key: cord-0699483-n8y5o3v1 authors: Yan, Dan; Wei, Yan-Quan; Guo, Hui-Chen; Sun, Shi-Qi title: The application of virus-like particles as vaccines and biological vehicles date: 2015-10-10 journal: Appl Microbiol Biotechnol DOI: 10.1007/s00253-015-7000-8 sha: 801d735ab220688f4bc8480be0dcff369c03f39f doc_id: 699483 cord_uid: n8y5o3v1 Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well. Virus-like particles (VLPs) are composed of one or more structural proteins/capsid proteins of viruses by selfassembling into a particular spatial conformation. In terms of appearance, VLPs are very similar to a live virus without genetic components (Chroboczek et al. 2014; Kushnir et al. 2012) . The high density of the epitopes on its surface can be recognized and presented to the immune system by antigenpresenting cells (APC), thus stimulating humoral and cellular immunity effectively through similar pathways as the original pathogens do . At the same time, none of the viral genetic materials will participate in the formation process of VLPs, which means that there is no risk of viral replication or proliferation. Therefore, VLPs are considered as one of the safest candidate vaccines. In the 1960s, some empty viral particles without nucleic acid were identified as the capsid protein of hepatic B virus (Blumberg et al. 1965) . This finding was considered as the first recorded instance of the natural existence of VLPs. Subsequently, hepatic B virus VLPs were detected that they can induce the host immune responses to eliminate the invasion of the authentic hepatic virus (Bayer et al. 1968 ). The phenomenon is a clue to understand the relationship between the VLPs and the host immune system. With the progress in genetic engineering technology, the expression and purification of the major capsid protein of human papillomavirus (HPV) was achieved easily in vitro through experiments (Hagensee et al. 1993; Kirnbauer et al. 1992; Li et al. 1997) . Thus, models for understanding the assembly of VLPs in vitro were obtained (Brady and Consigli 1978; Li et al. 1997 ). In the 1980s, the antigenicity and immunogenicity mechanism of HBsAg VLPs were interpreted. Hence, VLP-based vaccines gained further attention from researchers (Edman et al. 1981; McAleer et al. 1984; Valenzuela et al. 1982) . The application of VLPs in vaccines is just one of its major biological applications. As a nanoscale material, VLPs have similar characteristics as nanomaterials and have the ability to mediate more biomedical functions through biotechnological methods. Therefore, VLPs, a new biological tool, have a significant function in drug delivery, genetic therapy, cellular targeting, and cancer treatment. This article will discuss the research development of VLPs in its biomedical application. The use of vaccines is one of the most effective strategies in the prevention against pathogenic infection. Since the smallpox vaccination performed by Edward Jenner in the eighteenth century, which was the birth of the concept of vaccines, various inactivated or attenuated vaccines for both human and animals have emerged. In fighting against infectious diseases, these vaccines have made significant contributions, particularly in preventing and eliminating poliovirus, measles, mumps, rubella, influenza, and hepatitis A (Amanna and Slifka 2009; Lua et al. 2014; Plotkin 2005) . However, several deficiencies still exist in the use of inactivated and attenuated vaccines. For example, there is a security issue that attenuated vaccines may enhance pathogenicity by reverting to a wild-type phenotype in vaccined individuals, although effective immune responses can be induced by such vaccines (Burns et al. 2014; Esteves 1988; Fachinger et al. 2008; Horaud 1993; Sanders et al. 2015; Wang et al. 2014) . Inactivated vaccines cannot replicate in vivo after inoculation; however, acquiring full protection after a single immunization by such vaccines will be difficult (Bright et al. 2007 ). In addition, there is an urgent practical need to find a candidate vaccine that could be produced in an efficient, scalable, and inexpensive way and with a high degree of safety for some viruses that are difficult to culture in vitro (Chackerian 2007; Moon et al. 2014) . However, VLPs, mimicking the organization and conformation of authentic native viruses but lacking the viral genome, have been used as immunogenic molecules in several recombinant vaccines in the last few years and even used as a therapeutic vaccine to induce the production of specific antibodies against endogenous molecules with a preponderant role in chronic diseases (Andrade et al. 2013; Roldao et al. 2010; Speiser et al. 2010; Spohn et al. 2008) . Some VLP vaccines have been licensed and commercialized, and a large number of VLP-based vaccine candidates have also been undergoing clinical evaluation (see Table 1 ); therefore, VLPs have provided delivery systems that combine good safety profiles with strong immunogenicity and constituted a safe alternative to inactivated vaccines or attenuated vaccines. As a novel type of vaccine, VLPs offer a solution to the above problem, primarily because of its