key: cord-0805127-hke2o9eb authors: Ashrafi, Sania; Rahman, Mamunur; Ahmed, Pollob; Alam, Safaet; Hossain, Md. Abid title: Prospective Asian plants with corroborated antiviral potentials: Position standing in recent years date: 2022-04-05 journal: Beni Suef Univ J Basic Appl Sci DOI: 10.1186/s43088-022-00218-y sha: 06420e64928e93991e753976b8ff8b48b729b83d doc_id: 805127 cord_uid: hke2o9eb Viral diseases are extremely widespread infections caused by viruses. Amongst numerous other illnesses, viral infections have challenged human existence severely. Over the history of mankind, new viruses have emerged and presented us with new tests. The range of viral infections varies from familiar infectious diseases such as the common cold, flu, and warts to severe ailments such as AIDS, Ebola, and COVID-19. The world has been racing to find an effective cure for the newly evolving viruses. Toxic effects, non-selectivity, drug resistance, and high price are the most common complications of conventional treatment procedures. Nature is a marvelous source of phytoconstituents with incredible varieties of biological activities. By tradition, medicinal plants have been utilized for the treatment of countless infectious diseases worldwide, some of which contain a broad spectrum of activities. Modern drug discovery and development techniques offer highly efficient separation techniques, inauguration of vector-based schemes where the original infectious virus is cloned to the non-infectious one for antiviral screening targets. The objective of the review was to gather available data on 20 both cultivated and native plants of Asia giving antiviral activities and provide comprehensive information on the phytochemical analysis of the plants and potential antiviral compounds isolated from these plants. Herbal medicine, also known as herbalism, is about pharmacognosy and using medicinal plants as a foundation of natural therapy [1] . The most ancient evidence of use of the medicinal plant is dated back to 5000 years ago in Nagpur that consisted of twelve recipes including ingredients as an alkaloid [2] . Nowadays, herbal products are readily available in the market. It has been estimated that around 80% of the Asian and African populations are dependent on herbal medicine in their primary approach to treatment [3] . Although use of herbal treatment may exert adverse effects sometimes, its appeal is increasing day by day [4] . Recently, natural remedies are getting more accepted because randomized clinical trials are conducted on different herbal products and research articles are being published [5] . Most herbal drugs are used to treat mild to moderate diseases, and people are likely to use herbal medicine before starting the conventional therapy while being used mostly in chronic conditions [6] [7] [8] . Emergence of viral diseases may significantly affect the morbidity, mortality, and economy of the human population. Alternative treatment approaches are available against viruses [9] . Toxicity and drug resistance are the two most important factors that limit the usage of modern antiviral drugs [10] . Information on the adverse effect of herbal medicine is limited, but generally using natural remedies to treat a disease in a known situation is considered as safe and effective [11] . Due to the assumption of fewer side effects caused by herbal medicine, it is safe to use by comparison with the conventional medicine of synthetic origin [12] . Family tradition, past overall good experiences and not being satisfied with conventional treatment options propelled people to choose herbal medicine as a treatment option [4] . Herbal drugs can be made from whole plants, parts of plants, algae, fungi, extracts, essential oils, fatty oils, juices, and processed exudates of herbal materials [13] . Available dosage forms include herbal soaps, herbal tablets, herbal capsules, herbal creams, decoctions, herbal