New paper explains methods that may lead to new insights about dark matter | News | Notre Dame News | University of Notre Dame Skip To Content Skip To Navigation Skip To Search University of Notre Dame Notre Dame News Experts ND in the News Subscribe About Us Home Contact Search Menu Home › News › New paper explains methods that may lead to new insights about dark matter New paper explains methods that may lead to new insights about dark matter Published: November 12, 2014 Author: Stephanie Healey Illustration of dark matter falling into a neutron star, forming a black hole and radiating out (Courtesy of NASA) A new paper, co-authored by University of Notre Dame astrophysicist Joseph Bramante, discusses how detecting imploding pulsars may lead to insights about the properties of dark matter. The paper, “Detecting Dark Matter with Imploding Pulsars in the Galactic Center,” was recently published in Physical Review Letters, the flagship journal for the American Physical Society. Pulsars, or pulsating stars, are rotating neutron stars that emit pulses of light visible to astronomers on Earth. Pulsars are created from the collapsing cores of supermassive stars that have exploded into supernovae. These supermassive stars, 10 to 40 times the mass of the sun, have been found at the center of the galaxy, leading astronomers to predict a certain number of pulsars should also reside there, but that predicted number of pulsars has not yet been observed. “In 2013, the first pulsar at the galactic center was detected, and this observation has deepened the mystery of these stellar objects,” explained Bramante, a postdoctoral associate in the lab of Christopher Kolda. “Prior to this detection, it was thought that pulsars at the galactic center might simply be shielded from observation by dense material in the center of the galaxy.” In the paper, Bramante and his colleague at the University of Chicago, Tim Linden, discuss how dark matter could explain the absence of pulsars in the galactic center. Dark matter, which makes up approximately 25 percent of the matter in the universe, is a very dense type of matter that does not emit a significant amount of light. A particular kind of dark matter could destroy pulsars at the galactic center by falling into the pulsars and forming black holes that swallow them. “Observations of pulsars imploding into black holes could provide important clues to the properties of dark matter, specifically indicating it is asymmetric, just like visible matter,” said Bramante. The paper also explains how the researchers showed that the presently unknown mass and quantum couplings of dark matter could be found by determining the age at which a pulsar is swallowed by a dark matter black hole. One predictor of this pulsar-collapsing dark matter is a maximum age for pulsars, which gets higher the further away from the galactic center the pulsars are because there is less dark matter away from the center. The next steps in this work for Bramante and his collaborators includes building and testing a model of dark matter to ensure the model meets all other cosmological and astrophysical dark matter observations. Contact: Joseph Bramante, Joseph.Bramante.2@nd.edu Posted In: Research Home Experts ND in the News Subscribe About Us Related October 05, 2022 Astrophysicists find evidence for the presence of the first stars October 04, 2022 NIH awards $4 million grant to psychologists researching suicide prevention September 29, 2022 Notre Dame, Ukrainian Catholic University launch three new research grants September 27, 2022 Notre Dame, Trinity College Dublin engineers join to advance novel treatment for cystic fibrosis September 22, 2022 Climate-prepared countries are losing ground, latest ND-GAIN index shows For the Media Contact Office of Public Affairs and Communications Notre Dame News 500 Grace Hall Notre Dame, IN 46556 USA Facebook Twitter Instagram YouTube Pinterest © 2022 University of Notre Dame Search Mobile App News Events Visit Accessibility Facebook Twitter Instagram YouTube LinkedIn