biological properties . First, VLPs have a high level of safety without concerns of biosecurity since no viral genetic components are introduced during its production. Second, VLPs present conformational epitopes, which are arranged repeatedly on the surface. With such an arrangement, VLPs are more similar to the native virus; thus, VLPs can easily induce strong B cell responses in the absence of adjuvants (Ramqvist et al. 2007 ). Third, VLP vaccine can rapidly cope with epidemic viral diseases because of its short time required for proceeding from design to expression. For example, the development and preparation of VLP vaccines was only 8 weeks after the outbreak of influenza, but more than 5 months for attenuated vaccines (Cox 2005) . Finally, VLPs, as pathogen-associated molecular patterns (PAMPs), can be recognized by pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs) of host cells and captured by antigen-presenting cells (e.g., dendritic cells) (Fakruddin et al. 2007 ), then can be taken up and processed via the MHC class I pathway (cross-presentation) for activation of CD8 + T cells, which are essential for the clearance of intracellular pathogens such as viruses. In addition, VLPs are inherent in a suitable size, and VLPs can also be taken up by dendritic cells (DCs) as exogenous antigens for processing and presentation by MHC class II and for directly promoting DC maturation and migration, essential for stimulation of the innate immune response, whose stimulate immunity patterns are similar as in the original virus (Grgacic and Anderson 2006; Keller et al. 2010; Ponterio et al. 2013; Raghunandan 2011) (Fig. 1) . In this way, VLPs may have the advantages over the cognate live viruses for immune activation because some viruses that replicate in DCs are known to block activation and maturation of the cell through expression of particular viral proteins, while some VLPs which can resemble infectious viruses and retain their receptor binding regions are able to be taken up by antigen-presenting cells for class I presentation systems. The advance in molecular biology improved the expression system of the VLP-based vaccines. The number of reports on newly obtained VLPs has grown proportionally with the systems developed for the expression of these particles, and VLPs have been successfully used as a vaccine platform to which additional components of the virus or other virus or pathogen are attached or inserted and shown to stimulate both cellular and humoral immunity no matter how much the capsid protein the VLPs is composed of (Fig. 2) . With the advantages in safe production process, short production time, and many available expression systems, there are numerous VLP- As shown in some studies, the VLPs can be used as an ideal carrier platform for foreign B cell and/or T cell epitopes to display practically any antigen in a highly immunogenic, multivalent format in vaccination experiments. In addition that some viral epitopes are relatively conserved, the epitope genes can be obtained through genetic engineering and subcloned into the plasmid vector. Thereafter, the genes are genetically incorporated into the gene sequence of coat/capsid protein of VLPs, and then VLPs can present the exogenous antigens by fusion expression (Arora et al. 2012; Kawano et al. 2013 Kawano et al. , 2014 Tyler et al. 2014; Ye et al. 2014) . A simpler mean to produce such chimeric vaccines can be achieved by genetical insert rather than by chemical linking the peptide epitopes to the VLPs, and chimeric epitope peptides can be repeatedly arranged on the surface of VLPs, which have potential prospects (Peabody et al. 2008) . As proven by numerous experiments, the insertion of a foreign peptide sequence into the upstream or downstream of the viral structure proteins genes has little effect on the assembly of viruses such as HPV (Teunissen et al. 2013 (Tissot et al. 2010) , and canine parvovirus (CPV) (Gilbert et al. 2004) . Therefore, the insertion of foreign genes into VLPs through gene recombination technology renders VLPs suitable as an antigen presentation tool. HBc VLPs are the first reported VLPs that present exogenous antigens, and HBc protein dimers have a highly symmetrical and relatively stable icosahedral structure. Several sites to which exogenous antigen epitopes can be incorporated into the sequences of their proteins include N-and C-terminal and major immunodominant region (MIR) (Jegerlehner et al. 2002) . Except viral epitopes, VLPs can also present immune-related factors such as CD40 ligand (Zhang et al. 2010 ) and cytotoxic T cell epitopes (Tartour et al. 2002) , as well as immunestimulating factors, such as antimicrobial peptides, interferons (IFN), proinflammatory cytokines, and chemokines when recognizing PAMPs in the early period of innate immunity (Liu et al. 2000; Vacher et al. 2013) (Table 2) . As an epitope vector, VLPs can present not only foreign antigens but also self-antigens. Several VLPs have been studied as vehicles for use in immune therapy especially as therapeutic vaccine to treat chronic diseases and cancer (Ramqvist et al. 2007 ). For immunotherapeutics, which represent