teas, tinctures, glycerites, oxymels, and ointments [14] . Herbal drugs act against viruses in mechanistic ways as inhibition of gene replication, protein function or virus cell fusion, etc. [14] . In this review, we have discussed the phytochemical constituents of twenty medicinal plants available in Asia focusing on their biological action against viruses. This review article will support the researchers in the future to lead further research regarding medicinal plants focusing on antiviral properties to corroborate the role of herbal sources as a treatment appliance. In this review article, 20 plants, which have certain antiviral properties along with other pharmacological properties, of Asian native were studied, through different reliable databases. Databases with bibliography such as PubMed, Google Scholar, Science Direct, Springer link, MEDLINE, and Scopus were investigated strenuously, and information like general description of plants, phytochemical analysis, and antiviral activities was assembled. SciFinder databases and PubChem were used to authenticate the vital structures of the selected plant constituents. In this review, ChemDraw (version-20) software was used to draw the chemical structure of the major constituents. Mendeley desktop version 1.19.8 was used to cite and reference the information sources. (Synonym: Vachellia nilotica) Acacia nilotica is a medicinal plant which is used for the treatment of various diseases and is widely distributed throughout the tropical and sub-tropical regions. Different parts of the plant like roots, leaves, bark, gum, flowers, and pods are used for treatment of diseases in different countries [15] . The plant A. nilotica contains gallic acids, catechin, analogs of methyl gallate, quercetin, tannic acid, and various other flavonoid and phenolic acids. It also contains a significant number of polyphenols, proteins, alkaloids, saponins, terpenoids, and polypeptides (Raheel et al. 2013) . The qualitative phytochemical studies of different part of plant extract showed that, the bark contains terpenoids, alkaloids, tannins, sterols, saponins, and glycosides; leaves contain tannins, sterols, alkaloids, cardiac glycosides, saponins, and flavonoids; roots contain saponins, terpenes, flavonoids, sterols, phenols, tannins, alkaloids, and anthraquinones; pods contain alkaloids, tannins, carbohydrate, flavonoids, saponins, and sterol; flowers showed occurrence of phenolic compound [15] . Methanolic extract of the plant is active against two animal viruses: Newcastle Disease and Fowl Pox Viruses [16] . The extract of the leaves of the plant showed in vitro antiviral activity against the Turnip Mosaic Virus [15, 17] . The plant possesses anti-viral potential against Peste des Petits Ruminant's Virus (PPRV). Significant in vitro inhibition of Hepatitis C virus by A. nilotica extract was also observed, and the anti-HIV property might be due to the inhibition of reverse transcriptase enzyme [16] . Achyranthes aspera is called Latjira in Hindi. It is an erect, stiff medicinal plant. The plant is available as weed in whole India, Asia, and many parts of the world such as Central America, Mexico, and Africa [18] . Phytochemicals include alkaloids, saponins, flavonoids, terpenes, quinones, lignans, polysaccharides, tannins, steroidal glycoside, proanthocyanidin, thiosulfinates, and proteins. Oleanolic acid (1) has also been isolated from the plant [19] . The plant showed strong anti-Herpes viral activities [18, 20] . Another study reveals that the anti-HSV activity of A. aspera is attributed to oleanolic acid (1) found in the plant [19] . Oleanolic acid can stop HSV at its early replication stage. Therefore, OA (1) is regarded as a possible HSV infection candidate OA (1) with the action of the anti-Herpes virus estimating increased attention and usage for future research [21] . Achyranthes bidentata is a perennial herbaceous plant that is