 3 a a DET uiug.30112106882779 45 4 fourier fourier NOUN uiug.30112106882779 45 5 - - PUNCT uiug.30112106882779 45 6 laplace laplace NOUN uiug.30112106882779 45 7 transform transform NOUN uiug.30112106882779 45 8 on on ADP uiug.30112106882779 45 9 space space NOUN uiug.30112106882779 45 10 and and CCONJ uiug.30112106882779 45 11 time time NOUN uiug.30112106882779 45 12 , , PUNCT uiug.30112106882779 45 13 while while SCONJ uiug.30112106882779 45 14 van van PROPN uiug.30112106882779 45 15 kampen kampen PROPN uiug.30112106882779 45 16 performs perform VERB uiug.30112106882779 45 17 essentially essentially ADV uiug.30112106882779 45 18 a a DET uiug.30112106882779 45 19 fourier fourier NOUN uiug.30112106882779 45 20 transform transform NOUN uiug.30112106882779 45 21 on on ADP uiug.30112106882779 45 22 both both DET uiug.30112106882779 45 23 space space NOUN uiug.30112106882779 45 24 and and CCONJ uiug.30112106882779 45 25 time time NOUN uiug.30112106882779 45 26 . . PUNCT uiug.30112106882779 46 1 as as SCONJ uiug.30112106882779 46 2 it it PRON uiug.30112106882779 46 3 happens happen VERB uiug.30112106882779 46 4 , , PUNCT uiug.30112106882779 46 5 the the DET uiug.30112106882779 46 6 continuum continuum PROPN uiug.30112106882779 46 7 of of ADP uiug.30112106882779 46 8 eigenvalues eigenvalue NOUN uiug.30112106882779 46 9 in in ADP uiug.30112106882779 46 10 van van PROPN uiug.30112106882779 46 11 kampen kampen PROPN uiug.30112106882779 46 12 's 's PART uiug.30112106882779 46 13 representation representation NOUN uiug.30112106882779 46 14 are be AUX uiug.30112106882779 46 15 all all ADV uiug.30112106882779 46 16 undamped undamped ADJ uiug.30112106882779 46 17 ( ( PUNCT uiug.30112106882779 46 18 real real ADJ uiug.30112106882779 46 19 ) ) PUNCT uiug.30112106882779 46 20 while while SCONJ uiug.30112106882779 46 21 the the DET uiug.30112106882779 46 22 discrete discrete ADJ uiug.30112106882779 46 23 poles pole NOUN uiug.30112106882779 46 24 of of ADP uiug.30112106882779 46 25 landau landau NOUN uiug.30112106882779 46 26 are be AUX uiug.30112106882779 46 27 all all PRON uiug.30112106882779 46 28 damped damp VERB uiug.30112106882779 46 29 ( ( PUNCT uiug.30112106882779 46 30 complex complex NOUN uiug.30112106882779 46 31 ) ) PUNCT uiug.30112106882779 46 32 . . PUNCT uiug.30112106882779 47 1 in in ADP uiug.30112106882779 47 2 particular particular ADJ uiug.30112106882779 47 3 , , PUNCT uiug.30112106882779 47 4 a a DET uiug.30112106882779 47 5 pair pair NOUN uiug.30112106882779 47 6 of of ADP uiug.30112106882779 47 7 highly highly ADV uiug.30112106882779 47 8 excited excited ADJ uiug.30112106882779 47 9 poles pole NOUN uiug.30112106882779 47 10 , , PUNCT uiug.30112106882779 47 11 called call VERB uiug.30112106882779 47 12 landau landau NOUN uiug.30112106882779 47 13 poles pole NOUN uiug.30112106882779 47 14 , , PUNCT uiug.30112106882779 47 15 dominates dominate VERB uiug.30112106882779 47 16 the the DET uiug.30112106882779 47 17 motion motion NOUN uiug.30112106882779 47 18 for for ADP uiug.30112106882779 47 19 long long ADJ uiug.30112106882779 47 20 times time NOUN uiug.30112106882779 47 21 when when SCONJ uiug.30112106882779 47 22 the the DET uiug.30112106882779 47 23 initial initial ADJ uiug.30112106882779 47 24 conditions condition NOUN uiug.30112106882779 47 25 are be AUX uiug.30112106882779 47 26 stable stable ADJ uiug.30112106882779 47 27 . . PUNCT uiug.30112106882779 48 1 the the DET uiug.30112106882779 48 2 fourier fourier ADJ uiug.30112106882779 48 3 - - PUNCT uiug.30112106882779 48 4 hermite hermite NOUN uiug.30112106882779 48 5 representation representation NOUN uiug.30112106882779 48 6 has have VERB uiug.30112106882779 48 7 discrete discrete ADJ uiug.30112106882779 48 8 , , PUNCT uiug.30112106882779 48 9 real real ADJ uiug.30112106882779 48 10 eigenvalues eigenvalue NOUN uiug.30112106882779 48 11 , , PUNCT uiug.30112106882779 48 12 and and CCONJ uiug.30112106882779 48 13 hence hence ADV uiug.30112106882779 48 14 it it PRON uiug.30112106882779 48 15 seems seem VERB uiug.30112106882779 48 16 clearly clearly ADV uiug.30112106882779 48 17 akin akin ADJ uiug.30112106882779 48 18 to to ADP uiug.30112106882779 48 19 van van PROPN uiug.30112106882779 48 20 kampen kampen PROPN uiug.30112106882779 48 21 's 's PART uiug.30112106882779 48 22 representation representation NOUN uiug.30112106882779 48 23 . . PUNCT uiug.30112106882779 49 1 when when SCONJ uiug.30112106882779 49 2 numerical numerical ADJ uiug.30112106882779 49 3 integration integration NOUN uiug.30112106882779 49 4 of of ADP uiug.30112106882779 49 5 the the DET uiug.30112106882779 49 6 fourier fourier NOUN uiug.30112106882779 49 7 - - PUNCT uiug.30112106882779 49 8 hermite hermite NOUN uiug.30112106882779 49 9 equations equation NOUN uiug.30112106882779 49 10 is be AUX uiug.30112106882779 49 11 performed perform VERB uiug.30112106882779 49 12 , , PUNCT uiug.30112106882779 49 13 a a DET uiug.30112106882779 49 14 numerical numerical ADJ uiug.30112106882779 49 15 instability instability NOUN uiug.30112106882779 49 16 appears appear VERB uiug.30112106882779 49 17 at at ADP uiug.30112106882779 49 18 the the DET uiug.30112106882779 49 19 highest high ADJ uiug.30112106882779 49 20 order order NOUN uiug.30112106882779 49 21 hermite hermite NOUN uiug.30112106882779 49 22 index index NOUN uiug.30112106882779 49 23 and and CCONJ uiug.30112106882779 49 24 spreads spread VERB uiug.30112106882779 49 25 toward toward ADP uiug.30112106882779 49 26 the the DET uiug.30112106882779 49 27 lower low ADJ uiug.30112106882779 49 28 . . PUNCT uiug.30112106882779 50 1 if if SCONJ uiug.30112106882779 50 2 a a DET uiug.30112106882779 50 3 fokker fokker NOUN uiug.30112106882779 50 4 - - PUNCT uiug.30112106882779 50 5 planck planck NOUN uiug.30112106882779 50 6 ( ( PUNCT uiug.30112106882779 50 7 weak weak ADJ uiug.30112106882779 50 8 - - PUNCT uiug.30112106882779 50 9 collision collision NOUN uiug.30112106882779 50 10 or or CCONJ uiug.30112106882779 50 11 distant distant ADJ uiug.30112106882779 50 12 - - PUNCT uiug.30112106882779 50 13 encounter encounter NOUN uiug.30112106882779 50 14 ) ) PUNCT uiug.30112106882779 50 15 term term NOUN uiug.30112106882779 50 16 is be AUX uiug.30112106882779 50 17 introduced introduce VERB uiug.30112106882779 50 18 into into ADP uiug.30112106882779 50 19 the the DET uiug.30112106882779 50 20 fourier fourier NOUN uiug.30112106882779 50 21 - - PUNCT uiug.30112106882779 50 22 hermite hermite NOUN uiug.30112106882779 50 23 representation representation NOUN uiug.30112106882779 50 24 , , PUNCT uiug.30112106882779 50 25 it it PRON uiug.30112106882779 50 26 damps damp VERB uiug.30112106882779 50 27 most most ADV uiug.30112106882779 50 28 strongly strongly ADV uiug.30112106882779 50 29 the the DET uiug.30112106882779 50 30 coefficients coefficient NOUN uiug.30112106882779 50 31 of of ADP uiug.30112106882779 50 32 highest high ADJ uiug.30112106882779 50 33 hermite hermite ADJ uiug.30112106882779 50 34 order order NOUN uiug.30112106882779 50 35 . . PUNCT uiug.30112106882779 51 1 macroscopic macroscopic ADJ uiug.30112106882779 51 2 physical physical ADJ uiug.30112106882779 51 3 entities entity NOUN uiug.30112106882779 51 4 such such ADJ uiug.30112106882779 51 5 as as ADP uiug.30112106882779 51 6 the the DET uiug.30112106882779 51 7 electric electric ADJ uiug.30112106882779 51 8 field field NOUN uiug.30112106882779 51 9 depend depend VERB uiug.30112106882779 51 10 on on ADP uiug.30112106882779 51 11 coefficients coefficient NOUN uiug.30112106882779 51 12 of of ADP uiug.30112106882779 51 13 the the DET uiug.30112106882779 51 14 lowest low ADJ uiug.30112106882779 51 15 orders order NOUN uiug.30112106882779 51 16 , , PUNCT uiug.30112106882779 51 17 and and CCONJ uiug.30112106882779 51 18 thus thus ADV uiug.30112106882779 51 19 the the DET uiug.30112106882779 51 20 selective selective ADJ uiug.30112106882779 51 21 character character NOUN uiug.30112106882779 51 22 of of ADP uiug.30112106882779 51 23 the the DET uiug.30112106882779 51 24 fokker fokker PROPN uiug.30112106882779 51 25 - - PUNCT uiug.30112106882779 51 26 planck planck NOUN uiug.30112106882779 51 27 term term NOUN uiug.30112106882779 51 28 makes make VERB uiug.30112106882779 51 29 it it PRON uiug.30112106882779 51 30 possible possible ADJ uiug.30112106882779 51 31 , , PUNCT uiug.30112106882779 51 32 with with ADP uiug.30112106882779 51 33 many many ADJ uiug.30112106882779 51 34 fourier fourier NOUN uiug.30112106882779 51 35 - - PUNCT uiug.30112106882779 51 36 hermite hermite NOUN uiug.30112106882779 51 37 coefficients coefficient NOUN uiug.30112106882779 51 38 , , PUNCT uiug.30112106882779 51 39 to to PART uiug.30112106882779 51 40 quench quench VERB uiug.30112106882779 51 41 the the DET uiug.30112106882779 51 42 instability instability NOUN uiug.30112106882779 51 43 with with ADP uiug.30112106882779 51 44 few few ADJ uiug.30112106882779 51 45 collisions collision NOUN uiug.30112106882779 51 46 and and CCONJ uiug.30112106882779 51 47 little little ADJ uiug.30112106882779 51 48 degradation degradation NOUN uiug.30112106882779 51 49 of of ADP uiug.30112106882779 51 50 the the DET uiug.30112106882779 51 51 results result NOUN uiug.30112106882779 51 52 . . PUNCT uiug.30112106882779 52 1 at at ADP uiug.30112106882779 52 2 this this DET uiug.30112106882779 52 3 point point NOUN uiug.30112106882779 52 4 the the DET uiug.30112106882779 52 5 fact fact NOUN uiug.30112106882779 52 6 that that SCONJ uiug.30112106882779 52 7 the the DET uiug.30112106882779 52 8 fourier fourier ADJ uiug.30112106882779 52 9 - - PUNCT uiug.30112106882779 52 10 hermite hermite NOUN uiug.30112106882779 52 11 representation representation NOUN uiug.30112106882779 52 12 bridges bridge VERB uiug.30112106882779 52 13 the the DET uiug.30112106882779 52 14 gap gap NOUN uiug.30112106882779 52 15 between between ADP uiug.30112106882779 52 16 landau landau NOUN uiug.30112106882779 52 17 and and CCONJ uiug.30112106882779 52 18 van van PROPN uiug.30112106882779 52 19 kampen kampen PROPN uiug.30112106882779 52 20 representations representation NOUN uiug.30112106882779 52 21 was be AUX uiug.30112106882779 52 22 discovered discover VERB uiug.30112106882779 52 23 ( ( PUNCT uiug.30112106882779 52 24 ref ref NOUN uiug.30112106882779 52 25 . . PUNCT uiug.30112106882779 52 26 3 3 X uiug.30112106882779 52 27 ) ) PUNCT uiug.30112106882779 52 28 . . PUNCT uiug.30112106882779 53 1 in in ADP uiug.30112106882779 53 2 reference reference NOUN uiug.30112106882779 53 3 3 3 NUM uiug.30112106882779 53 4 the the DET uiug.30112106882779 53 5 transition transition NOUN uiug.30112106882779 53 6 between between ADP uiug.30112106882779 53 7 van van PROPN uiug.30112106882779 53 8 kampen kampen PROPN uiug.30112106882779 53 9 and and CCONJ uiug.30112106882779 53 10 landau landau NOUN uiug.30112106882779 53 11 representations representation NOUN uiug.30112106882779 53 12 of of ADP uiug.30112106882779 53 13 the the DET uiug.30112106882779 53 14 vlasov vlasov NOUN uiug.30112106882779 53 15 equations equation NOUN uiug.30112106882779 53 16 is be AUX uiug.30112106882779 53 17 shown show VERB uiug.30112106882779 53 18 in in ADP uiug.30112106882779 53 19 terms term NOUN uiug.30112106882779 53 20 of of ADP uiug.30112106882779 53 21 a a DET uiug.30112106882779 53 22 delicate delicate ADJ uiug.30112106882779 53 23 limiting limit VERB uiug.30112106882779 53 24 process process NOUN uiug.30112106882779 53 25 that that PRON uiug.30112106882779 53 26 requires require VERB uiug.30112106882779 53 27 an an DET uiug.30112106882779 53 28 indefinite indefinite ADJ uiug.30112106882779 53 29 increase increase NOUN uiug.30112106882779 53 30 in in ADP uiug.30112106882779 53 31 the the DET uiug.30112106882779 53 32 number number NOUN uiug.30112106882779 53 33 of of ADP uiug.30112106882779 53 34 terms term NOUN uiug.30112106882779 53 35 kept keep VERB uiug.30112106882779 53 36 in in ADP uiug.30112106882779 53 37 the the DET uiug.30112106882779 53 38 approximate approximate ADJ uiug.30112106882779 53 39 fourier fourier ADJ uiug.30112106882779 53 40 - - PUNCT uiug.30112106882779 53 41 hermite hermite NOUN uiug.30112106882779 53 42 distribution distribution NOUN uiug.30112106882779 53 43 function function NOUN uiug.30112106882779 53 44 and and CCONJ uiug.30112106882779 53 45 , , PUNCT uiug.30112106882779 53 46 simultaneously simultaneously ADV uiug.30112106882779 53 47 , , PUNCT uiug.30112106882779 53 48 an an DET uiug.30112106882779 53 49 indefinite indefinite ADJ uiug.30112106882779 53 50 decrease decrease NOUN uiug.30112106882779 53 51 in in ADP uiug.30112106882779 53 52 the the DET uiug.30112106882779 53 53 strength strength NOUN uiug.30112106882779 53 54 of of ADP uiug.30112106882779 53 55 the the DET uiug.30112106882779 53 56 introduced introduce VERB uiug.30112106882779 53 57 fokker fokker PROPN uiug.30112106882779 53 58 - - PUNCT uiug.30112106882779 53 59 planck planck NOUN uiug.30112106882779 53 60 collision collision NOUN uiug.30112106882779 53 61 term term NOUN uiug.30112106882779 53 62 . . PUNCT uiug.30112106882779 54 1 a a DET uiug.30112106882779 54 2 full full ADJ uiug.30112106882779 54 3 account account NOUN uiug.30112106882779 54 4 of of ADP uiug.30112106882779 54 5 the the DET uiug.30112106882779 54 6 fourier fourier NOUN uiug.30112106882779 54 7 - - PUNCT uiug.30112106882779 54 8 hermite hermite NOUN uiug.30112106882779 54 9 representation representation NOUN uiug.30112106882779 54 10 may may AUX uiug.30112106882779 54 11 be be AUX uiug.30112106882779 54 12 found find VERB uiug.30112106882779 54 13 in in ADP uiug.30112106882779 54 14 reference reference NOUN uiug.30112106882779 54 15 4 4 NUM uiug.30112106882779 54 16 . . PUNCT uiug.30112106882779 55 1 the the DET uiug.30112106882779 55 2 full full ADJ uiug.30112106882779 55 3 matrix matrix NOUN uiug.30112106882779 55 4 techniques technique NOUN uiug.30112106882779 55 5 used use VERB uiug.30112106882779 55 6 in in ADP uiug.30112106882779 55 7 reference reference NOUN uiug.30112106882779 55 8 3 3 NUM uiug.30112106882779 55 9 allowed allow VERB uiug.30112106882779 55 10 only only ADV uiug.30112106882779 55 11 about about ADV uiug.30112106882779 55 12 60 60 NUM uiug.30112106882779 55 13 terms term NOUN uiug.30112106882779 55 14 to to PART uiug.30112106882779 55 15 be be AUX uiug.30112106882779 55 16 kept keep VERB uiug.30112106882779 55 17 because because SCONJ uiug.30112106882779 55 18 of of ADP uiug.30112106882779 55 19 computer computer NOUN uiug.30112106882779 55 20 storage storage NOUN uiug.30112106882779 55 21 limitations limitation NOUN uiug.30112106882779 55 22 . . PUNCT uiug.30112106882779 56 1 when when SCONJ uiug.30112106882779 56 2 recursion recursion NOUN uiug.30112106882779 56 3 techniques technique NOUN uiug.30112106882779 56 4 are be AUX uiug.30112106882779 56 5 used use VERB uiug.30112106882779 56 6 in in ADP uiug.30112106882779 56 7 the the DET uiug.30112106882779 56 8 tridiagonal tridiagonal ADJ uiug.30112106882779 56 9 dispersion dispersion NOUN uiug.30112106882779 56 10 matrices matrix NOUN uiug.30112106882779 56 11 , , PUNCT uiug.30112106882779 56 12 the the DET uiug.30112106882779 56 13 storage storage NOUN uiug.30112106882779 56 14 required require VERB uiug.30112106882779 56 15 is be AUX uiug.30112106882779 56 16 proportional proportional ADJ uiug.30112106882779 56 17 to to ADP uiug.30112106882779 56 18 the the DET uiug.30112106882779 56 19 matrix matrix NOUN uiug.30112106882779 56 20 order order NOUN uiug.30112106882779 56 21 rather rather ADV uiug.30112106882779 56 22 than than ADP uiug.30112106882779 56 23 to to ADP uiug.30112106882779 56 24 the the DET uiug.30112106882779 56 25 order order NOUN uiug.30112106882779 56 26 squared square VERB uiug.30112106882779 56 27 . . PUNCT uiug.30112106882779 57 1 the the DET uiug.30112106882779 57 2 economy economy NOUN uiug.30112106882779 57 3 of of ADP uiug.30112106882779 57 4 recursive recursive ADJ uiug.30112106882779 57 5 methods method NOUN uiug.30112106882779 57 6 has have AUX uiug.30112106882779 57 7 allowed allow VERB uiug.30112106882779 57 8 the the DET uiug.30112106882779 57 9 calculation calculation NOUN uiug.30112106882779 57 10 of of ADP uiug.30112106882779 57 11 the the DET uiug.30112106882779 57 12 eigenvalues eigenvalue NOUN uiug.30112106882779 57 13 and and CCONJ uiug.30112106882779 57 14 eigenvectors eigenvector NOUN uiug.30112106882779 57 15 for for ADP uiug.30112106882779 57 16 dispersion dispersion NOUN uiug.30112106882779 57 17 matrices matrix NOUN uiug.30112106882779 57 18 larger large ADJ uiug.30112106882779 57 19 than than ADP uiug.30112106882779 57 20 1000 1000 NUM uiug.30112106882779 57 21 x x SYM uiug.30112106882779 57 22 1000 1000 NUM uiug.30112106882779 57 23 . . PUNCT uiug.30112106882779 58 1 the the DET uiug.30112106882779 58 2 ability ability NOUN uiug.30112106882779 58 3 to to PART uiug.30112106882779 58 4 treat treat VERB uiug.30112106882779 58 5 fourier fourier NOUN uiug.30112106882779 58 6 - - PUNCT uiug.30112106882779 58 7 hermite hermite NOUN uiug.30112106882779 58 8 matrices matrix NOUN uiug.30112106882779 58 9 of of ADP uiug.30112106882779 58 10 orders order NOUN uiug.30112106882779 58 11 as as ADV uiug.30112106882779 58 12 great great ADJ uiug.30112106882779 58 13 as as ADP uiug.30112106882779 58 14 1000 1000 NUM uiug.30112106882779 58 15 carries carry VERB uiug.30112106882779 58 16 the the DET uiug.30112106882779 58 17 number number NOUN uiug.30112106882779 58 18 of of ADP uiug.30112106882779 58 19 fourier fourier NOUN uiug.30112106882779 58 20 - - PUNCT uiug.30112106882779 58 21 hermite hermite NOUN uiug.30112106882779 58 22 coefficients coefficient VERB uiug.30112106882779 58 23 far far ADV uiug.30112106882779 58 24 enough enough ADV uiug.30112106882779 58 25 to to PART uiug.30112106882779 58 26 make make VERB uiug.30112106882779 58 27 available available ADJ uiug.30112106882779 58 28 the the DET uiug.30112106882779 58 29 appropriate appropriate ADJ uiug.30112106882779 58 30 value value NOUN uiug.30112106882779 58 31 of of ADP uiug.30112106882779 58 32 fokker fokker PROPN uiug.30112106882779 58 33 - - PUNCT uiug.30112106882779 58 34 planck planck NOUN uiug.30112106882779 58 35 damping damp VERB uiug.30112106882779 58 36 for for ADP uiug.30112106882779 58 37 best good ADJ uiug.30112106882779 58 38 plasma plasma NOUN uiug.30112106882779 58 39 simulation simulation NOUN uiug.30112106882779 58 40 over over ADP uiug.30112106882779 58 41 the the DET uiug.30112106882779 58 42 entire entire ADJ uiug.30112106882779 58 43 practical practical ADJ uiug.30112106882779 58 44 range range NOUN uiug.30112106882779 58 45 of of ADP uiug.30112106882779 58 46 expansion expansion NOUN uiug.30112106882779 58 47 coefficient coefficient NOUN uiug.30112106882779 58 48 order order NOUN uiug.30112106882779 58 49 ( ( PUNCT uiug.30112106882779 58 50 several several ADJ uiug.30112106882779 58 51 hundred hundred NUM uiug.30112106882779 58 52 ) ) PUNCT uiug.30112106882779 58 53 for for ADP uiug.30112106882779 58 54 the the DET uiug.30112106882779 58 55 nonlinear nonlinear ADJ uiug.30112106882779 58 56 problem problem NOUN uiug.30112106882779 58 57 . . PUNCT uiug.30112106882779 59 1 in in ADP uiug.30112106882779 59 2 the the DET uiug.30112106882779 59 3 general general ADJ uiug.30112106882779 59 4 , , PUNCT uiug.30112106882779 59 5 nonlinear nonlinear ADJ uiug.30112106882779 59 6 problem problem NOUN uiug.30112106882779 59 7 , , PUNCT uiug.30112106882779 59 8 as as ADP uiug.30112106882779 59 9 in in ADP uiug.30112106882779 59 10 the the DET uiug.30112106882779 59 11 linear linear ADJ uiug.30112106882779 59 12 problem problem NOUN uiug.30112106882779 59 13 , , PUNCT uiug.30112106882779 59 14 addition addition NOUN uiug.30112106882779 59 15 of of ADP uiug.30112106882779 59 16 a a DET uiug.30112106882779 59 17 small small ADJ uiug.30112106882779 59 18 damping damp VERB uiug.30112106882779 59 19 term term NOUN uiug.30112106882779 59 20 of of ADP uiug.30112106882779 59 21 proper proper ADJ uiug.30112106882779 59 22 strength strength NOUN uiug.30112106882779 59 23 extends extend VERB uiug.30112106882779 59 24 the the DET uiug.30112106882779 59 25 time time NOUN uiug.30112106882779 59 26 of of ADP uiug.30112106882779 59 27 good good ADJ uiug.30112106882779 59 28 simulation simulation NOUN uiug.30112106882779 59 29 at at ADP uiug.30112106882779 59 30 the the DET uiug.30112106882779 59 31 cost cost NOUN uiug.30112106882779 59 32 of of ADP uiug.30112106882779 59 33 slightly slightly ADV uiug.30112106882779 59 34 degraded degrade VERB uiug.30112106882779 59 35 results result NOUN uiug.30112106882779 59 36 . . PUNCT uiug.30112106882779 60 1 2 2 NUM uiug.30112106882779 60 2 symbols symbol NOUN uiug.30112106882779 60 3 aaß aaß PROPN uiug.30112106882779 60 4 fourier fourier NOUN uiug.30112106882779 60 5 - - PUNCT uiug.30112106882779 60 6 hermite hermite NOUN uiug.30112106882779 60 7 expansion expansion NOUN uiug.30112106882779 60 8 coefficient coefficient NOUN uiug.30112106882779 60 9 b b PROPN uiug.30112106882779 60 10 strength strength PROPN uiug.30112106882779 60 11 parameter parameter NOUN uiug.30112106882779 60 12 of of ADP uiug.30112106882779 60 13 fokker fokker PROPN uiug.30112106882779 60 14 - - PUNCT uiug.30112106882779 60 15 planck planck NOUN uiug.30112106882779 60 16 collision collision NOUN uiug.30112106882779 60 17 term term NOUN uiug.30112106882779 60 18 c(f c(f PROPN uiug.30112106882779 60 19 ) ) PUNCT uiug.30112106882779 60 20 collision collision NOUN uiug.30112106882779 60 21 term term NOUN uiug.30112106882779 60 22 dn dn NOUN uiug.30112106882779 60 23 determinant determinant NOUN uiug.30112106882779 60 24 of of ADP uiug.30112106882779 60 25 fourier fourier NOUN uiug.30112106882779 60 26 - - PUNCT uiug.30112106882779 60 27 hermite hermite NOUN uiug.30112106882779 60 28 dispersion dispersion NOUN uiug.30112106882779 60 29 matrix matrix NOUN uiug.30112106882779 60 30 e e PROPN uiug.30112106882779 60 31 electric electric PROPN uiug.30112106882779 60 32 field field PROPN uiug.30112106882779 60 33 e e NOUN uiug.30112106882779 60 34 magnitude magnitude NOUN uiug.30112106882779 60 35 of of ADP uiug.30112106882779 60 36 electronic electronic ADJ uiug.30112106882779 60 37 charge charge NOUN uiug.30112106882779 60 38 f f PROPN uiug.30112106882779 60 39 maxwellian maxwellian PROPN uiug.30112106882779 60 40 velocity velocity NOUN uiug.30112106882779 60 41 distribution distribution NOUN uiug.30112106882779 60 42 , , PUNCT uiug.30112106882779 60 43 exp(-v2/2 exp(-v2/2 PROPN uiug.30112106882779 60 44 ) ) PUNCT uiug.30112106882779 60 45 v21 v21 NOUN uiug.30112106882779 60 46 27 27 NUM uiug.30112106882779 60 47 f f PROPN uiug.30112106882779 60 48 ' ' PUNCT uiug.30112106882779 60 49 df df NOUN uiug.30112106882779 60 50 = = X uiug.30112106882779 60 51 dv dv PROPN uiug.30112106882779 60 52 f f X uiug.30112106882779 60 53 { { PUNCT uiug.30112106882779 60 54 } } PUNCT uiug.30112106882779 60 55 fourier fourier NOUN uiug.30112106882779 60 56 - - PUNCT uiug.30112106882779 60 57 transform transform NOUN uiug.30112106882779 60 58 operator operator NOUN uiug.30112106882779 60 59 f f PROPN uiug.30112106882779 60 60 distribution distribution NOUN uiug.30112106882779 60 61 function function NOUN uiug.30112106882779 60 62 of of ADP uiug.30112106882779 60 63 electrons electron NOUN uiug.30112106882779 60 64 fo fo ADP uiug.30112106882779 60 65 fourier fourier NOUN uiug.30112106882779 60 66 transform transform NOUN uiug.30112106882779 60 67 of of ADP uiug.30112106882779 60 68 initial initial ADJ uiug.30112106882779 60 69 perturbation perturbation NOUN uiug.30112106882779 60 70 in in ADP uiug.30112106882779 60 71 f f PROPN uiug.30112106882779 60 72 ft ft PROPN uiug.30112106882779 60 73 fokker fokker PROPN uiug.30112106882779 60 74 - - PUNCT uiug.30112106882779 60 75 planck planck NOUN uiug.30112106882779 60 76 collision collision NOUN uiug.30112106882779 60 77 term term NOUN uiug.30112106882779 60 78 # # SYM uiug.30112106882779 60 79 g g NOUN uiug.30112106882779 60 80 h h NOUN uiug.30112106882779 60 81 в в PROPN uiug.30112106882779 60 82 hermite hermite PROPN uiug.30112106882779 60 83 polynomial polynomial NOUN uiug.30112106882779 60 84 of of ADP uiug.30112106882779 60 85 order order NOUN uiug.30112106882779 61 1 b b NOUN uiug.30112106882779 61 2 i i PRON uiug.30112106882779 61 3 = = VERB uiug.30112106882779 61 4 v-1 v-1 X uiug.30112106882779 61 5 = = PRON uiug.30112106882779 61 6 211 211 NUM uiug.30112106882779 61 7 k k PROPN uiug.30112106882779 61 8 wave wave NOUN uiug.30112106882779 61 9 number number NOUN uiug.30112106882779 61 10 , , PUNCT uiug.30112106882779 61 11 boltzmann boltzmann PROPN uiug.30112106882779 61 12 constant constant ADJ uiug.30112106882779 61 13 wavelength wavelength PROPN uiug.30112106882779 61 14 l l PROPN uiug.30112106882779 61 15 laplace laplace NOUN uiug.30112106882779 61 16 - - PUNCT uiug.30112106882779 61 17 transform transform NOUN uiug.30112106882779 61 18 operator operator NOUN uiug.30112106882779 61 19 m m NOUN uiug.30112106882779 61 20 electronic electronic ADJ uiug.30112106882779 61 21 mass mass NOUN uiug.30112106882779 61 22 n n ADP uiug.30112106882779 61 23 order order NOUN uiug.30112106882779 61 24 of of ADP uiug.30112106882779 61 25 highest high ADJ uiug.30112106882779 61 26 term term NOUN uiug.30112106882779 61 27 kept keep VERB uiug.30112106882779 61 28 in in ADP uiug.30112106882779 61 29 fourier fourier NOUN uiug.30112106882779 61 30 - - PUNCT uiug.30112106882779 61 31 hermite hermite NOUN uiug.30112106882779 61 32 expansion expansion NOUN uiug.30112106882779 61 33 of of ADP uiug.30112106882779 61 34 f f PROPN uiug.30112106882779 61 35 n n CCONJ uiug.30112106882779 61 36 electron electron NOUN uiug.30112106882779 61 37 density density NOUN uiug.30112106882779 61 38 ; ; PUNCT uiug.30112106882779 61 39 fourier fourier NOUN uiug.30112106882779 61 40 - - PUNCT uiug.30112106882779 61 41 laplace laplace NOUN uiug.30112106882779 61 42 transform transform NOUN uiug.30112106882779 61 43 of of ADP uiug.30112106882779 61 44 electron electron NOUN uiug.30112106882779 61 45 density density NOUN uiug.30112106882779 61 46 3 3 NUM uiug.30112106882779 62 1 no no DET uiug.30112106882779 62 2 mean mean ADJ uiug.30112106882779 62 3 electron electron NOUN uiug.30112106882779 62 4 density density NOUN uiug.30112106882779 62 5 s s PART uiug.30112106882779 62 6 complex complex ADJ uiug.30112106882779 62 7 argument argument NOUN uiug.30112106882779 62 8 of of ADP uiug.30112106882779 62 9 laplace laplace NOUN uiug.30112106882779 62 10 transform transform VERB uiug.30112106882779 62 11 t t PROPN uiug.30112106882779 62 12 absolute absolute ADJ uiug.30112106882779 62 13 temperature temperature NOUN uiug.30112106882779 62 14 t t PROPN uiug.30112106882779 62 15 time time PROPN uiug.30112106882779 62 16 v v PROPN uiug.30112106882779 62 17 electron electron NOUN uiug.30112106882779 62 18 velocity velocity NOUN uiug.30112106882779 62 19 v3,0 v3,0 DET uiug.30112106882779 62 20 first first ADJ uiug.30112106882779 62 21 component component NOUN uiug.30112106882779 62 22 of of ADP uiug.30112106882779 62 23 normalized normalized ADJ uiug.30112106882779 62 24 eigenvector eigenvector NOUN uiug.30112106882779 62 25 corresponding correspond VERB uiug.30112106882779 62 26 to to ADP uiug.30112106882779 62 27 jth jth PROPN uiug.30112106882779 62 28 eigenvelocity eigenvelocity PROPN uiug.30112106882779 62 29 w w PROPN uiug.30112106882779 62 30 w w PROPN uiug.30112106882779 62 31 ; ; PUNCT uiug.30112106882779 62 32 w w ADJ uiug.30112106882779 62 33 phase phase NOUN uiug.30112106882779 62 34 velocity velocity NOUN uiug.30112106882779 62 35 , , PUNCT uiug.30112106882779 62 36 w w