a new promising class of vaccines developed to treat chronic diseases (Fulurija et al. 2008; Rohn et al. 2006; Sonderegger et al. 2006; Spohn et al. 2007) , therapeutic vaccination has demonstrated that it involves active clearance of an infectious agent, infected cells, and especially tumor cells through breaking immune tolerance or bypassing the mechanisms by which Fig. 1 Virus-like particles (VLPs) mimic the overall structure of virus particles, are recognized readily by the immune system, and present viral antigens in a similar pathway to authentic conformation inducing strong immune responses the disease has evolved the immune system. It has been known that the CD8 + T lymphocytes (CTL) have played an important role in the control of tumor growth, so stimulation of specific CTL therefore represents one major goal in the design of cancer vaccines (Al- Barwani et al. 2014; Speiser et al. 2010; Zamarin and Postow 2015) . VLPs can be good antigen delivery systems that efficiently introduce exogenous molecules into the MHC class I pathway, which showed to be important mediators of antitumor immunity in various animal models because of its ability to elicit tumor-specific CTL (Jegerlehner et al. 2002) . In addition, VLPs have the potential to become therapeutic vaccine to treat chronic diseases through molecular clone technology, thus overcoming the natural tolerance of the immune system and stimulating the immune system to create specific antibodies toward self-proteins (Spohn et al. 2005) . With the identification of the pathophysiology of several chronic diseases, a few key pathogenic determinants have been deciphered. Such determinant-related proteins can be presented via VLPs by means of chemically cross-linking them to the surface of virus-like particles or genetic recombination to display. As a result, specific autoantibodies are produced, which are of considerable significance in ameliorating or even curing these chronic diseases (Tissot et al. 2010) . For example, to avoid a wide range of inflammatory reactions involving amyloid-β (Aβ)-specific B cells, Aβ 1-6 peptide (DAEFRH) and RNA phage Qβ-VLPs (VLPs) are covalently linked when treating Alzheimer's disease (AD) with VLP vaccines causing the production of antibodies specific to Aβ. The aforementioned strategies for the design of Aβ vaccine have been the subject of clinical trials (Chackerian et al. 2006; Wiessner et al. 2011 ). Other vaccines have been designed through similar methods, such as NGFQβ-VLPs, which are specific to nerve growth factors (NGF) for treating chronic pain (Rohn et al. 2011) ; bacteriophage Qβ-C-TNF 4-23 VLPs, which are specific to TNF-α for rheumatoid arthritis (e)The triple-layered VLPs assembled by multiple proteins (e.g., bluetongue virus (Stewart et al. 2013 ) and rotavirus VLPs (Parez et al. 2006) ). For enveloped VLPs: (f) single-layered VLPs consisted of one protein (e.g., influenza virus ectodomain of matrix protein 2 (M2e) VLPs ); (g) Single-layered VLPs consisted of two protein (e.g., hantaviruses VLPs (Acuna et al. 2013) ); (h) Two-layered VLPs consisted of two protein (e.g., hepatitis C VLPs (Bellier and Klatzmann 2013)), and (i) Two-layered VLPs consisted of multiple proteins (e.g., SARS coronavirus VLPs (Ho et al. 2004 )) (Spohn et al. 2007) ; and Qβ-EC1 VLPs specific to CCR5 for preventing HIV infection (Hunter et al. 2009 ). Another design strategy for the development of chimeric VLP vaccines is the production of corresponding antibodies by stimulation from immunity-related antigens present on the surface of VLPs. This is achieved by inserting pathogen-related gene expression proteins into the epitopes of particular viral structure proteins (Ogasawara et al. 2006; Pumpens and Grens 2001; Yao et al. 2004) . For example, Cubas et al. insert surface glycoprotein-Trop2 expressing excessively on the surface of tumor cells into the SIV gag gene, which produced a chimeric vaccine to suppress the growth of tumor, because immunization with chimeric Trop2 VLPs can break tolerance to this self-protein and generate a specific cellular and humoral immune response significantly increasing the population of CD4 + and CD8 + T cells as well as natural killer (NK) and natural killer T cells (NKT) inside the tumor tissue, and these effects translated into a significant reduction in tumor growth (Cubas et al. 2011) . Schiller et al. inserted an extracellular loop zone of chemokine receptor CCR5 of mice into bovine papillomavirus L1 capsid protein to produce autoantibodies to block CCR5. This step prevented HIV from entering cells and proliferation in cells (Chackerian et al. 1999 ). This approach is also employed to block B cells' tolerance to autoantigens for the treatment of some chronic diseases (e.g., rheumatoid arthritis, osteoporosis, experimental autoimmune encephalitis, systemic lupus erythematosus, myocarditis, atherosclerosis, hypertension, Alzheimer's disease, and obesity) by inducing therapeutically effective neutralizing autoreactive autoantibodies and is recognized as a potential treatment option for chronic diseases . Chronic diseases are primarily caused by multiple pathogenic factors