key: cord-0040842-u0zt824f authors: Rodríguez-Pintó, Ignasi; Espinosa, Gerard; Cervera, Ricard title: The Catastrophic Antiphospholipid Syndrome date: 2014-11-07 journal: Antiphospholipid Antibody Syndrome DOI: 10.1007/978-3-319-11044-8_20 sha: 892af0d4b8c64b9e8f1d48d4f1ef97b1e2cb29a8 doc_id: 40842 cord_uid: u0zt824f The addition of the word “catastrophic” to the term antiphospholipid syndrome (APS) was proposed 20 years ago by Ronald Asherson when he published an editorial in The Journal of Rheumatology describing a group of patients who develop multiple thrombosis in a short period of time and with a much worse prognosis than that attributed to patients with classic APS [1]. Since then, many cases have been published reporting patients with this devastating variant of the APS. The addition of the word "catastrophic" to the term antiphospholipid syndrome (APS) was proposed 20 years ago by Ronald Asherson when he published an editorial in The Journal of Rheumatology describing a group of patients who develop multiple thrombosis in a short period of time and with a much worse prognosis than that attributed to patients with classic APS [ 1 ] . Since then, many cases have been published reporting patients with this devastating variant of the APS. The catastrophic APS (CAPS) is a rare disease that affects around 1 % (0.4-1.6 %) of patients with APS [ 2 ] but is associated with a high rate of mortality [ 3 ] . The majority of the knowledge on this disease has been provided by studying the cases included in the CAPS Registry . This is a database in a web-based format that includes all patients published or reported directly to the CAPS Registry Project Group with this condition. This registry was created in 2000 by the European Forum on Antiphospholipid Antibodies, a group of experts devoted to perform international collaborative studies on antiphospholipid antibodies (aPLs) [ 4 ] . The results are freely available in its web site ( https://ontocrf.costaisa.com/en/web/caps ). The CAPS Registry includes nowadays more than 500 cases from almost 200 published papers and 100 cases directly reported to the CAPS Registry Project Group. According to the CAPS Registry , this syndrome affects mainly women with a female to male ratio of 3:1 and involves patients in their fourth decade of life, although cases in newborns and elderly patients have been reported [ 5 ] . CAPS is the fi rst manifestation of APS in 56.4 % of patients, and most of them do not present any associated autoimmune disease. In the remaining patients, systemic lupus NF-κB and AP-1 [ 8 ] activation and resulting in transcription of infl ammatory genes [ 18 ] . On the other hand, virtually all patients with sepsis have coagulation abnormalities [ 19 ] . These abnormalities range from subtle activation of coagulation only detectable by sensitive techniques through somewhat subclinical stronger coagulation activation evident by a small decrease in platelet count and prolongation of global clotting times to fulminant disseminated intravascular coagulation, characterized by widespread microthrombosis and profuse bleeding [ 20 ] . At the same time, proinfl ammatory cytokines are important in inducing a procoagulant effect by inducing tissue factor expression on mononuclear cells and EC, probably playing their role in increasing the risk for new thrombosis. In 1998, Kitchens [ 21 ] proposed that intravascular coagulation itself could increase the risk to develop another thrombosis. In this theory, the blood clot would promote thrombin formation and fi brinolysis would become impaired by an increase of plasminogen activator inhibitor (PAI) type I. This would determine the consumption of natural anticoagulant proteins, such as protein C and antithrombin. However, it is still unclear why some patients with aPLs develop thrombosis affecting large vessels, while others develop this catastrophic situation with simultaneous multiple vascular occlusions that affects predominantly small vessels. In CAPS, probably all these factors are interplaying in a procoagulant milieu that leads to this multiorgan thrombosis in small vessels observed in clinical practice. Some clinical manifestations are not directly related to the blood fl ow occlusion but to the cytokine overexpression in the ischemic necrotic tissue, leading to the so-called cytokine storm . This, probably, at the same time closes the circle that leads to this devastating situation. As previously explained, in the two-hit hypothesis, the presence of a second thrombophilic state has been proposed to explain the observation of thrombosis in patients with circulating aPLs. Different triggers have