key: cord-0002033-nmi39n6h authors: Petriccione, Milena; Mastrobuoni, Francesco; Zampella, Luigi; Scortichini, Marco title: Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. actinidiae date: 2015-11-19 journal: Sci Rep DOI: 10.1038/srep16961 sha: 8923bae528dc7e9ed10fbb6e823707dd1018be9d doc_id: 2033 cord_uid: nmi39n6h Normalization of data, by choosing the appropriate reference genes (RGs), is fundamental for obtaining reliable results in reverse transcription-quantitative PCR (RT-qPCR). In this study, we assessed Actinidia deliciosa leaves inoculated with two doses of Pseudomonas syringae pv. actinidiae during a period of 13 days for the expression profile of nine candidate RGs. Their expression stability was calculated using four algorithms: geNorm, NormFinder, BestKeeper and the deltaCt method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protein phosphatase 2A (PP2A) were the most stable genes, while β-tubulin and 7s-globulin were the less stable. Expression analysis of three target genes, chosen for RGs validation, encoding the reactive oxygen species scavenging enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) indicated that a combination of stable RGs, such as GAPDH and PP2A, can lead to an accurate quantification of the expression levels of such target genes. The APX level varied during the experiment time course and according to the inoculum doses, whereas both SOD and CAT resulted down-regulated during the first four days, and up-regulated afterwards, irrespective of inoculum dose. These results can be useful for better elucidating the molecular interaction in the A. deliciosa/P. s. pv. actinidiae pathosystem and for RGs selection in bacteria-plant pathosystems. Multiplication and growth of P. s. pv. actinidiae in A. deliciosa leaf. During the time course of the experiment, the multiplication and growth of PSA CRA-FRU 8.43 inoculated at 1-2 × 10 3 cfu/ml and 1-2 × 10 7 cfu/ml into A. deliciosa cv. Hayward leaves was assessed. When inoculated at the lower dose, the growth of the pathogen within the leaf never exceeded 10 5 cfu/ml and showed a peak of 2-3 × 10 4 cfu/ml at nine dpi; no symptoms were observed in the inoculated leaves. By contrast, when the pathogen was inoculated at 1-2 × 10 7 cfu/ml, it incited the appearance of tiny necrotic spots on many of the inoculated leaves of nine dpi (see Supplementary Fig. S1 online). In this case, only the green tissue was precisely removed to prepare the samples. Selection of candidate reference genes, amplification specificity and efficiency. Nine RGs, commonly used as internal controls for expression studies in other pathosystem, were screened in A. deliciosa leaves inoculated with the pandemic PSA strain CRA-FRU 8. 43 . To determine the specificity of the primer pairs used in this study, melting curve analysis and agarose gel electrophoresis were performed following the RT-qPCR experiment. A single peak in the obtained melting curve confirmed the specificity of the amplicon, and no signal was detected in the negative controls for all of the tested RGs (see Supplementary Fig. S2 online) . In addition, a single band with the expected size was detected in a single PCR product (see Supplementary Fig. S3 online) . The standard curve method using a pool of all of the cDNA samples was performed to calculate the PCR efficiency (E) and the correlation coefficient (R2) of each primer pair. Average E values ranged from 100.7 to 108.2%, with R 2 varying from 0.991 to 0.999 (Table 1 ). The results showed that all of the primer pairs were suitable for RT-qPCR analysis. Expression levels of the reference genes. RT-qPCR was used to quantify the mRNA levels of nine candidate RGs, and the expression stability was investigated. To determine the expression levels of the candidate RGs, the raw quantification cycle (Cq) values were determined. The nine candidate RGs displayed a wide expression range, with Cq ranging from 20.23 to 31.31 , across all of the tested samples, with mean Cq values between 22.06 ± 0.92 and 28.58 ± 0.86 (Fig. 1 ). All of the tested RGs showed a normal distribution in Cq values according to the Kolmogorov and Smirnov method. These genes were clearly distributed into different expression level categories. The results showed that CYP was the most expressed gene with the lowest mean Cq (22.06 ). On the other hand, GLO7A was the least expressed gene with the highest mean Cq value (28.58) . TUB showed the most variation in expression level among the evaluated RGs by the larger whisker taps