widely distributed and grown in the tropical areas of Asia and Africa. The plant is grown abundantly particularly in China, Vietnam, and Korea [22] . The plant comprises several chemically active components including triterpenes, saponin, steroidal ketone, polysaccharides, and polypeptides. Furthermore, it includes alkaloids like morphine, strychnine, quinine, flavonoids, iridoids, organic acids, volatile oils [23] . Also, a compound named Acyranthes bidentata polysaccharide was isolated from the plant's roots which has several activities [22] . Acyranthes bidentata polysaccharide when sulfated can show activity against Porcine reproductive and RSV [22] . Acorus calamus is a popular traditional Chinese medicinal plant, and its root is historically used to treat neurodegenerative diseases, and for cholera treatment. It also possesses antimicrobial properties [24] . A. calamus is a native of central Asia, and eastern Europe is indigenous to the marshes of the mountains of India [25] . Root of Acorus calamus contains Tatanan A (2) [25] . At least one hundred eighty-five compounds in the oil of the triploid European A. calamus var. calamus, and ninety-three compounds in the oil of the tetraploid Indian A. calamus var. angustatus with f-asarone as the major constituent are reported. β-Asarone, methyleugenol, geranylacetate, cis-methylisoeugenol, shyobunone, epishyobunone, β-farnesene, and isoshyobunone, calamenene, asaronaldehyde, acorenone, calamenone, α-and γ-asarone, n-heptanic acid, numerous sesquiterpenes, calamendiol, tannins, starches, soft gums, mucin, resins, 2-allyl-5-ethoxy-4-methoxyphenol, 4-terpineol, epieudesmin, lysidine, borneol, furylethyl ketone, nonanoic acid, spathulenol, 2,2,5,5-tetramethyl-3-hexanol, bornyl acetate, retusin, (9E,12E,15E)-9,12,15-octadecatrien-1-ol, butyl butanoate, galgravin, geranyl acetate, acetic acid, camphor, isoelemicin, sakuranin, ursolic acid, dehydroabietic acid, isoeugenol methylether, acetophenone, apigenin 4' ,7-dimethyl ether, linalool, elemicin, dehydrodiisoeugenol, linolenic acid are some of the compounds found in the plant [25] . Acorus calamus shows antiviral effect without any significant cytotoxicity on Dengue Virus [26] . Alcohol extract of the rhizome showed potent antiviral activity against HSV-1 and HSV-2 below cytotoxic concentration [25] . Tatanan A (2), a compound isolated from the plant had a novel antiviral activity against Dengue Virus DENV 2 , and it inhibited the post-translation or early RNA synthesis steps. So, it could be used as an anti-Dengue Virus (DENV) lead compound as well [27] . It also showed activity against HIV-1 reverse transcriptase enzyme [28] . This plant, a flowering tree with around 98 ft high, is commonly known as Kukui, Candlenut tree, or Indian walnut. Kukui nut oil can be extracted from the part of the seed of this plant [29] . It is indigenous to Polynesia, Malaysia, and South Sea Island also occurs in Brazil [30] . Phytochemical evaluation of Aleurites moluccana exerted several types of bioactive secondary metabolites including steroids, triterpenes, coumarins, and flavonoid glycosides such as moluccanin, moretenone, acetil aleuritic acid, moretenol, α-amyrin, β-amyrin, stigmasterol, β-sitosterol-3-β-D-glucopyranoside (3), swertisin, and campesterol [31] . Swertisin and 2′′-O-rhamnosylswertisin were also reported from the leaves of A. moluccana. Another study also reported the isolation of α -amyrin, β -amyrin, stigmasterol, β -sitosterol, n-hentriacontane, and campesterol from the ethyl acetate and butanol fraction of A. moluccana [32] . A phorbol diester, 13-O-myristyl-20-O-acetyl12-deoxyphorbol, hentriacontane (hydrocarbon), 6,7-dimethoxycoumarin, 5,6,7-trimethoxycoumarin and β-sitostenone (phytosterol), 2″-Orhamnosylswertisin have also been isolated from the plant [33] . Aleurites moluccana is used to treat Herpes viral infections as conventional Hawaiian medicine [34] . Dichloromethane