PROPN uiug.30112106882779 62 37 / / SYM uiug.30112106882779 62 38 k k PROPN uiug.30112106882779 62 39 wn wn PROPN uiug.30112106882779 62 40 nth nth PROPN uiug.30112106882779 62 41 eigenvelocity eigenvelocity PROPN uiug.30112106882779 62 42 x x SYM uiug.30112106882779 62 43 spatial spatial ADJ uiug.30112106882779 62 44 coordinate coordinate NOUN uiug.30112106882779 62 45 a a DET uiug.30112106882779 62 46 , , PUNCT uiug.30112106882779 62 47 ß ß NUM uiug.30112106882779 62 48 fourier fourier NOUN uiug.30112106882779 62 49 and and CCONJ uiug.30112106882779 62 50 hermite hermite NOUN uiug.30112106882779 62 51 indices index NOUN uiug.30112106882779 62 52 , , PUNCT uiug.30112106882779 62 53 respectively respectively ADV uiug.30112106882779 62 54 -γ -γ PUNCT uiug.30112106882779 62 55 imaginary imaginary ADJ uiug.30112106882779 62 56 part part NOUN uiug.30112106882779 62 57 of of ADP uiug.30112106882779 62 58 w w X uiug.30112106882779 62 59 ( ( PUNCT uiug.30112106882779 62 60 y y PROPN uiug.30112106882779 62 61 is be AUX uiug.30112106882779 62 62 negative negative ADJ uiug.30112106882779 62 63 for for ADP uiug.30112106882779 62 64 stability stability NOUN uiug.30112106882779 62 65 ) ) PUNCT uiug.30112106882779 62 66 ab ab PROPN uiug.30112106882779 62 67 arbitrary arbitrary ADJ uiug.30112106882779 62 68 small small ADJ uiug.30112106882779 62 69 increment increment NOUN uiug.30112106882779 62 70 in in ADP uiug.30112106882779 62 71 b b NOUN uiug.30112106882779 62 72 ad ad NOUN uiug.30112106882779 62 73 change change NOUN uiug.30112106882779 62 74 in in ADP uiug.30112106882779 62 75 dn dn NOUN uiug.30112106882779 62 76 when when SCONJ uiug.30112106882779 62 77 w w PROPN uiug.30112106882779 62 78 becomes become VERB uiug.30112106882779 62 79 w w ADJ uiug.30112106882779 63 1 + + ADJ uiug.30112106882779 63 2 aw aw INTJ uiug.30112106882779 63 3 n n CCONJ uiug.30112106882779 63 4 δω δω X uiug.30112106882779 63 5 arbitrary arbitrary ADJ uiug.30112106882779 63 6 small small ADJ uiug.30112106882779 63 7 change change NOUN uiug.30112106882779 63 8 in in ADP uiug.30112106882779 63 9 3 3 NUM uiug.30112106882779 63 10 8 8 NUM uiug.30112106882779 63 11 small small ADJ uiug.30112106882779 63 12 positive positive ADJ uiug.30112106882779 63 13 quantity quantity NOUN uiug.30112106882779 63 14 δαβ δαβ NOUN uiug.30112106882779 63 15 kronecker kronecker PROPN uiug.30112106882779 63 16 delta delta PROPN uiug.30112106882779 63 17 e e PROPN uiug.30112106882779 63 18 plasma plasma NOUN uiug.30112106882779 63 19 dielectric dielectric NOUN uiug.30112106882779 63 20 constant constant ADJ uiug.30112106882779 63 21 fo fo ADP uiug.30112106882779 63 22 € € SYM uiug.30112106882779 63 23 ( ( PUNCT uiug.30112106882779 63 24 k k PROPN uiug.30112106882779 63 25 , , PUNCT uiug.30112106882779 63 26 w=0 w=0 PROPN uiug.30112106882779 63 27 ) ) PUNCT uiug.30112106882779 63 28 ; ; PUNCT uiug.30112106882779 63 29 permittivity permittivity ADJ uiug.30112106882779 63 30 of of ADP uiug.30112106882779 63 31 vacuum vacuum NOUN uiug.30112106882779 63 32 a a DET uiug.30112106882779 63 33 eigenvelocity eigenvelocity NOUN uiug.30112106882779 63 34 3 3 NUM uiug.30112106882779 63 35 complex complex ADJ uiug.30112106882779 63 36 argument argument NOUN uiug.30112106882779 63 37 , , PUNCT uiug.30112106882779 63 38 w w PROPN uiug.30112106882779 63 39 / / SYM uiug.30112106882779 63 40 k/2 k/2 PROPN uiug.30112106882779 63 41 4 4 NUM uiug.30112106882779 63 42 w w PROPN uiug.30112106882779 63 43 n(k n(k PROPN uiug.30112106882779 63 44 , , PUNCT uiug.30112106882779 63 45 s s PART uiug.30112106882779 63 46 ) ) PUNCT uiug.30112106882779 63 47 9 9 NUM uiug.30112106882779 63 48 ik2 ik2 PROPN uiug.30112106882779 63 49 & & CCONJ uiug.30112106882779 63 50 fourier fourier NOUN uiug.30112106882779 63 51 transform transform NOUN uiug.30112106882779 63 52 of of ADP uiug.30112106882779 63 53 time time NOUN uiug.30112106882779 63 54 variation variation NOUN uiug.30112106882779 63 55 of of ADP uiug.30112106882779 63 56 n n NOUN uiug.30112106882779 63 57 4j 4j NOUN uiug.30112106882779 63 58 , , PUNCT uiug.30112106882779 63 59 j+1 j+1 X uiug.30112106882779 63 60 ordinate ordinate NOUN uiug.30112106882779 63 61 of of ADP uiug.30112106882779 63 62 histogram histogram NOUN uiug.30112106882779 63 63 between between ADP uiug.30112106882779 63 64 w w PROPN uiug.30112106882779 63 65 ; ; PUNCT uiug.30112106882779 63 66 and and CCONJ uiug.30112106882779 63 67 w w PROPN uiug.30112106882779 63 68 , , PUNCT uiug.30112106882779 63 69 w w ADP uiug.30112106882779 63 70 j+1 j+1 X uiug.30112106882779 63 71 3 3 NUM uiug.30112106882779 63 72 argument argument NOUN uiug.30112106882779 63 73 of of ADP uiug.30112106882779 63 74 dn dn NOUN uiug.30112106882779 63 75 ; ; PUNCT uiug.30112106882779 63 76 complex complex ADJ uiug.30112106882779 63 77 eigenvalue eigenvalue NOUN uiug.30112106882779 63 78 ( ( PUNCT uiug.30112106882779 63 79 root root NOUN uiug.30112106882779 63 80 , , PUNCT uiug.30112106882779 63 81 pole pole NOUN uiug.30112106882779 63 82 , , PUNCT uiug.30112106882779 63 83 eigenfrequency eigenfrequency NOUN uiug.30112106882779 63 84 ) ) PUNCT uiug.30112106882779 63 85 ; ; PUNCT uiug.30112106882779 63 86 s s VERB uiug.30112106882779 63 87 / / PUNCT uiug.30112106882779 63 88 i i PRON uiug.30112106882779 63 89 ' ' VERB uiug.30112106882779 63 90 36 36 NUM uiug.30112106882779 63 91 nth nth NOUN uiug.30112106882779 63 92 order order NOUN uiug.30112106882779 63 93 approximation approximation NOUN uiug.30112106882779 63 94 to to PART uiug.30112106882779 63 95 eigenvalue eigenvalue NOUN uiug.30112106882779 63 96 average average NOUN uiug.30112106882779 63 97 over over ADP uiug.30112106882779 63 98 velocity velocity NOUN uiug.30112106882779 63 99 space space NOUN uiug.30112106882779 63 100 subscripts subscript NOUN uiug.30112106882779 63 101 : : PUNCT uiug.30112106882779 63 102 i i PRON uiug.30112106882779 63 103 imaginary imaginary ADJ uiug.30112106882779 63 104 part part NOUN uiug.30112106882779 63 105 r r NOUN uiug.30112106882779 63 106 real real ADJ uiug.30112106882779 63 107 part part NOUN uiug.30112106882779 63 108 superscript superscript NOUN uiug.30112106882779 63 109 : : PUNCT uiug.30112106882779 63 110 * * PUNCT uiug.30112106882779 63 111 complex complex ADJ uiug.30112106882779 63 112 conjugate conjugate NOUN uiug.30112106882779 63 113 analysis analysis NOUN uiug.30112106882779 63 114 fourier fourier NOUN uiug.30112106882779 63 115 - - PUNCT uiug.30112106882779 63 116 hermite hermite NOUN uiug.30112106882779 63 117 representation representation NOUN uiug.30112106882779 63 118 consider consider VERB uiug.30112106882779 63 119 the the DET uiug.30112106882779 63 120 ordinary ordinary ADJ uiug.30112106882779 63 121 one one NUM uiug.30112106882779 63 122 - - PUNCT uiug.30112106882779 63 123 dimensional dimensional ADJ uiug.30112106882779 63 124 boltzmann boltzmann PROPN uiug.30112106882779 63 125 equation equation NOUN uiug.30112106882779 63 126 ( ( PUNCT uiug.30112106882779 63 127 in in ADP uiug.30112106882779 63 128 natural natural ADJ uiug.30112106882779 63 129 units unit NOUN uiug.30112106882779 63 130 ) ) PUNCT uiug.30112106882779 63 131 for for ADP uiug.30112106882779 63 132 the the DET uiug.30112106882779 63 133 single single ADJ uiug.30112106882779 63 134 - - PUNCT uiug.30112106882779 63 135 particle particle NOUN uiug.30112106882779 63 136 distribution distribution NOUN uiug.30112106882779 63 137 function function NOUN uiug.30112106882779 63 138 f f PROPN uiug.30112106882779 63 139 of of ADP uiug.30112106882779 63 140 the the DET uiug.30112106882779 63 141 electrons electron NOUN uiug.30112106882779 63 142 : : PUNCT uiug.30112106882779 63 143 if if SCONJ uiug.30112106882779 63 144 + + CCONJ uiug.30112106882779 63 145 v v NOUN uiug.30112106882779 63 146 e e X uiug.30112106882779 63 147 o o X uiug.30112106882779 63 148 = = PUNCT uiug.30112106882779 63 149 c(1 c(1 PROPN uiug.30112106882779 63 150 ) ) PUNCT uiug.30112106882779 64 1 af af PROPN uiug.30112106882779 65 1 + + INTJ uiug.30112106882779 65 2 af af INTJ uiug.30112106882779 65 3 af af INTJ uiug.30112106882779 65 4 ax ax PROPN uiug.30112106882779 65 5 e e X uiug.30112106882779 65 6 f f X uiug.30112106882779 65 7 ( ( PUNCT uiug.30112106882779 65 8 1 1 X uiug.30112106882779 65 9 ) ) PUNCT uiug.30112106882779 65 10 ду ду X uiug.30112106882779 65 11 where where SCONJ uiug.30112106882779 65 12 the the DET uiug.30112106882779 65 13 right right ADJ uiug.30112106882779 65 14 - - PUNCT uiug.30112106882779 65 15 hand hand NOUN uiug.30112106882779 65 16 side side NOUN uiug.30112106882779 65 17 denotes denote VERB uiug.30112106882779 65 18 a a DET uiug.30112106882779 65 19 collision collision NOUN uiug.30112106882779 65 20 term term NOUN uiug.30112106882779 65 21 that that PRON uiug.30112106882779 65 22 is be AUX uiug.30112106882779 65 23 a a DET uiug.30112106882779 65 24 functional functional ADJ uiug.30112106882779 65 25 off off ADP uiug.30112106882779 65 26 . . PUNCT uiug.30112106882779 66 1 the the DET uiug.30112106882779 66 2 natural natural ADJ uiug.30112106882779 66 3 units unit NOUN uiug.30112106882779 66 4 of of ADP uiug.30112106882779 66 5 equation equation NOUN uiug.30112106882779 66 6 ( ( PUNCT uiug.30112106882779 66 7 1 1 X uiug.30112106882779 66 8 ) ) PUNCT uiug.30112106882779 66 9 are be AUX uiug.30112106882779 66 10 lekt lekt NOUN uiug.30112106882779 67 1 debye debye ADJ uiug.30112106882779 67 2 length length NOUN uiug.30112106882779 67 3 noe2 noe2 PROPN uiug.30112106882779 67 4 監 監 ADV uiug.30112106882779 67 5 ​ikt ​ikt ADJ uiug.30112106882779 67 6 thermal thermal ADJ uiug.30112106882779 67 7 speed speed NOUN uiug.30112106882779 67 8 ut ut PROPN uiug.30112106882779 67 9 5 5 NUM uiug.30112106882779 67 10 com com NOUN uiug.30112106882779 67 11 inverse inverse NOUN uiug.30112106882779 67 12 plasma plasma NOUN uiug.30112106882779 67 13 frequency frequency NOUN uiug.30112106882779 67 14 ne2 ne2 PROPN uiug.30112106882779 68 1 the the DET uiug.30112106882779 68 2 debye debye ADJ uiug.30112106882779 68 3 length length NOUN uiug.30112106882779 68 4 is be AUX uiug.30112106882779 68 5 a a DET uiug.30112106882779 68 6 measure measure NOUN uiug.30112106882779 68 7 of of ADP uiug.30112106882779 68 8 the the DET uiug.30112106882779 68 9 distance distance NOUN uiug.30112106882779 68 10 at at ADP uiug.30112106882779 68 11 which which PRON uiug.30112106882779 68 12 an an DET uiug.30112106882779 68 13 introduced introduce VERB uiug.30112106882779 68 14 charge charge NOUN uiug.30112106882779 68 15 is be AUX uiug.30112106882779 68 16 screened screen VERB uiug.30112106882779 68 17 , , PUNCT uiug.30112106882779 68 18 and and CCONJ uiug.30112106882779 68 19 the the DET uiug.30112106882779 68 20 plasma plasma NOUN uiug.30112106882779 68 21 frequency frequency NOUN uiug.30112106882779 68 22 measures measure VERB uiug.30112106882779 68 23 the the DET uiug.30112106882779 68 24 rapidity rapidity NOUN uiug.30112106882779 68 25 of of ADP uiug.30112106882779 68 26 oscillations oscillation NOUN uiug.30112106882779 68 27 in in ADP uiug.30112106882779 68 28 electron electron NOUN uiug.30112106882779 68 29 density density NOUN uiug.30112106882779 68 30 . . PUNCT uiug.30112106882779 69 1 a a DET uiug.30112106882779 69 2 neutralizing neutralize VERB uiug.30112106882779 69 3 uniform uniform ADJ uiug.30112106882779 69 4 positive positive ADJ uiug.30112106882779 69 5 background background NOUN uiug.30112106882779 69 6 is be AUX uiug.30112106882779 69 7 assumed assume VERB uiug.30112106882779 69 8 . . PUNCT uiug.30112106882779 70 1 the the DET uiug.30112106882779 70 2 external external ADJ uiug.30112106882779 70 3 field field NOUN uiug.30112106882779 70 4 e e NOUN uiug.30112106882779 70 5 acting act VERB uiug.30112106882779 70 6 on on ADP uiug.30112106882779 70 7 the the DET uiug.30112106882779 70 8 electrons electron NOUN uiug.30112106882779 70 9 is be AUX uiug.30112106882779 70 10 the the DET uiug.30112106882779 70 11 self self NOUN uiug.30112106882779 70 12 - - PUNCT uiug.30112106882779 70 13 field field NOUN uiug.30112106882779 70 14 of of ADP uiug.30112106882779 70 15 the the DET uiug.30112106882779 70 16 electrons electron NOUN uiug.30112106882779 70 17 themselves themselves PRON uiug.30112106882779 70 18 given give VERB uiug.30112106882779 70 19 by by ADP uiug.30112106882779 70 20 poisson poisson PROPN uiug.30112106882779 70 21 's 's PART uiug.30112106882779 70 22 equation equation NOUN uiug.30112106882779 70 23 : : PUNCT uiug.30112106882779 70 24 ae ae PROPN uiug.30112106882779 70 25 ax ax PROPN uiug.30112106882779 70 26 sand sand NOUN uiug.30112106882779 70 27 1 1 NUM uiug.30112106882779 70 28 ( ( PUNCT uiug.30112106882779 70 29 2 2 NUM uiug.30112106882779 70 30 ) ) PUNCT uiug.30112106882779 70 31 if if SCONJ uiug.30112106882779 70 32 the the DET uiug.30112106882779 70 33 number number NOUN uiug.30112106882779 70 34 of of ADP uiug.30112106882779 70 35 particles particle NOUN uiug.30112106882779 70 36 in in ADP uiug.30112106882779 70 37 a a DET uiug.30112106882779 70 38 debye debye ADJ uiug.30112106882779 70 39 cube cube NOUN uiug.30112106882779 70 40 is be AUX uiug.30112106882779 70 41 large large ADJ uiug.30112106882779 70 42 , , PUNCT uiug.30112106882779 70 43 as as ADP uiug.30112106882779 70 44 in in ADP uiug.30112106882779 70 45 a a DET uiug.30112106882779 70 46 thermonuclear thermonuclear ADJ uiug.30112106882779 70 47 plasma plasma NOUN uiug.30112106882779 70 48 , , PUNCT uiug.30112106882779 70 49 the the DET uiug.30112106882779 70 50 collision collision NOUN uiug.30112106882779 70 51 term term NOUN uiug.30112106882779 70 52 c c NOUN uiug.30112106882779 70 53 may may AUX uiug.30112106882779 70 54 be be AUX uiug.30112106882779 70 55 neglected neglect VERB uiug.30112106882779 70 56 . . PUNCT uiug.30112106882779 71 1 in in ADP uiug.30112106882779 71 2 the the DET uiug.30112106882779 71 3 case case NOUN uiug.30112106882779 71 4 of of ADP uiug.30112106882779 71 5 identically identically ADV uiug.30112106882779 71 6 vanishing vanish VERB uiug.30112106882779 71 7 c c PROPN uiug.30112106882779 71 8 , , PUNCT uiug.30112106882779 71 9 equations equation NOUN uiug.30112106882779 71 10 ( ( PUNCT uiug.30112106882779 71 11 1 1 NUM uiug.30112106882779 71 12 ) ) PUNCT uiug.30112106882779 71 13 and and CCONJ uiug.30112106882779 71 14 ( ( PUNCT uiug.30112106882779 71 15 2 2 X uiug.30112106882779 71 16 ) ) PUNCT uiug.30112106882779 71 17 are be AUX uiug.30112106882779 71 18 known know VERB uiug.30112106882779 71 19 as as ADP uiug.30112106882779 71 20 vlasov vlasov NOUN uiug.30112106882779 71 21 equations equation NOUN uiug.30112106882779 71 22 . . PUNCT uiug.30112106882779 72 1 the the DET uiug.30112106882779 72 2 fourier fourier ADJ uiug.30112106882779 72 3 - - PUNCT uiug.30112106882779 72 4 hermite hermite NOUN uiug.30112106882779 72 5 expansion expansion NOUN uiug.30112106882779 72 6 of of ADP uiug.30112106882779 72 7 f f PROPN uiug.30112106882779 72 8 is be AUX uiug.30112106882779 72 9 v27 v27 NOUN uiug.30112106882779 72 10 f f X uiug.30112106882779 72 11 = = X uiug.30112106882779 72 12 a=-b=0 a=-b=0 X uiug.30112106882779 72 13 [ [ PUNCT uiug.30112106882779 72 14 acp acp PROPN uiug.30112106882779 72 15 exp(iakx)āg(v)exp(-v2/2 exp(iakx)āg(v)exp(-v2/2 PROPN uiug.30112106882779 72 16 ) ) PUNCT uiug.30112106882779 73 1 ( ( PUNCT uiug.30112106882779 73 2 3 3 X uiug.30112106882779 73 3 ) ) PUNCT uiug.30112106882779 73 4 where where SCONJ uiug.30112106882779 73 5 # # SYM uiug.30112106882779 73 6 g(x g(x NOUN uiug.30112106882779 73 7 ) ) PUNCT uiug.30112106882779 73 8 = = PROPN uiug.30112106882779 73 9 ( ( PUNCT uiug.30112106882779 73 10 -1*exp(v2/2)(a)*exp(-v2/2 -1*exp(v2/2)(a)*exp(-v2/2 PROPN uiug.30112106882779 73 11 ) ) PUNCT uiug.30112106882779 73 12 dv dv PRON uiug.30112106882779 73 13 is be AUX uiug.30112106882779 73 14 rodrigues rodrigue NOUN uiug.30112106882779 73 15 ' ' PART uiug.30112106882779 73 16 formula formula NOUN uiug.30112106882779 73 17 and and CCONJ uiug.30112106882779 73 18 s s NUM uiug.30112106882779 73 19 ® ® NOUN uiug.30112106882779 73 20 ( ( PUNCT uiug.30112106882779 73 21 v)ęg(v)exp(-v2/2)dv v)ęg(v)exp(-v2/2)dv PROPN uiug.30112106882779 73 22 = = SYM uiug.30112106882779 73 23 8qpv21 8qpv21 NUM uiug.30112106882779 73 24 n n NOUN uiug.30112106882779 73 25 ! ! PUNCT uiug.30112106882779 74 1 2πη 2πη PROPN uiug.30112106882779 75 1 α α PROPN uiug.30112106882779 75 2 substitution substitution NOUN uiug.30112106882779 75 3 of of ADP uiug.30112106882779 75 4 equation equation NOUN uiug.30112106882779 75 5 ( ( PUNCT uiug.30112106882779 75 6 3 3 NUM uiug.30112106882779 75 7 ) ) PUNCT uiug.30112106882779 75 8 into into ADP uiug.30112106882779 75 9 equations equation NOUN uiug.30112106882779 75 10 ( ( PUNCT uiug.30112106882779 75 11 1 1 NUM uiug.30112106882779 75 12 ) ) PUNCT uiug.30112106882779 75 13 and and CCONJ uiug.30112106882779 75 14 ( ( PUNCT uiug.30112106882779 75 15 2 2 X uiug.30112106882779 75 16 ) ) PUNCT uiug.30112106882779 75 17 yields yield NOUN uiug.30112106882779 75 18 , , PUNCT uiug.30112106882779 75 19 after after ADP uiug.30112106882779 75 20 multiplication multiplication NOUN uiug.30112106882779 75 21 by by ADP uiug.30112106882779 75 22 exp(-ia exp(-ia NOUN uiug.30112106882779 75 23 kx)āg(v kx)āg(v PROPN uiug.30112106882779 75 24 ) ) PUNCT uiug.30112106882779 75 25 and and CCONJ uiug.30112106882779 75 26 integration integration NOUN uiug.30112106882779 75 27 over over ADP uiug.30112106882779 75 28 x x NOUN uiug.30112106882779 75 29 - - NOUN uiug.30112106882779 75 30 v v NOUN uiug.30112106882779 75 31 space space NOUN uiug.30112106882779 75 32 , , PUNCT uiug.30112106882779 75 33 an an DET uiug.30112106882779 75 34 infinite infinite ADJ uiug.30112106882779 75 35 set set NOUN uiug.30112106882779 75 36 of of ADP uiug.30112106882779 75 37 ordinary ordinary ADJ uiug.30112106882779 75 38 differen differen ADJ uiug.30112106882779 75 39 , , PUNCT uiug.30112106882779 75 40 tial tial ADJ uiug.30112106882779 75 41 equations equation NOUN uiug.30112106882779 75 42 for for ADP uiug.30112106882779 75 43 the the DET uiug.30112106882779 75 44 coefficients coefficient NOUN uiug.30112106882779 75 45 auß auß PROPN uiug.30112106882779 75 46 of of ADP uiug.30112106882779 75 47 the the DET uiug.30112106882779 75 48 fourier fourier ADJ uiug.30112106882779 75 49 - - PUNCT uiug.30112106882779 75 50 hermite hermite NOUN uiug.30112106882779 75 51 expansion expansion NOUN uiug.30112106882779 75 52 . . PUNCT uiug.30112106882779 76 1 this this DET uiug.30112106882779 76 2 set set NOUN uiug.30112106882779 76 3 of of ADP uiug.30112106882779 76 4 equations equation NOUN uiug.30112106882779 76 5 for for ADP uiug.30112106882779 76 6 the the DET uiug.30112106882779 76 7 matrix matrix NOUN uiug.30112106882779 76 8 elements element NOUN uiug.30112106882779 76 9 a a DET uiug.30112106882779 76 10 aß aß NOUN uiug.30112106882779 76 11 is be AUX uiug.30112106882779 76 12 the the DET uiug.30112106882779 76 13 fourier fourier ADJ uiug.30112106882779 76 14 - - PUNCT uiug.30112106882779 76 15 hermite hermite NOUN uiug.30112106882779 76 16 representation representation NOUN uiug.30112106882779 76 17 of of ADP uiug.30112106882779 76 18 the the DET uiug.30112106882779 76 19 vlasov vlasov NOUN uiug.30112106882779 76 20 equations equation NOUN uiug.30112106882779 76 21 ( ( PUNCT uiug.30112106882779 76 22 1 1 NUM uiug.30112106882779 76 23 ) ) PUNCT uiug.30112106882779 76 24 and and CCONJ uiug.30112106882779 76 25 ( ( PUNCT uiug.30112106882779 76 26 2 2 NUM uiug.30112106882779 76 27 ) ) PUNCT uiug.30112106882779 76 28 . . PUNCT uiug.30112106882779 77 1 truncation truncation NOUN uiug.30112106882779 77 2 after after SCONJ uiug.30112106882779 77 3 the the DET uiug.30112106882779 77 4 second second ADJ uiug.30112106882779 77 5 row row NOUN uiug.30112106882779 77 6 yields yield VERB uiug.30112106882779 77 7 the the DET uiug.30112106882779 77 8 fourier fourier ADJ uiug.30112106882779 77 9 - - PUNCT uiug.30112106882779 77 10 hermite hermite NOUN uiug.30112106882779 77 11 linearization linearization NOUN uiug.30112106882779 77 12 . . PUNCT uiug.30112106882779 78 1 further further ADJ uiug.30112106882779 78 2 truncation truncation NOUN uiug.30112106882779 78 3 at at ADP uiug.30112106882779 78 4 b b NOUN uiug.30112106882779 78 5 = = NOUN uiug.30112106882779 78 6 n n CCONJ uiug.30112106882779 78 7 yields yield VERB uiug.30112106882779 78 8 the the DET uiug.30112106882779 78 9 finite finite ADJ uiug.30112106882779 78 10 approximation approximation NOUN uiug.30112106882779 78 11 to to ADP uiug.30112106882779 78 12 the the DET uiug.30112106882779 78 13 linearized linearized ADJ uiug.30112106882779 78 14 case case NOUN uiug.30112106882779 78 15 . . PUNCT uiug.30112106882779 79 1 finally finally ADV uiug.30112106882779 79 2 , , PUNCT uiug.30112106882779 79 3 assumption assumption NOUN uiug.30112106882779 79 4 of of ADP uiug.30112106882779 79 5 an an DET uiug.30112106882779 79 6 expliwt expliwt ADJ uiug.30112106882779 79 7 ) ) PUNCT uiug.30112106882779 79 8 variation variation NOUN uiug.30112106882779 79 9 of of ADP uiug.30112106882779 79 10 the the DET uiug.30112106882779 79 11 elements element NOUN uiug.30112106882779 79 12 leads lead VERB uiug.30112106882779 79 13 to to ADP uiug.30112106882779 79 14 a a DET uiug.30112106882779 79 15 dispersion dispersion NOUN uiug.30112106882779 79 16 relation relation NOUN uiug.30112106882779 79 17 of of ADP uiug.30112106882779 79 18 order order NOUN uiug.30112106882779 79 19 ( ( PUNCT uiug.30112106882779 79 20 n n CCONJ uiug.30112106882779 79 21 + + CCONJ uiug.30112106882779 79 22 1 1 NUM uiug.30112106882779 79 23 ) ) PUNCT uiug.30112106882779 79 24 . . PUNCT uiug.30112106882779 80 1 aaß aaß NOUN uiug.30112106882779 80 2 with with ADP uiug.30112106882779 80 3 maxwell maxwell PROPN uiug.30112106882779 80 4 's 's PART uiug.30112106882779 80 5 distribution distribution NOUN uiug.30112106882779 80 6 as as ADP uiug.30112106882779 80 7 background background NOUN uiug.30112106882779 80 8 , , PUNCT uiug.30112106882779 80 9 the the DET uiug.30112106882779 80 10 fourier fourier NOUN uiug.30112106882779 80 11 - - PUNCT uiug.30112106882779 80 12 hermite hermite NOUN uiug.30112106882779 80 13 dispersion dispersion NOUN uiug.30112106882779 80 14 relation relation NOUN uiug.30112106882779 80 15 ( ( PUNCT uiug.30112106882779 80 16 from from ADP uiug.30112106882779 80 17 ref ref PROPN uiug.30112106882779 80 18 . . PUNCT uiug.30112106882779 81 1 5 5 NUM uiug.30112106882779 81 2 with with ADP uiug.30112106882779 81 3 a a DET uiug.30112106882779 81 4 sign sign NOUN uiug.30112106882779 81 5 change change NOUN uiug.30112106882779 81 6 on on ADP uiug.30112106882779 81 7 b b PROPN uiug.30112106882779 81 8 ) ) PUNCT uiug.30112106882779 81 9 for for ADP uiug.30112106882779 81 10 cutoff cutoff NOUN uiug.30112106882779 81 11 of of ADP uiug.30112106882779 81 12 the the DET uiug.30112106882779 81 13 expansion expansion NOUN uiug.30112106882779 81 14 at at ADP uiug.30112106882779 81 15 order order NOUN uiug.30112106882779 81 16 nis nis PROPN uiug.30112106882779 81 17 6 6 NUM uiug.30112106882779 81 18 w w PROPN uiug.30112106882779 81 19 ( ( PUNCT uiug.30112106882779 81 20 1 1 NUM uiug.30112106882779 81 21 + + NUM uiug.30112106882779 81 22 k2)1/2 k2)1/2 VERB uiug.30112106882779 81 23 0 0 NUM uiug.30112106882779 81 24 0 0 NUM uiug.30112106882779 81 25 0 0 NUM uiug.30112106882779 81 26 ( ( PUNCT uiug.30112106882779 81 27 1 1 NUM uiug.30112106882779 81 28 + + NUM uiug.30112106882779 81 29 k2)1/2 k2)1/2 VERB uiug.30112106882779 82 1 w w X uiug.30112106882779 82 2 + + NOUN uiug.30112106882779 82 3 ib ib INTJ uiug.30112106882779 82 4 kv2 kv2 NOUN uiug.30112106882779 82 5 0 0 NUM uiug.30112106882779 82 6 0 0 NUM uiug.30112106882779 82 7 det det PROPN uiug.30112106882779 82 8 0 0 PUNCT uiug.30112106882779 83 1 kv2 kv2 PROPN uiug.30112106882779 83 2 w w NOUN uiug.30112106882779 83 3 + + NOUN uiug.30112106882779 83 4 2ib 2ib NOUN uiug.30112106882779 83 5 0 0 PUNCT uiug.30112106882779 83 6 = = SYM uiug.30112106882779 83 7 0 0 NUM uiug.30112106882779 83 8 ( ( PUNCT uiug.30112106882779 83 9 4 4 NUM uiug.30112106882779 83 10 ) ) PUNCT uiug.30112106882779 83 11 0 0 NUM uiug.30112106882779 83 12 0 0 NUM uiug.30112106882779 84 1 kn1/2 kn1/2 PROPN uiug.30112106882779 84 2 0 0 NUM uiug.30112106882779 84 3 0 0 NUM uiug.30112106882779 84 4 0 0 NUM uiug.30112106882779 85 1 knl/2 knl/2 PROPN uiug.30112106882779 85 2 w w X uiug.30112106882779 85 3 + + CCONJ uiug.30112106882779 85 4 nib nib PROPN uiug.30112106882779 85 5 w w PROPN uiug.30112106882779 85 6 in in ADP uiug.30112106882779 85 7 equation equation NOUN uiug.30112106882779 85 8 ( ( PUNCT uiug.30112106882779 85 9 4 4 NUM uiug.30112106882779 85 10 ) ) PUNCT uiug.30112106882779 85 11 , , PUNCT uiug.30112106882779 85 12 w w PROPN uiug.30112106882779 85 13 is be AUX uiug.30112106882779 85 14 an an DET uiug.30112106882779 85 15 eigenfrequency eigenfrequency NOUN uiug.30112106882779 85 16 ( ( PUNCT uiug.30112106882779 85 17 eigenvalue eigenvalue NOUN uiug.30112106882779 85 18 ) ) PUNCT uiug.30112106882779 85 19 and and CCONJ uiug.30112106882779 85 20 k k PROPN uiug.30112106882779 85 21 is be AUX uiug.30112106882779 85 22 the the DET uiug.30112106882779 85 23 wave wave NOUN uiug.30112106882779 85 24 number number NOUN uiug.30112106882779 85 25 of of ADP uiug.30112106882779 85 26 an an DET uiug.30112106882779 85 27 assumed assume VERB uiug.30112106882779 85 28 small small ADJ uiug.30112106882779 85 29 cos(kx cos(kx NOUN uiug.30112106882779 85 30 ) ) PUNCT uiug.30112106882779 85 31 disturbance disturbance NOUN uiug.30112106882779 85 32 in in ADP uiug.30112106882779 85 33 electron electron NOUN uiug.30112106882779 85 34 density density NOUN uiug.30112106882779 85 35 . . PUNCT uiug.30112106882779 86 1 if if SCONJ uiug.30112106882779 86 2 is be AUX uiug.30112106882779 86 3 a a DET uiug.30112106882779 86 4 root root NOUN uiug.30112106882779 86 5 of of ADP uiug.30112106882779 86 6 equation equation NOUN uiug.30112106882779 86 7 ( ( PUNCT uiug.30112106882779 86 8 4 4 NUM uiug.30112106882779 86 9 ) ) PUNCT uiug.30112106882779 86 10 , , PUNCT uiug.30112106882779 86 11 then then ADV uiug.30112106882779 86 12 so so ADV uiug.30112106882779 86 13 is be AUX uiug.30112106882779 86 14 -w -w PROPN uiug.30112106882779 86 15 * * NOUN uiug.30112106882779 86 16 . . PUNCT uiug.30112106882779 87 1 the the DET uiug.30112106882779 87 2 parameter parameter NOUN uiug.30112106882779 87 3 b20 b20 NUM uiug.30112106882779 87 4 is be AUX uiug.30112106882779 87 5 a a DET uiug.30112106882779 87 6 measure measure NOUN uiug.30112106882779 87 7 of of ADP uiug.30112106882779 87 8 the the DET uiug.30112106882779 87 9 strength strength NOUN uiug.30112106882779 87 10 of of ADP uiug.30112106882779 87 11 the the DET uiug.30112106882779 87 12 fokkerplanck fokkerplanck ADJ uiug.30112106882779 87 13 collision collision NOUN uiug.30112106882779 87 14 term term NOUN uiug.30112106882779 87 15 ( ( PUNCT uiug.30112106882779 87 16 ref ref VERB uiug.30112106882779 87 17 . . PUNCT uiug.30112106882779 88 1 6 6 X uiug.30112106882779 88 2 ) ) PUNCT uiug.30112106882779 88 3 , , PUNCT uiug.30112106882779 88 4 a a DET uiug.30112106882779 88 5 1 1 NUM uiug.30112106882779 88 6 = = SYM uiug.30112106882779 88 7 b b NOUN uiug.30112106882779 88 8 ) ) PUNCT uiug.30112106882779 88 9 and and CCONJ uiug.30112106882779 88 10 ft ft PROPN uiug.30112106882779 88 11 b b PROPN uiug.30112106882779 88 12 22f 22f NOUN uiug.30112106882779 88 13 ( ( PUNCT uiug.30112106882779 88 14 vf vf NOUN uiug.30112106882779 88 15 ) ) PUNCT uiug.30112106882779 88 16 + + CCONJ uiug.30112106882779 88 17 ( ( PUNCT uiug.30112106882779 88 18 v2 v2 NOUN uiug.30112106882779 