and boxes compared to the other genes, suggesting its low stability. Most of the candidate RGs were highly expressed, with average Cq values between 22 and 24 cycles, except SAND and GLO7A, which showed average Cq values at intermediate expression levels (Fig. 1 ). Primer sequence (5′-3′) BestKeeper and the deltaCt method) were used to evaluate the stability of expression of selected RGs. The analyses were performed for three comparison groups considering both low-and high-dose bacterial inocula in the leaves and their combined dataset. In each comparison group, the nine RGs were ranked from the most stable to the least stable. The data obtained from biological replicates were analysed separately to verify that the variation was not due to the treatment, but was intrinsic to the gene itself 40,41 . Genorm Analysis. Nine RGs were ranked in three comparison groups based on their average expression stability (M-value), as shown in Tables 2, 3 and 4. All of the tested RGs showed an overall limited variance, with M-values lower than 1.5, which was the default limit (M≤ 1.5), indicating a high stability level of the analysed genes in our experimental conditions. GAPDH, PP2A and UBC were the three most stable genes in this pathosystem, with slight differences in ranking for three comparison groups. In A. deliciosa leaves inoculated with a low dose of bacterial inoculum, GAPDH was the most stable gene (Table 2) , while in leaves inoculated with a high dose of bacterial inoculum and when all of the sample sets were analysed together, PP2A was the most stable gene (Tables 3 and 4 ). TUB was the least stable gene in three comparison groups (Tables 2, 3 and 4). In this study we used the geNorm algorithm to find the optimal number of suitable RGs required for proper normalization. In three comparison groups, geNorm analysis revealed that by step wise calculation the pairwise variation value V2/3 was lower than the threshold value (0.15), suggesting that two RGs could be used for normalization under these conditions (Fig. 2 ). This suggested that the optimal number of RGs for normalization was two and that the addition of the third RGs showed no significant effect on the normalization of gene expression. Finally, GAPDH and PP2A were identified as the best RGs and selected for normalization by geNorm. NormFinder analysis. NormFinder ranks the RGs according to their stability values under the tested conditions. The results of NormFinder analysis were slightly different from those of geNorm. However, in the three comparison groups, GAPDH emerged as the most stably expressed gene with the lowest 14 TUB 1.00 Table 3 . Average stability values (SV) of the nine candidate reference genes are shown for leaves inoculated with high dose of Pseudomonas syringae pv. actinidiae inoculum. stability value. GAPDH and PP2A still occupied the next two top positions for higher stability when we considered the total dataset (Table 4 ) or in A. deliciosa leaves inoculated with a high dose of bacterial inoculum (Table 3) , while in A. deliciosa leaves inoculated with a low dose of bacterial inoculum, GAPDH and ACT were the most stable RGs ( Table 2 ). The NormFinder results indicated that TUB was the least stable RG in the total dataset, confirming our geNorm results. Tables 2, 3 and 4. In the total dataset, BestKeeper analysis highlighted six RGs characterized by the least overall variation, with SD < 1; SAND and eEF-1a were the most stable genes, with SD values of 0.69 and 0.76, respectively (p < 0.001) ( Table 4 ). In A. deliciosa leaves with a low dose of bacterial inoculum, SAND (0.72) was the most stable gene, followed by eEF-1a and GLO7A, with SD values of 0.81 and 0.95, respectively (Table 2 ). In kiwifruit leaves with a high dose of bacterial inoculum, BestKeeper revealed that only the expression of TUB overcame the stability threshold; CYP and GAPDH were considered to be the most stable genes, with SD values of 0.50 and 0.61, respectively (Table 3 ). The results of the deltaCt method were reported in Tables 2, 3 and 4 . GAPDH was the most stable gene for the three comparison groups. For the entire dataset, the results were similar to NormFinder and geNorm analysis, with GAPDH and PP2A as the top two ranked RGs, with a slight difference in the ranking (Table 4) . TUB was the least stable gene in three comparison groups, as demonstrated by other statistical algorithms. In this study, to determine the consistency of the ranks of candidate RGs produced by geNorm, NormFinder, BestKeeper