key: cord-0720305-843g5tbm authors: Pushpanjali, P. A.; Manjunatha, J. G.; Hareesha, N.; Girish, T.; Al-Kahtani, Abdullah A.; Tighezza, Ammar Mohamed; Ataollahi, Narges title: Electrocatalytic Determination of Hydroxychloroquine Using Sodium Dodecyl Sulphate Modified Carbon Nanotube Paste Electrode date: 2022-01-20 journal: Top Catal DOI: 10.1007/s11244-022-01568-8 sha: 90c7358a31a1c084c5feac05e383756a58847073 doc_id: 720305 cord_uid: 843g5tbm Selective, sensitive, easy, and fast voltammetric techniques were developed for the analysis of Hydroxychloroquine (HCQ). These analysis were carried out at sodium dodecyl sulphate modified carbon nanotube paste electrode (SDSMCNTPE) using an aqueous 0.2 M phosphate buffer solution as supporting electrolyte. The field emission-scanning electron microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy were used for material characterization. A minute quantity of the SDS surfactant was sufficient to convey an outstanding electrocatalytic action to the electrochemical oxidation nature of HCQ. The HCQ molecule parades only electrochemical oxidation (irreversible) with the transfer of two electrons. The detection of HCQ was carried out through CV method at SDSMCNTPE and bare carbon nanotube paste electrode (BCNTPE). The corresponding analytical curve offered a decent linear nature in the considered HCQ concentration range (10–40 µM) and the detection limit was found to be 0.85 µM. The significant peak to peak split-up was observed between HCQ and interferents with a decent sensitivity and stability. The SDSMCNTPE to be an approachable electrode for the usage in the examination of HCQ independently and in the presence of paracetamol (PC) and ascorbic acid (AA). Thus, they were used to determine HCQ in pharmaceutical formulations and the results that showed good agreement with comparative methods. Furthermore, a mechanism for HCQ electro-oxidation was proposed. HCQ is utmost commonly consumed as a first-line medication for auto immune based diseases in patients like systemic lupus erythematosus and rheumatoid arthritis and has increased wide media attention as a promising antiviral drug for usage versus severe acute respiratory syndrome (which causes COVID-19) [1] [2] [3] [4] [5] [6] [7] . Unfortunately, the origination of research on HCQ has preceded to misperception in the rheumatological community concerning the protection consequences of HCQ in its conventional customs. Medical examinations on COVID-19 and broadcasting courtesy have directed to communal awareness based on HCQ [7-9]. Due to the extensive usage of this medication, numerous analytical methods have been operated for the analysis of HCQ involving extraction ensued through nonaqueous titrimetric approach [10], assay-based methods, HPLC [11] , fluorescence [12] , ultraviolet spectroscopy [13], spectrophotometry [14] , and tandem mass spectrometry [15] . Nonetheless, these analytical approaches show a variety of difficulties like costly and time-consuming instrumentation, complicated sample pre-treatment processes, necessity of skilled analyst, more consumption of compounds and high detection limit. Electrochemical approaches frequently have numerous benefits over these conventional methods like, easy and lesser price instrumentation, less consumption of analyte, high detection ability and rapid investigation time [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] . Nanotechnology has become very popular in the sensor field in recent times due to the variety of profiles, dimensions 1 3 and conformations. Nowadays, carbon based nano-materials like carbon-based nanoparticles, carbon nanotubes, carbon nano-composites, carbon dots and carbon nano-wires are too significant in various fields like sensors, supercapacitors, pharmaceutical and biological samples analysis and so on. In that, carbon nanotubes show very important applications such as larger surface area, more active sites, good electrical conductivity, high stability, and fine analyzing ability for the examination of medicinal samples and which might afford a significant and achievable platform for the electroanalysis and particularly in the formulation of electroanalytical sensor materials [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] . Corresponding to the overhead points, the application of carbon nanotubes is important to develop an electrochemical sensor with high sensitivity and the reduction of over potential based on modifying agents. In the present scrutiny, we developed the SDSMCNTPE for the analysis of HCQ in phosphate buffer solution (PBS) of pH 6.5 in presence of PC and AA molecules based on CV methodology. The high electro-catalytic capacity of SDSMCNTPE for the HCQ oxidation was verified in both real and commercial HCQ samples. A deep literature review guided that no effort has been completed on HCQ analysis at SDSMCNTPE. Thus, the purpose of this analysis was focused on the study and optimization of experimental circumstances for the HCQ detection in tablet sample by means of SDSMCNTPE as a fast, simple and sensitive tool. SDS, PC, AA and sodium salts of monobasic (NaH 2 PO 4 ) and dibasic phosphate (Na 2 HPO 4 ) were got from HiMedia chemicals. CNTs are obtained from Sisco Research Laboratory. K 4 [Fe(CN) 6 ] was bought from Sigma-Aldrich. All the used chemicals are of analytical reagent grade with 95-99.5% of purity. Distilled water was utilized during the preparation of all the chemical solutions. The required solutions of HCQ (0.1 mM), PC (1.0 mM) and AA (1.0 mM) are prepared by suspending the essential measure of corresponding solute in distilled water. CV and EIS are carried out with an electroanalytical instrument of model CHI-6038E (CH Instruments, USA). The electrochemical cell was constituted to this work attached by three electrodes, SDSMCNTPE and BCNTPE as the working, calomel electrode (Hg 2 Cl 2 saturated with KCl) as reference and a Pt wire as counter electrode. The pH meter (Equiptronics) was used for adjusting pH values. This overall analysis was accomplished at the lab temperature of 25(± 2) ℃. The BCNTPE was prepared according to the procedure described by our previous works [46, 47] . We describe a trouble-free process to get SDS surfactant immobilized CNTPE. The scheme is constructed on the accumulation of surfactant molecules on the surface of CNTPE. Initially, the electrochemical response of HCQ at SDSMCNTPE is measured. SDS was immobilized on the surface of CNTPE by surface modification method using micropipette and the electrode was rinsed with distilled water. The response of the electrochemical sensor was related to its physical morphology. Typical FE-SEM imageries of distinctive electrode materials were revealed in Fig. 1 . The field emission-scanning electron microscopy (FE-SEM) image of BCNTPE surface (Fig. 1a ) was categorized through a dense tube-like shape which are detached and erratically arranged. Although, the FE-SEM picture of SDSMCNTPE showed vastly unlike morphology associated to BCNTPE, after the SDS immobilization on BCNTPE. Here, SDS was dispersed on the exterior of the CNTPE surface with consistent formation ( Fig. 1b) , representing that the SDS was efficaciously accumulated on CNTPE and promotes the electron transfer in HCQ oxidation. The impact of boosted concentration of SDS in the range from 5.0 to 25.0 μL at CNTPE surface for the HCQ oxidation was examined by recording CVs and the obtained responses are shown in Fig. 2a . Here, the oxidation current of HCQ molecule in PBS at different concentration of SDS on CNTPE is varied due the molecular interactions among SDS and HCQ. Also, from Electrochemical impedance spectroscopy (EIS) is the significant tool for quantifying the conductance and resistance of the used working electrode materials at the interface of PBS and electrode surface. The EIS outcomes for BCNPE (a) and SDSMCNTPE (b) are explicated through the utilization of Nyquist plots shown in Fig. 3 . The EIS was accomplished for K 4 [Fe(CN) 6 ] (1.0 mM) in KCl (0.10 M) having the potential of 0.10 V. From the Nyquist plots (a, b), the BCNTPE semicircle radius was higher than SDSMCNTPE, which specified that the charge transfer resistance (R ct ) of SDSMCNTPE is lesser as compared to BCNTPE. This obtained data shows that, the conductance of SDSMCNTPE is more with more active cites and this is probably due to the strong interaction of SDS and CNTPE surface [46] . The impact of pH is the important