88 19 ) ) PUNCT uiug.30112106882779 88 20 ay2 ay2 NOUN uiug.30112106882779 88 21 ду ду X uiug.30112106882779 88 22 which which PRON uiug.30112106882779 88 23 modifies modify VERB uiug.30112106882779 88 24 the the DET uiug.30112106882779 88 25 one one NUM uiug.30112106882779 88 26 - - PUNCT uiug.30112106882779 88 27 dimensional dimensional ADJ uiug.30112106882779 88 28 vlasov vlasov NOUN uiug.30112106882779 88 29 equations equation NOUN uiug.30112106882779 88 30 ( ( PUNCT uiug.30112106882779 88 31 1 1 NUM uiug.30112106882779 88 32 ) ) PUNCT uiug.30112106882779 88 33 and and CCONJ uiug.30112106882779 88 34 ( ( PUNCT uiug.30112106882779 88 35 2 2 X uiug.30112106882779 88 36 ) ) PUNCT uiug.30112106882779 88 37 into into ADP uiug.30112106882779 88 38 af af INTJ uiug.30112106882779 88 39 af af PROPN uiug.30112106882779 88 40 + + ADP uiug.30112106882779 88 41 v v NOUN uiug.30112106882779 88 42 at at ADP uiug.30112106882779 88 43 ax ax NOUN uiug.30112106882779 88 44 of of ADP uiug.30112106882779 88 45 + + NOUN uiug.30112106882779 88 46 v v NOUN uiug.30112106882779 88 47 e e X uiug.30112106882779 88 48 = = NOUN uiug.30112106882779 88 49 fi fi X uiug.30112106882779 88 50 af af PROPN uiug.30112106882779 88 51 ε ε PROPN uiug.30112106882779 88 52 ay ay PROPN uiug.30112106882779 88 53 ft ft PROPN uiug.30112106882779 88 54 ae ae PROPN uiug.30112106882779 88 55 ax ax PROPN uiug.30112106882779 88 56 be be AUX uiug.30112106882779 88 57 se se PROPN uiug.30112106882779 88 58 = = PROPN uiug.30112106882779 88 59 f f X uiug.30112106882779 88 60 dy dy X uiug.30112106882779 88 61 1 1 NUM uiug.30112106882779 88 62 = = SYM uiug.30112106882779 88 63 b b NOUN uiug.30112106882779 88 64 = = PUNCT uiug.30112106882779 88 65 the the DET uiug.30112106882779 88 66 vlasov vlasov NOUN uiug.30112106882779 88 67 case case NOUN uiug.30112106882779 88 68 occurs occur VERB uiug.30112106882779 88 69 at at ADP uiug.30112106882779 88 70 b b PROPN uiug.30112106882779 88 71 = = SYM uiug.30112106882779 88 72 0 0 NUM uiug.30112106882779 88 73 . . PUNCT uiug.30112106882779 89 1 when when SCONJ uiug.30112106882779 89 2 b b NOUN uiug.30112106882779 89 3 = = SYM uiug.30112106882779 89 4 0 0 NUM uiug.30112106882779 90 1 the the DET uiug.30112106882779 90 2 eigenvalues eigenvalue NOUN uiug.30112106882779 90 3 of of ADP uiug.30112106882779 90 4 equation equation NOUN uiug.30112106882779 90 5 ( ( PUNCT uiug.30112106882779 90 6 4 4 X uiug.30112106882779 90 7 ) ) PUNCT uiug.30112106882779 90 8 are be AUX uiug.30112106882779 90 9 all all ADV uiug.30112106882779 90 10 real real ADJ uiug.30112106882779 90 11 , , PUNCT uiug.30112106882779 90 12 which which PRON uiug.30112106882779 90 13 suggests suggest VERB uiug.30112106882779 90 14 the the DET uiug.30112106882779 90 15 equivalence equivalence NOUN uiug.30112106882779 90 16 of of ADP uiug.30112106882779 90 17 the the DET uiug.30112106882779 90 18 fourier fourier ADJ uiug.30112106882779 90 19 - - PUNCT uiug.30112106882779 90 20 hermite hermite NOUN uiug.30112106882779 90 21 representation representation NOUN uiug.30112106882779 90 22 ( ( PUNCT uiug.30112106882779 90 23 ref ref PROPN uiug.30112106882779 90 24 . . PUNCT uiug.30112106882779 90 25 5 5 X uiug.30112106882779 90 26 ) ) PUNCT uiug.30112106882779 90 27 to to ADP uiug.30112106882779 90 28 that that PRON uiug.30112106882779 90 29 of of ADP uiug.30112106882779 90 30 van van PROPN uiug.30112106882779 90 31 kampen kampen PROPN uiug.30112106882779 90 32 ( ( PUNCT uiug.30112106882779 90 33 ref ref PROPN uiug.30112106882779 90 34 . . PUNCT uiug.30112106882779 91 1 2 2 X uiug.30112106882779 91 2 ) ) PUNCT uiug.30112106882779 91 3 rather rather ADV uiug.30112106882779 91 4 than than ADP uiug.30112106882779 91 5 to to ADP uiug.30112106882779 91 6 that that PRON uiug.30112106882779 91 7 of of ADP uiug.30112106882779 91 8 landau landau NOUN uiug.30112106882779 91 9 ( ( PUNCT uiug.30112106882779 91 10 ref ref PROPN uiug.30112106882779 91 11 . . PUNCT uiug.30112106882779 92 1 1 1 X uiug.30112106882779 92 2 ) ) PUNCT uiug.30112106882779 92 3 . . PUNCT uiug.30112106882779 93 1 however however ADV uiug.30112106882779 93 2 , , PUNCT uiug.30112106882779 93 3 as as ADP uiug.30112106882779 93 4 increases increase NOUN uiug.30112106882779 93 5 from from ADP uiug.30112106882779 93 6 zero zero NUM uiug.30112106882779 93 7 , , PUNCT uiug.30112106882779 93 8 the the DET uiug.30112106882779 93 9 surprising surprising ADJ uiug.30112106882779 93 10 behavior behavior NOUN uiug.30112106882779 93 11 first first ADV uiug.30112106882779 93 12 reported report VERB uiug.30112106882779 93 13 in in ADP uiug.30112106882779 93 14 reference reference NOUN uiug.30112106882779 93 15 3 3 NUM uiug.30112106882779 93 16 and and CCONJ uiug.30112106882779 93 17 shown show VERB uiug.30112106882779 93 18 in in ADP uiug.30112106882779 93 19 figure figure NOUN uiug.30112106882779 93 20 1 1 NUM uiug.30112106882779 93 21 occurs occur VERB uiug.30112106882779 93 22 . . PUNCT uiug.30112106882779 94 1 all all PRON uiug.30112106882779 94 2 but but SCONJ uiug.30112106882779 94 3 one one NUM uiug.30112106882779 94 4 of of ADP uiug.30112106882779 94 5 the the DET uiug.30112106882779 94 6 poles pole NOUN uiug.30112106882779 94 7 ( ( PUNCT uiug.30112106882779 94 8 eigenvalues eigenvalue NOUN uiug.30112106882779 94 9 ) ) PUNCT uiug.30112106882779 94 10 move move VERB uiug.30112106882779 94 11 rapidly rapidly ADV uiug.30112106882779 94 12 into into ADP uiug.30112106882779 94 13 the the DET uiug.30112106882779 94 14 ywr ywr ADJ uiug.30112106882779 94 15 - - PUNCT uiug.30112106882779 94 16 plane plane NOUN uiug.30112106882779 94 17 where where SCONJ uiug.30112106882779 94 18 w w NOUN uiug.30112106882779 94 19 = = X uiug.30112106882779 94 20 wr wr PROPN uiug.30112106882779 94 21 iy iy PROPN uiug.30112106882779 94 22 and and CCONJ uiug.30112106882779 94 23 f f PROPN uiug.30112106882779 94 24 o o PROPN uiug.30112106882779 94 25 exp(iwt exp(iwt PROPN uiug.30112106882779 94 26 ) ) PUNCT uiug.30112106882779 94 27 . . PUNCT uiug.30112106882779 95 1 the the DET uiug.30112106882779 95 2 anomalous anomalous ADJ uiug.30112106882779 95 3 pole pole NOUN uiug.30112106882779 95 4 is be AUX uiug.30112106882779 95 5 detained detain VERB uiug.30112106882779 95 6 in in ADP uiug.30112106882779 95 7 the the DET uiug.30112106882779 95 8 region region NOUN uiug.30112106882779 95 9 of of ADP uiug.30112106882779 95 10 the the DET uiug.30112106882779 95 11 landau landau PROPN uiug.30112106882779 95 12 pole pole NOUN uiug.30112106882779 95 13 . . PUNCT uiug.30112106882779 96 1 detailed detailed ADJ uiug.30112106882779 96 2 investigation investigation NOUN uiug.30112106882779 96 3 of of ADP uiug.30112106882779 96 4 the the DET uiug.30112106882779 96 5 behavior behavior NOUN uiug.30112106882779 96 6 of of ADP uiug.30112106882779 96 7 the the DET uiug.30112106882779 96 8 anomalous anomalous ADJ uiug.30112106882779 96 9 pole pole NOUN uiug.30112106882779 96 10 for for ADP uiug.30112106882779 96 11 fourierhermite fourierhermite NOUN uiug.30112106882779 96 12 expansions expansion NOUN uiug.30112106882779 96 13 up up ADV uiug.30112106882779 96 14 to to PART uiug.30112106882779 96 15 order order NOUN uiug.30112106882779 96 16 63 63 NUM uiug.30112106882779 96 17 suggested suggest VERB uiug.30112106882779 96 18 that that SCONJ uiug.30112106882779 96 19 the the DET uiug.30112106882779 96 20 equivalence equivalence NOUN uiug.30112106882779 96 21 of of ADP uiug.30112106882779 96 22 van van PROPN uiug.30112106882779 96 23 kampen kampen PROPN uiug.30112106882779 96 24 and and CCONJ uiug.30112106882779 96 25 landau landau NOUN uiug.30112106882779 96 26 treatments treatment NOUN uiug.30112106882779 96 27 was be AUX uiug.30112106882779 96 28 being be AUX uiug.30112106882779 96 29 observed observe VERB uiug.30112106882779 96 30 within within ADP uiug.30112106882779 96 31 the the DET uiug.30112106882779 96 32 fourier fourier NOUN uiug.30112106882779 96 33 - - PUNCT uiug.30112106882779 96 34 hermite hermite NOUN uiug.30112106882779 96 35 representation representation NOUN uiug.30112106882779 96 36 . . PUNCT uiug.30112106882779 97 1 a a DET uiug.30112106882779 97 2 more more ADV uiug.30112106882779 97 3 powerful powerful ADJ uiug.30112106882779 97 4 numerical numerical ADJ uiug.30112106882779 97 5 technique technique NOUN uiug.30112106882779 97 6 has have AUX uiug.30112106882779 97 7 verified verify VERB uiug.30112106882779 97 8 the the DET uiug.30112106882779 97 9 behavior behavior NOUN uiug.30112106882779 97 10 to to ADP uiug.30112106882779 97 11 orders order NOUN uiug.30112106882779 97 12 over over ADP uiug.30112106882779 97 13 1000 1000 NUM uiug.30112106882779 97 14 , , PUNCT uiug.30112106882779 97 15 which which PRON uiug.30112106882779 97 16 is be AUX uiug.30112106882779 97 17 sufficiently sufficiently ADV uiug.30112106882779 97 18 near near ADP uiug.30112106882779 97 19 infinity infinity NOUN uiug.30112106882779 97 20 to to PART uiug.30112106882779 97 21 establish establish VERB uiug.30112106882779 97 22 the the DET uiug.30112106882779 97 23 nonuniformity nonuniformity NOUN uiug.30112106882779 97 24 convergent convergent ADJ uiug.30112106882779 97 25 behavior behavior NOUN uiug.30112106882779 97 26 of of ADP uiug.30112106882779 97 27 the the DET uiug.30112106882779 97 28 approximation approximation NOUN uiug.30112106882779 97 29 curve curve NOUN uiug.30112106882779 97 30 as as ADP uiug.30112106882779 97 31 nand nand PROPN uiug.30112106882779 97 32 b-0 b-0 PROPN uiug.30112106882779 97 33 . . PUNCT uiug.30112106882779 98 1 numerical numerical PROPN uiug.30112106882779 98 2 algorithm algorithm PROPN uiug.30112106882779 98 3 the the DET uiug.30112106882779 98 4 improved improve VERB uiug.30112106882779 98 5 technique technique NOUN uiug.30112106882779 98 6 is be AUX uiug.30112106882779 98 7 based base VERB uiug.30112106882779 98 8 on on ADP uiug.30112106882779 98 9 recursion recursion NOUN uiug.30112106882779 98 10 ( ( PUNCT uiug.30112106882779 98 11 ref ref NOUN uiug.30112106882779 98 12 . . PUNCT uiug.30112106882779 98 13 7 7 X uiug.30112106882779 98 14 ) ) PUNCT uiug.30112106882779 98 15 . . PUNCT uiug.30112106882779 99 1 if if SCONJ uiug.30112106882779 99 2 the the DET uiug.30112106882779 99 3 determinant determinant NOUN uiug.30112106882779 99 4 of of ADP uiug.30112106882779 99 5 order order NOUN uiug.30112106882779 99 6 ( ( PUNCT uiug.30112106882779 99 7 n n CCONJ uiug.30112106882779 99 8 + + ADP uiug.30112106882779 99 9 1 1 X uiug.30112106882779 99 10 ) ) PUNCT uiug.30112106882779 99 11 in in ADP uiug.30112106882779 99 12 equation equation NOUN uiug.30112106882779 99 13 ( ( PUNCT uiug.30112106882779 99 14 4 4 NUM uiug.30112106882779 99 15 ) ) PUNCT uiug.30112106882779 99 16 is be AUX uiug.30112106882779 99 17 denoted denote VERB uiug.30112106882779 99 18 as as ADP uiug.30112106882779 99 19 dn+1 dn+1 ADV uiug.30112106882779 99 20 , , PUNCT uiug.30112106882779 99 21 expansion expansion NOUN uiug.30112106882779 99 22 on on ADP uiug.30112106882779 99 23 the the DET uiug.30112106882779 99 24 last last ADJ uiug.30112106882779 99 25 column column NOUN uiug.30112106882779 99 26 yields yield VERB uiug.30112106882779 99 27 7 7 NUM uiug.30112106882779 99 28 dn+1 dn+1 NOUN uiug.30112106882779 99 29 = = VERB uiug.30112106882779 99 30 ( ( PUNCT uiug.30112106882779 99 31 w w X uiug.30112106882779 99 32 + + CCONJ uiug.30112106882779 99 33 inb)dn inb)dn ADV uiug.30112106882779 99 34 nkadn-1 nkadn-1 PROPN uiug.30112106882779 99 35 ( ( PUNCT uiug.30112106882779 99 36 5 5 NUM uiug.30112106882779 99 37 ) ) PUNCT uiug.30112106882779 99 38 in in ADP uiug.30112106882779 99 39 particular particular ADJ uiug.30112106882779 99 40 , , PUNCT uiug.30112106882779 99 41 d1 d1 X uiug.30112106882779 99 42 = = X uiug.30112106882779 99 43 w w PROPN uiug.30112106882779 99 44 d2 d2 PROPN uiug.30112106882779 99 45 = = NOUN uiug.30112106882779 99 46 www www PROPN uiug.30112106882779 99 47 + + PROPN uiug.30112106882779 99 48 ib ib PROPN uiug.30112106882779 99 49 ) ) PUNCT uiug.30112106882779 99 50 ( ( PUNCT uiug.30112106882779 99 51 i i NOUN uiug.30112106882779 99 52 + + CCONJ uiug.30112106882779 99 53 k2 k2 ADJ uiug.30112106882779 99 54 ) ) PUNCT uiug.30112106882779 99 55 in in ADP uiug.30112106882779 99 56 principle principle NOUN uiug.30112106882779 99 57 , , PUNCT uiug.30112106882779 99 58 the the DET uiug.30112106882779 99 59 value value NOUN uiug.30112106882779 99 60 of of ADP uiug.30112106882779 99 61 dn+1 dn+1 NOUN uiug.30112106882779 99 62 for for ADP uiug.30112106882779 99 63 arbitrary arbitrary ADJ uiug.30112106882779 99 64 large large ADJ uiug.30112106882779 99 65 n n NOUN uiug.30112106882779 99 66 is be AUX uiug.30112106882779 99 67 obtained obtain VERB uiug.30112106882779 99 68 in in ADP uiug.30112106882779 99 69 about about ADP uiug.30112106882779 99 70 n n CCONJ uiug.30112106882779 99 71 steps step NOUN uiug.30112106882779 99 72 , , PUNCT uiug.30112106882779 99 73 each each PRON uiug.30112106882779 99 74 of of ADP uiug.30112106882779 99 75 simple simple ADJ uiug.30112106882779 99 76 multiplication multiplication NOUN uiug.30112106882779 99 77 and and CCONJ uiug.30112106882779 99 78 addition addition NOUN uiug.30112106882779 99 79 . . PUNCT uiug.30112106882779 100 1 in in ADP uiug.30112106882779 100 2 contrast contrast NOUN uiug.30112106882779 100 3 , , PUNCT uiug.30112106882779 100 4 the the DET uiug.30112106882779 100 5 full full ADJ uiug.30112106882779 100 6 matrix matrix NOUN uiug.30112106882779 100 7 treatment treatment NOUN uiug.30112106882779 100 8 of of ADP uiug.30112106882779 100 9 reference reference NOUN uiug.30112106882779 100 10 3 3 NUM uiug.30112106882779 100 11 requires require VERB uiug.30112106882779 100 12 n2 n2 PROPN uiug.30112106882779 100 13 words word NOUN uiug.30112106882779 100 14 just just ADV uiug.30112106882779 100 15 to to PART uiug.30112106882779 100 16 record record VERB uiug.30112106882779 100 17 the the DET uiug.30112106882779 100 18 elements element NOUN uiug.30112106882779 100 19 of of ADP uiug.30112106882779 100 20 the the DET uiug.30112106882779 100 21 matrix matrix NOUN uiug.30112106882779 100 22 . . PUNCT uiug.30112106882779 101 1 to to PART uiug.30112106882779 101 2 apply apply VERB uiug.30112106882779 101 3 recursion recursion NOUN uiug.30112106882779 101 4 equation equation NOUN uiug.30112106882779 101 5 ( ( PUNCT uiug.30112106882779 101 6 5 5 NUM uiug.30112106882779 101 7 ) ) PUNCT uiug.30112106882779 101 8 to to ADP uiug.30112106882779 101 9 the the DET uiug.30112106882779 101 10 eigenvalue eigenvalue NOUN uiug.30112106882779 101 11 problem problem NOUN uiug.30112106882779 101 12 , , PUNCT uiug.30112106882779 101 13 the the DET uiug.30112106882779 101 14 fourier fourier NOUN uiug.30112106882779 101 15 - - PUNCT uiug.30112106882779 101 16 hermite hermite NOUN uiug.30112106882779 101 17 root root NOUN uiug.30112106882779 101 18 ( ( PUNCT uiug.30112106882779 101 19 eigenvalue eigenvalue NOUN uiug.30112106882779 101 20 ) ) PUNCT uiug.30112106882779 101 21 nearest near ADJ uiug.30112106882779 101 22 in in ADP uiug.30112106882779 101 23 value value NOUN uiug.30112106882779 101 24 to to ADP uiug.30112106882779 101 25 the the DET uiug.30112106882779 101 26 real real ADJ uiug.30112106882779 101 27 part part NOUN uiug.30112106882779 101 28 of of ADP uiug.30112106882779 101 29 the the DET uiug.30112106882779 101 30 landau landau NOUN uiug.30112106882779 101 31 pole pole NOUN uiug.30112106882779 101 32 is be AUX uiug.30112106882779 101 33 identified identify VERB uiug.30112106882779 101 34 for for ADP uiug.30112106882779 101 35 b b PROPN uiug.30112106882779 101 36 = = SYM uiug.30112106882779 101 37 0 0 NUM uiug.30112106882779 101 38 . . PUNCT uiug.30112106882779 102 1 a a DET uiug.30112106882779 102 2 small small ADJ uiug.30112106882779 102 3 positive positive ADJ uiug.30112106882779 102 4 increment increment NOUN uiug.30112106882779 102 5 in in ADP uiug.30112106882779 102 6 b b PROPN uiug.30112106882779 102 7 , , PUNCT uiug.30112106882779 102 8 ab ab PROPN uiug.30112106882779 102 9 , , PUNCT uiug.30112106882779 102 10 and and CCONJ uiug.30112106882779 102 11 a a DET uiug.30112106882779 102 12 small small ADJ uiug.30112106882779 102 13 increment increment NOUN uiug.30112106882779 102 14 in in ADP uiug.30112106882779 102 15 w w PROPN uiug.30112106882779 102 16 , , PUNCT uiug.30112106882779 102 17 aw aw INTJ uiug.30112106882779 102 18 , , PUNCT uiug.30112106882779 102 19 are be AUX uiug.30112106882779 102 20 introduced introduce VERB uiug.30112106882779 102 21 and and CCONJ uiug.30112106882779 102 22 the the DET uiug.30112106882779 102 23 approximate approximate ADJ uiug.30112106882779 102 24 derivative derivative PROPN uiug.30112106882779 102 25 adn+1/4w adn+1/4w PROPN uiug.30112106882779 102 26 is be AUX uiug.30112106882779 102 27 computed compute VERB uiug.30112106882779 102 28 . . PUNCT uiug.30112106882779 103 1 use use NOUN uiug.30112106882779 103 2 of of ADP uiug.30112106882779 103 3 the the DET uiug.30112106882779 103 4 approximate approximate ADJ uiug.30112106882779 103 5 derivative derivative NOUN uiug.30112106882779 103 6 in in ADP uiug.30112106882779 103 7 the the DET uiug.30112106882779 103 8 newton newton PROPN uiug.30112106882779 103 9 - - PUNCT uiug.30112106882779 103 10 raphson raphson PROPN uiug.30112106882779 103 11 method method NOUN uiug.30112106882779 103 12 gives give VERB uiug.30112106882779 103 13 a a DET uiug.30112106882779 103 14 first first ADJ uiug.30112106882779 103 15 approximation approximation NOUN uiug.30112106882779 103 16 to to ADP uiug.30112106882779 103 17 the the DET uiug.30112106882779 103 18 shifted shifted ADJ uiug.30112106882779 103 19 eigenvalue eigenvalue NOUN uiug.30112106882779 103 20 . . PUNCT uiug.30112106882779 104 1 in in ADP uiug.30112106882779 104 2 general general ADJ uiug.30112106882779 104 3 , , PUNCT uiug.30112106882779 104 4 δω δω PROPN uiug.30112106882779 104 5 n+1 n+1 X uiug.30112106882779 104 6 = = PUNCT uiug.30112106882779 104 7 wn wn PROPN uiug.30112106882779 104 8 dn+1(b+ab dn+1(b+ab PROPN uiug.30112106882779 104 9 , , PUNCT uiug.30112106882779 104 10 wn wn PROPN uiug.30112106882779 104 11 ) ) PUNCT uiug.30112106882779 104 12 adn-1 adn-1 ADP uiug.30112106882779 104 13 + + PROPN uiug.30112106882779 104 14 ( ( PUNCT uiug.30112106882779 104 15 6 6 X uiug.30112106882779 104 16 ) ) PUNCT uiug.30112106882779 104 17 adn+1 adn+1 ADJ uiug.30112106882779 104 18 = = NOUN uiug.30112106882779 104 19 dn+1(b+ab dn+1(b+ab PROPN uiug.30112106882779 104 20 , , PUNCT uiug.30112106882779 104 21 wn+aw wn+aw PROPN uiug.30112106882779 104 22 ) ) PUNCT uiug.30112106882779 104 23 dn+1(b+ab dn+1(b+ab NOUN uiug.30112106882779 104 24 , , PUNCT uiug.30112106882779 104 25 wn wn PROPN uiug.30112106882779 104 26 ) ) PUNCT uiug.30112106882779 104 27 after after ADP uiug.30112106882779 104 28 the the DET uiug.30112106882779 104 29 first first ADJ uiug.30112106882779 104 30 step step NOUN uiug.30112106882779 104 31 , , PUNCT uiug.30112106882779 104 32 iteration iteration NOUN uiug.30112106882779 104 33 on on ADP uiug.30112106882779 104 34 the the DET uiug.30112106882779 104 35 quasi quasi PROPN uiug.30112106882779 104 36 - - PROPN uiug.30112106882779 104 37 newton newton PROPN uiug.30112106882779 104 38 - - PUNCT uiug.30112106882779 104 39 raphson raphson PROPN uiug.30112106882779 104 40 equations equation NOUN uiug.30112106882779 104 41 ( ( PUNCT uiug.30112106882779 104 42 6 6 NUM uiug.30112106882779 104 43 ) ) PUNCT uiug.30112106882779 104 44 yields yield VERB uiug.30112106882779 104 45 a a DET uiug.30112106882779 104 46 sharp sharp ADJ uiug.30112106882779 104 47 value value NOUN uiug.30112106882779 104 48 of of ADP uiug.30112106882779 104 49 w(ab w(ab PROPN uiug.30112106882779 104 50 ) ) PUNCT uiug.30112106882779 104 51 . . PUNCT uiug.30112106882779 105 1 a a DET uiug.30112106882779 105 2 second second ADJ uiug.30112106882779 105 3 increment increment NOUN uiug.30112106882779 105 4 of of ADP uiug.30112106882779 105 5 ab ab PROPN uiug.30112106882779 105 6 leads lead VERB uiug.30112106882779 105 7 on on ADP uiug.30112106882779 105 8 to to ADP uiug.30112106882779 105 9 w(2ab w(2ab PROPN uiug.30112106882779 105 10 ) ) PUNCT uiug.30112106882779 105 11 , , PUNCT uiug.30112106882779 105 12 and and CCONJ uiug.30112106882779 105 13 in in ADP uiug.30112106882779 105 14 like like INTJ uiug.30112106882779 105 15 manner manner NOUN uiug.30112106882779 105 16 the the DET uiug.30112106882779 105 17 progress progress NOUN uiug.30112106882779 105 18 of of ADP uiug.30112106882779 105 19 w(b w(b PROPN uiug.30112106882779 105 20 ) ) PUNCT uiug.30112106882779 105 21 = = PROPN uiug.30112106882779 105 22 wr wr PROPN uiug.30112106882779 105 23 iy iy PROPN uiug.30112106882779 105 24 on on ADP uiug.30112106882779 105 25 the the DET uiug.30112106882779 105 26 ywr ywr ADJ uiug.30112106882779 105 27 - - PUNCT uiug.30112106882779 105 28 plane plane NOUN uiug.30112106882779 105 29 is be AUX uiug.30112106882779 105 30 tracked track VERB uiug.30112106882779 105 31 . . PUNCT uiug.30112106882779 106 1 the the DET uiug.30112106882779 106 2 chief chief ADJ uiug.30112106882779 106 3 difficulties difficulty NOUN uiug.30112106882779 106 4 are be AUX uiug.30112106882779 106 5 found find VERB uiug.30112106882779 106 6 in in ADP uiug.30112106882779 106 7 scaling scale VERB uiug.30112106882779 106 8 the the DET uiug.30112106882779 106 9 large large ADJ uiug.30112106882779 106 10 numbers number NOUN uiug.30112106882779 106 11 which which PRON uiug.30112106882779 106 12 arise arise VERB uiug.30112106882779 106 13 for for ADP uiug.30112106882779 106 14 large large ADJ uiug.30112106882779 106 15 n n NOUN uiug.30112106882779 106 16 and and CCONJ uiug.30112106882779 106 17 in in ADP uiug.30112106882779 106 18 the the DET uiug.30112106882779 106 19 necessity necessity NOUN uiug.30112106882779 106 20 of of ADP uiug.30112106882779 106 21 iteration iteration NOUN uiug.30112106882779 106 22 to to PART uiug.30112106882779 106 23 sharpen sharpen VERB uiug.30112106882779 106 24 the the DET uiug.30112106882779 106 25 values value NOUN uiug.30112106882779 106 26 of of ADP uiug.30112106882779 106 27 w(b w(b PROPN uiug.30112106882779 106 28 ) ) PUNCT uiug.30112106882779 106 29 . . PUNCT uiug.30112106882779 107 1 a a DET uiug.30112106882779 107 2 sample sample NOUN uiug.30112106882779 107 3 fortran fortran PROPN uiug.30112106882779 107 4 program program NOUN uiug.30112106882779 107 5 is be AUX uiug.30112106882779 107 6 shown show VERB uiug.30112106882779 107 7 in in ADP uiug.30112106882779 107 8 appendix appendix ADJ uiug.30112106882779 107 9 a. a. NOUN uiug.30112106882779 107 10 = = PUNCT uiug.30112106882779 107 11 use use NOUN uiug.30112106882779 107 12 of of ADP uiug.30112106882779 107 13 the the DET uiug.30112106882779 107 14 recursion recursion NOUN uiug.30112106882779 107 15 equation equation NOUN uiug.30112106882779 107 16 ( ( PUNCT uiug.30112106882779 107 17 5 5 X uiug.30112106882779 107 18 ) ) PUNCT uiug.30112106882779 107 19 simplifies simplify VERB uiug.30112106882779 107 20 the the DET uiug.30112106882779 107 21 task task NOUN uiug.30112106882779 107 22 of of ADP uiug.30112106882779 107 23 finding find VERB uiug.30112106882779 107 24 eigenvalues eigenvalue NOUN uiug.30112106882779 107 25 for for ADP uiug.30112106882779 107 26 the the DET uiug.30112106882779 107 27 b b NOUN uiug.30112106882779 107 28 = = SYM uiug.30112106882779 107 29 0 0 NUM uiug.30112106882779 107 30 ( ( PUNCT uiug.30112106882779 107 31 collisionless collisionless NOUN uiug.30112106882779 107 32 ) ) PUNCT uiug.30112106882779 107 33 case case NOUN uiug.30112106882779 107 34 of of ADP uiug.30112106882779 107 35 equation equation NOUN uiug.30112106882779 107 36 ( ( PUNCT uiug.30112106882779 107 37 4 4 NUM uiug.30112106882779 107 38 ) ) PUNCT uiug.30112106882779 107 39 . . PUNCT uiug.30112106882779 108 1 easy easy ADJ uiug.30112106882779 108 2 evaluation evaluation NOUN uiug.30112106882779 108 3 of of ADP uiug.30112106882779 108 4 dn+1(w dn+1(w SPACE uiug.30112106882779 108 5 ) ) PUNCT uiug.30112106882779 108 6 at at ADP uiug.30112106882779 108 7 any any DET uiug.30112106882779 108 8 n n NOUN uiug.30112106882779 108 9 per per ADP uiug.30112106882779 108 10 . . PUNCT uiug.30112106882779 108 11 mits mit VERB uiug.30112106882779 108 12 a a DET uiug.30112106882779 108 13 movement movement NOUN uiug.30112106882779 108 14 from from ADP uiug.30112106882779 108 15 w w PROPN uiug.30112106882779 108 16 = = SYM uiug.30112106882779 108 17 0 0 NUM uiug.30112106882779 108 18 in in ADP uiug.30112106882779 108 19 steps step NOUN uiug.30112106882779 108 20 of of ADP uiug.30112106882779 108 21 aw aw INTJ uiug.30112106882779 108 22 > > SYM uiug.30112106882779 108 23 0 0 NUM uiug.30112106882779 108 24 . . PUNCT uiug.30112106882779 109 1 sign sign VERB uiug.30112106882779 109 2 changes change NOUN uiug.30112106882779 109 3 of of ADP uiug.30112106882779 109 4 dn+1(w dn+1(w SPACE uiug.30112106882779 109 5 ) ) PUNCT uiug.30112106882779 109 6 localize localize VERB uiug.30112106882779 109 7 each each DET uiug.30112106882779 109 8 root root NOUN uiug.30112106882779 109 9 within within ADP uiug.30112106882779 109 10 aw aw INTJ uiug.30112106882779 109 11 , , PUNCT uiug.30112106882779 109 12 and and CCONJ uiug.30112106882779 109 13 iteration iteration NOUN uiug.30112106882779 109 14 sharpens sharpen VERB uiug.30112106882779 109 15 the the DET uiug.30112106882779 109 16 root root NOUN uiug.30112106882779 109 17 . . PUNCT uiug.30112106882779 110 1 the the DET uiug.30112106882779 110 2 tridiagonal tridiagonal ADJ uiug.30112106882779 110 3 form form NOUN uiug.30112106882779 110 4 of of ADP uiug.30112106882779 110 5 the the DET uiug.30112106882779 110 6 matrix matrix NOUN uiug.30112106882779 110 7 in in ADP uiug.30112106882779 110 8 equation equation NOUN uiug.30112106882779 110 9 ( ( PUNCT uiug.30112106882779 110 10 4 4 X uiug.30112106882779 110 11 ) ) PUNCT uiug.30112106882779 110 12 makes make VERB uiug.30112106882779 110 13 trivial trivial ADJ uiug.30112106882779 110 14 ( ( PUNCT uiug.30112106882779 110 15 for for ADP uiug.30112106882779 110 16 k k X uiug.30112106882779 110 17 = = SYM uiug.30112106882779 110 18 0.5 0.5 NUM uiug.30112106882779 110 19 ) ) PUNCT uiug.30112106882779 110 20 the the DET uiug.30112106882779 110 21 calculation calculation NOUN uiug.30112106882779 110 22 of of ADP uiug.30112106882779 110 23 the the DET uiug.30112106882779 110 24 corresponding correspond VERB uiug.30112106882779 110 25 eigenvectors eigenvector NOUN uiug.30112106882779 110 26 . . PUNCT uiug.30112106882779 111 1 in in ADP uiug.30112106882779 111 2 reference reference NOUN uiug.30112106882779 111 3 5 5 NUM uiug.30112106882779 111 4 , , PUNCT uiug.30112106882779 111 5 histograms histogram NOUN uiug.30112106882779 111 6 corresponding correspond VERB uiug.30112106882779 111 7 to to ADP uiug.30112106882779 111 8 an an DET uiug.30112106882779 111 9 initial initial ADJ uiug.30112106882779 111 10 cos(kx cos(kx NOUN uiug.30112106882779 111 11 ) ) PUNCT uiug.30112106882779 111 12 spatial spatial ADJ uiug.30112106882779 111 13 disturbance disturbance NOUN uiug.30112106882779 111 14 of of ADP uiug.30112106882779 111 15 plasma plasma NOUN uiug.30112106882779 111 16 density density NOUN uiug.30112106882779 111 17 were be AUX uiug.30112106882779 111 18 constructed construct VERB uiug.30112106882779 111 19 from from ADP uiug.30112106882779 111 20 the the DET uiug.30112106882779 111 21 eigenvectors eigenvector NOUN uiug.30112106882779 111 22 of of ADP uiug.30112106882779 111 23 the the DET uiug.30112106882779 111 24 matrix matrix NOUN uiug.30112106882779 111 25 of of ADP uiug.30112106882779 111 26 equation equation NOUN uiug.30112106882779 111 