and the deltaCt method, the Pearson correlation coefficient was employed ( Table 5 ). The Pearson correlations achieved from the calculations were positive and significant for all methods, except BestKeeper. The most significant correlation of the rank of all RGs ranked by two methods was geNorm and deltaCt in A. deliciosa leaves inoculated with a high dose of bacterial inoculum (r = 0.958), followed by NormFinder vs. deltaCt in A. deliciosa leaves inoculated with a low dose of bacterial inoculum (r = 0.895) ( Table 5) . For the overall final ranking obtained by the four algorithms, the two top RGs for the total dataset were GAPDH and PP2A, while the least stable were GLO7A and TUB. Expression analysis of the target genes for reference gene validation. The expression of three genes encoding the reactive oxygen species (ROS) scavenging enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT), induced during the systemic infection of kiwifruit leaves with PSA, were chosen to further validate the reliability of the selected RGs for the normalization of RT-qPCR data. In this study, we followed two normalization strategies to determine the expression of these target genes. The first used the best two RGs (GAPDH and PP2A) given by ranking from four methods (geNorm, BestKeeper, NormFinder and deltaCt), and the second used the least stable RGs (TUB and GLO7A). In A. deliciosa leaves inoculated with a high dose of bacterial inoculum, an up-regulation in APX mRNA expression was observed during the time course of the experiment with 2.4-and 4.5-fold changes after 1 and 13 dpi, respectively. Instead, when we used a low dose of bacterial inoculum, we observed an accumulation of the APX transcript after 4 dpi with a 3.7-fold-change and a gradual decrease from 7 to 13 dpi (Fig. 3A) A down-regulation in CAT mRNA expression during the first 4 dpi was observed, and subsequently, we registered a gradual up-regulation in CAT mRNA expression in A. deliciosa leaves inoculated with a low-and high-dose of bacterial inocula. The maximum level of the transcript was reached after 10 dpi, with a 2.2-and 5.7-fold change in infected leaves with high-and low-dose bacterial inocula, respectively (Fig. 3B) . Similarly, we observed in the accumulation of the SOD transcript, that the maximum average value after 10 dpi was a 3.6-and 1.6-fold change, with low and high bacterial inocula, respectively (Fig. 3C) . Our results confirm that the transcriptional levels of APX, CAT and SOD are subjected to complex regulation in PSA-infected kiwifruit leaves. This information is distorted when we normalize against the least stable genes, upon which the expression levels of APX, CAT and SOD were inaccurate and altered transcriptional profiles were displayed (Fig. 4 ). In research of plant molecular pathology, studies on gene expression patterns are important for understanding the biological process involved in host-plant interactions. Presently, several methods can be applied to study gene expression levels, but RT-qPCR has become the primary quantitative method for the high-throughput and accurate expressing profiling of target genes. For RT-qPCR analysis, the requirement of a normalization method against RGs is important to achieve reliable results. As suggesting by the "Minimum Information for publication of Quantitative real-time PCR Experiments" (MIQE) guidelines 4 , the use of RGs as internal controls is the most appropriate normalization strategy 7 . Ideal RGs should be stably expressed in all cells or tissues and remain stable under different experimental conditions 42 . Several studies highlighted that there is neither a universal RG nor a defined number of genes to use, but the choice and an optimal number of RGs should be experimentally determined 4, 27 . Many reliable RGs have been determined in plant cells and across different plant species, developmental stages, and biotic and abiotic stresses 43 . However, to the best of our knowledge, few studies have been carried out to assess RGs in bacteria-plant pathosystems 6 . Here, we assessed nine RGs for their use as internal controls in gene expression studies of the A. deliciosa response to infection by PSA upon leaf infiltration using two different doses of bacterial inoculum. To identify the best RGs, four different statistical algorithms were used. Combined use of geNorm, NormFinder, BestKeeper and the deltaCt method to select and validate the best RGs generated substantial discrepancies in the final ranking due to different mathematical