which make them difficult to cure; nevertheless, these therapeutic vaccines based on VLPs can produce antibodies aiming at autoantigens such as amyloid-β (Zamora et al. 2006) , angiotensin II (Ang II) (Tissot et al. 2008) , nerve growth factor (Rohn et al. 2011) , allergens (Jegerlehner et al. 2002) , and ghrelin (Andrade et al. 2013) , which can help reduce the risk or cure certain diseases that had been at different stages of clinical trials (Jennings and Bachmann 2009; Roldao et al. 2010 ). Ideal biological vectors should have the following biological characteristics: biocompatibility, solubility, and uptake efficiency, with targeted delivery and high drug loading. As a nanoscale material, VLPs have high potential in drug delivery (Boisgérault et al. 2002; Schott et al. 2011) (Table 3) . VLPs fit the aforementioned demands in a certain degree among plenty of studies. First, VLPs are easy to be produced in large-scale quantities using the existing expression systems either as enveloped or nonenveloped VLPs (Fig. 3) . Second, VLPs are capable of targeting the corresponding cell transport with its surface ligands by modification on the gene level (gene insertion) (Ungaro et al. 2013) or the protein level (chemical coupling) ). Third, VLPs have good carrying capacity because of its large surface area and numerous amino acid residues on the surface (Patel and Swartz 2011). Fourth, VLPs are self-assembled by viral structure proteins under proper conditions which looks more like a protein cage with a large cavity space that can encapsulate numerous biological molecules, and as a result, expanded these molecules' applications Yang and Burkhard 2012) . Finally, VLPs have thermodynamic stability because of its dodecahedral or icosahedral structure. To sum, VLPs have emerged as multifunctional platform systems for the development of bioderived nanomaterials and have good potential for application in drug delivery, genetic therapy, and other fields (Fig. 4) . The greatest adverse effect of chemotherapy in cancer treatment is toxicities to normal tissues, which severely limits the therapeutic effects of anticancer drugs. Anticancer drugs are tethered via the amino acid residues on the surface of VLPs, particularly the icosahedral VLPs, such as HBV, bacteriophage MS2, bacteriophage Qβ, and some dodecahedral VLPs, such as adenovirus (Ad) VLPs (Zochowska et al. 2009 ) with thermodynamic stability. Through mild chemical coupling reagents, anticancer drugs such as adriamycin and aleomycin can be loaded onto the surface of the aforementioned VLPs with hydrazone bonds created by amino acid residues. In addition, anticancer drug molecules can also be encapsulated into VLPs by the reversible process of self-assembly with changes of the external conditions, such as specific ionic concentration (Huhti et al. 2013) . Moreover, VLPs have a proper particle size, good distribution, and biocompatibility as well as ligands on its surface for invasion into special cells. These ligands bind with receptors on the cell surface to help different VLPs to specifically deliver the drugs to various target cells mimicking the native virus. Common ligands are RGD motif (Marelli et al. 2013) , transferrin (Singh et al. 2006) , and so forth. At the same time, the anticancer drug bioavailability can be improved, that is, the improvement of the ability of the targeted transport and accumulation in target cells. Therefore, VLPs can be acceptable as effective biological vectors for carrying drugs. Studies on highly infective viruses and those without good cell culture systems in vitro or model animals, e.g., Ebola and Marburg viruses and human norovirus (Souza et al. 2013) , must be performed under good experimental conditions. VLPs of these virus reserve the conformation of viral capsid protein, presenting the same ligands as those in the invading natural virus, which makes VLPs suitable as surrogates for basic research of these biosafety level 4 restricted viruses . Therefore, VLPs are a good surrogate for simulating cell infection and to interact with host cells and viruses by labeling VLPs through the appropriate modification of the VLPs' surface in chemical or genetic ways (Tscherne et al. 2010) . So far, significant progress has been made in the study of characterizing virus-specific surface receptors, pathways of virus entry, and the mechanisms of virus assembly by utilizing VLPs as a surrogate. The mechanism of the infectivity of HuNoV has demonstrated that amino acid residues in the P domain of the VP1 protein are responsible for the specificity of receptor binding, and this data comes from the study of surrogates-HuNoV virus-like particle (VLP) (Tan et al. 2003 (Tan et al. , 2008 Tan and Jiang 2005) . The interaction of capsid ORF2 protein of HEV with heparan sulfate proteoglycans (HSPG) has been proven by Kalia et al., and the researchers observed these results through the expression of hepatitis E virus ORF2 capsid protein in the insect cell Tn5 and the selfassembly of HEV-LP in vitro (Kalia et al. 2009 ). To observe the process of absorption, entrance, and intracellular transport of the virus, HIV-VLPs were assembled