fraction of A. moluccana leaves and barks also showed prominent antiviral activity which validated the traditional use of this plant against viral infections [35] . Hydroalcoholic extract of the plant has shown significant antiviral activity against r Newcastle Disease Virus (NDV) and Avian Influenza Virus (AIV) H 5 N 1 in a study [36] . A. moluccana has also demonstrated significant anti-HIV action. The phytosterol, β-sitosterol-3-β-Dglucopyranoside (3), was found as the first chemically pure active component isolated from the methanol extract to exert anti-HIV action [37] . Barleria cristata is commonly known as Philippine violet. It is a commonly cultivated plant used for ornamental purposes, and it was recently established in Southeast Asia, South China, subtropical and tropical regions of India. It is also used in different ethnomedical systems for the treatment of a wide range of diseases [24] . Iridoid glycosides such as 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester and (its cis isomer as well) were discovered from the plant [38] . Ethanolic extract contains phenylethanoid (acteoside) (poliumoside) phenylethanoid glycosides [24] . The iridoid glycosides mentioned above showed potent antiviral activity against RSV attacking infants [38] . Phenylethanoid glycosides present in the plant play an important role in several pharmacological activities including antiviral activity [24] . Being commonly known as 'Bhojpatra' in India, the plant is a perennial, medium-sized tree that expands up to 20 m in height [39] and is well distributed from inner Mongolia north of China to Yunnan province in the south and over the Himalayan region of India, Afghanistan, Bhutan, and Nepal [40] . Sitosterol, betulinic acid (4), betulin (5), 3-acetyloleanolic acid, oleanolic acid, lupeol, methyl betulonate, lupenone, methyl betulate, and a new triterpenoid karachic acid have been isolated from the bark of the plant. Leucocyanidin and polymeric leucoanthocyanidins are also found in this plant [41] . In another experiment, six triterpenes namely betulinic acid, betulin, ursolic acid, lupeol, oleanolic acid and ß-amyrin have been isolated from the ethyl acetate extract of the plant [42] . The essential oil of B.utilis combines seleneol, linalool, champacol, sesquiphellandrene, geranic acid, 1,8-cineole. Fatty acid portion is composed of myristic, linoleic, palmitic and oleic acid [39] . Betulinic acid (4) isolated from the plant has been reported to act against HIV by inhibiting its replication [39, 43] . Derivatives of betulinic acid showed antiviral activity by inhibition of HIV entry [44] and HIV protease [45] . In another study, betulin (5) showed antiviral activity against HSV-1 and HSV-2 viruses [46] . B. pilosa is an erect, perennial herb, grows up to 1.5 m, widely distributed across tropical and subtropical region countries. It is commonly known as xian feng cao (all bountiful grass) in Chinese tradition. Traditionally, leaves and whole plant parts were used to treat influenza in China, Middle America, and Uganda [47] . The plant is a reservoir of countless important secondary metabolites like aliphatic natural compounds, saturated unbranched alcohols, saturated unbranched carboxylic acids, unbranched aliphatic carboxylic acid esters, acetylenic hydrocarbons, simple aromatic hydrocarbons, phenylpropanoids, porphyrins, carbohydrates, sterols, terpenoids, phenylpropanoids, flavonoids, and polyacetylenes [47, 48] . A new compound, 7-phenyl-hepta-4,6-diyne-2-ol, and 20 known compounds-1-phenyl-hept-5t-enel,3-diyne, 1-phenyl-hepta-1,3,5-triyne, 2-phenyl-ethanol, linolenic acid, methyl linolenate, ethyl linolenate, 2-butoxyethyl linolenate, α-tocopherylchinon, linoleic acid, 2-butoxyethyl linoleate, 2-butoxyethyl oleate, 2-butoxy ethanol, ethyl linoleate, phytol, phytenic acid, squalene, ß-sitosterol, stigmasterol, 5 α-stigmasta-7-en-3ß-ol and 5 α-stigmasta-7,22-dien-3ß-ol