models associated with each algorithm, as confirmed by other studies 18, 44, 45 . As reported in other studies, the most discrepant results in gene stability ranking were obtained with BestKeeper 46 . In the total dataset, PP2A, GAPDH and UBC were identified as the top three RGs using geNorm, while GAPDH, PP2A and ACT were suggested as the most stable RGs by NormFinder and the deltaCt method. According to BestKeeper, ACT, GAPDH, PP2A and UBC were ranked fifth to eighth, respectively. Among all of the tested RGs, TUB was ranked as the least stable gene in the four statistical algorithms, and its use as a RG should be avoided in RT-qPCR experiments in this pathosystem. To overcome differences in the ranking of RGs, we adopted the geometric mean of all four algorithms to obtain a final ranking 47 . As suggested by several studies, the accuracy of RT-qPCR can improve by using more than one RG 27 . The optimal number of candidate RGs for normalization of RT-qPCR data has been evaluated by geNorm software. Our results showed a pairwise variation V2/3 value below 0.15, which indicates that combination of two-RGs was sufficient for optimal normalization in the three comparison groups. The final ranking showed that the two top RGs for the total dataset were GAPDH and PP2A and can be used as RGs for RT-qPCR normalization in this pathosystem. GAPDH was indicated to be a stable RG in a tomato-virus interaction 15 , in virus-infected mammalian cells 48 and in wheat infected with barley yellow dwarf virus (BYDV) 14 , but was the least stable RG in Coffea spp. hypocotyls inoculated with Colletrichum kahawae 13 . PP2A was a stable RG in virus-infected leaf tissues of Nicotiana benthiamiana 48 and in virus-infected Arabidopsis thaliana 43 . In our study, UBC was among the four most stable RGs, as demonstrated in Coffea arabica leaves inoculated with Hemileia vastarix 49 , but was considered to be the least stable RG in common bean inoculated with Colletotrichum lindemuthianum 50 . TUB was not confirmed as a stable normalization factor in our conditions, confirming our previous proteomic study that showed the variability of this protein in A. chinensis shoot during systemic infection with PSA 25 ; however, in other pathosystems, such as Puccinia graminis f sp. tritici-infected wheat, TUB was one of the most stable RGs 51 . Furthermore, this RG showed highly variable expression levels in closely related cereals, such as wheat, barley and oat infected with BYDV; TUB was unstable in wheat and reasonably stable in two other species 14 . The SAND transcript was ranked lower among RGs in our pathosystem than was identified in Nicotiana benthiamiana and Lycopersicum esculentum plants inoculated with viruses 52, 53 . These variations in the expression profiles of RGs in different pathosystems confirm the need for validation for RGs under each specific condition. Some RGs can be involved in different metabolic pathways 13 and influenced in a plant tissue-dependent manner during plant-pathogen interactions 15 . The suitability of the selected RGs has been evaluated analysing the expression levels in three target genes (APX, CAT and SOD) that encode for proteins that are directly involved in ROS detoxification, protecting cells from oxidative bursts induced as responses to pathogen invasion 54 . SOD catalyses the dismutation of O 2 to H 2 O 2 , CAT dismutates H 2 O 2 to oxygen and water, and APX reduces H 2 O 2 to water by utilizing ascorbate as a specific electron donor 55 . The balance between SOD and APX or CAT activities in cells is crucial for determining the steady-state level of O 2 and H 2 O 2 . In our study, the accumulation of APX, CAT and SOD gene transcripts was strongly influenced by the dose of bacterial inoculum used. Indeed, these genes involved in ROS detoxification and the oxidative-stress response have a key role for bacteria survival and pathogenesis 55 . The APX up-regulation during a relatively long time course of infection (i.e., 10 days) was observed upon the twig inoculation with the same high dose of PSA CRA-FRU 8.43 also in the case of A. chinensis "Soreli" 25 . In the same study, however, neither CAT nor SOD were found differentially expressed 10 days after the twig inoculation. Irrespective of the inoculum doses, both CAT and SOD resulted up-regulated during the first four days of infection, and, subsequently, their level in the leaf tissues declined. Interestingly, a similar trend was observed for SOD in the Phaseolus vulgaris/P. s. pv. phaseolicola pathosystem