27 ( ( PUNCT uiug.30112106882779 111 28 4 4 NUM uiug.30112106882779 111 29 ) ) PUNCT uiug.30112106882779 111 30 . . PUNCT uiug.30112106882779 112 1 full full ADJ uiug.30112106882779 112 2 matrix matrix NOUN uiug.30112106882779 112 3 methods method NOUN uiug.30112106882779 112 4 were be AUX uiug.30112106882779 112 5 barely barely ADV uiug.30112106882779 112 6 adequate adequate ADJ uiug.30112106882779 112 7 to to PART uiug.30112106882779 112 8 yield yield VERB uiug.30112106882779 112 9 histograms histogram NOUN uiug.30112106882779 112 10 for for ADP uiug.30112106882779 112 11 the the DET uiug.30112106882779 112 12 case case NOUN uiug.30112106882779 112 13 of of ADP uiug.30112106882779 112 14 truncation truncation NOUN uiug.30112106882779 112 15 8 8 NUM uiug.30112106882779 112 16 at at ADP uiug.30112106882779 112 17 n n NOUN uiug.30112106882779 112 18 = = ADP uiug.30112106882779 112 19 99 99 NUM uiug.30112106882779 112 20 , , PUNCT uiug.30112106882779 112 21 and and CCONJ uiug.30112106882779 112 22 then then ADV uiug.30112106882779 112 23 only only ADV uiug.30112106882779 112 24 because because SCONJ uiug.30112106882779 112 25 b b NOUN uiug.30112106882779 112 26 = = SYM uiug.30112106882779 112 27 0 0 NUM uiug.30112106882779 112 28 produces produce VERB uiug.30112106882779 112 29 real real ADJ uiug.30112106882779 112 30 eigenvalues eigenvalue NOUN uiug.30112106882779 112 31 and and CCONJ uiug.30112106882779 112 32 eigenvectors eigenvector NOUN uiug.30112106882779 112 33 . . PUNCT uiug.30112106882779 113 1 with with ADP uiug.30112106882779 113 2 the the DET uiug.30112106882779 113 3 recursion recursion NOUN uiug.30112106882779 113 4 methods method NOUN uiug.30112106882779 113 5 , , PUNCT uiug.30112106882779 113 6 histograms histogram NOUN uiug.30112106882779 113 7 for for ADP uiug.30112106882779 113 8 n n CCONJ uiug.30112106882779 113 9 > > X uiug.30112106882779 113 10 103 103 NUM uiug.30112106882779 113 11 have have AUX uiug.30112106882779 113 12 now now ADV uiug.30112106882779 113 13 been be AUX uiug.30112106882779 113 14 constructed construct VERB uiug.30112106882779 113 15 . . PUNCT uiug.30112106882779 114 1 the the DET uiug.30112106882779 114 2 oscillations oscillation NOUN uiug.30112106882779 114 3 in in ADP uiug.30112106882779 114 4 density density NOUN uiug.30112106882779 114 5 which which PRON uiug.30112106882779 114 6 follow follow VERB uiug.30112106882779 114 7 an an DET uiug.30112106882779 114 8 initial initial ADJ uiug.30112106882779 114 9 cos(kx cos(kx NOUN uiug.30112106882779 114 10 ) ) PUNCT uiug.30112106882779 114 11 spatial spatial ADJ uiug.30112106882779 114 12 density density NOUN uiug.30112106882779 114 13 perturbation perturbation NOUN uiug.30112106882779 114 14 may may AUX uiug.30112106882779 114 15 be be AUX uiug.30112106882779 114 16 represented represent VERB uiug.30112106882779 114 17 exactly exactly ADV uiug.30112106882779 114 18 by by ADP uiug.30112106882779 114 19 the the DET uiug.30112106882779 114 20 following follow VERB uiug.30112106882779 114 21 fourier fourier NOUN uiug.30112106882779 114 22 integral integral ADJ uiug.30112106882779 114 23 over over ADP uiug.30112106882779 114 24 a a DET uiug.30112106882779 114 25 real real ADJ uiug.30112106882779 114 26 phase phase NOUN uiug.30112106882779 114 27 velocity velocity NOUN uiug.30112106882779 114 28 w w NOUN uiug.30112106882779 114 29 : : PUNCT uiug.30112106882779 114 30 n(k n(k PROPN uiug.30112106882779 114 31 , , PUNCT uiug.30112106882779 114 32 t t PROPN uiug.30112106882779 114 33 ) ) PUNCT uiug.30112106882779 114 34 = = PROPN uiug.30112106882779 114 35 s s VERB uiug.30112106882779 114 36 + + PROPN uiug.30112106882779 114 37 ( ( PUNCT uiug.30112106882779 114 38 w)exp(ikwt)dw w)exp(ikwt)dw PROPN uiug.30112106882779 114 39 n n NOUN uiug.30112106882779 114 40 ( ( PUNCT uiug.30112106882779 114 41 7 7 NUM uiug.30112106882779 114 42 ) ) PUNCT uiug.30112106882779 114 43 7 7 NUM uiug.30112106882779 114 44 where where SCONJ uiug.30112106882779 114 45 kw kw PROPN uiug.30112106882779 114 46 = = X uiug.30112106882779 114 47 w w PROPN uiug.30112106882779 114 48 , , PUNCT uiug.30112106882779 114 49 a a DET uiug.30112106882779 114 50 real real ADJ uiug.30112106882779 114 51 frequency frequency NOUN uiug.30112106882779 114 52 . . PUNCT uiug.30112106882779 115 1 the the DET uiug.30112106882779 115 2 reality reality NOUN uiug.30112106882779 115 3 of of ADP uiug.30112106882779 115 4 the the DET uiug.30112106882779 115 5 fourier fourier NOUN uiug.30112106882779 115 6 - - PUNCT uiug.30112106882779 115 7 hermite hermite NOUN uiug.30112106882779 115 8 eigenfrequencies eigenfrequencie NOUN uiug.30112106882779 115 9 for for ADP uiug.30112106882779 115 10 b b NOUN uiug.30112106882779 115 11 = = SYM uiug.30112106882779 115 12 0 0 NUM uiug.30112106882779 115 13 permits permit VERB uiug.30112106882779 115 14 the the DET uiug.30112106882779 115 15 construction construction NOUN uiug.30112106882779 115 16 of of ADP uiug.30112106882779 115 17 a a DET uiug.30112106882779 115 18 histogram histogram NOUN uiug.30112106882779 115 19 analogous analogous NOUN uiug.30112106882779 115 20 to to ADP uiug.30112106882779 115 21 4(w 4(w NUM uiug.30112106882779 115 22 ) ) PUNCT uiug.30112106882779 115 23 in in ADP uiug.30112106882779 115 24 equation equation NOUN uiug.30112106882779 115 25 ( ( PUNCT uiug.30112106882779 115 26 7 7 NUM uiug.30112106882779 115 27 ) ) PUNCT uiug.30112106882779 115 28 . . PUNCT uiug.30112106882779 116 1 in in ADP uiug.30112106882779 116 2 the the DET uiug.30112106882779 116 3 limit limit NOUN uiug.30112106882779 116 4 of of ADP uiug.30112106882779 116 5 infinite infinite PROPN uiug.30112106882779 116 6 n n CCONJ uiug.30112106882779 116 7 the the DET uiug.30112106882779 116 8 histogram histogram NOUN uiug.30112106882779 116 9 approaches approach VERB uiug.30112106882779 116 10 ¥ ¥ PROPN uiug.30112106882779 116 11 ( ( PUNCT uiug.30112106882779 116 12 w w NOUN uiug.30112106882779 116 13 ) ) PUNCT uiug.30112106882779 116 14 . . PUNCT uiug.30112106882779 117 1 in in ADP uiug.30112106882779 117 2 appendix appendix PROPN uiug.30112106882779 117 3 b b PROPN uiug.30112106882779 117 4 the the DET uiug.30112106882779 117 5 derivation derivation NOUN uiug.30112106882779 117 6 oft oft ADV uiug.30112106882779 117 7 is be AUX uiug.30112106882779 117 8 given give VERB uiug.30112106882779 117 9 . . PUNCT uiug.30112106882779 118 1 as as SCONJ uiug.30112106882779 118 2 shown show VERB uiug.30112106882779 118 3 in in ADP uiug.30112106882779 118 4 reference reference NOUN uiug.30112106882779 118 5 5 5 NUM uiug.30112106882779 118 6 , , PUNCT uiug.30112106882779 118 7 the the DET uiug.30112106882779 118 8 ordinate ordinate NOUN uiug.30112106882779 118 9 of of ADP uiug.30112106882779 118 10 the the DET uiug.30112106882779 118 11 histogram histogram NOUN uiug.30112106882779 118 12 between between ADP uiug.30112106882779 118 13 the the DET uiug.30112106882779 118 14 jth jth PROPN uiug.30112106882779 118 15 and and CCONJ uiug.30112106882779 118 16 ( ( PUNCT uiug.30112106882779 118 17 i i NOUN uiug.30112106882779 118 18 + + CCONJ uiug.30112106882779 118 19 1)th 1)th NUM uiug.30112106882779 118 20 eigenvelocities eigenvelocitie NOUN uiug.30112106882779 118 21 may may AUX uiug.30112106882779 118 22 be be AUX uiug.30112106882779 118 23 assigned assign VERB uiug.30112106882779 118 24 as as ADP uiug.30112106882779 118 25 ! ! PUNCT uiug.30112106882779 119 1 + + CCONJ uiug.30112106882779 119 2 ( ( PUNCT uiug.30112106882779 119 3 2 2 NUM uiug.30112106882779 119 4 2 2 NUM uiug.30112106882779 119 5 vj,0 vj,0 PROPN uiug.30112106882779 119 6 + + PROPN uiug.30112106882779 119 7 vj+1,0 vj+1,0 NOUN uiug.30112106882779 119 8 ) ) PUNCT uiug.30112106882779 120 1 wj+1 wj+1 PROPN uiug.30112106882779 120 2 w w PROPN uiug.30112106882779 120 3 ; ; PUNCT uiug.30112106882779 120 4 1,0 1,0 NUM uiug.30112106882779 120 5 ) ) PUNCT uiug.30112106882779 120 6 w w PROPN uiug.30112106882779 120 7 4j 4j NOUN uiug.30112106882779 120 8 j j NOUN uiug.30112106882779 120 9 , , PUNCT uiug.30112106882779 120 10 j+1 j+1 PROPN uiug.30112106882779 120 11 ( ( PUNCT uiug.30112106882779 120 12 wj+1 wj+1 PROPN uiug.30112106882779 120 13 > > X uiug.30112106882779 120 14 w w PROPN uiug.30112106882779 120 15 ; ; PUNCT uiug.30112106882779 120 16 0 0 NUM uiug.30112106882779 120 17 ; ; PUNCT uiug.30112106882779 120 18 j j PROPN uiug.30112106882779 120 19 = = PROPN uiug.30112106882779 120 20 0,1,2 0,1,2 PROPN uiug.30112106882779 120 21 , , PUNCT uiug.30112106882779 120 22 . . PUNCT uiug.30112106882779 120 23 . . PUNCT uiug.30112106882779 121 1 . . PUNCT uiug.30112106882779 121 2 , , PUNCT uiug.30112106882779 121 3 n n CCONJ uiug.30112106882779 121 4 ) ) PUNCT uiug.30112106882779 121 5 where where SCONJ uiug.30112106882779 121 6 v v PROPN uiug.30112106882779 121 7 is be AUX uiug.30112106882779 121 8 the the DET uiug.30112106882779 121 9 first first ADJ uiug.30112106882779 121 10 component component NOUN uiug.30112106882779 121 11 of of ADP uiug.30112106882779 121 12 the the DET uiug.30112106882779 121 13 normalized normalized ADJ uiug.30112106882779 121 14 eigenvector eigenvector NOUN uiug.30112106882779 121 15 corresponding correspond VERB uiug.30112106882779 121 16 to to ADP uiug.30112106882779 121 17 the the DET uiug.30112106882779 121 18 nth nth PROPN uiug.30112106882779 121 19 eigenvelocity eigenvelocity PROPN uiug.30112106882779 121 20 w w PROPN uiug.30112106882779 121 21 found find VERB uiug.30112106882779 121 22 by by ADP uiug.30112106882779 121 23 solving solve VERB uiug.30112106882779 121 24 ' ' PUNCT uiug.30112106882779 121 25 n,0 n,0 PROPN uiug.30112106882779 121 26 n n ADP uiug.30112106882779 121 27 w w PROPN uiug.30112106882779 121 28 ( ( PUNCT uiug.30112106882779 121 29 1 1 NUM uiug.30112106882779 121 30 + + CCONJ uiug.30112106882779 121 31 k-2)1/2 k-2)1/2 PROPN uiug.30112106882779 122 1 0 0 NUM uiug.30112106882779 122 2 0 0 NUM uiug.30112106882779 122 3 0 0 NUM uiug.30112106882779 123 1 ( ( PUNCT uiug.30112106882779 123 2 1 1 NUM uiug.30112106882779 123 3 + + CCONJ uiug.30112106882779 123 4 k-2)1/2 k-2)1/2 PROPN uiug.30112106882779 123 5 in in ADP uiug.30112106882779 123 6 w w NOUN uiug.30112106882779 123 7 0 0 SYM uiug.30112106882779 123 8 0 0 NUM uiug.30112106882779 124 1 det det PROPN uiug.30112106882779 124 2 0 0 PUNCT uiug.30112106882779 125 1 v2 v2 PROPN uiug.30112106882779 125 2 w w NOUN uiug.30112106882779 125 3 0 0 NUM uiug.30112106882779 125 4 = = SYM uiug.30112106882779 125 5 0 0 NUM uiug.30112106882779 125 6 = = SYM uiug.30112106882779 125 7 ( ( PUNCT uiug.30112106882779 125 8 8) 8) NUM uiug.30112106882779 125 9 0 0 NUM uiug.30112106882779 125 10 0 0 NUM uiug.30112106882779 125 11 nl/2 nl/2 PROPN uiug.30112106882779 125 12 0 0 NUM uiug.30112106882779 125 13 0 0 NUM uiug.30112106882779 125 14 0 0 NUM uiug.30112106882779 125 15 n1/2 n1/2 NUM uiug.30112106882779 125 16 w w PROPN uiug.30112106882779 125 17 equation equation NOUN uiug.30112106882779 125 18 ( ( PUNCT uiug.30112106882779 125 19 8) 8) NUM uiug.30112106882779 125 20 is be AUX uiug.30112106882779 125 21 derived derive VERB uiug.30112106882779 125 22 by by ADP uiug.30112106882779 125 23 similarity similarity NOUN uiug.30112106882779 125 24 transformations transformation NOUN uiug.30112106882779 125 25 of of ADP uiug.30112106882779 125 26 the the DET uiug.30112106882779 125 27 matrix matrix NOUN uiug.30112106882779 125 28 of of ADP uiug.30112106882779 125 29 equation equation NOUN uiug.30112106882779 125 30 ( ( PUNCT uiug.30112106882779 125 31 4 4 NUM uiug.30112106882779 125 32 ) ) PUNCT uiug.30112106882779 125 33 and and CCONJ uiug.30112106882779 125 34 by by ADP uiug.30112106882779 125 35 the the DET uiug.30112106882779 125 36 introduction introduction NOUN uiug.30112106882779 125 37 of of ADP uiug.30112106882779 125 38 the the DET uiug.30112106882779 125 39 phase phase NOUN uiug.30112106882779 125 40 velocity velocity NOUN uiug.30112106882779 125 41 w w NOUN uiug.30112106882779 125 42 / / SYM uiug.30112106882779 125 43 k. k. NOUN uiug.30112106882779 125 44 results result NOUN uiug.30112106882779 125 45 and and CCONJ uiug.30112106882779 125 46 discussion discussion NOUN uiug.30112106882779 125 47 the the DET uiug.30112106882779 125 48 behavior behavior NOUN uiug.30112106882779 125 49 of of ADP uiug.30112106882779 125 50 the the DET uiug.30112106882779 125 51 fourier fourier ADJ uiug.30112106882779 125 52 - - PUNCT uiug.30112106882779 125 53 hermite hermite NOUN uiug.30112106882779 125 54 poles pole NOUN uiug.30112106882779 125 55 with with ADP uiug.30112106882779 125 56 vanishing vanish VERB uiug.30112106882779 125 57 collisions collision NOUN uiug.30112106882779 125 58 is be AUX uiug.30112106882779 125 59 indicated indicate VERB uiug.30112106882779 125 60 in in ADP uiug.30112106882779 125 61 figures figure NOUN uiug.30112106882779 125 62 2 2 NUM uiug.30112106882779 125 63 and and CCONJ uiug.30112106882779 125 64 3 3 NUM uiug.30112106882779 125 65 for for ADP uiug.30112106882779 125 66 approximations approximation NOUN uiug.30112106882779 125 67 up up ADP uiug.30112106882779 125 68 to to ADP uiug.30112106882779 125 69 n n NOUN uiug.30112106882779 125 70 = = ADP uiug.30112106882779 125 71 1023 1023 NUM uiug.30112106882779 125 72 . . PUNCT uiug.30112106882779 126 1 in in ADP uiug.30112106882779 126 2 figure figure NOUN uiug.30112106882779 126 3 2 2 NUM uiug.30112106882779 126 4 the the DET uiug.30112106882779 126 5 behavior behavior NOUN uiug.30112106882779 126 6 of of ADP uiug.30112106882779 126 7 the the DET uiug.30112106882779 126 8 real real ADJ uiug.30112106882779 126 9 = = ADJ uiug.30112106882779 126 10 part part NOUN uiug.30112106882779 126 11 of of ADP uiug.30112106882779 126 12 the the DET uiug.30112106882779 126 13 eigenfrequency eigenfrequency NOUN uiug.30112106882779 126 14 is be AUX uiug.30112106882779 126 15 shown show VERB uiug.30112106882779 126 16 . . PUNCT uiug.30112106882779 127 1 a a DET uiug.30112106882779 127 2 scale scale NOUN uiug.30112106882779 127 3 to to PART uiug.30112106882779 127 4 accommodate accommodate VERB uiug.30112106882779 127 5 all all DET uiug.30112106882779 127 6 the the DET uiug.30112106882779 127 7 values value NOUN uiug.30112106882779 127 8 of of ADP uiug.30112106882779 127 9 n n X uiug.30112106882779 127 10 has have AUX uiug.30112106882779 127 11 been be AUX uiug.30112106882779 127 12 used use VERB uiug.30112106882779 127 13 in in ADP uiug.30112106882779 127 14 figure figure NOUN uiug.30112106882779 127 15 2(a 2(a NUM uiug.30112106882779 127 16 ) ) PUNCT uiug.30112106882779 127 17 . . PUNCT uiug.30112106882779 128 1 the the DET uiug.30112106882779 128 2 extreme extreme ADJ uiug.30112106882779 128 3 deviations deviation NOUN uiug.30112106882779 128 4 by by ADP uiug.30112106882779 128 5 which which PRON uiug.30112106882779 128 6 the the DET uiug.30112106882779 128 7 curves curve NOUN uiug.30112106882779 128 8 reach reach VERB uiug.30112106882779 128 9 fourier9 fourier9 NOUN uiug.30112106882779 128 10 = = VERB uiug.30112106882779 129 1 hermite hermite PROPN uiug.30112106882779 129 2 values value NOUN uiug.30112106882779 129 3 at at ADP uiug.30112106882779 129 4 n n NOUN uiug.30112106882779 129 5 = = ADP uiug.30112106882779 129 6 255 255 NUM uiug.30112106882779 129 7 and and CCONJ uiug.30112106882779 129 8 511 511 NUM uiug.30112106882779 129 9 as as ADP uiug.30112106882779 129 10 b b NOUN uiug.30112106882779 129 11 goes go VERB uiug.30112106882779 129 12 to to ADP uiug.30112106882779 129 13 zero zero NUM uiug.30112106882779 129 14 are be AUX uiug.30112106882779 129 15 quite quite ADV uiug.30112106882779 129 16 striking striking ADJ uiug.30112106882779 129 17 . . PUNCT uiug.30112106882779 130 1 the the DET uiug.30112106882779 130 2 curve curve NOUN uiug.30112106882779 130 3 for for ADP uiug.30112106882779 130 4 n n NOUN uiug.30112106882779 130 5 = = SYM uiug.30112106882779 130 6 1023 1023 NUM uiug.30112106882779 130 7 lies lie NOUN uiug.30112106882779 130 8 so so ADV uiug.30112106882779 130 9 nearly nearly ADV uiug.30112106882779 130 10 on on ADP uiug.30112106882779 130 11 a a DET uiug.30112106882779 130 12 straight straight ADJ uiug.30112106882779 130 13 line line NOUN uiug.30112106882779 130 14 to to ADP uiug.30112106882779 130 15 the the DET uiug.30112106882779 130 16 landau landau PROPN uiug.30112106882779 130 17 value value NOUN uiug.30112106882779 130 18 that that SCONJ uiug.30112106882779 130 19 it it PRON uiug.30112106882779 130 20 would would AUX uiug.30112106882779 130 21 not not PART uiug.30112106882779 130 22 show show VERB uiug.30112106882779 130 23 in in ADP uiug.30112106882779 130 24 figure figure NOUN uiug.30112106882779 130 25 2(a 2(a NUM uiug.30112106882779 130 26 ) ) PUNCT uiug.30112106882779 130 27 . . PUNCT uiug.30112106882779 131 1 therefore therefore ADV uiug.30112106882779 131 2 , , PUNCT uiug.30112106882779 131 3 the the DET uiug.30112106882779 131 4 behavior behavior NOUN uiug.30112106882779 131 5 for for ADP uiug.30112106882779 131 6 the the DET uiug.30112106882779 131 7 three three NUM uiug.30112106882779 131 8 highest high ADJ uiug.30112106882779 131 9 values value NOUN uiug.30112106882779 131 10 of of ADP uiug.30112106882779 131 11 n n CCONJ uiug.30112106882779 131 12 is be AUX uiug.30112106882779 131 13 shown show VERB uiug.30112106882779 131 14 at at ADP uiug.30112106882779 131 15 larger large ADJ uiug.30112106882779 131 16 scale scale NOUN uiug.30112106882779 131 17 in in ADP uiug.30112106882779 131 18 figure figure NOUN uiug.30112106882779 131 19 2(b 2(b NUM uiug.30112106882779 131 20 ) ) PUNCT uiug.30112106882779 131 21 . . PUNCT uiug.30112106882779 132 1 for for ADP uiug.30112106882779 132 2 n n NOUN uiug.30112106882779 132 3 = = SYM uiug.30112106882779 132 4 1023 1023 NUM uiug.30112106882779 132 5 it it PRON uiug.30112106882779 132 6 can can AUX uiug.30112106882779 132 7 be be AUX uiug.30112106882779 132 8 seen see VERB uiug.30112106882779 132 9 that that SCONJ uiug.30112106882779 132 10 the the DET uiug.30112106882779 132 11 chance chance NOUN uiug.30112106882779 132 12 closeness closeness NOUN uiug.30112106882779 132 13 of of ADP uiug.30112106882779 132 14 the the DET uiug.30112106882779 132 15 fourier fourier NOUN uiug.30112106882779 132 16 - - PUNCT uiug.30112106882779 132 17 hermite hermite NOUN uiug.30112106882779 132 18 root root NOUN uiug.30112106882779 132 19 to to ADP uiug.30112106882779 132 20 the the DET uiug.30112106882779 132 21 landau landau NOUN uiug.30112106882779 132 22 value value NOUN uiug.30112106882779 132 23 causes cause VERB uiug.30112106882779 132 24 a a DET uiug.30112106882779 132 25 nearly nearly ADV uiug.30112106882779 132 26 straight straight ADJ uiug.30112106882779 132 27 approach approach NOUN uiug.30112106882779 132 28 to to ADP uiug.30112106882779 132 29 the the DET uiug.30112106882779 132 30 landau landau NOUN uiug.30112106882779 132 31 value value NOUN uiug.30112106882779 132 32 . . PUNCT uiug.30112106882779 133 1 actually actually ADV uiug.30112106882779 133 2 , , PUNCT uiug.30112106882779 133 3 a a DET uiug.30112106882779 133 4 deviation deviation NOUN uiug.30112106882779 133 5 from from ADP uiug.30112106882779 133 6 a a DET uiug.30112106882779 133 7 straight straight ADJ uiug.30112106882779 133 8 approach approach NOUN uiug.30112106882779 133 9 starts start VERB uiug.30112106882779 133 10 at at ADP uiug.30112106882779 133 11 about about ADP uiug.30112106882779 133 12 b b PROPN uiug.30112106882779 133 13 = = SYM uiug.30112106882779 133 14 0.0006 0.0006 NUM uiug.30112106882779 133 15 . . PUNCT uiug.30112106882779 134 1 in in ADP uiug.30112106882779 134 2 figure figure NOUN uiug.30112106882779 134 3 3 3 NUM uiug.30112106882779 134 4 the the DET uiug.30112106882779 134 5 behavior behavior NOUN uiug.30112106882779 134 6 of of ADP uiug.30112106882779 134 7 the the DET uiug.30112106882779 134 8 damping damping NOUN uiug.30112106882779 134 9 is be AUX uiug.30112106882779 134 10 shown show VERB uiug.30112106882779 134 11 for for ADP uiug.30112106882779 134 12 vanishing vanish VERB uiug.30112106882779 134 13 collisions collision NOUN uiug.30112106882779 134 14 . . PUNCT uiug.30112106882779 135 1 again again ADV uiug.30112106882779 135 2 the the DET uiug.30112106882779 135 3 two two NUM uiug.30112106882779 135 4 parts part NOUN uiug.30112106882779 135 5 of of ADP uiug.30112106882779 135 6 the the DET uiug.30112106882779 135 7 figure figure NOUN uiug.30112106882779 135 8 are be AUX uiug.30112106882779 135 9 small small ADJ uiug.30112106882779 135 10 - - PUNCT uiug.30112106882779 135 11 scale scale NOUN uiug.30112106882779 135 12 and and CCONJ uiug.30112106882779 135 13 large large ADJ uiug.30112106882779 135 14 - - PUNCT uiug.30112106882779 135 15 scale scale NOUN uiug.30112106882779 135 16 graphs graph NOUN uiug.30112106882779 135 17 . . PUNCT uiug.30112106882779 136 1 the the DET uiug.30112106882779 136 2 curves curve NOUN uiug.30112106882779 136 3 for for ADP uiug.30112106882779 136 4 the the DET uiug.30112106882779 136 5 higher high ADJ uiug.30112106882779 136 6 n n CCONJ uiug.30112106882779 136 7 can can AUX uiug.30112106882779 136 8 be be AUX uiug.30112106882779 136 9 clearly clearly ADV uiug.30112106882779 136 10 seen see VERB uiug.30112106882779 136 11 only only ADV uiug.30112106882779 136 12 in in ADP uiug.30112106882779 136 13 the the DET uiug.30112106882779 136 14 large large ADJ uiug.30112106882779 136 15 - - PUNCT uiug.30112106882779 136 16 scale scale NOUN uiug.30112106882779 136 17 graph graph NOUN uiug.30112106882779 136 18 of of ADP uiug.30112106882779 136 19 figure figure NOUN uiug.30112106882779 136 20 3(b 3(b NUM uiug.30112106882779 136 21 ) ) PUNCT uiug.30112106882779 136 22 . . PUNCT uiug.30112106882779 137 1 in in ADP uiug.30112106882779 137 2 every every DET uiug.30112106882779 137 3 case case NOUN uiug.30112106882779 137 4 the the DET uiug.30112106882779 137 5 sharp sharp ADJ uiug.30112106882779 137 6 swerve swerve NOUN uiug.30112106882779 137 7 toward toward ADP uiug.30112106882779 137 8 y y PROPN uiug.30112106882779 137 9 = = NOUN uiug.30112106882779 137 10 0 0 NUM uiug.30112106882779 137 11 from from ADP uiug.30112106882779 137 12 a a DET uiug.30112106882779 137 13 straight straight ADJ uiug.30112106882779 137 14 approach approach NOUN uiug.30112106882779 137 15 to to ADP uiug.30112106882779 137 16 the the DET uiug.30112106882779 137 17 landau landau NOUN uiug.30112106882779 137 18 value value NOUN uiug.30112106882779 137 19 is be AUX uiug.30112106882779 137 20 striking strike VERB uiug.30112106882779 137 21 . . PUNCT uiug.30112106882779 138 1 it it PRON uiug.30112106882779 138 2 is be AUX uiug.30112106882779 138 3 clear clear ADJ uiug.30112106882779 138 4 from from ADP uiug.30112106882779 138 5 figures figure NOUN uiug.30112106882779 138 6 2 2 NUM uiug.30112106882779 138 7 and and CCONJ uiug.30112106882779 138 8 3 3 NUM uiug.30112106882779 138 9 that that PRON uiug.30112106882779 138 10 , , PUNCT uiug.30112106882779 138 11 numerically numerically ADV uiug.30112106882779 138 12 , , PUNCT uiug.30112106882779 138 13 the the DET uiug.30112106882779 138 14 connection connection NOUN uiug.30112106882779 138 15 between between ADP uiug.30112106882779 138 16 the the DET uiug.30112106882779 138 17 van van PROPN uiug.30112106882779 138 18 kampen kampen PROPN uiug.30112106882779 138 19 and and CCONJ uiug.30112106882779 138 20 landau landau NOUN uiug.30112106882779 138 21 representations representation NOUN uiug.30112106882779 138 22 has have AUX uiug.30112106882779 138 23 been be AUX uiug.30112106882779 138 24 demonstrated demonstrate VERB uiug.30112106882779 138 25 within within ADP uiug.30112106882779 138 26 the the DET uiug.30112106882779 138 27 fourierhermite fourierhermite NOUN uiug.30112106882779 138 28 representation representation NOUN uiug.30112106882779 138 29 . . PUNCT uiug.30112106882779 139 1 moreover moreover ADV uiug.30112106882779 139 2 , , PUNCT uiug.30112106882779 139 3 the the DET uiug.30112106882779 139 4 pathological pathological ADJ uiug.30112106882779 139 5 character character NOUN uiug.30112106882779 139 6 of of ADP uiug.30112106882779 139 7 the the DET uiug.30112106882779 139 8 curves curve NOUN uiug.30112106882779 139 9 wr(b wr(b ADV uiug.30112106882779 139 10 ) ) PUNCT uiug.30112106882779 139 11 and and CCONJ uiug.30112106882779 139 12 7(b 7(b NUM uiug.30112106882779 139 13 ) ) PUNCT uiug.30112106882779 139 14 for for ADP uiug.30112106882779 139 15 large large ADJ uiug.30112106882779 139 16 values value NOUN uiug.30112106882779 139 17 of of ADP uiug.30112106882779 139 18 n n CCONJ uiug.30112106882779 139 19 as as ADP uiug.30112106882779 139 20 b b PROPN uiug.30112106882779 139 21 goes go VERB uiug.30112106882779 139 22 to to ADP uiug.30112106882779 139 23 zero zero NUM uiug.30112106882779 139 24 clearly clearly ADV uiug.30112106882779 139 25 indicates indicate VERB uiug.30112106882779 139 26 the the DET uiug.30112106882779 139 27 nonuniformly nonuniformly ADV uiug.30112106882779 139 28 convergent convergent ADJ uiug.30112106882779 139 29 behavior behavior NOUN uiug.30112106882779 139 30 of of ADP uiug.30112106882779 139 31 the the DET uiug.30112106882779 139 32 approximation approximation NOUN uiug.30112106882779 139 33 curve curve NOUN uiug.30112106882779 139 34 in in ADP uiug.30112106882779 139 35 the the DET uiug.30112106882779 139 36 limit limit NOUN uiug.30112106882779 139 37 of of ADP uiug.30112106882779 139 38 infinite infinite PROPN uiug.30112106882779 139 39 nat nat PROPN uiug.30112106882779 139 40 vanishing vanish VERB uiug.30112106882779 139 41 b. b. PROPN uiug.30112106882779 139 42 in in ADP uiug.30112106882779 139 43 figure figure NOUN uiug.30112106882779 139 44 4 4 NUM uiug.30112106882779 139 45 a a DET uiug.30112106882779 139 46 histogram histogram NOUN uiug.30112106882779 139 47 for for ADP uiug.30112106882779 139 48 n n NOUN uiug.30112106882779 139 49 = = SYM uiug.30112106882779 139 50 1023 1023 NUM uiug.30112106882779 139 51 is be AUX uiug.30112106882779 139 52 shown show VERB uiug.30112106882779 139 53 along along ADP uiug.30112106882779 139 54 with with ADP uiug.30112106882779 139 55 one one NUM uiug.30112106882779 139 56 for for ADP uiug.30112106882779 139 57 n n CCONJ uiug.30112106882779 139 58 = = SYM uiug.30112106882779 139 59 99 99 NUM uiug.30112106882779 139 60 that that PRON uiug.30112106882779 139 61 was be AUX uiug.30112106882779 139 62 presented present VERB uiug.30112106882779 139 63 in in ADP uiug.30112106882779 139 64 reference reference NOUN uiug.30112106882779 139 65 5 5 NUM uiug.30112106882779 139 66 . . PUNCT uiug.30112106882779 140 1 the the DET uiug.30112106882779 140 2 curve curve NOUN uiug.30112106882779 140 3 is be AUX uiug.30112106882779 140 4 symmetrical symmetrical ADJ uiug.30112106882779 140 5 about about ADP uiug.30112106882779 140 6 i i PRON uiug.30112106882779 140 7 = = PUNCT uiug.30112106882779 140 8 0 0 NUM uiug.30112106882779 140 9 , , PUNCT uiug.30112106882779 140 10 so so SCONJ uiug.30112106882779 140 11 only only ADV uiug.30112106882779 140 12 the the DET uiug.30112106882779 140 13 positive positive ADJ uiug.30112106882779 140 14 half half NOUN uiug.30112106882779 140 15 is be AUX uiug.30112106882779 140 16 shown show VERB uiug.30112106882779 140 17 . . PUNCT uiug.30112106882779 141 1 although although SCONJ uiug.30112106882779 141 2 a a DET uiug.30112106882779 141 3 better well ADJ uiug.30112106882779 141 4 representation representation NOUN uiug.30112106882779 141 5 of of ADP uiug.30112106882779 141 6 the the DET uiug.30112106882779 141 7 curve curve NOUN uiug.30112106882779 141 8 for for ADP uiug.30112106882779 141 9 n n CCONJ uiug.30112106882779 141 10 = = SYM uiug.30112106882779 141 11 6 6 NUM uiug.30112106882779 