feature to get the expectant solution pH shows superior oxidation peak current for HCQ. The solution pH impacts the oxidation nature of HCQ at SDSMCNTPE with respect to peak current and potential. The influence of solution pH was analyzed for the oxidation of HCQ in different pHs in the range from 6.0 to 8.0 on SDSMCNTPE via CV technique at 0.1 V/s scan rate. The CVs for 1.0 mM HCQ at SDSMCNTPE show the movement of oxidation peak potential towards the negative direction as the intensification of pH of PBS (Fig. 4a) . The pH vs. E pa relation parades a good linearity ( Fig. 5b) with the linear regression equation is E pa (V) = 1.2847-0.0720 pH (V/pH) (R = 0.9931). Here, the slope value (-0.070 V/pH) is nearer to the hypothetical value which describes that the oxidation nature of HCQ is proceeds over the transport of alike number of protons and electrons [48] [49] [50] . Moreover, Fig. 5b reveals that, the 6.5 pH imparts higher oxidation current of HCQ, hence this was selected as optimal pH for this study. The scan rate influence on the oxidation reaction of 0.1 mM HCQ (with 0.2 M PBS having pH of 6.5) at SDSMCNTPE was studied via CV method by varying the scan rate from 0.10 to 0.30 V/s having the potential difference from 0.5 to 1.0 V. The CVs of HCQ in Fig. 5a , the oxidation current of each CV sequence is enhanced with small alteration in the potential towards the positive way as the rise of scan rate. Figure 5b specifies the graph log oxidation current (log I pa ) vs. log scan rate (log υ) influencing a good linear agreement with the linear regression equation is log (I pa , μA) = 1.5141 + 0.8247 log (υ, V/s) (R = 0.9902). The obtained slope value suggests that, the electro-catalytic action of SDSMCNTPE for the oxidation response of HCQ was completed by the adsorption-controlled pathway [51] [52] [53] . The electrochemical oxidation response of 0.1 mM HCQ (presence and absence) in 0.20 M PBS with pH 6.5 on SDSMCNTPE and BCNTPE was evaluated by utilizing CV method at the potential interval of 0.5-1.0 V at the scan rate of 0.1 V/s. The CVs in Fig. 6 reveals that, the HCQ absence (blank) in 0.2 M PBS having pH 6.5 at SDSMC-NTPE display no electrochemical reply. Nevertheless, the CVs for HCQ at SDSMCNTPE and BCNTPE presents the electrochemical reaction with comparable oxidation peak current and potentials for HCQ. The BCNTPE discloses a very low electrochemical oxidation response for HCQ with smaller peak current compared to the SDSMCNTPE. This data explains that, the SDSMCNTPE shows higher sensitivity with enhanced electro-catalytic action for the oxidation of HCQ with quicker rate of proton and electron movement than at BCNTPE. Also, the electrochemical response of HCQ at SDSMCNTPE was observed to be enhanced by five fold compared to that noticed at BCNTPE. This could be due to the presence of higher surface area. The possible oxidation reaction mechanism of HCQ on SDSMCNTPE is shown in Fig. 6b [54]. CV was implemented for the analysis of active surface area of BCNTPE and SDSMCNTPE based on the (Fig. 7) . The redox peak response of standard analyte at BCNTPE and SDSMCNTPE is displayed in Fig. 7 , here SDSMCNTPE shows less redox potential with raised redox current as compared to BCNTPE. This outcome is due to the more active sites, decrease of overpotential and high surface area of the SDSMCNTPE. The active surface area of the operated electrochemical sensors was verified using the Randles-Sevcik equation [33, 55] , here, A is the electrochemical active surface area (cm 2 ), I p is the analyte peak current (A), D is the analyte diffusion coefficient (cm 2 /s), n is the number of electrons, υ is the scan rate (V/s) and C is the analyte concentration (M). The premeditated electro-active surface area of SDSMCNTPE and BCNTPE are obtained to be 0.044 cm 2 and 0.014 cm 2 , correspondingly. The instant examination of HCQ with PC and AA in 0.20 M PBS (pH = 6.5) at BCNTPE and SDSMCNTPE was completed through the operation of CV at 0.1 V/s scan rate (Fig. 8) . At BCNTPE, HCQ, PC and AA moieties displays feeble electrochemical action with lesser sensitive peak currents at higher potentials. Nevertheless, at SDSMCNTPE, HCQ, PC and AA parades preeminent electrochemical oxidation with