after the inoculation of bean leaves with the same high dose of bacterial inoculum used in the present study (i.e., 1 × 10 7 cfu/ml) 56 . In this study, however, the SOD level in the bean primary leaves and into the apoplastic fluid starts to decrease 48 and 24 hours after the artificial inoculation. Furthermore, in this study, we demonstrated that to correctly quantify APX, CAT and SOD, it was necessary to choose the RGs that had transcript levels that were not influenced by bacterial infections and that the use of inappropriate RGs can markedly change the expression pattern of a given target gene, leading to incorrect results. This is the first study in which a set of candidate RGs was analysed in terms of their expression stability in A. deliciosa leaves infected with PSA. Four different statistical algorithms showed slight differences in the final ranking of RGs, but by combining and analysing the data together, we demonstrated that two genes, GAPDH and PP2A, are the most stably expressed transcripts in all infected kiwifruit leaves. The validation of RGs in our study provides new information that will be useful for a better understanding of the molecular mechanisms implicated in the expression profiles of target genes in the A. deliciosa/P.s. pv actinidiae pathosystem. It should be considered that ideal RGs can vary with the pathosystem under investigation, and therefore, these genes should be carefully selected for each study conforming to the MIQE guidelines. Plant material, P. syringae pv. actinidiae inoculations and experimental design. Two-yearold, self-rooted, pot-cultivated A. deliciosa "Hayward" plants and the pandemic PSA strain CRA-FRU 8.43 were used in this study 21 . This bacterial strain was originally isolated from A. chinensis leaf spot and further characterized 57, 58 . Plants were maintained in an aseptic room with 95% relative humidity with natural light and no further fertilization after their transfer from the nursery. They were watered regularly. Inoculation took place in spring (i.e., May). The strain was grown for 48 h on nutrient agar (Oxoid) with 3% sucrose added (NSA) at 25 ± 1 °C. Subsequently, a low (1-2 × 10 3 cfu/ml) and high (1-2 × 10 7 cfu/ ml) dose of bacterial inoculum, determined using spectrophotometry, were prepared in sterile, distilled water. To avoid wounding, the inoculation occurred by gently spraying the suspensions on the abaxial surface of fully expanded, healthy, young leaves, until the appearance of homogenous water-soaked areas on the whole leaf lamina. Twenty plants per dose were inoculated. Artificial inoculations were performed separately, according to the dose. Control plants were treated in the same way with sterile, distilled water. After inoculation, plants were maintained separately and were kept for 24 h in a moist chamber (100% humidity), which was required for optimal infection. During the experiment, the multiplication and growth of the pathogen was assessed as previously described 21 . Leaves were collected after one day post-inoculation and at intervals of three days for 13 days, immediately frozen in liquid nitrogen and stored at − 80 °C until RNA isolation. In the same treatment group (inoculated and mock inoculated), each biological replicate was obtained by pooling three leaves from different plants harvested at random. Three independent biological replicates were performed for each sample with three technical replicates each. Total RNA extraction and cDNA synthesis. Total RNA was isolated from A. deliciosa leaves inoculated with PSA as well as from control leaves as described by Rubio-Piña and Zapata-Perez 59 . Residual genomic DNA was digested by RNase-free DNase (Invitrogen Life Technologies, Carlsbad, CA, USA) according to the manufacturer's instructions. The RNA concentration was quantified by measuring the absorbance at 260 nm using a Jasco V-530 UV/VIS spectrophotometer (Tokyo, Japan). The purity of all of the RNA samples was assessed at an absorbance ratio of OD260/280 and OD260/230, while its structural integrity was checked by agarose gel electrophoresis. Only high-quality RNA with OD 260/280 and OD 260/230 > 2 was used for subsequent steps. Single-stranded cDNA was synthesized from 1 μ g of total Scientific RepoRts | 5:16961 | DOI: 10.1038/srep16961 RNA using an iScript ™ Select cDNA Synthesis Kit and oligo(dT)20 primers (Bio-Rad, Milan, Italy), according to the manufacturer's instructions. test. For this study, special attention was paid to a select set of nine candidate