141 12 is be AUX uiug.30112106882779 141 13 obtained obtain VERB uiug.30112106882779 141 14 with with ADP uiug.30112106882779 141 15 n n NOUN uiug.30112106882779 141 16 = = SYM uiug.30112106882779 141 17 1023 1023 NUM uiug.30112106882779 141 18 than than ADP uiug.30112106882779 141 19 with with ADP uiug.30112106882779 141 20 n n CCONJ uiug.30112106882779 141 21 = = SYM uiug.30112106882779 141 22 99 99 NUM uiug.30112106882779 141 23 , , PUNCT uiug.30112106882779 141 24 the the DET uiug.30112106882779 141 25 peak peak NOUN uiug.30112106882779 141 26 is be AUX uiug.30112106882779 141 27 still still ADV uiug.30112106882779 141 28 rather rather ADV uiug.30112106882779 141 29 crudely crudely ADV uiug.30112106882779 141 30 modeled model VERB uiug.30112106882779 141 31 despite despite SCONJ uiug.30112106882779 141 32 a a DET uiug.30112106882779 141 33 tenfold tenfold ADJ uiug.30112106882779 141 34 increase increase NOUN uiug.30112106882779 141 35 in in ADP uiug.30112106882779 141 36 the the DET uiug.30112106882779 141 37 number number NOUN uiug.30112106882779 141 38 of of ADP uiug.30112106882779 141 39 terms term NOUN uiug.30112106882779 141 40 in in ADP uiug.30112106882779 141 41 the the DET uiug.30112106882779 141 42 fourier fourier ADJ uiug.30112106882779 141 43 - - PUNCT uiug.30112106882779 141 44 hermite hermite NOUN uiug.30112106882779 141 45 expansion expansion NOUN uiug.30112106882779 141 46 . . PUNCT uiug.30112106882779 142 1 the the DET uiug.30112106882779 142 2 root root NOUN uiug.30112106882779 142 3 separation separation NOUN uiug.30112106882779 142 4 diminishes diminish VERB uiug.30112106882779 142 5 so so ADV uiug.30112106882779 142 6 slowly slowly ADV uiug.30112106882779 142 7 with with ADP uiug.30112106882779 142 8 increasing increase VERB uiug.30112106882779 142 9 n n CCONJ uiug.30112106882779 142 10 that that SCONJ uiug.30112106882779 142 11 most most ADJ uiug.30112106882779 142 12 roots root NOUN uiug.30112106882779 142 13 can can AUX uiug.30112106882779 142 14 make make VERB uiug.30112106882779 142 15 only only ADV uiug.30112106882779 142 16 negligible negligible ADJ uiug.30112106882779 142 17 contributions contribution NOUN uiug.30112106882779 142 18 to to ADP uiug.30112106882779 142 19 the the DET uiug.30112106882779 142 20 peak peak NOUN uiug.30112106882779 142 21 . . PUNCT uiug.30112106882779 143 1 the the DET uiug.30112106882779 143 2 advantage advantage NOUN uiug.30112106882779 143 3 of of ADP uiug.30112106882779 143 4 a a DET uiug.30112106882779 143 5 collision collision NOUN uiug.30112106882779 143 6 term term NOUN uiug.30112106882779 143 7 barely barely ADV uiug.30112106882779 143 8 large large ADJ uiug.30112106882779 143 9 enough enough ADV uiug.30112106882779 143 10 to to PART uiug.30112106882779 143 11 move move VERB uiug.30112106882779 143 12 a a DET uiug.30112106882779 143 13 root root NOUN uiug.30112106882779 143 14 very very ADV uiug.30112106882779 143 15 close close ADV uiug.30112106882779 143 16 to to ADP uiug.30112106882779 143 17 the the DET uiug.30112106882779 143 18 landau landau NOUN uiug.30112106882779 143 19 pole pole NOUN uiug.30112106882779 143 20 is be AUX uiug.30112106882779 143 21 suggested suggest VERB uiug.30112106882779 143 22 by by ADP uiug.30112106882779 143 23 figure figure NOUN uiug.30112106882779 143 24 4 4 NUM uiug.30112106882779 143 25 . . PUNCT uiug.30112106882779 144 1 with with ADP uiug.30112106882779 144 2 a a DET uiug.30112106882779 144 3 small small ADJ uiug.30112106882779 144 4 collision collision NOUN uiug.30112106882779 144 5 term term NOUN uiug.30112106882779 144 6 , , PUNCT uiug.30112106882779 144 7 a a DET uiug.30112106882779 144 8 single single ADJ uiug.30112106882779 144 9 fourierhermite fourierhermite NOUN uiug.30112106882779 144 10 root root NOUN uiug.30112106882779 144 11 can can AUX uiug.30112106882779 144 12 well well ADV uiug.30112106882779 144 13 represent represent VERB uiug.30112106882779 144 14 the the DET uiug.30112106882779 144 15 landau landau NOUN uiug.30112106882779 144 16 damping damp VERB uiug.30112106882779 144 17 , , PUNCT uiug.30112106882779 144 18 which which PRON uiug.30112106882779 144 19 is be AUX uiug.30112106882779 144 20 the the DET uiug.30112106882779 144 21 most most ADV uiug.30112106882779 144 22 prominent prominent ADJ uiug.30112106882779 144 23 feature feature NOUN uiug.30112106882779 144 24 of of ADP uiug.30112106882779 144 25 the the DET uiug.30112106882779 144 26 behavior behavior NOUN uiug.30112106882779 144 27 of of ADP uiug.30112106882779 144 28 the the DET uiug.30112106882779 144 29 plasma plasma NOUN uiug.30112106882779 144 30 at at ADP uiug.30112106882779 144 31 long long ADJ uiug.30112106882779 144 32 times time NOUN uiug.30112106882779 144 33 for for ADP uiug.30112106882779 144 34 weak weak ADJ uiug.30112106882779 144 35 initial initial ADJ uiug.30112106882779 144 36 disturbances disturbance NOUN uiug.30112106882779 144 37 of of ADP uiug.30112106882779 144 38 the the DET uiug.30112106882779 144 39 plasma plasma NOUN uiug.30112106882779 144 40 . . PUNCT uiug.30112106882779 145 1 concluding conclude VERB uiug.30112106882779 145 2 remark remark NOUN uiug.30112106882779 145 3 in in ADP uiug.30112106882779 145 4 addition addition NOUN uiug.30112106882779 145 5 to to ADP uiug.30112106882779 145 6 yielding yield VERB uiug.30112106882779 145 7 conclusive conclusive ADJ uiug.30112106882779 145 8 indications indication NOUN uiug.30112106882779 145 9 of of ADP uiug.30112106882779 145 10 the the DET uiug.30112106882779 145 11 nonuniformly nonuniformly ADV uiug.30112106882779 145 12 convergent convergent ADJ uiug.30112106882779 145 13 behavior behavior NOUN uiug.30112106882779 145 14 of of ADP uiug.30112106882779 145 15 the the DET uiug.30112106882779 145 16 fourier fourier NOUN uiug.30112106882779 145 17 - - PUNCT uiug.30112106882779 145 18 hermite hermite NOUN uiug.30112106882779 145 19 expansion expansion NOUN uiug.30112106882779 145 20 as as SCONJ uiug.30112106882779 145 21 order order NOUN uiug.30112106882779 145 22 increases increase NOUN uiug.30112106882779 145 23 to to ADP uiug.30112106882779 145 24 infinity infinity NOUN uiug.30112106882779 145 25 and and CCONJ uiug.30112106882779 145 26 collisions collision NOUN uiug.30112106882779 145 27 decrease decrease NOUN uiug.30112106882779 146 1 , , PUNCT uiug.30112106882779 146 2 the the DET uiug.30112106882779 146 3 results result NOUN uiug.30112106882779 146 4 have have AUX uiug.30112106882779 146 5 provided provide VERB uiug.30112106882779 146 6 a a DET uiug.30112106882779 146 7 guide guide NOUN uiug.30112106882779 146 8 to to ADP uiug.30112106882779 146 9 the the DET uiug.30112106882779 146 10 choice choice NOUN uiug.30112106882779 146 11 of of ADP uiug.30112106882779 146 12 the the DET uiug.30112106882779 146 13 size size NOUN uiug.30112106882779 146 14 of of ADP uiug.30112106882779 146 15 collision collision NOUN uiug.30112106882779 146 16 term term NOUN uiug.30112106882779 146 17 that that PRON uiug.30112106882779 146 18 best well ADV uiug.30112106882779 146 19 simulates simulate VERB uiug.30112106882779 146 20 the the DET uiug.30112106882779 146 21 secular secular ADJ uiug.30112106882779 146 22 behavior behavior NOUN uiug.30112106882779 146 23 of of ADP uiug.30112106882779 146 24 the the DET uiug.30112106882779 146 25 plasma plasma NOUN uiug.30112106882779 146 26 . . PUNCT uiug.30112106882779 147 1 langley langley PROPN uiug.30112106882779 147 2 research research PROPN uiug.30112106882779 147 3 center center NOUN uiug.30112106882779 147 4 , , PUNCT uiug.30112106882779 147 5 national national ADJ uiug.30112106882779 147 6 aeronautics aeronautic NOUN uiug.30112106882779 147 7 and and CCONJ uiug.30112106882779 147 8 space space PROPN uiug.30112106882779 147 9 administration administration PROPN uiug.30112106882779 147 10 , , PUNCT uiug.30112106882779 147 11 hampton hampton PROPN uiug.30112106882779 147 12 , , PUNCT uiug.30112106882779 147 13 va va PROPN uiug.30112106882779 147 14 . . PROPN uiug.30112106882779 147 15 , , PUNCT uiug.30112106882779 147 16 march march PROPN uiug.30112106882779 147 17 23 23 NUM uiug.30112106882779 147 18 , , PUNCT uiug.30112106882779 147 19 1972 1972 NUM uiug.30112106882779 147 20 . . PUNCT uiug.30112106882779 148 1 10 10 NUM uiug.30112106882779 148 2 appendix appendix NOUN uiug.30112106882779 148 3 a a DET uiug.30112106882779 148 4 calculation calculation NOUN uiug.30112106882779 148 5 of of ADP uiug.30112106882779 148 6 eigenvalues eigenvalue NOUN uiug.30112106882779 148 7 the the DET uiug.30112106882779 148 8 fortran fortran PROPN uiug.30112106882779 148 9 iv iv PROPN uiug.30112106882779 148 10 computer computer NOUN uiug.30112106882779 148 11 program program NOUN uiug.30112106882779 148 12 used use VERB uiug.30112106882779 148 13 to to PART uiug.30112106882779 148 14 compute compute VERB uiug.30112106882779 148 15 the the DET uiug.30112106882779 148 16 curves curve NOUN uiug.30112106882779 148 17 for for ADP uiug.30112106882779 148 18 n n NOUN uiug.30112106882779 148 19 = = SYM uiug.30112106882779 148 20 1023 1023 NUM uiug.30112106882779 148 21 in in ADP uiug.30112106882779 148 22 figures figure NOUN uiug.30112106882779 148 23 2 2 NUM uiug.30112106882779 148 24 and and CCONJ uiug.30112106882779 148 25 3 3 NUM uiug.30112106882779 148 26 follows follow NOUN uiug.30112106882779 148 27 . . PUNCT uiug.30112106882779 149 1 although although SCONJ uiug.30112106882779 149 2 the the DET uiug.30112106882779 149 3 dimensions dimension NOUN uiug.30112106882779 149 4 100 100 NUM uiug.30112106882779 149 5 and and CCONJ uiug.30112106882779 149 6 1024 1024 NUM uiug.30112106882779 149 7 have have AUX uiug.30112106882779 149 8 been be AUX uiug.30112106882779 149 9 used use VERB uiug.30112106882779 149 10 respectively respectively ADV uiug.30112106882779 149 11 for for ADP uiug.30112106882779 149 12 arrays array NOUN uiug.30112106882779 149 13 app app NOUN uiug.30112106882779 149 14 ( ( PUNCT uiug.30112106882779 149 15 corresponding correspond VERB uiug.30112106882779 149 16 to to ADP uiug.30112106882779 149 17 successive successive ADJ uiug.30112106882779 149 18 root root NOUN uiug.30112106882779 149 19 approximations approximation NOUN uiug.30112106882779 149 20 ) ) PUNCT uiug.30112106882779 149 21 and and CCONJ uiug.30112106882779 149 22 det det PROPN uiug.30112106882779 149 23 ( ( PUNCT uiug.30112106882779 149 24 corresponding correspond VERB uiug.30112106882779 149 25 to to ADP uiug.30112106882779 149 26 the the DET uiug.30112106882779 149 27 successive successive ADJ uiug.30112106882779 149 28 determinants determinant NOUN uiug.30112106882779 149 29 in in ADP uiug.30112106882779 149 30 the the DET uiug.30112106882779 149 31 recursive recursive ADJ uiug.30112106882779 149 32 process process NOUN uiug.30112106882779 149 33 ) ) PUNCT uiug.30112106882779 149 34 , , PUNCT uiug.30112106882779 149 35 these these DET uiug.30112106882779 149 36 locations location NOUN uiug.30112106882779 149 37 are be AUX uiug.30112106882779 149 38 a a DET uiug.30112106882779 149 39 luxury luxury NOUN uiug.30112106882779 149 40 for for ADP uiug.30112106882779 149 41 diagnostic diagnostic ADJ uiug.30112106882779 149 42 purposes purpose NOUN uiug.30112106882779 149 43 . . PUNCT uiug.30112106882779 150 1 several several ADJ uiug.30112106882779 150 2 locations location NOUN uiug.30112106882779 150 3 would would AUX uiug.30112106882779 150 4 suffice suffice VERB uiug.30112106882779 150 5 if if SCONJ uiug.30112106882779 150 6 the the DET uiug.30112106882779 150 7 successive successive ADJ uiug.30112106882779 150 8 root root NOUN uiug.30112106882779 150 9 approximations approximation NOUN uiug.30112106882779 150 10 and and CCONJ uiug.30112106882779 150 11 higher high ADJ uiug.30112106882779 150 12 order order NOUN uiug.30112106882779 150 13 determinants determinant NOUN uiug.30112106882779 150 14 were be AUX uiug.30112106882779 150 15 written write VERB uiug.30112106882779 150 16 over over ADP uiug.30112106882779 150 17 the the DET uiug.30112106882779 150 18 earlier early ADJ uiug.30112106882779 150 19 values value NOUN uiug.30112106882779 150 20 . . PUNCT uiug.30112106882779 151 1 for for SCONJ uiug.30112106882779 151 2 the the DET uiug.30112106882779 151 3 case case NOUN uiug.30112106882779 151 4 shown show VERB uiug.30112106882779 151 5 , , PUNCT uiug.30112106882779 151 6 central central ADJ uiug.30112106882779 151 7 processor processor NOUN uiug.30112106882779 151 8 time time NOUN uiug.30112106882779 151 9 on on ADP uiug.30112106882779 151 10 the the DET uiug.30112106882779 151 11 cdc cdc PROPN uiug.30112106882779 151 12 6600 6600 NUM uiug.30112106882779 151 13 computer computer NOUN uiug.30112106882779 151 14 was be AUX uiug.30112106882779 151 15 less less ADJ uiug.30112106882779 151 16 than than ADP uiug.30112106882779 151 17 30 30 NUM uiug.30112106882779 151 18 seconds second NOUN uiug.30112106882779 151 19 . . PUNCT uiug.30112106882779 152 1 program program NOUN uiug.30112106882779 152 2 chase chase NOUN uiug.30112106882779 152 3 ( ( PUNCT uiug.30112106882779 152 4 input input NOUN uiug.30112106882779 152 5 , , PUNCT uiug.30112106882779 152 6 output output NOUN uiug.30112106882779 152 7 ) ) PUNCT uiug.30112106882779 152 8 , , PUNCT uiug.30112106882779 152 9 * * PUNCT uiug.30112106882779 152 10 tracks track VERB uiug.30112106882779 152 11 f f PROPN uiug.30112106882779 152 12 - - PUNCT uiug.30112106882779 152 13 h h NOUN uiug.30112106882779 152 14 roots root NOUN uiug.30112106882779 152 15 into into ADP uiug.30112106882779 152 16 complex complex ADJ uiug.30112106882779 152 17 plane plane NOUN uiug.30112106882779 152 18 as as ADP uiug.30112106882779 152 19 b b NOUN uiug.30112106882779 152 20 increases increase NOUN uiug.30112106882779 152 21 from from ADP uiug.30112106882779 152 22 zero zero NUM uiug.30112106882779 152 23 , , PUNCT uiug.30112106882779 152 24 complex complex ADJ uiug.30112106882779 152 25 d d PROPN uiug.30112106882779 152 26 , , PUNCT uiug.30112106882779 152 27 omega omega NOUN uiug.30112106882779 152 28 , , PUNCT uiug.30112106882779 152 29 derd derd PROPN uiug.30112106882779 152 30 , , PUNCT uiug.30112106882779 152 31 deltom deltom PROPN uiug.30112106882779 152 32 , , PUNCT uiug.30112106882779 152 33 delmeg delmeg PROPN uiug.30112106882779 152 34 , , PUNCT uiug.30112106882779 152 35 app app PROPN uiug.30112106882779 152 36 , , PUNCT uiug.30112106882779 152 37 det det PROPN uiug.30112106882779 152 38 , , PUNCT uiug.30112106882779 152 39 omegao omegao ADJ uiug.30112106882779 152 40 , , PUNCT uiug.30112106882779 152 41 complex complex ADJ uiug.30112106882779 152 42 derni derni NOUN uiug.30112106882779 152 43 , , PUNCT uiug.30112106882779 152 44 dern2 dern2 PROPN uiug.30112106882779 152 45 , , PUNCT uiug.30112106882779 152 46 real real ADJ uiug.30112106882779 152 47 keksor keksor NOUN uiug.30112106882779 152 48 , , PUNCT uiug.30112106882779 152 49 common common ADJ uiug.30112106882779 152 50 ksqr.b ksqr.b PROPN uiug.30112106882779 152 51 , , PUNCT uiug.30112106882779 152 52 is be AUX uiug.30112106882779 152 53 , , PUNCT uiug.30112106882779 152 54 scale scale NOUN uiug.30112106882779 152 55 , , PUNCT uiug.30112106882779 152 56 dimension dimension NOUN uiug.30112106882779 152 57 app app NOUN uiug.30112106882779 152 58 ( ( PUNCT uiug.30112106882779 152 59 100 100 NUM uiug.30112106882779 152 60 ) ) PUNCT uiug.30112106882779 152 61 , , PUNCT uiug.30112106882779 152 62 det det PROPN uiug.30112106882779 152 63 ( ( PUNCT uiug.30112106882779 152 64 1024 1024 NUM uiug.30112106882779 152 65 ) ) PUNCT uiug.30112106882779 152 66 , , PUNCT uiug.30112106882779 152 67 k=5,-01 k=5,-01 PROPN uiug.30112106882779 152 68 , , PUNCT uiug.30112106882779 152 69 * * PUNCT uiug.30112106882779 152 70 value value NOUN uiug.30112106882779 152 71 of of ADP uiug.30112106882779 152 72 nas nas PROPN uiug.30112106882779 152 73 used use VERB uiug.30112106882779 152 74 below below ADP uiug.30112106882779 152 75 corresponds correspond NOUN uiug.30112106882779 152 76 to to ADP uiug.30112106882779 152 77 ( ( PUNCT uiug.30112106882779 152 78 n-1 n-1 PROPN uiug.30112106882779 152 79 ) ) PUNCT uiug.30112106882779 152 80 hermite hermite PROPN uiug.30112106882779 152 81 functions function NOUN uiug.30112106882779 152 82 , , PUNCT uiug.30112106882779 152 83 n=1024 n=1024 PROPN uiug.30112106882779 152 84 , , PUNCT uiug.30112106882779 152 85 * * NOUN uiug.30112106882779 152 86 landau landau NOUN uiug.30112106882779 152 87 pole pole NOUN uiug.30112106882779 152 88 for for ADP uiug.30112106882779 152 89 k=0.5 k=0.5 PROPN uiug.30112106882779 152 90 is be AUX uiug.30112106882779 152 91 at at ADP uiug.30112106882779 152 92 ( ( PUNCT uiug.30112106882779 152 93 1.41566 1.41566 NUM uiug.30112106882779 152 94 , , PUNCT uiug.30112106882779 152 95 .15336 .15336 PROPN uiug.30112106882779 152 96 ) ) PUNCT uiug.30112106882779 152 97 , , PUNCT uiug.30112106882779 152 98 * * PUNCT uiug.30112106882779 152 99 fourier fourier ADJ uiug.30112106882779 152 100 - - PUNCT uiug.30112106882779 152 101 hermite hermite NOUN uiug.30112106882779 152 102 eigenvalue eigenvalue NOUN uiug.30112106882779 152 103 nearest nearest ADP uiug.30112106882779 152 104 real real ADJ uiug.30112106882779 152 105 part part NOUN uiug.30112106882779 152 106 of of ADP uiug.30112106882779 152 107 landau landau NOUN uiug.30112106882779 152 108 pole pole NOUN uiug.30112106882779 152 109 , , PUNCT uiug.30112106882779 152 110 omegao= omegao= NUM uiug.30112106882779 152 111 ( ( PUNCT uiug.30112106882779 152 112 1.41424,0 1.41424,0 NUM uiug.30112106882779 152 113 . . PUNCT uiug.30112106882779 152 114 ) ) PUNCT uiug.30112106882779 152 115 , , PUNCT uiug.30112106882779 152 116 print print PROPN uiug.30112106882779 152 117 900 900 NUM uiug.30112106882779 152 118 , , PUNCT uiug.30112106882779 152 119 nok nok PROPN uiug.30112106882779 152 120 , , PUNCT uiug.30112106882779 152 121 * * NOUN uiug.30112106882779 152 122 maximum maximum NOUN uiug.30112106882779 152 123 number number NOUN uiug.30112106882779 152 124 of of ADP uiug.30112106882779 152 125 iterations iteration NOUN uiug.30112106882779 152 126 allowed allow VERB uiug.30112106882779 152 127 to to PART uiug.30112106882779 152 128 fix fix VERB uiug.30112106882779 152 129 omega omega NOUN uiug.30112106882779 152 130 , , PUNCT uiug.30112106882779 152 131 noit=100 noit=100 PROPN uiug.30112106882779 152 132 , , PUNCT uiug.30112106882779 152 133 * * NOUN uiug.30112106882779 152 134 sharpness sharpness ADJ uiug.30112106882779 152 135 criterion criterion NOUN uiug.30112106882779 152 136 for for ADP uiug.30112106882779 152 137 omega omega NOUN uiug.30112106882779 152 138 , , PUNCT uiug.30112106882779 152 139 cvlim= cvlim= NUM uiug.30112106882779 152 140 2.f-09 2.f-09 NUM uiug.30112106882779 152 141 , , PUNCT uiug.30112106882779 152 142 * * NOUN uiug.30112106882779 152 143 step step NOUN uiug.30112106882779 152 144 size size NOUN uiug.30112106882779 152 145 in in ADP uiug.30112106882779 152 146 approximate approximate ADJ uiug.30112106882779 152 147 derivative derivative NOUN uiug.30112106882779 152 148 , , PUNCT uiug.30112106882779 152 149 deltom= deltom= PRON uiug.30112106882779 152 150 ( ( PUNCT uiug.30112106882779 152 151 0.,1.f-05 0.,1.f-05 NUM uiug.30112106882779 152 152 ) ) PUNCT uiug.30112106882779 152 153 , , PUNCT uiug.30112106882779 152 154 * * PUNCT uiug.30112106882779 152 155 b b X uiug.30112106882779 152 156 - - PUNCT uiug.30112106882779 152 157 range range NOUN uiug.30112106882779 152 158 and and CCONJ uiug.30112106882779 152 159 step step NOUN uiug.30112106882779 152 160 size size NOUN uiug.30112106882779 152 161 , , PUNCT uiug.30112106882779 152 162 bmin=.0002 bmin=.0002 PROPN uiug.30112106882779 152 163 , , PUNCT uiug.30112106882779 152 164 deltro.00002 deltro.00002 SPACE uiug.30112106882779 152 165 , , PUNCT uiug.30112106882779 152 166 bmax= bmax= PROPN uiug.30112106882779 152 167 .0013 .0013 PROPN uiug.30112106882779 152 168 , , PUNCT uiug.30112106882779 152 169 ksorok*k ksorok*k PROPN uiug.30112106882779 152 170 , , PUNCT uiug.30112106882779 152 171 omega= omega= X uiug.30112106882779 152 172 omegao omegao NOUN uiug.30112106882779 152 173 , , PUNCT uiug.30112106882779 152 174 b b NOUN uiug.30112106882779 152 175 = = SYM uiug.30112106882779 152 176 amin amin NOUN uiug.30112106882779 152 177 - - PUNCT uiug.30112106882779 152 178 deltb deltb NOUN uiug.30112106882779 152 179 , , PUNCT uiug.30112106882779 152 180 * * PUNCT uiug.30112106882779 152 181 loop loop NOUN uiug.30112106882779 152 182 on on ADP uiug.30112106882779 152 183 e e NOUN uiug.30112106882779 152 184 , , PUNCT uiug.30112106882779 152 185 1 1 NUM uiug.30112106882779 152 186 bebudeltb bebudeltb NOUN uiug.30112106882779 152 187 . . PUNCT uiug.30112106882779 153 1 * * PUNCT uiug.30112106882779 153 2 newton newton PROPN uiug.30112106882779 153 3 - - PUNCT uiug.30112106882779 153 4 raphson raphson PROPN uiug.30112106882779 153 5 loop loop PROPN uiug.30112106882779 153 6 , , PUNCT uiug.30112106882779 153 7 do21=1 do21=1 SPACE uiug.30112106882779 153 8 , , PUNCT uiug.30112106882779 153 9 no no INTJ uiug.30112106882779 153 10 it it PRON uiug.30112106882779 153 11 . . PUNCT uiug.30112106882779 154 1 * * PUNCT uiug.30112106882779 154 2 w2 w2 PROPN uiug.30112106882779 154 3 , , PUNCT uiug.30112106882779 154 4 derno derno NOUN uiug.30112106882779 154 5 = = NOUN uiug.30112106882779 154 6 d d NOUN uiug.30112106882779 154 7 ( ( PUNCT uiug.30112106882779 154 8 n n X uiug.30112106882779 154 9 , , PUNCT uiug.30112106882779 154 10 omega+del omega+del PROPN uiug.30112106882779 154 11 tom tom PROPN uiug.30112106882779 154 12 , , PUNCT uiug.30112106882779 154 13 det det PROPN uiug.30112106882779 154 14 ) ) PUNCT uiug.30112106882779 154 15 , , PUNCT uiug.30112106882779 154 16 * * PUNCT uiug.30112106882779 154 17 number number NOUN uiug.30112106882779 154 18 of of ADP uiug.30112106882779 154 19 scalings scaling NOUN uiug.30112106882779 154 20 , , PUNCT uiug.30112106882779 154 21 is2 is2 PROPN uiug.30112106882779 154 22 = = NOUN uiug.30112106882779 154 23 is be AUX uiug.30112106882779 154 24 , , PUNCT uiug.30112106882779 154 25 ܙ ܙ ADV uiug.30112106882779 154 26 1 1 NUM uiug.30112106882779 154 27 ܐܙܙ ܐܙܙ PROPN uiug.30112106882779 154 28 * * PUNCT uiug.30112106882779 154 29 dern1 dern1 PROPN uiug.30112106882779 154 30 = = NOUN uiug.30112106882779 154 31 d d NOUN uiug.30112106882779 154 32 ( ( PUNCT uiug.30112106882779 154 33 n n PROPN uiug.30112106882779 154 34 , , PUNCT uiug.30112106882779 154 35 omegadet omegadet PROPN uiug.30112106882779 154 36 ) ) PUNCT uiug.30112106882779 154 37 , , PUNCT uiug.30112106882779 154 38 is1 is1 NOUN uiug.30112106882779 154 39 = = PROPN uiug.30112106882779 154 40 is be AUX uiug.30112106882779 154 41 , , PUNCT uiug.30112106882779 154 42 11 11 NUM uiug.30112106882779 154 43 appendix appendix NOUN uiug.30112106882779 154 44 a a DET uiug.30112106882779 154 45 concluded conclude VERB uiug.30112106882779 154 46 * * NOUN uiug.30112106882779 154 47 check check NOUN uiug.30112106882779 154 48 to to PART uiug.30112106882779 154 49 insure insure VERB uiug.30112106882779 154 50 same same ADJ uiug.30112106882779 154 51 scaling scaling NOUN uiug.30112106882779 154 52 on on ADP uiug.30112106882779 154 53 w2 w2 PROPN uiug.30112106882779 154 54 , , PUNCT uiug.30112106882779 154 55 w1 w1 PROPN uiug.30112106882779 154 56 , , PUNCT uiug.30112106882779 154 57 if(is2.equisi if(is2.equisi PROPN uiug.30112106882779 154 58 ) ) PUNCT uiug.30112106882779 154 59 go go VERB uiug.30112106882779 154 60 to to ADP uiug.30112106882779 154 61 4 4 NUM uiug.30112106882779 154 62 . . PUNCT uiug.30112106882779 155 1 if if SCONJ uiug.30112106882779 155 2 ( ( PUNCT uiug.30112106882779 155 3 is2 is2 NOUN uiug.30112106882779 155 4 - - PUNCT uiug.30112106882779 155 5 isi.gt.n isi.gt.n VERB uiug.30112106882779 155 6 ) ) PUNCT uiug.30112106882779 155 7 go go VERB uiug.30112106882779 155 8 to to ADP uiug.30112106882779 155 9 6 6 NUM uiug.30112106882779 155 10 , , PUNCT uiug.30112106882779 155 11 cern?=dern2 cern?