in vitro by Jouvenet et al. using green fluorescent protein (GFP) and Gag, the major structural component of HIV-1, and HIV-VLPs have a very similar morphology compared with the VLPs assembled by the Gag protein (Jouvenet et al. 2008) . The single VLPs are employed to simulate a single virus. This method avoids the interference caused by the intracellular replication of the natural virus to the infection of a single virus (Pokorski et al. 2011; Wei et al. 2011) . Through the aid of an advanced confocal microscope, Goreliket et al. observed the cellular surface morphology and fluorescent signals during the period of viral entry by a single Cy3-labeled polyoma VLP. This technique can explain viral endocytosis and establish a model (Gorelik et al. 2002) . Buonaguro et al. studied the interaction between virus and cellular receptors through HIV Pr55 gag-VLPs with the embedded HIV gp140 envelope proteins (i.e., embedded with extracellular functional regions gp120 and gp41) by double-transfected bacillus in vitro. Tscherne et al. created BlaM1 VLPs through the recombinant expression of beta-lactamase reporter protein (Bla) and influenza matrix protein-1. When the VLPs adsorbed on the target cells, Bla was dissociated from BlaM1 VLPs and entered the cells. The released Bla could then be detected by flow enzyme-linked immunosorbent assay (ELISA) or positive ELISA, but it could not be detected intracellularly in the presence of antibodies of influenza virus because Bla cannot enter the cell. Likewise, this method is employed to detect Ebola (EBOV) and Marburg (MARV) viruses. A VLP was created in vitro by inserting a GFP protein into the Nterminal of the VP2 protein of CPV. This VLP is considered as a probe that tracks the interaction between CPV and host cells. With morphological, biophysical, and antigenic properties similar to those of putative virions, VLPs represent a novel model for the study of virushost interactions and virus assembly. In the past 30 years, VLPs have been widely used in the biology field. The VLPs assembled by viral envelope glycoprotein or capsid proteins have been proven to have the ability to induce humoral and cellular immune responses in experimental mice, nonprimates, and even humans (Raghunandan 2011) . VLPs, whatever the form of prophylactic vaccine (recombinant VLP vaccine or chimeric VLP vaccine) or the form of therapeutic vaccines is, have the potential to be used as a new generation of vaccine candidates against various viral infections (Guillen et al. 2013 ). At present, virology, molecular biology, protein chemistry, inorganic chemistry, and materials science are being highly integrated in the pursuit of new materials with controlled physical properties. VLPs have shown to be amenable to both chemical and genetic modifications of their inner cavities as well as their outer surfaces. Owning to their versatile hierarchical assembly, VLPs have been providing a new approach for the targeted transportation of therapeutic drugs and other biological materials. Overall, in this article, we reviewed the development and current situation of VLPs as vaccines and carriers, thereby contributing to the understanding and discovery of new biological applications for VLPs. Fig. 4 A schematic representation of assembly VLPs derived from enveloped or nonenveloped viruses which are efficient nanocarriers for cargo delivery Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles Intrarectal immunization with rotavirus 2/6 viruslike particles induces an antirotavirus immune response localized in the intestinal mucosa and protects against rotavirus infection in mice Antigen delivery by virus-like particles for immunotherapeutic vaccination Wanted, dead or alive: new viral vaccines Immunization against active ghrelin using virus-like particles for obesity treatment Structure-based design and experimental engineering of a plant virus nanoparticle for the presentation of immunogenic epitopes and as a drug carrier Chimeric hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2 Reconstituted plant viral capsids can release genes to mammalian cells Particles associated with Australia antigen in the sera of patients with leukaemia, Down's syndrome and hepatitis Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris Virus-like particle-based vaccines against hepatitis C virus infection A Bnew^antigen in leukemia sera Virus-like particles: a new family of delivery systems Chromatographic separation of the polyoma virus proteins and renaturation of the isolated VP1 major capsid protein A novel system for efficient gene transfer into primary human hepatocytes via cell-permeable hepatitis B virus-like particle Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle Assembly of hybrid bacteriophage Qbeta virus-like particles The optimized capsid gene of porcine circovirus type 2 expressed in yeast forms virus-like particles and elicits antibody responses in mice fed with recombinant yeast extracts Chemokine receptor interactions with virus-like particles Vaccine-derived polioviruses Virus-like particles: flexible platforms for vaccine development Induction of autoantibodies to mouse