RGs (ACT, eEF-1a, PP2A, UBC9, SAND, TUB, GLO7A, CYP and GAPDH) to investigate their robustness as internal controls for RT-qPCR in A. deliciosa. These genes belong to different functional and abundance classes to significantly reduce the chance that they are co-regulated. APX, CAT and SOD were selected as genes of interest. Gene-specific primers, such as SAND, TUB, GLO7A, CYP, GAPDH, APX, CAT and SOD, were designed in our laboratory using Primer Expression software version 3 ( Table 1 ). The amplification efficiency of each candidate/target gene was determined using a pool representing all of the cDNA samples. First, all of the primers were examined by end-point PCR, all of the chosen candidates/target were expressed, and specific amplification was confirmed by a single band of appropriate size in a 2% agarose gel after electrophoresis (see Supplementary Fig. S3 online) . In a second step, the pool was used to generate a five-point standard curve based on a ten-fold dilution series. The amplification efficiency (E) and correlation coefficient (R 2 ) of the primers were calculated from the slope of the standard curve according to the equation 60 : Quantitative Real-time PCR (qPCR). Quantitative Real-time-PCR was performed using a CFX Connect Real-time PCR Detection System (Bio-Rad) to analyse the specific expression of each reference/ target gene. cDNA was amplified in 96-well plates using the SsoAdvanced ™ SYBR ® Green Supermix (Bio-Rad), 15 ng of cDNA and 300 nM specific sense and anti-sense primers in a final volume of 20 μ l for each well. Thermal cycling was performed, starting with an initial step at 95 °C for 180 s, followed by 40 cycles of denaturation at 95 °C for 10 s and primer-dependent annealing (Table 1 ) for 30 s. Each run was completed with a melting curve analysis to confirm the specificity of amplification and lack of primer dimers. Determination of reference gene expression stability. Data analyses were performed on three groups: a) infected plants with a low dose of bacterial inoculum compared to the mock-inoculated plants dataset (LDI), b) infected plants with a high dose of bacterial inoculum compared to the mock-inoculated plants dataset (HDI), and c) the entire dataset (Total). The stability of candidate RGs for several comparison groups was analysed with the following four applets: geNorm 27 , NormFinder 28 , BestKeeper 29 and the deltaCt method 30 . The raw Cq values were converted into relative quantities and imported into the geNorm and NormFinder software programs; no transformed Cq values are required for BestKeeper and the deltaCt method. GeNorm calculates an expression stability value (M) for each RG and then determines the pairwise variation (V) of each RG with all of the other genes. At the end of analysis, by stepwise exclusion of the gene with the highest M-value (less stable), this tool allows for the ranking of the tested RGs according to their expression stability. The optimal number of RGs required for normalization was determined by pairwise variation V n /V n + 1 (0.15 recommended threshold). NormFinder calculates the expression stability value (SV) for each gene, taking into account intraand inter-group variations of the samples set 28 . A low SV-value indicates the high expression stability of this gene. BestKeeper is an Excel-based software tool that selects best-suited RGs by performing a statistical analysis based on Pearson correlation coefficient (r), standard deviation (SD) a coefficient of variance (CV). Only genes with a high r value and a low SD are combined into BestKeeper index (BKI) value using the geometric mean of their Cq values. Finally, this tool determines the correlation coefficient of each candidate RG with the BKI value, along with the probability (p) value. The RG with the highest coefficient of correlation with the BKI is considered to be the most stable. The deltaCt (dCt) method compares relative expression of pairs of RGs within each sample to identify stable RGs 30 . A ranking of the RGs using the four algorithms together was obtained as suggested by Velada et al. 47 . Correlations among the stability values of RGs obtained with different software were analysed using Pearson's correlations (P < 0.05 and P < 0.01). All statistical analyses were performed using the SPSS v. 20.0. To confirm the reliability of the RGs, the relative expression profiles of APX, CAT and SOD genes were determined and normalized with the most stable and less stable genes. Relative fold changes in gene expression was