=dern2 SPACE uiug.30112106882779 155 12 * * PUNCT uiug.30112106882779 155 13 scale scale PROPN uiug.30112106882779 155 14 , , PUNCT uiug.30112106882779 155 15 go go VERB uiug.30112106882779 155 16 to to ADP uiug.30112106882779 155 17 4 4 NUM uiug.30112106882779 155 18 , , PUNCT uiug.30112106882779 155 19 6 6 NUM uiug.30112106882779 155 20 derni derni ADJ uiug.30112106882779 155 21 = = PROPN uiug.30112106882779 155 22 derni derni PROPN uiug.30112106882779 155 23 scale scale PROPN uiug.30112106882779 155 24 , , PUNCT uiug.30112106882779 155 25 * * PUNCT uiug.30112106882779 155 26 approximate approximate ADJ uiug.30112106882779 155 27 derivative derivative ADJ uiug.30112106882779 155 28 ( ( PUNCT uiug.30112106882779 155 29 w2 w2 PROPN uiug.30112106882779 155 30 - - PUNCT uiug.30112106882779 155 31 wi wi PROPN uiug.30112106882779 155 32 / / PUNCT uiug.30112106882779 155 33 deltom deltom PROPN uiug.30112106882779 155 34 , , PUNCT uiug.30112106882779 155 35 4 4 NUM uiug.30112106882779 155 36 derde derde X uiug.30112106882779 155 37 ( ( PUNCT uiug.30112106882779 155 38 dern2 dern2 PROPN uiug.30112106882779 155 39 - - PUNCT uiug.30112106882779 155 40 derni derni PROPN uiug.30112106882779 155 41 ) ) PUNCT uiug.30112106882779 155 42 del del PROPN uiug.30112106882779 155 43 tcm tcm PROPN uiug.30112106882779 155 44 , , PUNCT uiug.30112106882779 155 45 * * PROPN uiug.30112106882779 155 46 newton newton PROPN uiug.30112106882779 155 47 - - PUNCT uiug.30112106882779 155 48 raphson raphson PROPN uiug.30112106882779 155 49 root root NOUN uiug.30112106882779 155 50 increment increment NOUN uiug.30112106882779 155 51 , , PUNCT uiug.30112106882779 155 52 delmeg delmeg PROPN uiug.30112106882779 155 53 = = SYM uiug.30112106882779 155 54 dern1 dern1 PROPN uiug.30112106882779 155 55 /depd /depd NOUN uiug.30112106882779 155 56 , , PUNCT uiug.30112106882779 155 57 omega omega NOUN uiug.30112106882779 155 58 omega omega NOUN uiug.30112106882779 155 59 - - PUNCT uiug.30112106882779 155 60 delmeg delmeg PROPN uiug.30112106882779 155 61 , , PUNCT uiug.30112106882779 155 62 app app PROPN uiug.30112106882779 155 63 ( ( PUNCT uiug.30112106882779 155 64 i i NOUN uiug.30112106882779 155 65 ) ) PUNCT uiug.30112106882779 155 66 = = VERB uiug.30112106882779 156 1 omega omega NOUN uiug.30112106882779 156 2 , , PUNCT uiug.30112106882779 156 3 * * PUNCT uiug.30112106882779 156 4 check check VERB uiug.30112106882779 156 5 on on ADP uiug.30112106882779 156 6 improvement improvement NOUN uiug.30112106882779 156 7 of of ADP uiug.30112106882779 156 8 omega omega NOUN uiug.30112106882779 156 9 , , PUNCT uiug.30112106882779 156 10 2 2 NUM uiug.30112106882779 156 11 if(cabs if(cab NOUN uiug.30112106882779 156 12 ( ( PUNCT uiug.30112106882779 156 13 delmeg)olt.cvlimi delmeg)olt.cvlimi PROPN uiug.30112106882779 156 14 go go VERB uiug.30112106882779 156 15 to to ADP uiug.30112106882779 156 16 3 3 NUM uiug.30112106882779 156 17 , , PUNCT uiug.30112106882779 156 18 ) ) PUNCT uiug.30112106882779 156 19 3 3 NUM uiug.30112106882779 156 20 print print NOUN uiug.30112106882779 156 21 100,3,1 100,3,1 NUM uiug.30112106882779 156 22 , , PUNCT uiug.30112106882779 156 23 omega omega NOUN uiug.30112106882779 156 24 , , PUNCT uiug.30112106882779 156 25 print print PROPN uiug.30112106882779 156 26 101.is 101.is NUM uiug.30112106882779 156 27 , , PUNCT uiug.30112106882779 156 28 100 100 NUM uiug.30112106882779 156 29 formato formato NOUN uiug.30112106882779 156 30 3h 3h X uiug.30112106882779 156 31 b b X uiug.30112106882779 156 32 = = SYM uiug.30112106882779 156 33 f10.6,5x11 f10.6,5x11 X uiug.30112106882779 156 34 hiterations hiteration NOUN uiug.30112106882779 156 35 = = VERB uiug.30112106882779 156 36 13,5x6home 13,5x6home NUM uiug.30112106882779 156 37 ga ga NOUN uiug.30112106882779 156 38 = = PROPN uiug.30112106882779 156 39 f11.8 f11.8 SPACE uiug.30112106882779 156 40 , , PUNCT uiug.30112106882779 156 41 f11.8 f11.8 SPACE uiug.30112106882779 156 42 ) ) PUNCT uiug.30112106882779 156 43 , , PUNCT uiug.30112106882779 156 44 = = PROPN uiug.30112106882779 156 45 101 101 NUM uiug.30112106882779 156 46 format format NOUN uiug.30112106882779 156 47 ( ( PUNCT uiug.30112106882779 156 48 1x3his=13 1x3his=13 NUM uiug.30112106882779 156 49 ) ) PUNCT uiug.30112106882779 156 50 , , PUNCT uiug.30112106882779 156 51 900 900 NUM uiug.30112106882779 156 52 format(1/3h format(1/3h NOUN uiug.30112106882779 156 53 n=1 n=1 PROPN uiug.30112106882779 156 54 4/3h 4/3h NUM uiug.30112106882779 157 1 k k X uiug.30112106882779 157 2 = = NOUN uiug.30112106882779 157 3 f6.3/1 f6.3/1 PROPN uiug.30112106882779 157 4 ) ) PUNCT uiug.30112106882779 157 5 , , PUNCT uiug.30112106882779 157 6 if if SCONJ uiug.30112106882779 157 7 ( ( PUNCT uiug.30112106882779 157 8 b.lt.bmax b.lt.bmax NOUN uiug.30112106882779 157 9 - - PUNCT uiug.30112106882779 157 10 deltb/2 deltb/2 NOUN uiug.30112106882779 157 11 . . PROPN uiug.30112106882779 157 12 ) ) PUNCT uiug.30112106882779 157 13 , , PUNCT uiug.30112106882779 157 14 2 2 NUM uiug.30112106882779 157 15 go go VERB uiug.30112106882779 157 16 to to ADP uiug.30112106882779 157 17 1.4 1.4 NUM uiug.30112106882779 157 18 stop stop NOUN uiug.30112106882779 157 19 , , PUNCT uiug.30112106882779 157 20 enn enn PROPN uiug.30112106882779 157 21 , , PUNCT uiug.30112106882779 157 22 * * PUNCT uiug.30112106882779 157 23 subprogram subprogram NOUN uiug.30112106882779 157 24 for for ADP uiug.30112106882779 157 25 dispersion dispersion NOUN uiug.30112106882779 157 26 determinant determinant ADJ uiug.30112106882779 157 27 , , PUNCT uiug.30112106882779 157 28 complex complex ADJ uiug.30112106882779 157 29 function function NOUN uiug.30112106882779 157 30 d(iord d(iord PROPN uiug.30112106882779 157 31 , , PUNCT uiug.30112106882779 157 32 omega omega NOUN uiug.30112106882779 157 33 , , PUNCT uiug.30112106882779 157 34 det det PROPN uiug.30112106882779 157 35 ) ) PUNCT uiug.30112106882779 157 36 , , PUNCT uiug.30112106882779 157 37 complex complex ADJ uiug.30112106882779 157 38 omega omega NOUN uiug.30112106882779 157 39 , , PUNCT uiug.30112106882779 157 40 det det PROPN uiug.30112106882779 157 41 , , PUNCT uiug.30112106882779 157 42 real real ADJ uiug.30112106882779 157 43 ksqr ksqr NOUN uiug.30112106882779 157 44 , , PUNCT uiug.30112106882779 157 45 common common ADJ uiug.30112106882779 157 46 ksqr ksqr NOUN uiug.30112106882779 157 47 , , PUNCT uiug.30112106882779 157 48 b b NOUN uiug.30112106882779 157 49 , , PUNCT uiug.30112106882779 157 50 is be AUX uiug.30112106882779 157 51 , , PUNCT uiug.30112106882779 157 52 scale scale NOUN uiug.30112106882779 157 53 , , PUNCT uiug.30112106882779 157 54 dimension dimension NOUN uiug.30112106882779 157 55 det det PROPN uiug.30112106882779 157 56 i i PROPN uiug.30112106882779 157 57 ord ord PROPN uiug.30112106882779 157 58 ) ) PUNCT uiug.30112106882779 157 59 , , PUNCT uiug.30112106882779 157 60 * * PUNCT uiug.30112106882779 157 61 first first ADV uiug.30112106882779 157 62 determinants determinant NOUN uiug.30112106882779 157 63 , , PUNCT uiug.30112106882779 157 64 det det PROPN uiug.30112106882779 157 65 ( ( PUNCT uiug.30112106882779 157 66 1 1 NUM uiug.30112106882779 157 67 ) ) PUNCT uiug.30112106882779 157 68 = = SYM uiug.30112106882779 157 69 omega omega NOUN uiug.30112106882779 157 70 , , PUNCT uiug.30112106882779 157 71 det det PROPN uiug.30112106882779 157 72 ( ( PUNCT uiug.30112106882779 157 73 ? ? PUNCT uiug.30112106882779 157 74 ) ) PUNCT uiug.30112106882779 158 1 = = PUNCT uiug.30112106882779 159 1 omega omega NOUN uiug.30112106882779 159 2 * * PUNCT uiug.30112106882779 159 3 ( ( PUNCT uiug.30112106882779 159 4 omega+cmplx(0.,1.0)*b)-(1 omega+cmplx(0.,1.0)*b)-(1 PROPN uiug.30112106882779 159 5 . . PUNCT uiug.30112106882779 160 1 + + PROPN uiug.30112106882779 160 2 k k PROPN uiug.30112106882779 160 3 sqr sqr PROPN uiug.30112106882779 160 4 ) ) PUNCT uiug.30112106882779 160 5 , , PUNCT uiug.30112106882779 160 6 scalf=1.f-18 scalf=1.f-18 PROPN uiug.30112106882779 160 7 , , PUNCT uiug.30112106882779 160 8 is=0 is=0 NUM uiug.30112106882779 160 9 * * SYM uiug.30112106882779 160 10 re re PROPN uiug.30112106882779 160 11 cursion cursion NOUN uiug.30112106882779 160 12 loop loop PROPN uiug.30112106882779 160 13 , , PUNCT uiug.30112106882779 160 14 doi doi PROPN uiug.30112106882779 160 15 1 1 NUM uiug.30112106882779 160 16 - - SYM uiug.30112106882779 160 17 3 3 NUM uiug.30112106882779 160 18 , , PUNCT uiug.30112106882779 160 19 i i PROPN uiug.30112106882779 160 20 ord ord PROPN uiug.30112106882779 160 21 , , PUNCT uiug.30112106882779 160 22 det det PROPN uiug.30112106882779 160 23 ( ( PUNCT uiug.30112106882779 160 24 i i NOUN uiug.30112106882779 160 25 ) ) PUNCT uiug.30112106882779 161 1 = = PROPN uiug.30112106882779 161 2 det det PROPN uiug.30112106882779 161 3 ( ( PUNCT uiug.30112106882779 161 4 1 1 NUM uiug.30112106882779 161 5 - - SYM uiug.30112106882779 161 6 1 1 NUM uiug.30112106882779 161 7 ) ) PUNCT uiug.30112106882779 161 8 * * PUNCT uiug.30112106882779 161 9 ( ( PUNCT uiug.30112106882779 161 10 omega+float omega+float PROPN uiug.30112106882779 161 11 ( ( PUNCT uiug.30112106882779 161 12 1 1 NUM uiug.30112106882779 161 13 - - SYM uiug.30112106882779 161 14 1)*cmplx(0.,1.)*b)-float(i-1 1)*cmplx(0.,1.)*b)-float(i-1 NUM uiug.30112106882779 161 15 ) ) PUNCT uiug.30112106882779 161 16 * * PROPN uiug.30112106882779 161 17 , , PUNCT uiug.30112106882779 161 18 2k 2k NUM uiug.30112106882779 161 19 sqr*det(1 sqr*det(1 NOUN uiug.30112106882779 161 20 - - SYM uiug.30112106882779 161 21 2 2 NUM uiug.30112106882779 161 22 ) ) PUNCT uiug.30112106882779 161 23 , , PUNCT uiug.30112106882779 161 24 * * PUNCT uiug.30112106882779 161 25 check check VERB uiug.30112106882779 161 26 on on ADP uiug.30112106882779 161 27 size size NOUN uiug.30112106882779 161 28 of of ADP uiug.30112106882779 161 29 d d NOUN uiug.30112106882779 161 30 , , PUNCT uiug.30112106882779 161 31 if(cabs if(cabs PROPN uiug.30112106882779 161 32 ( ( PUNCT uiug.30112106882779 161 33 det(i)volt.1.e18 det(i)volt.1.e18 PROPN uiug.30112106882779 161 34 ) ) PUNCT uiug.30112106882779 161 35 go go VERB uiug.30112106882779 161 36 to to ADP uiug.30112106882779 161 37 1 1 NUM uiug.30112106882779 161 38 , , PUNCT uiug.30112106882779 161 39 * * PUNCT uiug.30112106882779 161 40 scaling scaling NOUN uiug.30112106882779 161 41 of of ADP uiug.30112106882779 161 42 d. d. PROPN uiug.30112106882779 161 43 , , PUNCT uiug.30112106882779 161 44 2 2 NUM uiug.30112106882779 161 45 det(i det(i PROPN uiug.30112106882779 161 46 ) ) PUNCT uiug.30112106882779 161 47 = = PROPN uiug.30112106882779 161 48 dft dft PROPN uiug.30112106882779 161 49 ( ( PUNCT uiug.30112106882779 161 50 ! ! PUNCT uiug.30112106882779 161 51 ) ) PUNCT uiug.30112106882779 162 1 * * PUNCT uiug.30112106882779 162 2 scale scale PROPN uiug.30112106882779 162 3 , , PUNCT uiug.30112106882779 162 4 det(i-1)=det det(i-1)=det NOUN uiug.30112106882779 162 5 ( ( PUNCT uiug.30112106882779 162 6 1 1 NUM uiug.30112106882779 162 7 - - SYM uiug.30112106882779 162 8 1)*scale 1)*scale NUM uiug.30112106882779 162 9 , , PUNCT uiug.30112106882779 162 10 * * VERB uiug.30112106882779 162 11 scaling scaling NOUN uiug.30112106882779 162 12 count count NOUN uiug.30112106882779 162 13 , , PUNCT uiug.30112106882779 162 14 is=15 is=15 PROPN uiug.30112106882779 162 15 + + PROPN uiug.30112106882779 162 16 1 1 NUM uiug.30112106882779 162 17 , , PUNCT uiug.30112106882779 162 18 1 1 NUM uiug.30112106882779 162 19 continue continue VERB uiug.30112106882779 162 20 , , PUNCT uiug.30112106882779 162 21 d d NOUN uiug.30112106882779 162 22 = = PROPN uiug.30112106882779 162 23 detci detci PROPN uiug.30112106882779 162 24 ord ord PROPN uiug.30112106882779 162 25 ) ) PUNCT uiug.30112106882779 162 26 . . PUNCT uiug.30112106882779 163 1 return return VERB uiug.30112106882779 163 2 end end NOUN uiug.30112106882779 163 3 , , PUNCT uiug.30112106882779 163 4 12 12 NUM uiug.30112106882779 163 5 appendix appendix ADJ uiug.30112106882779 163 6 b b NOUN uiug.30112106882779 163 7 derivation derivation NOUN uiug.30112106882779 163 8 of of ADP uiug.30112106882779 163 9 kla kla PROPN uiug.30112106882779 163 10 ) ) PUNCT uiug.30112106882779 163 11 the the DET uiug.30112106882779 163 12 linearized linearize VERB uiug.30112106882779 163 13 one one NUM uiug.30112106882779 163 14 - - PUNCT uiug.30112106882779 163 15 dimensional dimensional ADJ uiug.30112106882779 163 16 vlasov vlasov NOUN uiug.30112106882779 163 17 equations equation NOUN uiug.30112106882779 163 18 , , PUNCT uiug.30112106882779 163 19 in in ADP uiug.30112106882779 163 20 natural natural ADJ uiug.30112106882779 163 21 units unit NOUN uiug.30112106882779 163 22 , , PUNCT uiug.30112106882779 163 23 for for ADP uiug.30112106882779 163 24 the the DET uiug.30112106882779 163 25 electronic electronic ADJ uiug.30112106882779 163 26 perturbation perturbation NOUN uiug.30112106882779 163 27 f f PROPN uiug.30112106882779 163 28 on on ADP uiug.30112106882779 163 29 a a DET uiug.30112106882779 163 30 uniform uniform ADJ uiug.30112106882779 163 31 ionic ionic ADJ uiug.30112106882779 163 32 background background NOUN uiug.30112106882779 163 33 distribution distribution NOUN uiug.30112106882779 163 34 are be AUX uiug.30112106882779 163 35 af af ADV uiug.30112106882779 163 36 af af INTJ uiug.30112106882779 163 37 + + ADP uiug.30112106882779 163 38 v v NOUN uiug.30112106882779 163 39 at at ADP uiug.30112106882779 163 40 ef ef PROPN uiug.30112106882779 163 41 ' ' PUNCT uiug.30112106882779 163 42 = = NOUN uiug.30112106882779 163 43 0 0 NUM uiug.30112106882779 163 44 ( ( PUNCT uiug.30112106882779 163 45 bla bla NOUN uiug.30112106882779 163 46 ) ) PUNCT uiug.30112106882779 163 47 əx əx ADP uiug.30112106882779 163 48 әe әe PROPN uiug.30112106882779 163 49 ax ax PROPN uiug.30112106882779 163 50 ii ii PROPN uiug.30112106882779 163 51 s s X uiug.30112106882779 163 52 f f PROPN uiug.30112106882779 163 53 dx dx PROPN uiug.30112106882779 163 54 ( ( PUNCT uiug.30112106882779 163 55 b1b b1b X uiug.30112106882779 163 56 ) ) PUNCT uiug.30112106882779 163 57 where where SCONJ uiug.30112106882779 163 58 f f PROPN uiug.30112106882779 163 59 is be AUX uiug.30112106882779 163 60 the the DET uiug.30112106882779 163 61 unperturbed unperturbed ADJ uiug.30112106882779 163 62 velocity velocity NOUN uiug.30112106882779 163 63 distribution distribution NOUN uiug.30112106882779 163 64 of of ADP uiug.30112106882779 163 65 the the DET uiug.30112106882779 163 66 electrons electron NOUN uiug.30112106882779 163 67 . . PUNCT uiug.30112106882779 164 1 the the DET uiug.30112106882779 164 2 fourier fourier NOUN uiug.30112106882779 164 3 - - PUNCT uiug.30112106882779 164 4 laplace laplace NOUN uiug.30112106882779 164 5 transform transform NOUN uiug.30112106882779 164 6 of of ADP uiug.30112106882779 164 7 f(x f(x PROPN uiug.30112106882779 164 8 , , PUNCT uiug.30112106882779 164 9 v v NOUN uiug.30112106882779 164 10 , , PUNCT uiug.30112106882779 164 11 t t PROPN uiug.30112106882779 164 12 ) ) PUNCT uiug.30112106882779 164 13 may may AUX uiug.30112106882779 164 14 be be AUX uiug.30112106882779 164 15 written write VERB uiug.30112106882779 164 16 as as ADP uiug.30112106882779 164 17 f(8,5 f(8,5 PROPN uiug.30112106882779 164 18 ) ) PUNCT uiug.30112106882779 164 19 = = PROPN uiug.30112106882779 164 20 z1 z1 PROPN uiug.30112106882779 165 1 so so ADV uiug.30112106882779 165 2 at at ADP uiug.30112106882779 165 3 sdx sdx PROPN uiug.30112106882779 165 4 e e PROPN uiug.30112106882779 165 5 - - PROPN uiug.30112106882779 165 6 ste+{kx ste+{kx PROPN uiug.30112106882779 165 7 f(x f(x PROPN uiug.30112106882779 165 8 , , PUNCT uiug.30112106882779 165 9 v v NOUN uiug.30112106882779 165 10 , , PUNCT uiug.30112106882779 165 11 t t PROPN uiug.30112106882779 165 12 ) ) PUNCT uiug.30112106882779 165 13 xsc xsc PROPN uiug.30112106882779 165 14 ks ks PROPN uiug.30112106882779 165 15 ) ) PUNCT uiug.30112106882779 165 16 dt dt PROPN uiug.30112106882779 165 17 211 211 NUM uiug.30112106882779 165 18 where where SCONJ uiug.30112106882779 165 19 the the DET uiug.30112106882779 165 20 same same ADJ uiug.30112106882779 165 21 symbol symbol NOUN uiug.30112106882779 165 22 f f PROPN uiug.30112106882779 165 23 is be AUX uiug.30112106882779 165 24 used use VERB uiug.30112106882779 165 25 for for ADP uiug.30112106882779 165 26 both both DET uiug.30112106882779 165 27 function function NOUN uiug.30112106882779 165 28 and and CCONJ uiug.30112106882779 165 29 transform transform NOUN uiug.30112106882779 165 30 . . PUNCT uiug.30112106882779 166 1 the the DET uiug.30112106882779 166 2 corresponding correspond VERB uiug.30112106882779 166 3 inverse inverse NOUN uiug.30112106882779 166 4 is be AUX uiug.30112106882779 166 5 +100 +100 NUM uiug.30112106882779 166 6 + + NUM uiug.30112106882779 166 7 8 8 NUM uiug.30112106882779 166 8 f(x f(x NUM uiug.30112106882779 166 9 , , PUNCT uiug.30112106882779 166 10 v v NOUN uiug.30112106882779 166 11 , , PUNCT uiug.30112106882779 166 12 t t PROPN uiug.30112106882779 166 13 ) ) PUNCT uiug.30112106882779 166 14 1 1 NUM uiug.30112106882779 166 15 20i 20i NUM uiug.30112106882779 166 16 ds ds PROPN uiug.30112106882779 166 17 s s PART uiug.30112106882779 166 18 dk dk PROPN uiug.30112106882779 166 19 e+ste e+ste ADJ uiug.30112106882779 166 20 - - PUNCT uiug.30112106882779 166 21 ikx ikx NOUN uiug.30112106882779 166 22 f(k f(k PROPN uiug.30112106882779 166 23 , , PUNCT uiug.30112106882779 166 24 s s PART uiug.30112106882779 166 25 ) ) PUNCT uiug.30112106882779 166 26 -100 -100 NUM uiug.30112106882779 166 27 + + NUM uiug.30112106882779 166 28 0 0 NUM uiug.30112106882779 166 29 where where SCONJ uiug.30112106882779 166 30 the the DET uiug.30112106882779 166 31 integral integral NOUN uiug.30112106882779 166 32 on on ADP uiug.30112106882779 166 33 s s VERB uiug.30112106882779 166 34 is be AUX uiug.30112106882779 166 35 known know VERB uiug.30112106882779 166 36 as as ADP uiug.30112106882779 166 37 bromwich bromwich PROPN uiug.30112106882779 166 38 's 's PART uiug.30112106882779 166 39 integral integral ADJ uiug.30112106882779 166 40 . . PUNCT uiug.30112106882779 167 1 on on ADP uiug.30112106882779 167 2 application application NOUN uiug.30112106882779 167 3 of of ADP uiug.30112106882779 167 4 the the DET uiug.30112106882779 167 5 fourierlaplace fourierlaplace NOUN uiug.30112106882779 167 6 transform transform NOUN uiug.30112106882779 167 7 to to ADP uiug.30112106882779 167 8 equations equation NOUN uiug.30112106882779 167 9 ( ( PUNCT uiug.30112106882779 167 10 b1 b1 PROPN uiug.30112106882779 167 11 ) ) PUNCT uiug.30112106882779 167 12 , , PUNCT uiug.30112106882779 167 13 the the DET uiug.30112106882779 167 14 result result NOUN uiug.30112106882779 167 15 is be AUX uiug.30112106882779 167 16 s s PROPN uiug.30112106882779 167 17 f(k f(k PROPN uiug.30112106882779 167 18 , , PUNCT uiug.30112106882779 167 19 s s PART uiug.30112106882779 167 20 ) ) PUNCT uiug.30112106882779 167 21 ikv ikv PROPN uiug.30112106882779 167 22 f(k f(k PROPN uiug.30112106882779 167 23 , , PUNCT uiug.30112106882779 167 24 s s PART uiug.30112106882779 167 25 ) ) PUNCT uiug.30112106882779 167 26 f f PROPN uiug.30112106882779 167 27 ' ' PUNCT uiug.30112106882779 167 28 eſk eſk PROPN uiug.30112106882779 167 29 , , PUNCT uiug.30112106882779 167 30 s s PROPN uiug.30112106882779 167 31 ) ) PUNCT uiug.30112106882779 167 32 = = PROPN uiug.30112106882779 167 33 fo(k fo(k PROPN uiug.30112106882779 167 34 , , PUNCT uiug.30112106882779 167 35 v v NOUN uiug.30112106882779 167 36 ) ) PUNCT uiug.30112106882779 167 37 ( ( PUNCT uiug.30112106882779 167 38 b2a b2a NOUN uiug.30112106882779 167 39 ) ) PUNCT uiug.30112106882779 167 40 tik tik PROPN uiug.30112106882779 167 41 e(k,5 e(k,5 PROPN uiug.30112106882779 167 42 ) ) PUNCT uiug.30112106882779 168 1 = = PROPN uiug.30112106882779 169 1 sº sº PROPN uiug.30112106882779 169 2 f(k f(k PROPN uiug.30112106882779 169 3 , , PUNCT uiug.30112106882779 169 4 s)dv s)dv PROPN uiug.30112106882779 169 5 = = SYM uiug.30112106882779 169 6 n(k,8 n(k,8 PROPN uiug.30112106882779 169 7 ) ) PUNCT uiug.30112106882779 169 8 ( ( PUNCT uiug.30112106882779 169 9 b2b b2b PROPN uiug.30112106882779 169 10 ) ) PUNCT uiug.30112106882779 169 11 to to PART uiug.30112106882779 169 12 obtain obtain VERB uiug.30112106882779 169 13 equations equation NOUN uiug.30112106882779 169 14 ( ( PUNCT uiug.30112106882779 169 15 b2 b2 X uiug.30112106882779 169 16 ) ) PUNCT uiug.30112106882779 169 17 the the DET uiug.30112106882779 169 18 usual usual ADJ uiug.30112106882779 169 19 relations relation NOUN uiug.30112106882779 169 20 l l NOUN uiug.30112106882779 169 21 of of ADP uiug.30112106882779 169 22 at at ADP uiug.30112106882779 169 23 s{{f s{{f NOUN uiug.30112106882779 169 24 } } PUNCT uiug.30112106882779 169 25 f(x f(x PROPN uiug.30112106882779 169 26 , , PUNCT uiug.30112106882779 169 27 v,0 v,0 PROPN uiug.30112106882779 169 28 ) ) PUNCT uiug.30112106882779 169 29 3 3 NUM uiug.30112106882779 170 1 af af PROPN uiug.30112106882779 170 2 ax ax PROPN uiug.30112106882779 170 3 -ik7{f -ik7{f NOUN uiug.30112106882779 170 4 } } PUNCT uiug.30112106882779 170 5 13 13 NUM uiug.30112106882779 170 6 appendix appendix PROPN uiug.30112106882779 170 7 b b NOUN uiug.30112106882779 170 8 – – PUNCT uiug.30112106882779 170 9 continued continue VERB uiug.30112106882779 170 10 are be AUX uiug.30112106882779 170 11 employed employ VERB uiug.30112106882779 170 12 . . PUNCT uiug.30112106882779 171 1 the the DET uiug.30112106882779 171 2 notation notation NOUN uiug.30112106882779 171 3 fo(k fo(k PROPN uiug.30112106882779 171 4 , , PUNCT uiug.30112106882779 171 5 v v NOUN uiug.30112106882779 171 6 ) ) PUNCT uiug.30112106882779 171 7 refers refer VERB uiug.30112106882779 171 8 to to ADP uiug.30112106882779 171 9 3{f(x 3{f(x NUM uiug.30112106882779 171 10 , , PUNCT uiug.30112106882779 171 11 v,0 v,0 PROPN uiug.30112106882779 171 12 ) ) PUNCT uiug.30112106882779 171 13 , , PUNCT uiug.30112106882779 171 14 the the DET uiug.30112106882779 171 15 fourier fourier NOUN uiug.30112106882779 171 16 transform transform NOUN uiug.30112106882779 171 17 of of ADP uiug.30112106882779 171 18 the the DET uiug.30112106882779 171 19 initial initial ADJ uiug.30112106882779 171 20 conditions condition NOUN uiug.30112106882779 171 21 . . PUNCT uiug.30112106882779 172 1 in in ADP uiug.30112106882779 172 2 equations equation NOUN uiug.30112106882779 172 3 ( ( PUNCT uiug.30112106882779 172 4 b2 b2 NOUN uiug.30112106882779 172 5 ) ) PUNCT uiug.30112106882779 172 6 , , PUNCT uiug.30112106882779 172 7 f(k f(k PROPN uiug.30112106882779 172 8 , , PUNCT uiug.30112106882779 172 9 s s PART uiug.30112106882779 172 10 ) ) PUNCT uiug.30112106882779 172 11 has have VERB uiug.30112106882779 172 12 an an DET uiug.30112106882779 172 13 implicit implicit ADJ uiug.30112106882779 172 14 dependence dependence NOUN uiug.30112106882779 172 15 on on ADP uiug.30112106882779 172 16 velocity velocity NOUN uiug.30112106882779 172 17 v v NOUN uiug.30112106882779 172 18 , , PUNCT uiug.30112106882779 172 19 but but CCONJ uiug.30112106882779 172 20 n(k n(k PROPN uiug.30112106882779 172 21 , , PUNCT uiug.30112106882779 172 22 s s PART uiug.30112106882779 172 23 ) ) PUNCT uiug.30112106882779 172 24 and and CCONJ uiug.30112106882779 172 25 e(k e(k PROPN uiug.30112106882779 172 26 , , PUNCT uiug.30112106882779 172 27 s s PUNCT uiug.30112106882779 172 28 ) ) PUNCT uiug.30112106882779 172 29 do do VERB uiug.30112106882779 172 30 not not PART uiug.30112106882779 172 31 , , PUNCT uiug.30112106882779 172 32 since since SCONJ uiug.30112106882779 172 33 only only ADV uiug.30112106882779 172 34 in in ADP uiug.30112106882779 172 35 equation equation NOUN uiug.30112106882779 172 36 ( ( PUNCT uiug.30112106882779 172 37 b2b b2b PROPN uiug.30112106882779 172 38 ) ) PUNCT uiug.30112106882779 172 39 has have VERB uiug.30112106882779 172 40 velocity velocity NOUN uiug.30112106882779 172 41 been be AUX uiug.30112106882779 172 42 integrated integrate VERB uiug.30112106882779 172 43 upon upon SCONJ uiug.30112106882779 172 44 . . PUNCT uiug.30112106882779 173 1 v v NOUN uiug.30112106882779 173 2 to to PART uiug.30112106882779 173 3 find find VERB uiug.30112106882779 173 4 if if SCONJ uiug.30112106882779 173 5 one one NUM uiug.30112106882779 173 6 first first ADJ uiug.30112106882779 173 7 solves solve VERB uiug.30112106882779 173 8 for for ADP uiug.30112106882779 173 9 f(k f(k PROPN uiug.30112106882779 173 10 , , PUNCT uiug.30112106882779 173 11 s s PART uiug.30112106882779 173 12 ) ) PUNCT uiug.30112106882779 173 13 in in ADP uiug.30112106882779 173 14 equation equation NOUN uiug.30112106882779 173 15 ( ( PUNCT uiug.30112106882779 173 16 b2a b2a NOUN uiug.30112106882779 173 17 ) ) PUNCT uiug.30112106882779 173 18 , , PUNCT uiug.30112106882779 173 19 then then ADV uiug.30112106882779 173 20 integrates integrate VERB uiug.30112106882779 173 21 over over ADP uiug.30112106882779 173 22 n(k n(k PROPN uiug.30112106882779 173 23 , , PUNCT uiug.30112106882779 173 24 s s PART uiug.30112106882779 173 25 ) ) PUNCT uiug.30112106882779 173 26 from from ADP uiug.30112106882779 173 27 equation equation NOUN uiug.30112106882779 173 28 ( ( PUNCT uiug.30112106882779 173 29 b2b b2b PROPN uiug.30112106882779 173 30 ) ) PUNCT uiug.30112106882779 173 31 , , PUNCT uiug.30112106882779 173 32 and and CCONJ uiug.30112106882779 173 33 , , PUNCT uiug.30112106882779 173 34 finally finally ADV uiug.30112106882779 173 35 , , PUNCT uiug.30112106882779 173 36 substitutes substitutes PROPN uiug.30112106882779 173 37 s s PART uiug.30112106882779 173 38 = = PROPN uiug.30112106882779 173 39 iw iw PROPN uiug.30112106882779 173 40 , , PUNCT uiug.30112106882779 173 41 the the DET uiug.30112106882779 173 42 result result NOUN uiug.30112106882779 173 43 is be AUX uiug.30112106882779 173 44 1 1 NUM uiug.30112106882779 173 45 j j PROPN uiug.30112106882779 173 46 n(k n(k PROPN uiug.30112106882779 173 47 , , PUNCT uiug.30112106882779 173 48 s s PART uiug.30112106882779 173 49 ) ) PUNCT uiug.30112106882779 173 50 i(k i(k PROPN uiug.30112106882779 173 51 , , PUNCT uiug.30112106882779 173 52 s s NOUN uiug.30112106882779 173 53 ) ) PUNCT uiug.30112106882779 173 54 e(k e(k PROPN uiug.30112106882779 173 55 , , PUNCT uiug.30112106882779 173 56 s s PUNCT uiug.30112106882779 173 57 ) ) PUNCT uiug.30112106882779 173 58 = = NOUN uiug.30112106882779 173 59 1.s 1.s NUM uiug.30112106882779 173 60 is be AUX uiug.30112106882779 173 61 fok fok ADJ uiug.30112106882779 173 62 , , PUNCT uiug.30112106882779 173 63 v)dv v)dv PROPN uiug.30112106882779 173 64 w w X uiug.30112106882779 173 65 kv kv PROPN uiug.30112106882779 173 66 f'dy f'dy X uiug.30112106882779 173 67 ky ky PROPN uiug.30112106882779 173 68 ( ( PUNCT uiug.30112106882779 173 69 s s X uiug.30112106882779 173 70 = = X uiug.30112106882779 173 71 i i PROPN uiug.30112106882779 173 72 d d NOUN uiug.30112106882779 173 73 ) ) PUNCT uiug.30112106882779 173 74 1 1 NUM uiug.30112106882779 173 75 + + NUM uiug.30112106882779 173 76 11 11 NUM uiug.30112106882779 173 77 w w NOUN uiug.30112106882779 173 78 where where SCONJ uiug.30112106882779 173 79 the the DET uiug.30112106882779 173 80 denominator denominator PROPN uiug.30112106882779 173 81 elk elk PROPN uiug.30112106882779 173 82 , , PUNCT uiug.30112106882779 173 83 s s PROPN uiug.30112106882779 173 84 ) ) PUNCT uiug.30112106882779 173 85 is be AUX uiug.30112106882779 173 86 the the DET uiug.30112106882779 173 87 so so ADV uiug.30112106882779 173 88 - - PUNCT uiug.30112106882779 173 89 called call VERB uiug.30112106882779 173 90 plasma plasma NOUN uiug.30112106882779 173 91 dielectric dielectric NOUN uiug.30112106882779 173 92 constant constant ADJ uiug.30112106882779 173 93 . . PUNCT uiug.30112106882779 174 1 under under ADP uiug.30112106882779 174 2 an an DET uiug.30112106882779 174 3 initial initial ADJ uiug.30112106882779 174 4 cos(kx cos(kx VERB uiug.30112106882779 174 5 ) ) PUNCT uiug.30112106882779 174 6 density density NOUN uiug.30112106882779 174 7 perturbation perturbation NOUN uiug.30112106882779 174 8 the the DET uiug.30112106882779 174 9 assumed assume VERB uiug.30112106882779 174 10 maxwellian maxwellian ADJ uiug.30112106882779 174 11 electronic electronic ADJ uiug.30112106882779 174 12 velocity velocity NOUN uiug.30112106882779 174 13 distribution distribution NOUN uiug.30112106882779 174 14 f f X uiug.30112106882779 174 15 = = SYM uiug.30112106882779 174 16 1 1 NUM uiug.30112106882779 175 1 | | PROPN uiug.30112106882779 175 2 v v NOUN uiug.30112106882779 175 3 exp(-v2/2 exp(-v2/2 PROPN uiug.30112106882779 175 4 ) ) PUNCT uiug.30112106882779 176 1 2 2 NUM uiug.30112106882779 176 2 tt tt PROPN uiug.30112106882779 176 3 is be AUX uiug.30112106882779 176 4 untouched untouched ADJ uiug.30112106882779 176 5 . . PUNCT uiug.30112106882779 177 1 thus thus ADV uiug.30112106882779 177 2 fo(k fo(k PROPN uiug.30112106882779 177 3 , , PUNCT uiug.30112106882779 177 4 v v NOUN uiug.30112106882779 177 5 ) ) PUNCT uiug.30112106882779 177 6 = = X uiug.30112106882779 178 1 f f PROPN uiug.30112106882779 178 2 = = X uiug.30112106882779 178 3 f f X uiug.30112106882779 178 4 ' ' PUNCT uiug.30112106882779 178 5 < < X uiug.30112106882779 178 6 and and CCONJ uiug.30112106882779 178 7 in in ADP uiug.30112106882779 178 8 terms term NOUN uiug.30112106882779 178 9 of of ADP uiug.30112106882779 178 10 f f X uiug.30112106882779 178 11 ' ' PUNCT uiug.30112106882779 178 12 , , PUNCT uiug.30112106882779 178 13 1 1 NUM uiug.30112106882779 178 14 som som NOUN uiug.30112106882779 178 15 1 1 NUM uiug.30112106882779 178 16 -f -f X uiug.30112106882779 178 17 ' ' PUNCT uiug.30112106882779 178 18 w w X uiug.30112106882779 178 19 kv kv ADV uiug.30112106882779 178 20 dv dv PROPN uiug.30112106882779 178 21 v v PROPN uiug.30112106882779 178 22 ܚ ܚ PROPN uiug.30112106882779 178 23 n(k n(k PROPN uiug.30112106882779 178 24 , , PUNCT uiug.30112106882779 178 25 s s PART uiug.30112106882779 178 26 ) ) PUNCT uiug.30112106882779 178 27 sº sº PROPN uiug.30112106882779 178 28 sf'dv sf'dv PROPN uiug.30112106882779 178 29 1 1 PROPN uiug.30112106882779 178 30 + + CCONJ uiug.30112106882779 178 31 k k X uiug.30112106882779 178 32 w w X uiug.30112106882779 178 33 kv kv PROPN uiug.30112106882779 178 34 in in ADP uiug.30112106882779 178 35 the the DET uiug.30112106882779 178 36 integral integral NOUN uiug.30112106882779 178 37 of of ADP uiug.30112106882779 178 38 the the DET uiug.30112106882779 178 39 numerator numerator NOUN uiug.30112106882779 178 40 of of ADP uiug.30112106882779 178 41 n(k n(k PROPN uiug.30112106882779 178 42 , , PUNCT uiug.30112106882779 178 43 s s PART uiug.30112106882779 178 44 ) ) PUNCT uiug.30112106882779 178 45 the the DET uiug.30112106882779 178 46 coefficient coefficient NOUN uiug.30112106882779 178 47 of of ADP uiug.30112106882779 178 48 -f -f SPACE uiug.30112106882779 178 49 ' ' PUNCT uiug.30112106882779 178 50 may may AUX uiug.30112106882779 178 51 be be AUX uiug.30112106882779 178 52 written write VERB uiug.30112106882779 178 53 as as ADP uiug.30112106882779 178 54 11 11 NUM uiug.30112106882779 178 55 vw vw PRON uiug.30112106882779 178 56 kv kv X uiug.30112106882779 178 57 k k PROPN uiug.30112106882779 178 58 -1 -1 PROPN uiug.30112106882779 178 59 1 1 NUM uiug.30112106882779 179 1 + + NUM uiug.30112106882779 179 2 w10 w10 NOUN uiug.30112106882779 179 3 ky ky X uiug.30112106882779 179 4 w w PROPN uiug.30112106882779 179 5 kv kv PROPN