CCR5 with recombinant papillomavirus particles Virus and viruslike particle-based immunogens for Alzheimer's disease induce antibody responses against amyloid-beta without concomitant T cell responses Generation of a parvovirus B19 vaccine candidate Individual rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cells Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: immunogenicity and protective efficacy in swine Immunogenicity of virus-like particles containing modified goose parvovirus VP2 protein Chimeric virus-like particles for the delivery of an inserted conserved influenza A-specific CTL epitope The preparation of porcine circovirus type 2 (PCV2) virus-like particles using a recombinant pseudorabies virus and its application to vaccine development Enzyme-linked immunosorbent assays using novel Japanese encephalitis virus antigen improve the accuracy of clinical diagnosis of flavivirus infections In vitro and in vivo targeted delivery of IL-10 interfering RNA by JC virus-like particles Virus-like particles as vaccine Expression, purification and characterization of enterovirus-71 virus-like particles Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge Expression and characterization of human group C rotavirus virus-like particles in insect cells A vaccine against nicotine for smoking cessation: a randomized controlled trial Rotavirus-like particles: a novel nanocarrier for the gut Cell-based protein vaccines for influenza Chimeric Trop2 viruslike particles: a potential immunotherapeutic approach against pancreatic cancer Display of Neospora caninum surface protein related sequence 2 on Rous sarcoma virus-derived gag protein virus-like particles Assembly of feline caliciviruslike particle and its immunogenicity Multiepitope peptide-loaded virus-like particles as a vaccine against hepatitis B virus-related hepatocellular carcinoma Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice Synthesis of hepatitis B surface and core antigens in E. coli Safety of oral poliomyelitis vaccine: results of a WHO enquiry The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex Noninfectious papilloma virus-like particles inhibit HIV-1 replication: implications for immune control of HIV-1 infection by IL-27 Porcine circovirus type 2 (PCV2) vaccination of conventional pigs prevents viremia against PCV2 isolates of different genotypes and geographic origins Yeast-expressed bacteriophage-like particles for the packaging of nanomaterials Vaccination against GIP for the treatment of obesity A prime-boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques Assembly of fluorescent chimeric virus-like particles of canine parvovirus in insect cells Molecular cloning and expression of major structural protein VP1 of the human polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: application to single virus-like particle entry into a cell Virus-like particles: passport to immune recognition Recombinant VP60 in the form of virion-like particles as a potential vaccine against rabbit hemorrhagic disease virus Virus-like particles as nanovaccine candidates Foot-andmouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle Efficient production of Rift Valley fever virus-like particles: the antiviral protein MxA can inhibit primary transcription of bunyaviruses Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge Assembly of human severe acute respiratory syndrome coronavirus-like particles Ethical and safety considerations for the use in clinical trials of new attenuated poliovirus strains Characterization and immunogenicity of norovirus capsid-derived virus-like particles purified by anion exchange chromatography Induction of mucosal and systemic antibody responses against the HIV coreceptor CCR5 upon intramuscular immunization and aerosol delivery of a virus-like particle based vaccine Recombinant retrovirus-derived virus-like particle-based vaccines induce hepatitis C virus-specific cellular and neutralizing immune responses in mice Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus Chimeric hepatitis E virus-like particle as a carrier for oral-delivery A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses The coming of age of virus-like particle vaccines Immunodrugs: therapeutic VLPbased vaccines for chronic diseases Immune responses and expression of the virus-like particle antigen of the porcine encephalomyocarditis virus Immunogenicity and safety of virus-like particle of the porcine encephalomyocarditis virus in pig Imaging the biogenesis of individual HIV-1 virions in live cells Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection Induction of long-term protective immune responses by influenza H5N1 virus-like particles SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants Melanoma vaccine candidates from chimeric hepatitis B core virus-like particles carrying a tumor-associated MAGE-3 epitope Cutting edge: limited specialization of dendritic cell subsets for MHC class II-associated presentation of viral particles Production of hybrid doubleor triple-layered virus-like particles of group A and C rotaviruses using a baculovirus expression system Papillomavirus L1 