been reported in as much as 2/3 of CAPS cases. The most common precipitating factors described are infections , followed by neoplasms, surgical procedures, and anticoagulation withdrawal or low international normalized ratio (INR) [ 3 , 5 , 22 ] . Different infectious agents are associated with CAPS. Among them, the most frequent reported are bacteria such as Escherichia coli, Shigella sp., Salmonella, Streptococcus, Staphylococcus aureus, Klebsiella , and herpes virus, affecting mainly the lungs and kidneys. Most of them are gram-negative bacteria, and, thus, these infectious agents might act co-signaling with aPLs the TLR signal that leads to the prothrombotic state and, fi nally, to CAPS. Not surprisingly, neoplasms are the second most frequent precipitating factor in CAPS. Hematological malignancies are the oncological diseases more frequently associated with CAPS and, among them, Hodgkin's lymphoma. However, CAPS has been reported to be associated with carcinomas and sarcomas [ 23 ] . Malignancies have been linked to the development of circulating aPLs [ 24 ] , and the increased risk of cancer patients to develop thrombosis is well known since last century when Trousseau described the development of thrombophlebitis in these patients [ 25 ] . Several reasons have been proposed to explain the increased risk of thrombosis in cancer patients. For instance, blood fl ow stasis due to vascular invasion, immobilization, upregulation of thrombophilic substances by both tumor and endothelial cells, chemotherapy, and central venous devices have been proposed as conditions that might explain the increased frequency of thrombosis in these patients. Surgery and trauma are found often associated with the development of CAPS in patients with APS. The increased postoperative risk of thrombosis after major general surgery or multiple trauma has been extensively documented [ 26 , 27 ] . The infl ammatory response to the surgery wound is thought to explain the increased risk described in these patients. Interestingly, pre-surgery measurement such as plasma exchange have been proposed in order to decrease aPL levels and, thus, reduce the thrombotic risk [ 22 ] . Other precipitating factors such as anticoagulation withdrawn, pregnancy, and postpartum period have been reported to be linked to a CAPS episode, but in lower frequency. The development of multiple microvascular thrombotic occlusions with microangiopathic anemia and thrombocytopenia is a characteristic fi nding of patients with CAPS. As a systemic disease, CAPS can affect any organ or system. Clinical manifestations have been classically classifi ed into those attributed to thrombosis itself and those attributable to the cytokine storm [ 28 ] . However, sometimes it is diffi cult to differentiate if a clinical manifestation is attributable to one or the other cause and many times both pathways may work together. CAPS patients present frequently with renal failure and variable degrees of hypertension, although hypotension does not exclude the diagnosis. Some patients present with proteinuria and sometimes with hematuria [ 3 , 5 , 22 , 29 ] . Pulmonary manifestations are reported in 2/3 of cases, classically characterized by acute respiratory distress syndrome (ARDS) attributed typically to the cytokines storm. Pulmonary emboli are associated with dyspnea, and, sometimes, the clinical picture is associated with pulmonary hemorrhage [ 3 , 22 , 29 , 30 ] . Almost half of patients with CAPS present with consciousness deterioration manifested as encephalopathy . Many times, it is not clear if this manifestation could be ascribed to general hypoperfusion because of microthrombosis, to generalized shock, or to intracranial large vessel thrombosis. Nevertheless, some patients present with classical neurological defi cits with motor or sensitive symptoms and an established stroke. Less often is the report of seizures, and, when present, many times they are associated with other manifestations [ 3 , 22 , 29 ] . Heart failure due to myocardium infarction, angina, or cardiac valvulopathy ( Libman-Sacks endocarditis ) is described in 50 % of cases, sometimes with cardiogenic shock as part of multiorganic failure, with hypotension, tachycardia, and oliguria. The main valves affected are the mitral and the aortic valves. This condition is mainly reported as valvular insuffi ciency, and, sometimes, it leads to the requirement of valvular replacement. Intracavitary thrombosis has been seldom reported in patients with CAPS. Skin complications in a form of livedo reticularis are very often reported; however, few of these cases develop skin necrosis with ulcers and