uiug.30112106882779 180 1 so so SCONJ uiug.30112106882779 180 2 that that SCONJ uiug.30112106882779 180 3 n(k n(k PROPN uiug.30112106882779 180 4 , , PUNCT uiug.30112106882779 180 5 s s AUX uiug.30112106882779 180 6 ) ) PUNCT uiug.30112106882779 180 7 may may AUX uiug.30112106882779 180 8 be be AUX uiug.30112106882779 180 9 written write VERB uiug.30112106882779 180 10 in in ADP uiug.30112106882779 180 11 terms term NOUN uiug.30112106882779 180 12 of of ADP uiug.30112106882779 180 13 e(k e(k PROPN uiug.30112106882779 180 14 , , PUNCT uiug.30112106882779 180 15 w w PROPN uiug.30112106882779 180 16 ) ) PUNCT uiug.30112106882779 180 17 and and CCONJ uiug.30112106882779 180 18 e(k,0 e(k,0 PROPN uiug.30112106882779 180 19 ): ): PUNCT uiug.30112106882779 180 20 eo eo PROPN uiug.30112106882779 180 21 n(k n(k PROPN uiug.30112106882779 180 22 , , PUNCT uiug.30112106882779 180 23 s s PART uiug.30112106882779 180 24 ) ) PUNCT uiug.30112106882779 180 25 ik2 ik2 PRON uiug.30112106882779 180 26 € € PROPN uiug.30112106882779 180 27 ( ( PUNCT uiug.30112106882779 180 28 kw kw X uiug.30112106882779 180 29 ) ) PUNCT uiug.30112106882779 180 30 € € SYM uiug.30112106882779 180 31 ( ( PUNCT uiug.30112106882779 180 32 k,0 k,0 X uiug.30112106882779 180 33 ) ) PUNCT uiug.30112106882779 180 34 ik2 ik2 PRON uiug.30112106882779 180 35 € € PROPN uiug.30112106882779 180 36 ( ( PUNCT uiug.30112106882779 180 37 k k PROPN uiug.30112106882779 180 38 , , PUNCT uiug.30112106882779 180 39 w w PROPN uiug.30112106882779 180 40 ) ) PUNCT uiug.30112106882779 180 41 ليا ليا NOUN uiug.30112106882779 180 42 e e NOUN uiug.30112106882779 180 43 14 14 NUM uiug.30112106882779 180 44 appendix appendix PROPN uiug.30112106882779 180 45 b b NOUN uiug.30112106882779 180 46 continued continue VERB uiug.30112106882779 180 47 by by ADP uiug.30112106882779 180 48 means mean NOUN uiug.30112106882779 180 49 of of ADP uiug.30112106882779 180 50 a a DET uiug.30112106882779 180 51 change change NOUN uiug.30112106882779 180 52 in in ADP uiug.30112106882779 180 53 variable variable ADJ uiug.30112106882779 180 54 w w PROPN uiug.30112106882779 180 55 = = X uiug.30112106882779 180 56 v v NOUN uiug.30112106882779 180 57 / / SYM uiug.30112106882779 180 58 v2 v2 NOUN uiug.30112106882779 180 59 , , PUNCT uiug.30112106882779 180 60 and and CCONJ uiug.30112106882779 180 61 the the DET uiug.30112106882779 180 62 substitution substitution NOUN uiug.30112106882779 180 63 w w X uiug.30112106882779 180 64 u u PROPN uiug.30112106882779 180 65 il il PROPN uiug.30112106882779 180 66 1 1 PROPN uiug.30112106882779 180 67 u u PROPN uiug.30112106882779 180 68 w w X uiug.30112106882779 180 69 m m VERB uiug.30112106882779 180 70 w w ADP uiug.30112106882779 180 71 the the DET uiug.30112106882779 180 72 dielectric dielectric ADJ uiug.30112106882779 180 73 constant constant ADJ uiug.30112106882779 180 74 e(kw e(kw NOUN uiug.30112106882779 180 75 ) ) PUNCT uiug.30112106882779 180 76 may may AUX uiug.30112106882779 180 77 be be AUX uiug.30112106882779 180 78 expressed express VERB uiug.30112106882779 180 79 in in ADP uiug.30112106882779 180 80 terms term NOUN uiug.30112106882779 180 81 of of ADP uiug.30112106882779 180 82 the the DET uiug.30112106882779 180 83 complex complex ADJ uiug.30112106882779 180 84 function function NOUN uiug.30112106882779 180 85 e e PROPN uiug.30112106882779 180 86 - - PROPN uiug.30112106882779 180 87 t2 t2 PROPN uiug.30112106882779 180 88 e e X uiug.30112106882779 180 89 ) ) PUNCT uiug.30112106882779 181 1 = = PUNCT uiug.30112106882779 181 2 1st 1st PROPN uiug.30112106882779 181 3 z(u z(u SPACE uiug.30112106882779 181 4 ) ) PUNCT uiug.30112106882779 182 1 dt dt PROPN uiug.30112106882779 182 2 t t PROPN uiug.30112106882779 182 3 u u PROPN uiug.30112106882779 182 4 m m PROPN uiug.30112106882779 182 5 im(u im(u PROPN uiug.30112106882779 182 6 ) ) PUNCT uiug.30112106882779 182 7 < < X uiug.30112106882779 182 8 0 0 NUM uiug.30112106882779 182 9 ; ; PUNCT uiug.30112106882779 182 10 h h NOUN uiug.30112106882779 182 11 = = X uiug.30112106882779 182 12 x x PUNCT uiug.30112106882779 183 1 + + CCONJ uiug.30112106882779 183 2 iy iy INTJ uiug.30112106882779 183 3 kv2 kv2 PROPN uiug.30112106882779 183 4 iy iy PROPN uiug.30112106882779 183 5 as as ADP uiug.30112106882779 183 6 k2 k2 PROPN uiug.30112106882779 183 7 e(k e(k PROPN uiug.30112106882779 183 8 , , PUNCT uiug.30112106882779 183 9 y y PROPN uiug.30112106882779 183 10 ) ) PUNCT uiug.30112106882779 183 11 = = PROPN uiug.30112106882779 183 12 1 1 NUM uiug.30112106882779 184 1 + + CCONJ uiug.30112106882779 184 2 k2 k2 PROPN uiug.30112106882779 184 3 + + CCONJ uiug.30112106882779 184 4 u u PROPN uiug.30112106882779 184 5 z(u z(u PROPN uiug.30112106882779 184 6 ) ) PUNCT uiug.30112106882779 184 7 in in ADP uiug.30112106882779 184 8 terms term NOUN uiug.30112106882779 184 9 of of ADP uiug.30112106882779 184 10 z z PROPN uiug.30112106882779 184 11 = = NOUN uiug.30112106882779 184 12 zr zr INTJ uiug.30112106882779 184 13 + + CCONJ uiug.30112106882779 184 14 izi izi ADJ uiug.30112106882779 184 15 , , PUNCT uiug.30112106882779 184 16 kểer kểer ADJ uiug.30112106882779 184 17 = = NOUN uiug.30112106882779 184 18 1 1 NUM uiug.30112106882779 184 19 + + CCONJ uiug.30112106882779 184 20 k2 k2 ADJ uiug.30112106882779 184 21 + + X uiug.30112106882779 184 22 xzr xzr NOUN uiug.30112106882779 184 23 y2i y2i NOUN uiug.30112106882779 184 24 kểe kểe NOUN uiug.30112106882779 184 25 ; ; PUNCT uiug.30112106882779 184 26 = = PUNCT uiug.30112106882779 184 27 y2 y2 PROPN uiug.30112106882779 184 28 + + CCONJ uiug.30112106882779 184 29 xz xz PROPN uiug.30112106882779 184 30 ; ; PUNCT uiug.30112106882779 184 31 r r X uiug.30112106882779 184 32 the the DET uiug.30112106882779 184 33 function function NOUN uiug.30112106882779 184 34 z z PROPN uiug.30112106882779 184 35 is be AUX uiug.30112106882779 184 36 related relate VERB uiug.30112106882779 184 37 to to ADP uiug.30112106882779 184 38 the the DET uiug.30112106882779 184 39 complementary complementary ADJ uiug.30112106882779 184 40 error error NOUN uiug.30112106882779 184 41 function function NOUN uiug.30112106882779 184 42 by by ADP uiug.30112106882779 184 43 z(z z(z NOUN uiug.30112106882779 184 44 ) ) PUNCT uiug.30112106882779 184 45 = = PROPN uiug.30112106882779 185 1 yt yt PROPN uiug.30112106882779 185 2 e e X uiug.30112106882779 185 3 - - PROPN uiug.30112106882779 185 4 zerfc(-iz zerfc(-iz NUM uiug.30112106882779 185 5 ) ) PUNCT uiug.30112106882779 185 6 -22 -22 NUM uiug.30112106882779 185 7 on on ADP uiug.30112106882779 185 8 the the DET uiug.30112106882779 185 9 real real ADJ uiug.30112106882779 185 10 axis axis NOUN uiug.30112106882779 185 11 of of ADP uiug.30112106882779 185 12 the the DET uiug.30112106882779 185 13 l l NOUN uiug.30112106882779 185 14 - - PUNCT uiug.30112106882779 185 15 plane plane NOUN uiug.30112106882779 185 16 , , PUNCT uiug.30112106882779 185 17 y y PROPN uiug.30112106882779 185 18 = = SYM uiug.30112106882779 185 19 0 0 NUM uiug.30112106882779 185 20 ; ; PUNCT uiug.30112106882779 185 21 so so CCONJ uiug.30112106882779 185 22 for for ADP uiug.30112106882779 185 23 real real NOUN uiug.30112106882779 185 24 x x PUNCT uiug.30112106882779 185 25 = = X uiug.30112106882779 185 26 w w PROPN uiug.30112106882779 185 27 / / SYM uiug.30112106882779 185 28 k k PROPN uiug.30112106882779 185 29 , , PUNCT uiug.30112106882779 185 30 k2 k2 PROPN uiug.30112106882779 185 31 epſk epſk PROPN uiug.30112106882779 185 32 , , PUNCT uiug.30112106882779 185 33 w w PROPN uiug.30112106882779 185 34 ) ) PUNCT uiug.30112106882779 185 35 = = SYM uiug.30112106882779 185 36 1 1 NUM uiug.30112106882779 186 1 + + CCONJ uiug.30112106882779 186 2 k2 k2 ADJ uiug.30112106882779 187 1 + + CCONJ uiug.30112106882779 187 2 < < X uiug.30112106882779 187 3 / / PUNCT uiug.30112106882779 187 4 < < X uiug.30112106882779 187 5 l l PROPN uiug.30112106882779 187 6 z z PROPN uiug.30112106882779 187 7 je je PROPN uiug.30112106882779 187 8 zr zr INTJ uiug.30112106882779 187 9 ( ( PUNCT uiug.30112106882779 187 10 ( ( PUNCT uiug.30112106882779 187 11 b3a b3a ADV uiug.30112106882779 187 12 ) ) PUNCT uiug.30112106882779 187 13 v2 v2 NOUN uiug.30112106882779 187 14 12670k 12670k NOUN uiug.30112106882779 187 15 , , PUNCT uiug.30112106882779 187 16 w w PROPN uiug.30112106882779 187 17 ) ) PUNCT uiug.30112106882779 187 18 zi zi PROPN uiug.30112106882779 187 19 ( ( PUNCT uiug.30112106882779 187 20 b3b b3b PROPN uiug.30112106882779 187 21 ) ) PUNCT uiug.30112106882779 187 22 k2 k2 PROPN uiug.30112106882779 187 23 r(k,0 r(k,0 PROPN uiug.30112106882779 187 24 ) ) PUNCT uiug.30112106882779 187 25 = = PROPN uiug.30112106882779 187 26 1 1 NUM uiug.30112106882779 187 27 + + CCONJ uiug.30112106882779 187 28 k2 k2 PROPN uiug.30112106882779 187 29 ( ( PUNCT uiug.30112106882779 187 30 b3c b3c NOUN uiug.30112106882779 187 31 ) ) PUNCT uiug.30112106882779 187 32 r r NOUN uiug.30112106882779 187 33 k2 k2 PROPN uiug.30112106882779 187 34 € € PROPN uiug.30112106882779 187 35 ( ( PUNCT uiug.30112106882779 187 36 k,0 k,0 X uiug.30112106882779 187 37 ) ) PUNCT uiug.30112106882779 187 38 = = PROPN uiug.30112106882779 187 39 0 0 NUM uiug.30112106882779 187 40 ( ( PUNCT uiug.30112106882779 187 41 b3d b3d NOUN uiug.30112106882779 187 42 ) ) PUNCT uiug.30112106882779 187 43 inversion inversion NOUN uiug.30112106882779 187 44 by by ADP uiug.30112106882779 187 45 bromwich bromwich PROPN uiug.30112106882779 187 46 's 's PART uiug.30112106882779 187 47 integral integral NOUN uiug.30112106882779 187 48 with with ADP uiug.30112106882779 187 49 the the DET uiug.30112106882779 187 50 contour contour NOUN uiug.30112106882779 187 51 along along ADP uiug.30112106882779 187 52 the the DET uiug.30112106882779 187 53 imaginary imaginary ADJ uiug.30112106882779 187 54 axis axis NOUN uiug.30112106882779 187 55 of of ADP uiug.30112106882779 187 56 the the DET uiug.30112106882779 187 57 s s NOUN uiug.30112106882779 187 58 - - PUNCT uiug.30112106882779 187 59 plane plane NOUN uiug.30112106882779 187 60 ( ( PUNCT uiug.30112106882779 187 61 8 8 NUM uiug.30112106882779 187 62 = = SYM uiug.30112106882779 187 63 0 0 NUM uiug.30112106882779 187 64 ) ) PUNCT uiug.30112106882779 187 65 yields yield VERB uiug.30112106882779 187 66 15 15 NUM uiug.30112106882779 187 67 appendix appendix PROPN uiug.30112106882779 187 68 b b NOUN uiug.30112106882779 187 69 – – PUNCT uiug.30112106882779 187 70 concluded conclude VERB uiug.30112106882779 187 71 e e PROPN uiug.30112106882779 187 72 nľk nľk PROPN uiug.30112106882779 187 73 , , PUNCT uiug.30112106882779 187 74 t t PROPN uiug.30112106882779 187 75 ) ) PUNCT uiug.30112106882779 187 76 = = PUNCT uiug.30112106882779 188 1 hk2 hk2 NOUN uiug.30112106882779 188 2 sono sono PROPN uiug.30112106882779 188 3 rimasto rimasto PROPN uiug.30112106882779 188 4 ciutaw ciutaw PROPN uiug.30112106882779 188 5 the the DET uiug.30112106882779 188 6 er er INTJ uiug.30112106882779 188 7 + + PROPN uiug.30112106882779 188 8 10 10 NUM uiug.30112106882779 189 1 i i PRON uiug.30112106882779 189 2 r r X uiug.30112106882779 189 3 n n X uiug.30112106882779 189 4 ( ( PUNCT uiug.30112106882779 189 5 = = PROPN uiug.30112106882779 189 6 ik2 ik2 ADP uiug.30112106882779 189 7 21 21 NUM uiug.30112106882779 189 8 eiwtdw eiwtdw NOUN uiug.30112106882779 189 9 = = VERB uiug.30112106882779 189 10 so so ADV uiug.30112106882779 189 11 ( ( PUNCT uiug.30112106882779 189 12 b4 b4 PROPN uiug.30112106882779 189 13 ) ) PUNCT uiug.30112106882779 189 14 21 21 NUM uiug.30112106882779 189 15 we we PRON uiug.30112106882779 189 16 3 3 NUM uiug.30112106882779 189 17 at at ADV uiug.30112106882779 189 18 all all ADV uiug.30112106882779 189 19 t<0 t<0 ADJ uiug.30112106882779 189 20 , , PUNCT uiug.30112106882779 189 21 n(k n(k PROPN uiug.30112106882779 189 22 , , PUNCT uiug.30112106882779 189 23 t t PROPN uiug.30112106882779 189 24 ) ) PUNCT uiug.30112106882779 189 25 = = PROPN uiug.30112106882779 189 26 0 0 NUM uiug.30112106882779 189 27 ; ; PUNCT uiug.30112106882779 189 28 thus thus ADV uiug.30112106882779 189 29 0 0 PUNCT uiug.30112106882779 189 30 r r X uiug.30112106882779 189 31 + + X uiug.30112106882779 189 32 iº iº NOUN uiug.30112106882779 189 33 ; ; PUNCT uiug.30112106882779 189 34 i i PRON uiug.30112106882779 189 35 -iwtdw -iwtdw VERB uiug.30112106882779 189 36 0 0 PUNCT uiug.30112106882779 189 37 = = PUNCT uiug.30112106882779 189 38 = = PUNCT uiug.30112106882779 189 39 : : PUNCT uiug.30112106882779 189 40 s s X uiug.30112106882779 189 41 ( ( PUNCT uiug.30112106882779 189 42 t t PROPN uiug.30112106882779 189 43 > > SYM uiug.30112106882779 189 44 0 0 NUM uiug.30112106882779 189 45 ) ) PUNCT uiug.30112106882779 189 46 3 3 NUM uiug.30112106882779 189 47 taking take VERB uiug.30112106882779 189 48 the the DET uiug.30112106882779 189 49 complex complex ADJ uiug.30112106882779 189 50 conjugate conjugate NOUN uiug.30112106882779 189 51 yields yield NOUN uiug.30112106882779 189 52 noo noo PROPN uiug.30112106882779 189 53 ir ir INTJ uiug.30112106882779 189 54 ør ør INTJ uiug.30112106882779 189 55 iq iq INTJ uiug.30112106882779 190 1 i i PRON uiug.30112106882779 190 2 ciwtaw ciwtaw PROPN uiug.30112106882779 190 3 0 0 PUNCT uiug.30112106882779 191 1 so so ADV uiug.30112106882779 191 2 ( ( PUNCT uiug.30112106882779 191 3 t t PROPN uiug.30112106882779 191 4 > > SYM uiug.30112106882779 191 5 0 0 NUM uiug.30112106882779 191 6 ) ) PUNCT uiug.30112106882779 191 7 subtraction subtraction NOUN uiug.30112106882779 191 8 of of ADP uiug.30112106882779 191 9 ik2/29 ik2/29 PRON uiug.30112106882779 191 10 times time NOUN uiug.30112106882779 191 11 this this DET uiug.30112106882779 191 12 null null ADJ uiug.30112106882779 191 13 member member NOUN uiug.30112106882779 191 14 from from ADP uiug.30112106882779 191 15 equation equation PROPN uiug.30112106882779 191 16 ( ( PUNCT uiug.30112106882779 191 17 b4 b4 PROPN uiug.30112106882779 191 18 ) ) PUNCT uiug.30112106882779 191 19 for for ADP uiug.30112106882779 191 20 n(k n(k PROPN uiug.30112106882779 191 21 , , PUNCT uiug.30112106882779 191 22 t t PROPN uiug.30112106882779 191 23 ) ) PUNCT uiug.30112106882779 191 24 yields yield VERB uiug.30112106882779 191 25 n(x n(x PROPN uiug.30112106882779 191 26 , , PUNCT uiug.30112106882779 191 27 t t PROPN uiug.30112106882779 191 28 ) ) PUNCT uiug.30112106882779 191 29 = = X uiug.30112106882779 191 30 ke ke PROPN uiug.30112106882779 191 31 go go VERB uiug.30112106882779 191 32 or or CCONJ uiug.30112106882779 191 33 less less ADV uiug.30112106882779 191 34 etwtdw etwtdw ADJ uiug.30112106882779 191 35 = = NOUN uiug.30112106882779 192 1 s s VERB uiug.30112106882779 192 2 piwtaw piwtaw PROPN uiug.30112106882779 192 3 = = PROPN uiug.30112106882779 192 4 sa sa PROPN uiug.30112106882779 192 5 mweiwtaw mweiwtaw PROPN uiug.30112106882779 192 6 vi(w vi(w SPACE uiug.30112106882779 192 7 ) ) PUNCT uiug.30112106882779 193 1 nk nk ADP uiug.30112106882779 193 2 = = PUNCT uiug.30112106882779 193 3 writing write VERB uiug.30112106882779 193 4 4 4 NUM uiug.30112106882779 193 5 pi pi NOUN uiug.30112106882779 193 6 in in ADP uiug.30112106882779 193 7 terms term NOUN uiug.30112106882779 193 8 of of ADP uiug.30112106882779 193 9 the the DET uiug.30112106882779 193 10 values value NOUN uiug.30112106882779 193 11 of of ADP uiug.30112106882779 193 12 er er INTJ uiug.30112106882779 193 13 and and CCONJ uiug.30112106882779 193 14 ti ti PROPN uiug.30112106882779 193 15 given give VERB uiug.30112106882779 193 16 in in ADP uiug.30112106882779 193 17 equation equation NOUN uiug.30112106882779 193 18 ( ( PUNCT uiug.30112106882779 193 19 b3 b3 PROPN uiug.30112106882779 193 20 ) ) PUNCT uiug.30112106882779 193 21 yields yield NOUN uiug.30112106882779 193 22 + + ADP uiug.30112106882779 193 23 n n ADP uiug.30112106882779 193 24 1 1 NUM uiug.30112106882779 193 25 + + CCONJ uiug.30112106882779 194 1 k-2 k-2 PROPN uiug.30112106882779 194 2 z z PROPN uiug.30112106882779 194 3 ( ( PUNCT uiug.30112106882779 194 4 ) ) PUNCT uiug.30112106882779 194 5 tv2 tv2 NOUN uiug.30112106882779 194 6 2(kw 2(kw NUM uiug.30112106882779 194 7 ) ) PUNCT uiug.30112106882779 194 8 + + CCONJ uiug.30112106882779 194 9 ¢{(kw ¢{(kw SPACE uiug.30112106882779 194 10 ) ) PUNCT uiug.30112106882779 194 11 € € SYM uiug.30112106882779 194 12 kv2 kv2 NOUN uiug.30112106882779 194 13 # # SYM uiug.30112106882779 194 14 w w PROPN uiug.30112106882779 194 15 ) ) PUNCT uiug.30112106882779 194 16 1k 1k NUM uiug.30112106882779 194 17 where where SCONJ uiug.30112106882779 194 18 the the DET uiug.30112106882779 194 19 function function NOUN uiug.30112106882779 194 20 z+ z+ VERB uiug.30112106882779 194 21 = = SYM uiug.30112106882779 194 22 -z -z PUNCT uiug.30112106882779 194 23 * * PUNCT uiug.30112106882779 194 24 is be AUX uiug.30112106882779 194 25 one one NUM uiug.30112106882779 194 26 available available ADJ uiug.30112106882779 194 27 on on ADP uiug.30112106882779 194 28 the the DET uiug.30112106882779 194 29 computer computer NOUN uiug.30112106882779 194 30 library library NOUN uiug.30112106882779 194 31 tape tape NOUN uiug.30112106882779 194 32 at at ADP uiug.30112106882779 194 33 langley langley PROPN uiug.30112106882779 194 34 research research NOUN uiug.30112106882779 194 35 center center NOUN uiug.30112106882779 194 36 . . PUNCT uiug.30112106882779 195 1 the the DET uiug.30112106882779 195 2 substitution substitution NOUN uiug.30112106882779 195 3 w w PROPN uiug.30112106882779 195 4 = = PROPN uiug.30112106882779 195 5 kx kx PROPN uiug.30112106882779 195 6 ( ( PUNCT uiug.30112106882779 195 7 using use VERB uiug.30112106882779 195 8 the the DET uiug.30112106882779 195 9 same same ADJ uiug.30112106882779 195 10 symbol symbol NOUN uiug.30112106882779 195 11 for for ADP uiug.30112106882779 195 12 * * NOUN uiug.30112106882779 195 13 ) ) PUNCT uiug.30112106882779 195 14 yields yield NOUN uiug.30112106882779 195 15 n(k n(k PROPN uiug.30112106882779 195 16 , , PUNCT uiug.30112106882779 195 17 t t PROPN uiug.30112106882779 195 18 ) ) PUNCT uiug.30112106882779 195 19 = = PROPN uiug.30112106882779 195 20 s s VERB uiug.30112106882779 195 21 « « PUNCT uiug.30112106882779 195 22 ( ( PUNCT uiug.30112106882779 195 23 ) ) PUNCT uiug.30112106882779 195 24 eikata eikata PROPN uiug.30112106882779 195 25 where where SCONJ uiug.30112106882779 195 26 + + ADV uiug.30112106882779 195 27 ry ry INTJ uiug.30112106882779 195 28 zi zi PROPN uiug.30112106882779 195 29 / / PUNCT uiug.30112106882779 195 30 + + PROPN uiug.30112106882779 195 31 ( ( PUNCT uiug.30112106882779 195 32 a a X uiug.30112106882779 195 33 ) ) PUNCT uiug.30112106882779 195 34 = = NOUN uiug.30112106882779 195 35 1+k-2 1+k-2 NUM uiug.30112106882779 195 36 712 712 NUM uiug.30112106882779 195 37 2 2 NUM uiug.30112106882779 195 38 ni ni X uiug.30112106882779 195 39 -2 -2 NOUN uiug.30112106882779 195 40 + + CCONJ uiug.30112106882779 195 41 e e NOUN uiug.30112106882779 195 42 ! ! PUNCT uiug.30112106882779 196 1 r r NOUN uiug.30112106882779 197 1 i i PRON uiug.30112106882779 197 2 is be AUX uiug.30112106882779 197 3 the the DET uiug.30112106882779 197 4 function function NOUN uiug.30112106882779 197 5 corresponding correspond VERB uiug.30112106882779 197 6 to to ADP uiug.30112106882779 197 7 infinite infinite PROPN uiug.30112106882779 197 8 n n PROPN uiug.30112106882779 197 9 that that PRON uiug.30112106882779 197 10 is be AUX uiug.30112106882779 197 11 plotted plot VERB uiug.30112106882779 197 12 in in ADP uiug.30112106882779 197 13 figure figure NOUN uiug.30112106882779 197 14 4 4 NUM uiug.30112106882779 197 15 . . PUNCT uiug.30112106882779 197 16 16 16 NUM uiug.30112106882779 197 17 references reference NOUN uiug.30112106882779 197 18 1 1 NUM uiug.30112106882779 197 19 . . PUNCT uiug.30112106882779 198 1 landau landau PROPN uiug.30112106882779 198 2 , , PUNCT uiug.30112106882779 198 3 l. l. PROPN uiug.30112106882779 198 4 : : PUNCT uiug.30112106882779 198 5 on on ADP uiug.30112106882779 198 6 the the DET uiug.30112106882779 198 7 vibrations vibration NOUN uiug.30112106882779 198 8 of of ADP uiug.30112106882779 198 9 the the DET uiug.30112106882779 198 10 electronic electronic ADJ uiug.30112106882779 198 11 plasma plasma NOUN uiug.30112106882779 198 12 . . PUNCT uiug.30112106882779 199 1 j. j. PROPN uiug.30112106882779 199 2 phys phys PROPN uiug.30112106882779 199 3 . . PUNCT uiug.30112106882779 200 1 ( ( PUNCT uiug.30112106882779 200 2 ussr ussr PROPN uiug.30112106882779 200 3 ) ) PUNCT uiug.30112106882779 200 4 , , PUNCT uiug.30112106882779 200 5 vol vol NOUN uiug.30112106882779 200 6 . . PUNCT uiug.30112106882779 201 1 x x PROPN uiug.30112106882779 201 2 , , PUNCT uiug.30112106882779 201 3 no no INTJ uiug.30112106882779 201 4 . . NOUN uiug.30112106882779 201 5 1 1 NUM uiug.30112106882779 201 6 , , PUNCT uiug.30112106882779 201 7 1946 1946 NUM uiug.30112106882779 201 8 , , PUNCT uiug.30112106882779 201 9 pp pp PROPN uiug.30112106882779 201 10 . . PROPN uiug.30112106882779 202 1 25 25 NUM uiug.30112106882779 202 2 - - SYM uiug.30112106882779 202 3 34 34 NUM uiug.30112106882779 202 4 . . PUNCT uiug.30112106882779 203 1 2 2 NUM uiug.30112106882779 203 2 . . X uiug.30112106882779 203 3 van van PROPN uiug.30112106882779 203 4 kampen kampen PROPN uiug.30112106882779 203 5 , , PUNCT uiug.30112106882779 203 6 n. n. PROPN uiug.30112106882779 203 7 g. g. PROPN uiug.30112106882779 203 8 : : PUNCT uiug.30112106882779 203 9 on on ADP uiug.30112106882779 203 10 the the DET uiug.30112106882779 203 11 theory theory NOUN uiug.30112106882779 203 12 of of ADP uiug.30112106882779 203 13 stationary stationary ADJ uiug.30112106882779 203 14 waves wave NOUN uiug.30112106882779 203 15 in in ADP uiug.30112106882779 203 16 plasmas plasmas PROPN uiug.30112106882779 203 17 . . PROPN uiug.30112106882779 204 1 physica physica PROPN uiug.30112106882779 204 2 , , PUNCT uiug.30112106882779 204 3 vol vol NOUN uiug.30112106882779 204 4 . . PROPN uiug.30112106882779 204 5 21 21 NUM uiug.30112106882779 204 6 , , PUNCT uiug.30112106882779 204 7 no no NOUN uiug.30112106882779 204 8 . . NOUN uiug.30112106882779 204 9 12 12 NUM uiug.30112106882779 204 10 , , PUNCT uiug.30112106882779 204 11 dec dec PROPN uiug.30112106882779 204 12 . . PROPN uiug.30112106882779 204 13 1955 1955 NUM uiug.30112106882779 204 14 , , PUNCT uiug.30112106882779 204 15 pp pp PROPN uiug.30112106882779 204 16 . . PUNCT uiug.30112106882779 204 17 949 949 NUM uiug.30112106882779 204 18 - - SYM uiug.30112106882779 204 19 963 963 NUM uiug.30112106882779 204 20 . . NOUN uiug.30112106882779 204 21 3 3 NUM uiug.30112106882779 204 22 . . X uiug.30112106882779 204 23 grant grant PROPN uiug.30112106882779 204 24 , , PUNCT uiug.30112106882779 204 25 frederick frederick PROPN uiug.30112106882779 204 26 c. c. PROPN uiug.30112106882779 204 27 ; ; PUNCT uiug.30112106882779 204 28 and and CCONJ uiug.30112106882779 204 29 feix feix PROPN uiug.30112106882779 204 30 , , PUNCT uiug.30112106882779 204 31 marc marc PROPN uiug.30112106882779 204 32 r. r. PROPN uiug.30112106882779 204 33 : : PUNCT uiug.30112106882779 204 34 transition transition NOUN uiug.30112106882779 204 35 between between ADP uiug.30112106882779 204 36 landau landau NOUN uiug.30112106882779 204 37 and and CCONJ uiug.30112106882779 204 38 van van PROPN uiug.30112106882779 204 39 kampen kampen PROPN uiug.30112106882779 204 40 treatments treatment NOUN uiug.30112106882779 204 41 of of ADP uiug.30112106882779 204 42 the the DET uiug.30112106882779 204 43 vlasov vlasov NOUN uiug.30112106882779 204 44 equation equation NOUN uiug.30112106882779 204 45 . . PUNCT uiug.30112106882779 205 1 phys phys PROPN uiug.30112106882779 205 2 . . PUNCT uiug.30112106882779 205 3 fluids fluids PROPN uiug.30112106882779 205 4 , , PUNCT uiug.30112106882779 205 5 vol vol NOUN uiug.30112106882779 205 6 . . PROPN uiug.30112106882779 205 7 10 10 NUM uiug.30112106882779 205 8 , , PUNCT uiug.30112106882779 205 9 no no NOUN uiug.30112106882779 205 10 . . NOUN uiug.30112106882779 205 11 6 6 NUM uiug.30112106882779 205 12 , , PUNCT uiug.30112106882779 205 13 june june PROPN uiug.30112106882779 205 14 1967 1967 NUM uiug.30112106882779 205 15 , , PUNCT uiug.30112106882779 205 16 pp pp PROPN uiug.30112106882779 205 17 . . PUNCT uiug.30112106882779 205 18 1356 1356 NUM uiug.30112106882779 205 19 - - SYM uiug.30112106882779 205 20 1357 1357 NUM uiug.30112106882779 205 21 . . PUNCT uiug.30112106882779 206 1 4 4 X uiug.30112106882779 206 2 . . X uiug.30112106882779 206 3 grant grant PROPN uiug.30112106882779 206 4 , , PUNCT uiug.30112106882779 206 5 frederick frederick PROPN uiug.30112106882779 206 6 cyril cyril PROPN uiug.30112106882779 206 7 : : PUNCT uiug.30112106882779 206 8 fourier fourier ADJ uiug.30112106882779 206 9 - - PUNCT uiug.30112106882779 206 10 hermite hermite NOUN uiug.30112106882779 206 11 representation representation NOUN uiug.30112106882779 206 12 of of ADP uiug.30112106882779 206 13 the the DET uiug.30112106882779 206 14 one one NUM uiug.30112106882779 206 15 - - PUNCT uiug.30112106882779 206 16 dimensional dimensional ADJ uiug.30112106882779 206 17 vlasov vlasov NOUN uiug.30112106882779 206 18 equations equation NOUN uiug.30112106882779 206 19 . . PUNCT uiug.30112106882779 207 1 ph ph PROPN uiug.30112106882779 207 2 . . PUNCT uiug.30112106882779 208 1 d. d. PROPN uiug.30112106882779 208 2 thesis thesis PROPN uiug.30112106882779 208 3 , , PUNCT uiug.30112106882779 208 4 virginia virginia PROPN uiug.30112106882779 208 5 polytechnic polytechnic PROPN uiug.30112106882779 208 6 inst inst ADP uiug.30112106882779 208 7 . . PUNCT uiug.30112106882779 208 8 , , PUNCT uiug.30112106882779 208 9 1967 1967 NUM uiug.30112106882779 208 10 . . PUNCT uiug.30112106882779 209 1 5 5 X uiug.30112106882779 209 2 . . X uiug.30112106882779 209 3 grant grant PROPN uiug.30112106882779 209 4 , , PUNCT uiug.30112106882779 209 5 frederick frederick PROPN uiug.30112106882779 209 6 c. c. PROPN uiug.30112106882779 209 7 ; ; PUNCT uiug.30112106882779 209 8 and and CCONJ uiug.30112106882779 209 9 feix feix PROPN uiug.30112106882779 209 10 , , PUNCT uiug.30112106882779 209 11 marc marc PROPN uiug.30112106882779 209 12 r. r. PROPN uiug.30112106882779 209 13 ; ; PUNCT uiug.30112106882779 209 14 fourier fourier ADJ uiug.30112106882779 209 15 - - PUNCT uiug.30112106882779 209 16 hermite hermite NOUN uiug.30112106882779 209 17 solutions solution NOUN uiug.30112106882779 209 18 of of ADP uiug.30112106882779 209 19 the the DET uiug.30112106882779 209 20 vlasov vlasov NOUN uiug.30112106882779 209 21 equations equation NOUN uiug.30112106882779 209 22 in in ADP uiug.30112106882779 209 23 the the DET uiug.30112106882779 209 24 linearized linearize VERB uiug.30112106882779 209 25 limit limit NOUN uiug.30112106882779 209 26 . . PUNCT uiug.30112106882779 210 1 phys phys PROPN uiug.30112106882779 210 2 . . PUNCT uiug.30112106882779 210 3 fluids fluids PROPN uiug.30112106882779 210 4 , , PUNCT uiug.30112106882779 210 5 vol vol NOUN uiug.30112106882779 210 6 . . PROPN uiug.30112106882779 210 7 10 10 NUM uiug.30112106882779 210 8 , , PUNCT uiug.30112106882779 210 9 no no NOUN uiug.30112106882779 210 10 . . NOUN uiug.30112106882779 210 11 4 4 NUM uiug.30112106882779 210 12 , , PUNCT uiug.30112106882779 210 13 apr apr PROPN uiug.30112106882779 210 14 . . PROPN uiug.30112106882779 210 15 1967 1967 NUM uiug.30112106882779 210 16 , , PUNCT uiug.30112106882779 210 17 pp pp PROPN uiug.30112106882779 210 18 . . PROPN uiug.30112106882779 210 19 696 696 NUM uiug.30112106882779 210 20 - - SYM uiug.30112106882779 210 21 702 702 NUM uiug.30112106882779 210 22 . . PROPN uiug.30112106882779 210 23 6 6 NUM uiug.30112106882779 210 24 . . PROPN uiug.30112106882779 210 25 lenard lenard PROPN uiug.30112106882779 210 26 , , PUNCT uiug.30112106882779 210 27 a. a. PROPN