major capsid protein self-assembles into viruslike particles that are highly immunogenic Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals Delivery of chimeric hepatitis B core particles into liver cells Virus-like particle vaccine protects against H3N2 canine influenza virus in dog AS04-adjuvanted virus-like particles containing multiple M2 extracellular domains of influenza virus confer improved protection Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly Imaging viral behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer Inhibition of BK virus replication in human kidney cells by BK virus large tumor antigen-specific shRNA delivered by JC virus-like particles Papillomavirus virus-like particles for the delivery of multiple cytotoxic T cell epitopes Rift Valley fever virus structural proteins: expression, characterization and assembly of recombinant proteins Recombinant dengue virus-like particles from Pichia pastoris: efficient production and immunological properties Assembly of truncated HCV core antigen into virus-like particles in Escherichia coli Bioengineering virus-like particles as vaccines Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo A viral nanoparticle with dual function as an anthrax antitoxin and vaccine Tumor targeting via integrin ligands One dose of a porcine circovirus 2 subunit vaccine induces humoral and cell-mediated immunity and protects against porcine circovirus-associated disease under field conditions Chimeric infectious bursal disease virus-like particles as potent vaccines for eradication of established HPV-16 E7-dependent tumors Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants Induction of insert-specific immune response in mice by hamster polyomavirus VP1 derived virus-like particles carrying LCMV GP33 CTL epitope Human hepatitis B vaccine from recombinant yeast Assembly and biological and immunological properties of Newcastle disease virus-like particles Recent progress in vaccination against human papillomavirus-mediated cervical cancer Quantification of rotaviruslike particles by gel permeation chromatography Recombinant virus-like particles as a carrier of B-and Tcell epitopes of hepatitis C virus (HCV) Development of foot-and-mouth disease virus (FMDV) serotype O virus-like-particles (VLPs) vaccine and evaluation of its potency Overexpression and self-assembly of virus-like particles in Nicotiana benthamiana by a single-vector DNA replicon system Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection Self-assembly, antigenicity, and immunogenicity of the rabbit haemorrhagic disease virus (Czechoslovakian strain V-351) capsid protein expressed in baculovirus Vaccination with virus-like particles protects mice from lethal infection of Rift Valley fever virus Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes Recombinant viral-like particles of parvovirus B19 as antigen carriers of anthrax protective antigen Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate Generation and analysis of infectious virus-like particles of uukuniemi virus (bunyaviridae): a useful system for studying bunyaviral packaging and budding Development of recombinant porcine parvovirus-like particles as an antigen carrier formed by the hybrid VP2 protein carrying immunoreactive epitope of porcine circovirus type 2 Rectal immunization with rotavirus virus-like particles induces systemic and mucosal humoral immune responses and protects mice against rotavirus infection Virus-like particle vaccine confers protection against a lethal NDV challenge in chickens and allows DIVA strategy Virus like particle based strategy to elicit HIV-protective antibodies to the alpha-helic regions of gp41 NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16 Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry Virus-like particle nanoreactors: programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2 Chimeric recombinant rotaviruslike particles as a vehicle for the display of heterologous epitopes Cell death induced by the herpes simplex virus-1 thymidine kinase delivered by human immunodeficiency virus-1-based virus-like particles Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras Vaccines: past, present and future Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor Pattern of activation of human antigen presenting cells by genotype GII.4 norovirus virus-like particles HBV core particles as a carrier for B cell/T cell epitopes Pandemic H1N1 influenza virus-like particles are immunogenic and provide protective immunity to pigs Virus-like particle vaccine protects against 2009 H1N1 pandemic influenza virus in mice Virus-like particles: innate immune stimulators Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis A virus-like particle-based anti-nerve growth factor vaccine reduces inflammatory hyperalgesia: potential long-term therapy for chronic pain Virus-like particles in vaccine development Hepatitis B corebased virus-like particles to present heterologous epitopes Human parvovirus B19 virus-like particles: in vitro assembly and stability Brunenders: a partially attenuated historic poliovirus type I vaccine strain