calculated using the comparative 2 −ΔΔCt method and normalized to the corresponding RGs levels 29,61 . Statistical analysis. Data are displays as mean ± standard deviation. Cq values were tested for normality (Kolmogorov-Smirnov test) prior to analysis. Statistical analysis of data was performed by one-way ANOVA followed by LSD post-hoc test. Calculation were performed using the SPSS v. 20.0. Transcript profiling in host-pathogen interactions Relative quantification in Real-Time PCR Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and mungbean yellow mosaic india virus The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis Real-time RT-PCR normalisation; Strategies and considerations Evaluation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi Standardization of real-time PCR gene expression data from independent biological replicates Transcript profiling of a conifer pathosystem: response of Pinus sylvestris root tissues to pathogen (Heterobasidion annosum) invasion Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae Detection of Prune dwarf virus by one-step RT-PCR and its quantitation by real-time PCR Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars Selection and validation of reference genes for gene expression studies by reverse transcription quantitative PCR in Xanthomonas citri subsp. citri during infection of Citrus sinensis Reference genes for accurate transcript normalization in Citrus genotypes under different experimental conditions Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species Pseudomonas syringaepv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease Redefining the global populations of Pseudomonas syringae pv. actinidiae based on pathogenic, molecular and phenotypic characteristics Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes Normalization of real-time quantitative reverse transcription-PCR data: a modelbased variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper -excel-based tool using pair-wise correlations Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds Modified carotenoid cleavage dioxygenase8 expression correlates with altered branching in kiwifruit (Actinidia chinensis) Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism Characterization of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences Identification of suitable reference genes for real-time RT-PCR normalization in the grapevine-downy mildew pathosystem Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection Technical advance: transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE) Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L) Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera Selection of reference genes for expression studies in Cicer arietinum L.: analysis of cyp81E3 gene expression against Ascochyta rabiei Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations Analysis of qPCR reference gene stability determination methods and a practical approach for efficiency calculation on a turbot (Scophthalmus maximus) gonad dataset Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus,Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections Biphasic haustorial differentiation of coffee rust (Hemileia vastatrix race II) associated with defence responses in resistant and susceptible coffee cultivars Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses Reference gene selection for qPCR gene expression analysis of rust-infected wheat Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR Assessment of reference gene stability influenced by extremely divergent disease symptoms in Solanum lycopersicum L Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas The antioxidant systems vis à vis reactive oxygen species during plant-pathogen interaction Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. phaseolicola and Botrytis cinerea infection Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in Central Italy Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker of yellow kiwifruit (Actinidia chinensis) in central Italy Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants Guideline to reference gene selection for quantitative real-time PCR Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCt method This work was financed by the Regione Campania Programme under the grant agreement UR.CO. FI. (Unità di coordinamento e potenziamento delle attività di sorveglianza, ricerca, sperimentazione, monitoraggio e formazione in campo fitosanitario), Decreto Dirigenziale n°9 del 3 giugno 2014.