have been isolated in a study [49] . Several flavonoids, like chalcones okanin and butein along with quercetin 3-O-glucoside, the flavones luteolin and apigenin, have been reported earlier [50] . Hot water extract of Bidens pilosa revealed significant virucidal activity by inhibiting the replication of HSV-1 and HSV-2 [51] . In another experiment, aqueous extract of the plant showed potent antiviral activity against HSV-1 and HSV-2 by inhibiting plaque formation and by blocking binding of virus to host cells and penetration of virus into cells [52] . In different studies, it has been reported that centaurein The plant is commonly known as Punarnava and is a perennial herbaceous creeping weed, grows up to 1 m, and native to India. Being a tropical plant, it is widely distributed in India, Nigeria, and other parts of the world [55, 56] . [57] . From the root, 2-glucopyranose-4-hydroxy-5-[P-hydroxyphenyl]-propionyl diphenyl methane was isolated. Many steroids, triterpenoids, proteins, alkaloids, lignins, flavonoids, lipids, carbohydrates, and glycoproteins are mostly found. Punarnavine, ursolic acid, hypoxanthine 9-L-arabinofuranoside, punarnavoside, boeravinone, and liirodendrin have been found. The total plant contains large proportion of proteins and fats. It also comprises 14 amino acids in root, out of which 7 are essential amino acids [58] (Fig. 1 ). Boerhavia diffusa have shown excellent effect in inhibiting hypersensitive and systemic hosts against potato virus X [58] . Boerhavia Diffusa root extracts were found to have a broad spectrum and strong antiviral activity [59] . The aqueous extract of air-dried roots of Boerhavia Diffusa shows broad-spectrum antiviral activity against four viruses-Tobacco Mosaic Virus (TMV), Sunnhemp Rosette Virus (SRV), Gomphrena Mosaic Virus (GMV), and Tobacco RingSpot Virus (TRSV) [60] . In another experiment, glycoprotein from Boerhavia diffusa roots acts precisely on virus (es), when it was combined with virus inoculum and incubated in vitro [61, 62] . Biorobin ( liriodendrin (22) , and trans-caftaric acid (23) present in the plant showed effective docking and subsequent inhibition of SARS-CoV-2 protease in a computer aided docking study [63] . The plant is commonly known as Simul and is a huge deciduous tree with big trunk and spreading crown. Being native to India, it is widely distributed in Pakistan, Vietnam, and China [64, 65] . All portions of the plant possess β-sitosterol and its glucosides. Lupeol, hentriacontanol, hydroxycadalene, hentriacontane have been found in flowers, bark, seed, and rootbark. The seed oil produces myristic, arachidic, linoleic, oleic, and palmitic acids. Seeds possess carotenes, ethylgallate, n-hexacosanol, and tocopherols; the gum has gallic and tannic acids, yielding D-galactose, D-galacturonic acid, L-arbinose, and D-galactopyranose. Fresher roots contain more sugars (galactose and arabinose) and peptic bodies than the mature ones. Alkaloids, flavonoids, glycosides, proteins, amino acids, and coumarins have been isolated from alcoholic and water extracts of flowers of B.ceiba [66] and have been reported to contain the β-D glucoside of β-sitosterol, hentriacontane, free β-sitosterol, hentriacontanol, kaempferol, bits of an essential oil, and quercetin. Shamimin, a newly found flavanol, has been isolated from the ethanolic extract of the plant. 