An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae Viral and non-viral approaches for transient delivery of mRNA and proteins Formation of polyomavirus-like particles with different VP1 molecules that bind the urokinase plasminogen activator receptor Canine parvovirus-like particles, a novel nanomaterial for tumor targeting Chimeric derivatives of hepatitis B virus core particles carrying major epitopes of the rubella virus E1 glycoprotein Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/ Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis Expression and assembly of Norwalk virus-like particles in plants using a viral RNA silencing suppressor gene Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients Protection against osteoporosis by active immunization with TRANCE/RANKL displayed on virus-like particles A virus-like particle-based vaccine selectively targeting soluble TNF-alpha protects from arthritis without inducing reactivation of latent tuberculosis Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice Bluetongue virus serotype 8 virus-like particles protect sheep against virulent virus infection as a single or multi-serotype cocktail immunogen Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects A new RNA vaccine platform based on MS2 virus-like particles produced in Saccharomyces cerevisiae Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein Virus-like particles exhibit potential as a panfilovirus vaccine for both Ebola and Marburg viral infections Hemagglutinating virus of Japan protein is efficient for induction of CD4+ T-cell response by a hepatitis B core particle-based HIV vaccine Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket Noroviral P particle: structure, function and applications in virus-host interaction Synthetic and natural non-live vectors: rationale for their clinical development in cancer vaccine protocols Production and biomedical applications of virus-like particles derived from polyomaviruses Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study Versatile virus-like particle carrier for epitope based vaccines Generation of Merkel cell polyomavirus (MCV)-like particles and their application to detection of MCV antibodies An enzymatic virus-like particle assay for sensitive detection of virus entry The use of hybrid virus-like particles to enhance the immunogenicity of a broadly protective HPV vaccine VLPs and particle strategies for cancer vaccines Recent advances in mucosal immunization using virus-like particles Synthesis and assembly of hepatitis B virus surface antigen particles in yeast Generation and characterization of neutralizing monoclonal antibodies against baculoexpressed HPV 16 VLPs Triple layered rotavirus VLP production: kinetics of vector replication, mRNA stability and recombinant protein production Hamster polyomavirus-derived virus-like particles are able to transfer in vitro encapsidated plasmid DNA to mammalian cells Encapsulation of gold nanoparticles by simian virus 40 capsids An outbreak of type Pi vaccine-derived poliovirus in Sichuan Province, China: emergence and circulation in an under-immunized population Ebola virus-like particles protect from lethal Ebola virus infection Filovirus-like particles as vaccines and discovery tools Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines The second-generation active Abeta immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus Characterization of porcine circovirus type 2 capsid particle assembly and its application to virus-like particle vaccine development Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine Production of Japanese encephalitis viruslike particles in insect cells Encapsulation of gold nanoparticles into self-assembling protein nanoparticles Th cell-independent immune responses to chimeric hemagglutinin/simian human immunodeficiency virus-like particles vaccine Chimeric virus-like particle vaccines displaying conserved enterovirus 71 epitopes elicit protective neutralizing antibodies in mice through divergent mechanisms Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli Transcutaneous vaccination with virus-like particles Immune checkpoint modulation: rational design of combination strategies Papillomavirus-like particles are an effective platform for amyloidbeta immunization in rabbits and transgenic mice Incorporation of CD40 ligand into SHIV virus-like particles (VLP) enhances SHIV-VLPinduced dendritic cell activation and boosts immune responses against HIV Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice Selfassembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery Generation of virus-like particles consisting of the major capsid protein VP1 of goose hemorrhagic polyomavirus and their application in serological tests Adenovirus dodecahedron, as a drug delivery vector Acknowledgments This research was supported by grants from the National Science and Technology Support Program (2013BAD12B00), International Science &Technology Cooperation Program of China (2014DFA31890), and the Fundamental Research Funds for the Chinese Academy of Agricultural Sciences (2015ZL062). The authors declare that they have no competing interests.