digital ischemia [ 5 , 22 , 29 ] . Other organs affected are the peripheral vessels, the intestine, the spleen, the adrenal glands, the pancreas, the retina, and the bone marrow. Anecdotally, testicular/ovarian infarction, necrosis of the prostate, and acalculous cholecystitis have been reported [ 5 , 22 , 29 ] . The differential diagnosis of patients with multiple thrombosis is not easy. Indeed, many times, several thrombophilic situations interplay together, leading to thrombosis in multiple sites throughout the organism. Most cases of CAPS present as microangiopathic storm rather than large-vessel occlusion, although cases with large-vessel involvement have been reported. The presence of multiple occlusions should always rise the suspicion of a thrombophilic state. However, when this thrombosis presents in large vessels, the search for classical well-known risk factors for thrombosis should be performed. Typical risk factors for thrombosis include malignancy, surgery, obesity, immobility, pregnancy and oral contraception, and hereditary and acquired thrombophilias (i.e., aPLs, antithrombin, protein C and protein S defi ciency, factor V Leiden and prothrombin G20210A mutations, and increased levels of several coagulation factors such as factor VIII, IV, or XI). Nevertheless, the microangiopathic storm that is common in CAPS leads to a deferent differential diagnosis that includes diseases characteristically associated with microangiopathy. Classically, the differential diagnosis of patients with CAPS includes severe infections, with or without disseminated intravascular coagulation (DIC), noninfectious-related DIC, thrombotic thrombocytopenic purpura (TTP) or hemolytic uremic syndrome, heparin-induced thrombocytopenia, HELLP (hemolysis, elevated liver enzymes, low platelet count) syndrome, and scleroderma renal crisis. Even when the presence of aPLs in patients with multiple thrombosis gives habitually the clue for the differential diagnosis of patients with this microangiopathic picture, the presence of aPLs is not pathognomonic of CAPS and have been reported in several other situations. However, when aPLs are found in other settings, they are almost always reported at lower levels [ 22 , 31 ] , but the clinical situation should always guide decision making. Systemic severe infections may recall the clinical picture of CAPS, and sometimes both situations take place together: the fi rst acting as a trigger of the second. There is evidence that the activation of infl ammation and coagulation in the context of severe sepsis can lead to thrombosis [ 32 ] , and, at the same time, infections have proved to be able to lead to the development of aPLs [ 24 ] . However, although transient aPLs positivity at low levels can be found in severe infections, they have no clinical signifi cance. Thus, the presence of high levels of aPLs should be taken as a highly specifi c fi nding for CAPS helping in the differential diagnosis between these two clinical situations [ 22 ] . DIC is not a disease entity itself but a complication of several disorders. The most commons disorders associated with DIC are infections, severe trauma, malignancy, and obstetric complications [ 33 , 34 ] . DIC is characterized clinically by thrombosis and bleeding with coagulation factor consumption leading to coagulation times prolongation and fi brinogen consumption [ 35 ] . However, clinical and laboratory features of DIC have been observed in patients with CAPS [ 36 ] . Thus, it may not be possible to differentiate between these two clinical situations, and both situations might take place together. Nevertheless, TTP represents the most diffi cult differential diagnosis of patients with CAPS. Renal and neurological clinical manifestations with anemia, thrombocytopenia, and the presence of schistocytes in peripheral blood smear can be found in both TTP and CAPS. However, even when the specifi city of the ADAMTS-13 activity has been long debated in the literature [ 37 ] , the presence of low levels of ADAMTS-13 activity might give the clue for the diagnosis of a TTP, while high levels of aPL should favor the diagnosis of CAPS. Heparin-induced thrombocytopenia (HIT) is a rare but sometimes severe complication of heparin treatment that occurs 4-10 days after the initiation of a therapy with heparin. The severe form (type II) is a disorder characterized by the formation of autoantibodies against the heparin-platelet factor 4 (PF4) complex that binds to platelets leading to cell aggregation and activation [ 38 ] . The history of heparin administration and the presence of PF4 antibodies may let physicians to distinguish between these