2-hexyl-7, 8-dimethyl-1, 4-naphthaquinone, named ceibanaphthaquinone and lup-20 (29) en-3b-ol, named BC-1 have also been identified from the stem bark [67] Eleven compounds were isolated and identified as squalene, taraxerone, taraxeryl acetate, beta-sitosterol palmitate, 4-methyl stigmast-7-en-3-ol, taraxerol, 6-O-palmitoylsitosteryl-D-glucoside, 1H-indole-3-carboxylic acid, 12beta-hydroxyl-pregnane-4, 16-diene-3, 20-dione, loliolide and 5-(hydroxymethyl) furfural from the plant [68] . Aqueous-methanolic extract of the plant showed anti-HSV activity in a study [69] . A new lignan bombasinol A along with 4-(4-(3,5-dimethoxyphenyl) hexahydrofuro [3,4-c] furan-1-yl)-2-methoxy-phenol, (+)-pinoresinol (24), 5,6-dihydroxymatairesinol, and matairesinol (25) showed anti-Hepatitis B virus by giving showed repressive activity against HepG2 cell lines [70] . It is also known as hemp and is an annual herb. Being indigenous to Central Asia, the plant is well grown in Asia, Europe, and China [71] More than 538 compounds of different classes have been isolated from the plant till now, and the classes include terpenoids, hydrocarbons, cannabinoids, sugars, and related compounds, non-cannabinoid phenols, nitrogenous compounds, fatty acids, flavonoids, simple acids, simple ketones, amino acids, simple esters and lactones, simple aldehydes, proteins, glycoproteins, steroids, enzymes, pigments, simple alcohols, vitamin (vitamin K) [71] . Cannabidiol (26) and Δ9-tetrahydrocannabinol (27) isolated from the plant showed more potency against SARS-CoV-2 virus compared to the reference drugs lopinavir, chloroquine, and remdesivir [73] . Dihydro-resveratrol (28), a metabolite of trans-resveratrol, isolated from Cannabis has antiviral activity [74] . Terpenes like limonene (29) and ocimene (30) which have been found from the plant have also been reported to reveal antiviral activity [75] . A 2020 study confirmed that a small antiviral flavonoid molecule, caflanone (31) has selective action against the human coronavirus hCov-OC43 (COVID-19) disease [76] . Cassia fistula is a medium-sized deciduous plant, grows up to 24 m in height, and being native to India, the plant is well distributed all over Bangladesh, Pakistan, and West-China [77] . Numerous secondary metabolites have been isolated from the plant till now, among which the most important classes are glycosides, proanthocyanidins, flavonoids, essential oils, polyphenols, and terpenoids [78] . Sennosides A & B, anthraquinone glycosides, rhein and its glucoside, aloin, formic acid, barbaloin, butyric acid and their ethyl esters and oxalic acid, presence of pectin and tannin are also reported to be isolated from pulp of the pod. Seeds contain free amino acids and galactomannan free sugars, flowers contain kaempferol, ceryl alcohol, rhein, and a bi-anthraquinone glycoside, fistulin. Leaves produce free rhein, its glycosides-sennosides Aqueous hot extract of pods of Cassia fistula showed dose-dependent antiviral activity against Infectious Bovine Rhinotracheitis (IBR) virus which is a component of Herpes virus group [80] . In another study, plant extract substantially stimulated IFIT 1 antiviral protein expression indicating anthraquinones as prospective agonistic compounds for inducing the innate immune system to cure viral infections [81] . Two new flavonoids, fistula flavonoids B and C isolated from the bark and stem of the plant showed high and 3' ,7-dihydroxy-2' ,4' ,5' ,8-tetramethoxyisoflavan (32), (3S)-7-hydroxy-2′3' , 4' ,5' ,8-pentamethoxyisoflavan (33), morusyunnansins F (34), (2S)-2' ,4' -dihydroxy-7-methoxy-8-prenylflavan (35) showed moderate anti-TMV activity in a study [82] . This is an unarmed woody climbing shrub. Being native to India, the plant is widely distributed in Taiwan, Australia, China, Indonesia, Laos, Malaysia, Cambodia, Myanmar, Sri-Lanka, Thailand, Nepal, Vietnam, and many of the Pacific islands [83] . Malkanguniol, celapanine, malkangunin, celapanigin, sesquiterpene polyol ester, celastrine, celapagin, dihydroagarofuran sesquiterpenoids, paniculatine, celastrol, zeylasterone, zeylasteral, acetic acid, pristimerin, tetracasanol, benzoic acid, oleic, palmitic, linoleic, linolenic, stearic, crude lignoceric acid, and sterol have been isolated from the plant so far [83] . Paraffinic hydrocarbons, β-amyrin, β-sitosterol, and a pentacyclic triterpene diol paniculatadiol were isolated from the non-saponifiable fraction of the CP seed oil. The triterpene diol was assigned