greater peak currents and decreased potentials at 0.854, 0.358 and 0.0491 V, respectively. This evidence reveals that, SDSMCNTPE is highly active for the analysis of HCQ in the occurrence of PC and AA with elevated (1) I p = 2.69 × 10 5 n 3∕2 A D 1∕2 C 1∕2 electrocatalytic achievement and rapid electron transport rate than BCNTPE. The CVs at SDSMCNTPE (Fig. 9 ) attained with consecutive addition of different concentration of HCQ at the optimized conditions. The analytical curve shown in Fig. 9a , b, displayed an acceptable linear assortment ranging from 10 to 40 µM and the regression equation obtained was I pa = 1.4245×10 −5 + 0.2929 [HCQ] (M), (R = 0.9995). The detection limit and quantification limit are calculated using the formulations [56] , The premeditated detection limit and quantification limit values were obtained to be 0.85 and 28.08 µM, which are decent values as associated to some reported HCQ sensors shown in Table 1 [17, 57] . Also, the electrode sensitivity was calculated based on surface area and slope of the calibration plot and the value was found to be 6.65 M/A/cm 2 . The adaptability of SDSMCNTPE was confirmed through the standard addition scheme towards the detection of HCQ in pharmaceutical tablet sample. The HCQ tablet sample was diluted with 0.2 M PBS (pH = 6.5) and subjected to the CV method separately having various concentration on SDSMCNTPE at optimized conditions. The HCQ tablet sample at SDSMCNTPE displays a good recovery. The premeditated results of percentage recovery of HCQ in tablet are tabulated in Table 2 . The achieved results proposed that the SDSMCNTPE is a good substitute for HCQ detection in tablet sample in the occurrence of other interferents. The current effort suggests a receptive and modest SDSMCNTPE for the examination of HCQ through CV method, which shows the heightened electrode Early hydroxychloroquine but not chloroquine use reduces ICU admission in COVID-19 patients Chloroquine and hydroxychloroquine as available weapons to fight COVID-19 New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Hydroxychloroquine (plaquenil) toxicity and recommendations for screening. Eye Rounds org Ocular toxicity due to 4-aminoquinoline derivatives Ocular changes induced by longterm hydroxychloroquine (plaquenil) therapy Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y 2 O 3 nanostructures Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract Caglar Y (2020) Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell Investigation of activation energy and antibacterial activity of CuO nanorods prepared by Tilia Tomentosa (Ihlamur) leaves Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO 2 nanostructures Characterization studies of novel series of cobalt (II), nickel (II) and copper (II) complexes: DNA binding and antibacterial activity Anup P (2022) Fabrication of poly(ʟaspartic acid) layer on graphene nanoplatelets paste electrode for riboflavin sensing Electro-oxidation of formoterol fumarate on the surface of novel poly(thiazole yellow-G) layered multi-walled carbon nanotube paste electrode Fabrication of highly sensitive Bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and cyclodextrin Cyclodextrin-mediated gold nanoparticles as multisensing probe for the selective detection of hydroxychloroquine drug Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(glutamic acid) modified carbon paste electrode Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pre-treated boron-doped diamond electrode Interference free detection of dihydroxybenzene isomers at pyrogallol film coated electrode: a voltammetric method Electrochemical sensor for the determination of paracetamol at carbamazepine film coated carbon paste electrode Simultaneous electrochemical detection of azithromycin and hydroxychloroquine based on VS2 QDs embedded N, S @graphene aerogel/cCNTs 3D nanostructure Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications Poly (DL-valine) electro-polymerized carbon nanotube paste sensor for determination of antihistamine drug cetirizine Development of a new coated graphite electrode for hydroxychloroquine sulfate determination in pharmaceutical preparations and human urine The author declare no competing interests.