clinical situations [ 22 ] . HELLP syndrome is an endothelium disease that affects small vessels of hepatic circulation. It normally takes place at the end of the pregnancy, and sometimes it has been considered an expression of CAPS. However, the small number of patients with CAPS in the obstetric period makes it diffi cult to differentiate this clinical situation from the CAPS, and probably both clinical situations might favor each other. Even when scleroderma renal crisis has been proposed as a possible differential diagnosis for patients with CAPS, the presence of classical sclerodermic cutaneous fi ndings, of classical autoantibodies or, at least, the previous history of Raynaud's phenomenon in patients with systemic sclerosis, should differentiate these situations. Nevertheless, although rarely, the development of CAPS in patients with systemic sclerosis has been reported. In these patients, the determination of aPL levels and a renal biopsy are warranted in order to establish the diagnosis. In this sense, in order to help physicians facing this diffi cult differential diagnosis, a set of diagnostic criteria for CAPS has been proposed during the 14th International Congress on Antiphospholipid Antibodies (Table 20 .1 ). These criteria take into account the diffi culty of performing biopsy in critical care settings, and thus, they do not require the biopsy for the diagnosis although it is highly recommended (Table 20. 2 ). Due to its bad prognosis, when CAPS is suspected, an aggressive treatment is justifi ed. However, there are no randomized controlled trials to guide the effi cacy of the therapies, and data is based on the reported cases and the analysis of the CAPS Registry [ 39 ] . Classically, three aspects have been claimed as the basis to treat this situation. First, the so-called supportive general measures; second, the aggressive treatment of any identifi able trigger; and, fi nally, the specifi c treatment [ 39 ] . The general measures treatment refers to supportive care. It often includes intensive care unit (ICU) admission. Sometimes, intubation is necessary but, mostly, only ICU admission and tight control are necessary. Whenever possible, classical thrombotic risk factors should be avoided, and external pneumatic compression devices might be used when immobility is a concern. When major surgery aim is not taking out necrotic tissue to control the cytokine storm, surgery procedures should be postponed. Additionally, CAPS patients may benefi t from glycemic control, stress ulcer prophylaxis, and blood pressure control [ 39 ] . Treatment of any precipitating factor is mandatory. When an infection is suspected, an adequately chosen antibiotic treatment should be started, taking into account the infection site, pharmacokinetics, and organism pharmacodynamics. At the same time, amputation and debridation of necrotic tissue might help in controlling the systemic infl ammatory response [ 39 -41 ] . 1. Evidence of involvement of 3 organs, systems, and/or tissues 2. Development of manifestations simultaneously or in less than 1 week 3. Laboratory confi rmation of the presence of aPL (LAC and/or aCL and/or anti-2GPI antibodies) in titers higher than 40 UI/l 4. Exclude other diagnosis Defi nite CAPS: All 4 criteria Probable CAPS: All 4 criteria, except for involvement of only 2 organs, system, and/or tissues All 4 criteria, except for the absence of laboratory confi rmation at least 12 weeks apart associable to the early death of a patient never tested for aPL before onset of CAPS 1, 2, and 4 1, 3, and 4 and the development of a third event in >1 week but <1 month, despite anticoagulation treatment Since no randomized controlled trials have been conducted in CAPS, the specifi c treatment of this situation is based on the information provided by the analysis of the CAPS Registry and expert opinion. However, these data permitted the establishment of recommendations and the publication of a treatment algorithm [ 42 ] . Heparin is the mainstay of treatment in CAPS patients as it inhibits clot formation and lyses existing clots [ 22 , 28 , 30 , 39 , 43 , 44 ] . Non-fractionated intravenous heparin is often chosen when the patient is in the ICU. Heparin does not only inhibit clot generation but also promotes clot fi brinolysis [ 45 ] . Additionally, heparin seems to inhibit aPL binding to their target on the cell surface [ 46 ] . Moreover, nonfractionated heparin enables throwback of its effect in case of necessity and it has an antidote. Thus, heparin is always the fi rst line of treatment for thrombosis. Later, non-fractionated heparin can be switched to low molecular weight heparin (LMWH) and fi nally to oral anticoagulation. Nevertheless, physician should try to keep patients time long enough with heparin to favor clot fi brinolysis. The combination of corticosteroids with anticoagulant therapy is the standard of care in CAPS treatment. Many similarities have been observed between the clinical manifestations of patients with CAPS and systemic infl ammatory response syndrome (SIRS). Since corticosteroids inhibit the nuclear factor (NF)-κB pathway and aPLs seem to signal NF-κB upregulation, benefi cial effects of corticosteroids treatment have been invocated. However, in severe infections and in CAPS, no strong evidence has been found supporting corticosteroid use unless patients develop adrenal insuffi ciency [ 47 , 48 ] . Until more studies analyzing the use of corticosteroids can be driven, the consensus treatment guidelines [ 22 ] should be followed [ 44 ] , although there is no clear evidence on the route, dose, and duration of this treatment. Only recently, the benefi cial effects of intravenous immunoglobulins (IVIG) in primary APS have been proved. IVIG proved to decrease aPL titers and therefore, the thrombotic risk of these patients [ 49 , 50 ] . However, IVIG and plasma exchanges were found few years ago to be a useful complementary tool for the treatment of patients with CAPS [ 51 ] . Their high economic cost and low availability may limit their use in patients with CAPS [ 52 ] . In this sense, an algorithm for the treatment of CAPS was published in order to guide physician facing these patients and establish treatment priorities [ 53 ] . This algorithm proposed to start specifi c treatment by handling independently each one of the main pathologic pathways. The authors recommended starting on anticoagulation and steroids as soon as the catastrophic situation is suspected. The former is given in order to stop the thrombophilic state and promote clot lysis and the later to downregulate the cytokine storm thought to be the one responsible for SIRS. When the patient is thought to be in a life-threatening condition, the authors suggested adding treatment with IVIG and/or plasma exchanges [ 53 ] . In case of active lupus manifestations, treatment with cyclophosphamide should be considered due to the better prognosis of these when they are treated with this drug. Cyclophosphamide is a nitrogen mustard-alkylating agent that binds to deoxyribonucleic acid in immune cells leading to cell death. Cyclophosphamide, probably, promotes the proliferation of T cells, suppression of helper Th1 activity, and enhances Th2 response (Fig. 20.1 ) [ 54 ] . Rituximab is a chimeric monoclonal antibody against CD20, a surface protein expressed on the cytoplasmic membrane of B cells. Rituximab is approved for the treatment of B-cell non-Hodgkin lymphoma and rheumatoid arthritis [ 55 ] . However, it has been used extensively for the treatment of several other autoimmune diseases [ 56 -58 ] . Although two randomized controlled trials failed to demonstrate its effectiveness in SLE, it seems to be safe for the treatment of APS. Rituximab has been proposed as a second-line therapy when facing refractory CAPS cases with a relapsing course [ 59 ] . The analysis of 18 cases from the CAPS Registry showed that 80 % of them recovered from the CAPS episode in front of the 20 % who did not [ 22 , 59 ] . Nevertheless, the small number of patients treated with rituximab makes diffi cult to propose defi nitive conclusions, but in light of these good results, rituximab has been also proposed as fi rst-line therapy. Despite aggressive treatment, mortality in patients with CAPS continues to be high [ 48 ] . It accounts for almost 30 % of cases according to the CAPS Registry data [ 3 , 48 , 60 ] . This disease normally have monophasic course, and most patients surviving a CAPS remain symptom free with anticoagulation, although some develop further APS-related events [ 61 ] . However, although rare, cases with a recurrent course have been reported. Of note, they present high prevalence of microangiopathic hemolytic anemia laboratory features [ 51 , 62 ] . The catastrophic antiphospholipid syndrome Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients On behalf of the Task Force on Catastrophic Antiphospholipid Syndrome CAPS registry Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of a series of 280 patients from the "CAPS Registry The physiopathology of the catastrophic antiphospholipid (Asherson's) syndrome: compelling evidence Endothelial activation by aPL: a potential pathogenetic mechanism for the clinical manifestations of the syndrome Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies The role of infection in the pathogenesis of catastrophic antiphospholipid syndrome-molecular mimicry? Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies In vivo distribution of β2 glycoprotein I under various pathophysiologic conditions Antiphospholipid syndrome and systemic lupus erythematosus: are they separate entities or just clinical presentations on the same scale? Pediatric catastrophic antiphospholipid syndrome: descriptive analysis of 45 patients from the "caps registry Innate immune recognition Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus A novel pathway for human endothelial cell activation by antiphospholipid/anti-β2 glycoprotein I antibodies Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction The role of TLR4 in pathophysiology of antiphospholipid syndrome-associated thrombosis and pregnancy morbidity Sepsis and thrombosis The coagulant response in sepsis Thrombotic storm: when thrombosis begets thrombosis 14th international congress on antiphospholipid antibodies task force report on catastrophic antiphospholipid syndrome The catastrophic antiphospholipid (Asherson's) syndrome and malignancies Antiphospholipid syndrome associated with infections: clinical and microbiological characteristics of 100 patients Trousseau A (1865) Phlegmasia alba dolens. Lectures on clinical medicine, delivered at the Hotel-Dieu Risk factors for venous thromboembolism The pharmacokinetics of prophylactic antibiotics in trauma Catastrophic antiphospholipid syndrome -20 years later Catastrophic antiphospholipid syndrome. Clinical and laboratory features of 50 patients Update on the catastrophic antiphospholipid syndrome and the "CAPS Registry Anticardiolipin antibodies in heparin-associated thrombocytopenia Infection and infl ammation and the coagulation system Disseminated intravascular coagulation. Findings in 346 patients Clinical and laboratory aspects of disseminated intravascular coagulation (DIC): a study of 118 cases Towards defi nition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation Disseminated intravascular coagulation in catastrophic antiphospholipid syndrome: clinical and haematological characteristics of 23 patients Evaluation of patients with microangiopathic hemolytic anemia and thrombocytopenia Clinical practice. Heparin-induced thrombocytopenia Catastrophic antiphospholipid syndrome (CAPS): update from the "CAPS Registry Catastrophic antiphospholipid syndrome: remission following leg amputation in 2 cases N2010 adultonset Still's disease complicated by hemophagocytic syndrome and catastrophic antiphospholipid syndrome resulting in four limb amputation Catastrophic antiphospholipid syndrome: proposed guidelines for diagnosis and treatment Task Force on Catastrophic Antiphospholipid Syndrome (APS) and Non-criteria APS Manifestations (II): thrombocytopenia and skin manifestations Therapeutic and prognostic considerations in catastrophic antiphospholipid syndrome New anticoagulant drugs: the Seventh ACCP Conference on antithrombotic and thrombolytic therapy Effects of unfractionated and low molecular weight heparin on antiphospholipid antibody binding in vitro Corticosteroids for septic shock Mortality in the catastrophic antiphospholipid syndrome: causes of death and prognostic factors in a series of 250 patients Prevention of thrombosis relapse in antiphospholipid syndrome patients refractory to conventional therapy using intravenous immunoglobulin Long-term treatment of antiphospholipid syndrome with intravenous immunoglobulin in addition to conventional therapy Catastrophic antiphospholipid syndrome: treatment, prognosis, and the risk of relapse Catastrophic antiphospholipid syndrome: updated diagnostic algorithms Catastrophic antiphospholipid syndrome: international consensus statement on classifi cation criteria and treatment guidelines Th2/Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis Rituximab in systemic lupus erythematosus: a systematic review of off-label use in 188 cases Rituximab for induction and maintenance therapy in granulomatosis with polyangiitis (Wegener's). Results of a single-center cohort study on 66 patients Treatment of primary Sjögren syndrome with rituximab: a randomized trial Rituximab use in the catastrophic antiphospholipid syndrome: descriptive analysis of the CAPS registry patients receiving rituximab Morbidity and mortality in the catastrophic antiphospholipid syndrome: pathophysiology, causes of death, and prognostic factors Long term outcome of catastrophic antiphospholipid syndrome survivors Relapsing catastrophic antiphospholipid syndrome potential role of microangiopathic hemolytic anemia in disease relapses