structure as olean-12-ene-3β, 29 diol. A new sesquiterpene polyol ester characterized as 1α, 6β, 8βtriacetoxy-9β-benzoyloxydihydro-beta-agarofuran, with the three known compounds: angulatueoid C, 1α, 6β, 8α-triacetoxy-9αbenzoyloxydihydro-beta-agarofuran, and 1α, 6β, 8β, 14-tetraacetoxy-9α-benzoyloxydihydrobetaagarofuran, was isolated from the carbon tetrachloride (CCl 4 )-soluble fraction of Celastrus paniculatus methanolic extract of seed [84] . The plant extract has been reported to use against Bronchitis caused by influenza virus, adenovirus, coronavirus, rhinovirus, and Respiratory Syncytial Virus (RSV) [85] . Cinnamomum cassia is widely cultivated in China. Dry bark from this plant has been utilized as folk medicine and spice used in daily diet. It is used in the treatment of inflammation, tumor, pyretic, stomachic. It works against influenza virus or microorganism, and it is also used as an analgesic [86] . Several compounds were isolated from the plant such as cinnamic acids, cis-4-hydroxy-4-methhoxylexamedhide, coumarin, 4-dihydroxy-5-cyclohexenone. These compounds have been originally isolated from these genus plants [87] . Cinnamon bark extract and silver nanoparticles prepared from the plant showed promising activity against avian influenza virus subtype H 7 N 3 in Vero cells while showing no significant toxic effect on the cell [88] . Hot water extract inhibits Human RSV from attaching to airway epithalia. It also prevents internalization and syctium formation of the virus [89] . C. nutans is a perennial herb that can grow up to 1 m tall with young branches and cylindrical, striate, and glabrescent stems. The plant is widely distributed in Indonesia, Malaysia, Vietnam, Thailand, and China [90, 91] . It is also known as phaya yoin in Thailand, dandang gendis in Java, Sabah snake grass [92] . A wide spectrum of phytochemicals has been isolated from Clinacanthus nutans including flavonoids, glycosides, glycoglycerolipids, cerebrosides, and monoacylmonogalactosyl glycerol, monogalactosyl diglyceride (36). Shaftoside, β-sitosterol (38), stigmasterol (39) and lupeol (40) are a few of notable phytocompounds which have been isolated from hexane fraction of the leaves of C. nutans [93] . Also, cycloclinacoside A, cycloclinacoside A 2 , clinacoside A, clinacoside B, clinacoside C, triacetylcycloclinacoside A 2 were isolated from stem and leaves extract along with some well-known C-glycosyl flavones such as isomollupentin 7-O-b-glucopyranoside, vitexin, isovitexin, orientin, schaftoside, and isoorientin [94] . Similarly, 13-hydroxy-(13-S)-phaeophytin b, pupurin-18-phytyl ester, and phaeophorbide-a have been isolated from hexane and chloroform soluble fraction [95] . In another experiment, clinamides A, clinamides B, clinamides C, and 2-cis-entadamide A, sulfur containing compounds along with entadamide A, entadamide C, and trans-3methylsulfinyl-2-propenol have been isolated from aerial parts ethanolic extract of the species [96] . 80% ethanol extract of C. nutans also found effective against dengue virus [96] . According to [97] , ethanolic extract of C. nutans can also show inhibitory action against Yellow Head Rhabdovirus (YRV) in black tiger shrimp model [97] . Ethyl acetate extract of the leaves has shown significant antiviral activities against HSV type 1 strain F [98] . C. nutans contains monogalactosyl diglyceride (36) and digalactosyl diglyceride (37) which have shown antiviral potentials against HSV-1 and HSV-2 by plaque reduction assay [99] . In another study, hexane, dichloromethane, and methanol extracts of leaves showed significant antiviral activity against HSV-1 and HSV-2. β-sitosterol (38), Stigmasterol (39), lupeol (40) isolated from the plant showed same effect probably by interfering with the virion envelope configurations or masking viral glycoproteins, which are crucial for adsorption and entry into host cell [90] . A topical formulation of C. nutans