uiug.30112106882779 210 28 ; ; PUNCT uiug.30112106882779 210 29 and and CCONJ uiug.30112106882779 210 30 bernstein bernstein PROPN uiug.30112106882779 210 31 , , PUNCT uiug.30112106882779 210 32 ira ira PROPN uiug.30112106882779 210 33 b. b. PROPN uiug.30112106882779 210 34 : : PUNCT uiug.30112106882779 210 35 plasma plasma NOUN uiug.30112106882779 210 36 oscillations oscillation NOUN uiug.30112106882779 210 37 with with ADP uiug.30112106882779 210 38 diffusion diffusion NOUN uiug.30112106882779 210 39 in in ADP uiug.30112106882779 210 40 velocity velocity NOUN uiug.30112106882779 210 41 space space NOUN uiug.30112106882779 210 42 . . PUNCT uiug.30112106882779 211 1 phys phys PROPN uiug.30112106882779 211 2 . . PUNCT uiug.30112106882779 212 1 rev rev PROPN uiug.30112106882779 212 2 . . PROPN uiug.30112106882779 212 3 , , PUNCT uiug.30112106882779 212 4 vol vol NOUN uiug.30112106882779 212 5 . . PROPN uiug.30112106882779 213 1 112 112 NUM uiug.30112106882779 213 2 , , PUNCT uiug.30112106882779 213 3 no no NOUN uiug.30112106882779 213 4 . . NOUN uiug.30112106882779 213 5 5 5 NUM uiug.30112106882779 213 6 , , PUNCT uiug.30112106882779 213 7 dec dec PROPN uiug.30112106882779 213 8 . . PROPN uiug.30112106882779 213 9 1 1 NUM uiug.30112106882779 213 10 , , PUNCT uiug.30112106882779 213 11 1958 1958 NUM uiug.30112106882779 213 12 , , PUNCT uiug.30112106882779 213 13 pp pp PROPN uiug.30112106882779 213 14 . . PUNCT uiug.30112106882779 214 1 1456 1456 NUM uiug.30112106882779 214 2 - - SYM uiug.30112106882779 214 3 1459 1459 NUM uiug.30112106882779 214 4 . . PUNCT uiug.30112106882779 215 1 7 7 NUM uiug.30112106882779 215 2 . . X uiug.30112106882779 215 3 faddeev faddeev PROPN uiug.30112106882779 215 4 , , PUNCT uiug.30112106882779 215 5 d. d. PROPN uiug.30112106882779 215 6 k. k. PROPN uiug.30112106882779 215 7 ; ; PUNCT uiug.30112106882779 215 8 and and CCONJ uiug.30112106882779 215 9 faddeeva faddeeva PROPN uiug.30112106882779 215 10 , , PUNCT uiug.30112106882779 215 11 v. v. PROPN uiug.30112106882779 215 12 n. n. PROPN uiug.30112106882779 215 13 ( ( PUNCT uiug.30112106882779 215 14 robert robert PROPN uiug.30112106882779 215 15 c. c. PROPN uiug.30112106882779 215 16 williams williams PROPN uiug.30112106882779 215 17 , , PUNCT uiug.30112106882779 215 18 trans trans PROPN uiug.30112106882779 215 19 . . PROPN uiug.30112106882779 215 20 ): ): PUNCT uiug.30112106882779 215 21 computational computational ADJ uiug.30112106882779 215 22 methods method NOUN uiug.30112106882779 215 23 of of ADP uiug.30112106882779 215 24 linear linear ADJ uiug.30112106882779 215 25 algebra algebra PROPN uiug.30112106882779 215 26 . . PUNCT uiug.30112106882779 216 1 w. w. PROPN uiug.30112106882779 216 2 h. h. PROPN uiug.30112106882779 216 3 freeman freeman PROPN uiug.30112106882779 216 4 and and CCONJ uiug.30112106882779 216 5 co. co. PROPN uiug.30112106882779 216 6 , , PUNCT uiug.30112106882779 216 7 c.1963 c.1963 SPACE uiug.30112106882779 216 8 . . PROPN uiug.30112106882779 217 1 17 17 NUM uiug.30112106882779 217 2 2.0 2.0 NUM uiug.30112106882779 217 3 b b NOUN uiug.30112106882779 217 4 = = PUNCT uiug.30112106882779 217 5 .020.015 .020.015 NUM uiug.30112106882779 217 6 .010 .010 NUM uiug.30112106882779 217 7 .005 .005 NUM uiug.30112106882779 217 8 y y PROPN uiug.30112106882779 217 9 te te PROPN uiug.30112106882779 217 10 landau landau PROPN uiug.30112106882779 217 11 pole pole PROPN uiug.30112106882779 217 12 z z PROPN uiug.30112106882779 217 13 w w NOUN uiug.30112106882779 217 14 - - NOUN uiug.30112106882779 217 15 plane plane NOUN uiug.30112106882779 217 16 1.0 1.0 NUM uiug.30112106882779 217 17 wr wr PROPN uiug.30112106882779 217 18 -.6 -.6 X uiug.30112106882779 217 19 -.4 -.4 PUNCT uiug.30112106882779 218 1 -.2 -.2 PUNCT uiug.30112106882779 218 2 0 0 PUNCT uiug.30112106882779 218 3 y y PROPN uiug.30112106882779 218 4 figure figure NOUN uiug.30112106882779 218 5 1.movement 1.movement NUM uiug.30112106882779 218 6 of of ADP uiug.30112106882779 218 7 fourier fourier NOUN uiug.30112106882779 218 8 - - PUNCT uiug.30112106882779 218 9 hermite hermite NOUN uiug.30112106882779 218 10 poles pole NOUN uiug.30112106882779 218 11 into into ADP uiug.30112106882779 218 12 complex complex ADJ uiug.30112106882779 218 13 frequency frequency NOUN uiug.30112106882779 218 14 plane plane NOUN uiug.30112106882779 218 15 as as ADP uiug.30112106882779 218 16 collisions collision NOUN uiug.30112106882779 218 17 increase increase NOUN uiug.30112106882779 218 18 . . PUNCT uiug.30112106882779 219 1 n n CCONJ uiug.30112106882779 220 1 = = X uiug.30112106882779 220 2 63 63 NUM uiug.30112106882779 220 3 ; ; PUNCT uiug.30112106882779 220 4 k k X uiug.30112106882779 220 5 = = NOUN uiug.30112106882779 220 6 0.5 0.5 NUM uiug.30112106882779 220 7 . . PUNCT uiug.30112106882779 220 8 18 18 NUM uiug.30112106882779 220 9 1.57 1.57 NUM uiug.30112106882779 220 10 n n CCONJ uiug.30112106882779 220 11 = = X uiug.30112106882779 220 12 255 255 NUM uiug.30112106882779 220 13 n n CCONJ uiug.30112106882779 220 14 = = SYM uiug.30112106882779 220 15 511 511 NUM uiug.30112106882779 220 16 landau landau NOUN uiug.30112106882779 220 17 value value NOUN uiug.30112106882779 220 18 wp wp PROPN uiug.30112106882779 220 19 1.4 1.4 NUM uiug.30112106882779 220 20 n n CCONJ uiug.30112106882779 220 21 = = X uiug.30112106882779 220 22 31 31 NUM uiug.30112106882779 220 23 n n CCONJ uiug.30112106882779 220 24 = = PUNCT uiug.30112106882779 220 25 63 63 NUM uiug.30112106882779 220 26 n n CCONJ uiug.30112106882779 220 27 = = X uiug.30112106882779 220 28 127 127 NUM uiug.30112106882779 220 29 1.3 1.3 NUM uiug.30112106882779 220 30 0 0 NUM uiug.30112106882779 220 31 1 1 NUM uiug.30112106882779 220 32 .04 .04 NUM uiug.30112106882779 220 33 .02 .02 NUM uiug.30112106882779 220 34 .06 .06 NUM uiug.30112106882779 220 35 .08 .08 NUM uiug.30112106882779 220 36 .10 .10 NUM uiug.30112106882779 220 37 b b NOUN uiug.30112106882779 220 38 ( ( PUNCT uiug.30112106882779 220 39 a a X uiug.30112106882779 220 40 ) ) PUNCT uiug.30112106882779 220 41 wide wide ADJ uiug.30112106882779 220 42 range range NOUN uiug.30112106882779 220 43 of of ADP uiug.30112106882779 220 44 n. n. PROPN uiug.30112106882779 220 45 1.46 1.46 NUM uiug.30112106882779 220 46 n n CCONJ uiug.30112106882779 220 47 = = X uiug.30112106882779 220 48 255 255 NUM uiug.30112106882779 220 49 1.44 1.44 NUM uiug.30112106882779 220 50 -n -n NOUN uiug.30112106882779 220 51 = = SYM uiug.30112106882779 220 52 511 511 NUM uiug.30112106882779 220 53 wp wp PROPN uiug.30112106882779 220 54 landau landau NOUN uiug.30112106882779 220 55 value value NOUN uiug.30112106882779 220 56 1.42 1.42 NUM uiug.30112106882779 220 57 zn zn X uiug.30112106882779 220 58 n n X uiug.30112106882779 220 59 = = X uiug.30112106882779 220 60 1023 1023 NUM uiug.30112106882779 220 61 1.40 1.40 NUM uiug.30112106882779 220 62 0 0 NUM uiug.30112106882779 220 63 .001 .001 NUM uiug.30112106882779 220 64 .002 .002 NUM uiug.30112106882779 220 65 b b NOUN uiug.30112106882779 220 66 ( ( PUNCT uiug.30112106882779 220 67 b b NOUN uiug.30112106882779 220 68 ) ) PUNCT uiug.30112106882779 220 69 higher high ADJ uiug.30112106882779 220 70 values value NOUN uiug.30112106882779 220 71 of of ADP uiug.30112106882779 220 72 n n NOUN uiug.30112106882779 220 73 ; ; PUNCT uiug.30112106882779 220 74 expanded expand VERB uiug.30112106882779 220 75 scale scale NOUN uiug.30112106882779 220 76 . . PUNCT uiug.30112106882779 221 1 figure figure VERB uiug.30112106882779 221 2 2.real 2.real NUM uiug.30112106882779 221 3 part part NOUN uiug.30112106882779 221 4 of of ADP uiug.30112106882779 221 5 complex complex ADJ uiug.30112106882779 221 6 frequency frequency NOUN uiug.30112106882779 221 7 as as ADP uiug.30112106882779 221 8 a a DET uiug.30112106882779 221 9 function function NOUN uiug.30112106882779 221 10 of of ADP uiug.30112106882779 221 11 collision collision NOUN uiug.30112106882779 221 12 parameter parameter PROPN uiug.30112106882779 221 13 b. b. PROPN uiug.30112106882779 221 14 k k PROPN uiug.30112106882779 221 15 = = PROPN uiug.30112106882779 221 16 0.5 0.5 NUM uiug.30112106882779 221 17 . . PUNCT uiug.30112106882779 221 18 19 19 NUM uiug.30112106882779 221 19 landau landau NOUN uiug.30112106882779 221 20 value value NOUN uiug.30112106882779 221 21 n n CCONJ uiug.30112106882779 221 22 = = PUNCT uiug.30112106882779 221 23 31 31 NUM uiug.30112106882779 221 24 n n CCONJ uiug.30112106882779 221 25 = = SYM uiug.30112106882779 221 26 63 63 NUM uiug.30112106882779 221 27 .1 .1 NUM uiug.30112106882779 221 28 n n CCONJ uiug.30112106882779 221 29 = = X uiug.30112106882779 221 30 127 127 NUM uiug.30112106882779 221 31 n n CCONJ uiug.30112106882779 221 32 = = X uiug.30112106882779 221 33 255 255 NUM uiug.30112106882779 221 34 0 0 NUM uiug.30112106882779 221 35 .02 .02 NUM uiug.30112106882779 221 36 .04 .04 PROPN uiug.30112106882779 221 37 .06 .06 NUM uiug.30112106882779 221 38 .08 .08 NUM uiug.30112106882779 221 39 .10 .10 NUM uiug.30112106882779 221 40 b b NOUN uiug.30112106882779 221 41 ( ( PUNCT uiug.30112106882779 221 42 a a X uiug.30112106882779 221 43 ) ) PUNCT uiug.30112106882779 221 44 lower low ADJ uiug.30112106882779 221 45 values value NOUN uiug.30112106882779 221 46 of of ADP uiug.30112106882779 221 47 n. n. PROPN uiug.30112106882779 221 48 .16 .16 PROPN uiug.30112106882779 221 49 landau landau PROPN uiug.30112106882779 221 50 value value PROPN uiug.30112106882779 221 51 y y PROPN uiug.30112106882779 221 52 .154 .154 PUNCT uiug.30112106882779 222 1 y y PROPN uiug.30112106882779 222 2 en en PROPN uiug.30112106882779 222 3 = = PRON uiug.30112106882779 222 4 511 511 NUM uiug.30112106882779 222 5 n n CCONJ uiug.30112106882779 222 6 = = SYM uiug.30112106882779 222 7 1023 1023 NUM uiug.30112106882779 222 8 .144 .144 NUM uiug.30112106882779 222 9 .002 .002 NUM uiug.30112106882779 222 10 .001 .001 PUNCT uiug.30112106882779 222 11 b b NOUN uiug.30112106882779 222 12 ( ( PUNCT uiug.30112106882779 222 13 b b NOUN uiug.30112106882779 222 14 ) ) PUNCT uiug.30112106882779 222 15 higher high ADJ uiug.30112106882779 222 16 values value NOUN uiug.30112106882779 222 17 of of ADP uiug.30112106882779 222 18 n n NOUN uiug.30112106882779 222 19 ; ; PUNCT uiug.30112106882779 222 20 expanded expand VERB uiug.30112106882779 222 21 scale scale NOUN uiug.30112106882779 222 22 . . PUNCT uiug.30112106882779 223 1 figure figure NOUN uiug.30112106882779 223 2 3.damping 3.damping NUM uiug.30112106882779 223 3 part part NOUN uiug.30112106882779 223 4 of of ADP uiug.30112106882779 223 5 complex complex ADJ uiug.30112106882779 223 6 frequency frequency NOUN uiug.30112106882779 223 7 as as ADP uiug.30112106882779 223 8 a a DET uiug.30112106882779 223 9 function function NOUN uiug.30112106882779 223 10 of of ADP uiug.30112106882779 223 11 collision collision NOUN uiug.30112106882779 223 12 parameter parameter PROPN uiug.30112106882779 223 13 b. b. PROPN uiug.30112106882779 223 14 k k PROPN uiug.30112106882779 223 15 = = PROPN uiug.30112106882779 223 16 0.5 0.5 NUM uiug.30112106882779 223 17 . . PUNCT uiug.30112106882779 224 1 20 20 NUM uiug.30112106882779 224 2 .4 .4 NUM uiug.30112106882779 224 3 n n CCONJ uiug.30112106882779 224 4 = = PUNCT uiug.30112106882779 224 5 00 00 PUNCT uiug.30112106882779 225 1 = = SYM uiug.30112106882779 225 2 12 12 NUM uiug.30112106882779 225 3 .3 .3 NUM uiug.30112106882779 225 4 .2 .2 NUM uiug.30112106882779 225 5 .1 .1 NUM uiug.30112106882779 225 6 0 0 NUM uiug.30112106882779 225 7 1 1 NUM uiug.30112106882779 225 8 2 2 NUM uiug.30112106882779 225 9 . . NUM uiug.30112106882779 225 10 3 3 NUM uiug.30112106882779 225 11 4 4 NUM uiug.30112106882779 225 12 ( ( PUNCT uiug.30112106882779 225 13 a a NOUN uiug.30112106882779 225 14 ) ) PUNCT uiug.30112106882779 225 15 n n CCONJ uiug.30112106882779 225 16 = = SYM uiug.30112106882779 225 17 99 99 NUM uiug.30112106882779 225 18 . . PUNCT uiug.30112106882779 226 1 .4 .4 NUM uiug.30112106882779 226 2 n n CCONJ uiug.30112106882779 226 3 = = PUNCT uiug.30112106882779 226 4 00 00 PUNCT uiug.30112106882779 226 5 .3 .3 NUM uiug.30112106882779 227 1 .2 .2 NUM uiug.30112106882779 227 2 .1 .1 NUM uiug.30112106882779 227 3 0 0 NUM uiug.30112106882779 227 4 1 1 NUM uiug.30112106882779 227 5 2 2 NUM uiug.30112106882779 227 6 3 3 NUM uiug.30112106882779 227 7 4 4 NUM uiug.30112106882779 227 8 λ λ NOUN uiug.30112106882779 227 9 ( ( PUNCT uiug.30112106882779 227 10 b b NOUN uiug.30112106882779 227 11 ) ) PUNCT uiug.30112106882779 227 12 n n CCONJ uiug.30112106882779 227 13 = = X uiug.30112106882779 227 14 1023 1023 NUM uiug.30112106882779 227 15 . . PUNCT uiug.30112106882779 228 1 figure figure VERB uiug.30112106882779 228 2 4.exact 4.exact NUM uiug.30112106882779 228 3 fourier fourier NOUN uiug.30112106882779 228 4 transform transform NOUN uiug.30112106882779 228 5 compared compare VERB uiug.30112106882779 228 6 with with ADP uiug.30112106882779 228 7 corresponding corresponding ADJ uiug.30112106882779 228 8 fourier fourier NOUN uiug.30112106882779 228 9 - - PUNCT uiug.30112106882779 228 10 hermite hermite NOUN uiug.30112106882779 228 11 histograms histogram NOUN uiug.30112106882779 228 12 for for ADP uiug.30112106882779 228 13 initial initial ADJ uiug.30112106882779 228 14 cos(kx cos(kx PROPN uiug.30112106882779 228 15 ) ) PUNCT uiug.30112106882779 228 16 density density NOUN uiug.30112106882779 228 17 disturbance disturbance NOUN uiug.30112106882779 228 18 . . PUNCT uiug.30112106882779 229 1 k k PROPN uiug.30112106882779 229 2 = = PROPN uiug.30112106882779 229 3 0.5 0.5 NUM uiug.30112106882779 229 4 . . PUNCT uiug.30112106882779 230 1 nasa nasa PROPN uiug.30112106882779 230 2 - - PUNCT uiug.30112106882779 230 3 langley langley PROPN uiug.30112106882779 230 4 , , PUNCT uiug.30112106882779 230 5 1972 1972 NUM uiug.30112106882779 230 6 25 25 NUM uiug.30112106882779 230 7 l-8141 l-8141 NUM uiug.30112106882779 230 8 21 21 NUM uiug.30112106882779 230 9 一 一 NOUN uiug.30112106882779 230 10 ​ ​ PROPN uiug.30112106882779 230 11 national national ADJ uiug.30112106882779 230 12 aeronautics aeronautic NOUN uiug.30112106882779 230 13 and and CCONJ uiug.30112106882779 230 14 space space PROPN uiug.30112106882779 230 15 admistration admistration PROPN uiug.30112106882779 230 16 washington washington PROPN uiug.30112106882779 230 17 , , PUNCT uiug.30112106882779 230 18 d.c d.c PROPN uiug.30112106882779 230 19 . . PROPN uiug.30112106882779 230 20 20546 20546 NUM uiug.30112106882779 230 21 postage postage NOUN uiug.30112106882779 230 22 and and CCONJ uiug.30112106882779 230 23 fees fee NOUN uiug.30112106882779 230 24 paid pay VERB uiug.30112106882779 230 25 national national ADJ uiug.30112106882779 230 26 aeronautics aeronautic NOUN uiug.30112106882779 230 27 and and CCONJ uiug.30112106882779 230 28 space space PROPN uiug.30112106882779 230 29 administration administration PROPN uiug.30112106882779 230 30 2 2 NUM uiug.30112106882779 230 31 official official ADJ uiug.30112106882779 230 32 business business NOUN uiug.30112106882779 230 33 penalty penalty NOUN uiug.30112106882779 230 34 for for ADP uiug.30112106882779 230 35 private private ADJ uiug.30112106882779 230 36 use use NOUN uiug.30112106882779 230 37 $ $ SYM uiug.30112106882779 230 38 300 300 NUM uiug.30112106882779 230 39 first first ADJ uiug.30112106882779 230 40 class class NOUN uiug.30112106882779 230 41 mail mail NOUN uiug.30112106882779 230 42 u.s.mail u.s.mail NOUN uiug.30112106882779 230 43 postmaster postmaster NOUN uiug.30112106882779 230 44 : : PUNCT uiug.30112106882779 230 45 if if SCONJ uiug.30112106882779 230 46 undeliverable undeliverable ADJ uiug.30112106882779 230 47 ( ( PUNCT uiug.30112106882779 230 48 section section NOUN uiug.30112106882779 230 49 14 14 NUM uiug.30112106882779 230 50 postal postal ADJ uiug.30112106882779 230 51 manual manual NOUN uiug.30112106882779 230 52 ) ) PUNCT uiug.30112106882779 230 53 do do AUX uiug.30112106882779 230 54 not not PART uiug.30112106882779 230 55 rec rec VERB uiug.30112106882779 230 56 " " PUNCT uiug.30112106882779 230 57 the the DET uiug.30112106882779 230 58 aeronautical aeronautical ADJ uiug.30112106882779 230 59 and and CCONJ uiug.30112106882779 230 60 space space NOUN uiug.30112106882779 230 61 activities activity NOUN uiug.30112106882779 230 62 of of ADP uiug.30112106882779 230 63 the the DET uiug.30112106882779 230 64 united united PROPN uiug.30112106882779 230 65 states states PROPN uiug.30112106882779 230 66 shall shall AUX uiug.30112106882779 230 67 be be AUX uiug.30112106882779 230 68 conducted conduct VERB uiug.30112106882779 230 69 so so SCONJ uiug.30112106882779 230 70 as as SCONJ uiug.30112106882779 230 71 to to PART uiug.30112106882779 230 72 contribute contribute VERB uiug.30112106882779 230 73 ... ... PUNCT uiug.30112106882779 230 74 to to ADP uiug.30112106882779 230 75 the the DET uiug.30112106882779 230 76 expansion expansion NOUN uiug.30112106882779 230 77 of of ADP uiug.30112106882779 230 78 human human ADJ uiug.30112106882779 230 79 knowledge knowledge NOUN uiug.30112106882779 230 80 of of ADP uiug.30112106882779 230 81 phenomena phenomenon NOUN uiug.30112106882779 230 82 in in ADP uiug.30112106882779 230 83 the the DET uiug.30112106882779 230 84 atmosphere atmosphere NOUN uiug.30112106882779 230 85 and and CCONJ uiug.30112106882779 230 86 space space NOUN uiug.30112106882779 230 87 . . PUNCT uiug.30112106882779 231 1 the the DET uiug.30112106882779 231 2 administration administration NOUN uiug.30112106882779 231 3 shall shall AUX uiug.30112106882779 231 4 provide provide VERB uiug.30112106882779 231 5 for for ADP uiug.30112106882779 231 6 the the DET uiug.30112106882779 231 7 widest widest ADJ uiug.30112106882779 231 8 practicable practicable ADJ uiug.30112106882779 231 9 and and CCONJ uiug.30112106882779 231 10 appropriate appropriate ADJ uiug.30112106882779 231 11 dissemination dissemination NOUN uiug.30112106882779 231 12 of of ADP uiug.30112106882779 231 13 information information NOUN uiug.30112106882779 231 14 concerning concern VERB uiug.30112106882779 231 15 its its PRON uiug.30112106882779 231 16 activities activity NOUN uiug.30112106882779 231 17 and and CCONJ uiug.30112106882779 231 18 the the DET uiug.30112106882779 231 19 results result NOUN uiug.30112106882779 231 20 thereof thereof ADV uiug.30112106882779 231 21 . . PUNCT uiug.30112106882779 231 22 " " PUNCT uiug.30112106882779 232 1 national national PROPN uiug.30112106882779 232 2 aeronautics aeronautic NOUN uiug.30112106882779 232 3 and and CCONJ uiug.30112106882779 232 4 space space NOUN uiug.30112106882779 232 5 act act NOUN uiug.30112106882779 232 6 of of ADP uiug.30112106882779 232 7 1958 1958 NUM uiug.30112106882779 232 8 nasa nasa PROPN uiug.30112106882779 232 9 scientific scientific ADJ uiug.30112106882779 232 10 and and CCONJ uiug.30112106882779 232 11 technical technical ADJ uiug.30112106882779 232 12 publications publication NOUN uiug.30112106882779 232 13 technical technical ADJ uiug.30112106882779 232 14 reports report NOUN uiug.30112106882779 232 15 : : PUNCT uiug.30112106882779 232 16 scientific scientific ADJ uiug.30112106882779 232 17 and and CCONJ uiug.30112106882779 232 18 technical technical ADJ uiug.30112106882779 232 19 information information NOUN uiug.30112106882779 232 20 considered consider VERB uiug.30112106882779 232 21 important important ADJ uiug.30112106882779 232 22 , , PUNCT uiug.30112106882779 232 23 complete complete ADJ uiug.30112106882779 232 24 , , PUNCT uiug.30112106882779 232 25 and and CCONJ uiug.30112106882779 232 26 a a DET uiug.30112106882779 232 27 lasting last VERB uiug.30112106882779 232 28 contribution contribution NOUN uiug.30112106882779 232 29 to to ADP uiug.30112106882779 232 30 existing exist VERB uiug.30112106882779 232 31 knowledge knowledge NOUN uiug.30112106882779 232 32 technical technical ADJ uiug.30112106882779 232 33 translations translation NOUN uiug.30112106882779 232 34 : : PUNCT uiug.30112106882779 232 35 information information NOUN uiug.30112106882779 232 36 published publish VERB uiug.30112106882779 232 37 in in ADP uiug.30112106882779 232 38 a a DET uiug.30112106882779 232 39 foreign foreign ADJ uiug.30112106882779 232 40 language language NOUN uiug.30112106882779 232 41 considered consider VERB uiug.30112106882779 232 42 to to ADP uiug.30112106882779 232 43 merit merit NOUN uiug.30112106882779 232 44 nasa nasa PROPN uiug.30112106882779 232 45 distribution distribution NOUN uiug.30112106882779 232 46 in in ADP uiug.30112106882779 232 47 english english PROPN uiug.30112106882779 232 48 . . PUNCT uiug.30112106882779 233 1 a a DET uiug.30112106882779 233 2 technical technical ADJ uiug.30112106882779 233 3 notes note NOUN uiug.30112106882779 233 4 : : PUNCT uiug.30112106882779 233 5 information information NOUN uiug.30112106882779 233 6 less less ADV uiug.30112106882779 233 7 broad broad ADJ uiug.30112106882779 233 8 in in ADP uiug.30112106882779 233 9 scope scope NOUN uiug.30112106882779 233 10 but but CCONJ uiug.30112106882779 233 11 nevertheless nevertheless ADV uiug.30112106882779 233 12 of of ADP uiug.30112106882779 233 13 importance importance NOUN uiug.30112106882779 233 14 as as ADP uiug.30112106882779 233 15 a a DET uiug.30112106882779 233 16 contribution contribution NOUN uiug.30112106882779 233 17 to to ADP uiug.30112106882779 233 18 existing exist VERB uiug.30112106882779 233 19 knowledge knowledge NOUN uiug.30112106882779 233 20 . . PUNCT uiug.30112106882779 234 1 technical technical ADJ uiug.30112106882779 234 2 memorandums memorandum NOUN uiug.30112106882779 234 3 : : PUNCT uiug.30112106882779 234 4 information information NOUN uiug.30112106882779 234 5 receiving receive VERB uiug.30112106882779 234 6 limited limited ADJ uiug.30112106882779 234 7 distribution distribution NOUN uiug.30112106882779 234 8 because because SCONJ uiug.30112106882779 234 9 of of ADP uiug.30112106882779 234 10 preliminary preliminary ADJ uiug.30112106882779 234 11 data datum NOUN uiug.30112106882779 234 12 , , PUNCT uiug.30112106882779 234 13 security security NOUN uiug.30112106882779 234 14 classification classification NOUN uiug.30112106882779 234 15 , , PUNCT uiug.30112106882779 234 16 or or CCONJ uiug.30112106882779 234 17 other other ADJ uiug.30112106882779 234 18 reasons reason NOUN uiug.30112106882779 234 19 . . PUNCT uiug.30112106882779 235 1 contractor contractor NOUN uiug.30112106882779 235 2 reports report NOUN uiug.30112106882779 235 3 : : PUNCT uiug.30112106882779 235 4 scientific scientific ADJ uiug.30112106882779 235 5 and and CCONJ uiug.30112106882779 235 6 technical technical ADJ uiug.30112106882779 235 7 information information NOUN uiug.30112106882779 235 8 generated generate VERB uiug.30112106882779 235 9 under under ADP uiug.30112106882779 235 10 a a DET uiug.30112106882779 235 11 nasa nasa PROPN uiug.30112106882779 235 12 contract contract NOUN uiug.30112106882779 235 13 or or CCONJ uiug.30112106882779 235 14 grant grant NOUN uiug.30112106882779 235 15 and and CCONJ uiug.30112106882779 235 16 considered consider VERB uiug.30112106882779 235 17 an an DET uiug.30112106882779 235 18 important important ADJ uiug.30112106882779 235 19 contribution contribution NOUN uiug.30112106882779 235 20 to to ADP uiug.30112106882779 235 21 existing exist VERB uiug.30112106882779 235 22 knowledge knowledge NOUN uiug.30112106882779 235 23 . . PUNCT uiug.30112106882779 236 1 special special ADJ uiug.30112106882779 236 2 publications publication NOUN uiug.30112106882779 236 3 : : PUNCT uiug.30112106882779 236 4 information information NOUN uiug.30112106882779 236 5 derived derive VERB uiug.30112106882779 236 6 from from ADP uiug.30112106882779 236 7 or or CCONJ uiug.30112106882779 236 8 of of ADP uiug.30112106882779 236 9 value value NOUN uiug.30112106882779 236 10 to to ADP uiug.30112106882779 236 11 nasa nasa PROPN uiug.30112106882779 236 12 activities activity NOUN uiug.30112106882779 236 13 . . PUNCT uiug.30112106882779 237 1 publications publication NOUN uiug.30112106882779 237 2 include include VERB uiug.30112106882779 237 3 conference conference NOUN uiug.30112106882779 237 4 proceedings proceeding NOUN uiug.30112106882779 237 5 , , PUNCT uiug.30112106882779 237 6 monographs monograph NOUN uiug.30112106882779 237 7 , , PUNCT uiug.30112106882779 237 8 data datum NOUN uiug.30112106882779 237 9 compilations compilation NOUN uiug.30112106882779 237 10 , , PUNCT uiug.30112106882779 237 11 handbooks handbook NOUN uiug.30112106882779 237 12 , , PUNCT uiug.30112106882779 237 13 sourcebooks sourcebook NOUN uiug.30112106882779 237 14 , , PUNCT uiug.30112106882779 237 15 and and CCONJ uiug.30112106882779 237 16 special special ADJ uiug.30112106882779 237 17 bibliographies bibliography NOUN uiug.30112106882779 237 18 . . PUNCT uiug.30112106882779 238 1 technology technology NOUN uiug.30112106882779 238 2 utilization utilization NOUN uiug.30112106882779 238 3 publications publication NOUN uiug.30112106882779 238 4 : : PUNCT uiug.30112106882779 238 5 information information NOUN uiug.30112106882779 238 6 on on ADP uiug.30112106882779 238 7 technology technology NOUN uiug.30112106882779 238 8 used use VERB uiug.30112106882779 238 9 by by ADP uiug.30112106882779 238 10 nasa nasa PROPN uiug.30112106882779 238 11 that that PRON uiug.30112106882779 238 12 may may AUX uiug.30112106882779 238 13 be be AUX uiug.30112106882779 238 14 of of ADP uiug.30112106882779 238 15 particular particular ADJ uiug.30112106882779 238 16 interest interest NOUN uiug.30112106882779 238 17 in in ADP uiug.30112106882779 238 18 commercial commercial ADJ uiug.30112106882779 238 19 and and CCONJ uiug.30112106882779 238 20 other other ADJ uiug.30112106882779 238 21 non non ADJ uiug.30112106882779 238 22 - - ADJ uiug.30112106882779 238 23 aerospace aerospace ADJ uiug.30112106882779 238 24 applications application NOUN uiug.30112106882779 238 25 . . PUNCT uiug.30112106882779 239 1 publications publication NOUN uiug.30112106882779 239 2 include include VERB uiug.30112106882779 239 3 tech tech NOUN uiug.30112106882779 239 4 briefs brief NOUN uiug.30112106882779 239 5 , , PUNCT uiug.30112106882779 239 6 technology technology NOUN uiug.30112106882779 239 7 utilization utilization NOUN uiug.30112106882779 239 8 reports report NOUN uiug.30112106882779 239 9 and and CCONJ uiug.30112106882779 239 10 technology technology NOUN uiug.30112106882779 239 11 surveys survey NOUN uiug.30112106882779 239 12 . . PUNCT uiug.30112106882779 240 1 details detail NOUN uiug.30112106882779 240 2 on on ADP uiug.30112106882779 240 3 the the DET uiug.30112106882779 240 4 availability availability NOUN uiug.30112106882779 240 5 of of ADP uiug.30112106882779 240 6 these these DET uiug.30112106882779 240 7 publications publication NOUN uiug.30112106882779 240 8 may may AUX uiug.30112106882779 240 9 be be AUX uiug.30112106882779 240 10 obtained obtain VERB uiug.30112106882779 240 11 from from ADP uiug.30112106882779 240 12 : : PUNCT uiug.30112106882779 240 13 scientific scientific ADJ uiug.30112106882779 240 14 and and CCONJ uiug.30112106882779 240 15 technical technical ADJ uiug.30112106882779 240 16 information information NOUN uiug.30112106882779 240 17 office office NOUN uiug.30112106882779 240 18 national national ADJ uiug.30112106882779 240 19 aeronautics aeronautic NOUN uiug.30112106882779 240 20 and and CCONJ uiug.30112106882779 240 21 space space PROPN uiug.30112106882779 240 22 administration administration PROPN uiug.30112106882779 240 23 washington washington PROPN uiug.30112106882779 240 24 , , PUNCT uiug.30112106882779 240 25 d.c d.c PROPN uiug.30112106882779 240 26 . . PROPN uiug.30112106882779 241 1 20546 20546 NUM uiug.30112106882779 241 2 29 29 NUM uiug.30112106882779 241 3 30 30 NUM