extract was prepared, and its effect on 51 patients with Varicella-Zoster virus (VZV) infection examined through a randomized, placebo-controlled trial. The result was promising without showing any side effects [90] . A cream made of extracts of the plant faced some successful clinical trials in the treatment of Herpes Genitalis and Herpes Zoster infection [98] . (Synonym: Syzygium malaccense) Eugenia malaccensis, also known as Malay Apple or Jamaican guava, is a species of flowering tree that is indigenous to Malaysia, Indonesia, and southern Vietnam [100] 3.16.1 Phytochemistry 5,7,3′,4′,5′-Penta-hydroxy-flavonol, 5,7,3′,5′-tetrahydroxy-4′-methoxy flavonol, 3,4,5-tri-hydroxybenzoic acid, and 3-acetyl-urs-12-en-28-oic acid have been isolated from the leaves and stem bark of Eugenia malaccensis [101] . Seeds of E. malaccensis also contain a novel lactin (EmaL) (Brustein et al. 2012). Aqueous extract of Eugenia malaccensis shown antiviral potentials against HSV-1 and 2, as well as Vesicular Stomatitis virus. It was also discovered to suppress the classical complement system, implying that it has an immunological foundation for its in vivo effect. Furthermore, extracts obtained from Eugenia malaccensis bark were found to inhibit viral growth at low virus titers [34] . The plant, commonly known as Mamaki, is a large shrub or infrequently small tree with slightly hairy stems and 30 feet high. Its territory involves primarily humid and well drained soils. The plant being native in the Hawaiian Islands is being cultivated in Asia and Africa. Herbal tea can be made from the leaves of the plant [102] . In past studies, catechins, chlorogenic acid, and rutin were found in the leaves of Pipturus albidus [103] . It has also been reported that the leaves of this plant contain fat, protein, ash and fibers [102] . Aqueous extract of Pipturus albidus exhibited antiviral effects against the HSV-1 and 2 as well as the vesicular stomatitis virus. It can reduce viral growth at low viral titer [34] . According to a study conducted by [104] , P. albidus has a very broad spectrum of antiviral potentials [104] . Besides, the development of HIV was inhibited by aqueous extract of P. albidus leaves [34] . Pluchea indica is a perennial shrub plant having small branches (0.5-2 m tall). It is widely distributed in the seaside line of Thailand, Malaysia, Taiwan, Indonesia, Several phytochemicals were found from ethanol-water extract of aerial part of Pluchea indica including 3,4-dihydroxy benzaldehyde, (3″R)-pluthiophenol, (3″R)-pluthiophenol-4″-acetate, 3″-ethoxy-(3″S)pluthiophenol, 3″-ethoxy-(3″S)-pluthiophenol 4″-acetate, vanillin, 3,4-dihydroxy-5-methoxybenzaldehyde, syringicaldehyde, dibutylphthalate, ethyl caffeate, 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one, trans-coniferyl aldehyde, esculetin, threo-2,3-bis(4-hydroxy3-methoxyphenyl)-3-ethoxypropan-1-ol, erythro-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-ethoxypropan-1-ol, (+)-isolariciresinol, 9-diepoxylignane, (+)-9′-isovaleryllariciresinol, caryolane1,9β-diol, (8R,9R)-isocaryolane-8,9-diol, clovane-2α,9β-diol, valenc-1(10)-ene8,11-diol, fraxinellone, stigmasterol, methyl 9-hydroxynonanoate, triethyl citrate, 9,12,13-trihydroxyoctadeca-10(E),15(Z)-dienoic acid, pinellic acid, adenosine, etc. [106] . In another study, few more bioactive phytochemicals were reported such as dimethyl sulfoxide, 1-propanol, 2-methyl, butanal, 3-methyl, butanal,2-methyl, furan,2-ethyl, 1-butanol,2-methyl, hexanal, 3-hexen-1-ol (z), 1-hexenol, santolina triene, bicyclo[3.1.0]hex-2-ene, 2-methyl, 1 s-alpha-pinene, 3-cyclohexen-1-ol,4 methyl-1-(1methylethyl), benzaldehyde, 1-octen-3-ol, bicyclo [ dimethyl-(z), 3,6-octadien-1-ol,3,7-dimethyl-(z), 2,6-octadenal,3,7 dimethyl,(z), 2,6-octadien-1-ol,3,7-dimethyl-(e), 2,6-octadienal,3,7dimethyl-(e), naphthalene, etc., were obtained from leaves of Pluchea indica [107] . Aqueous extract of the leaves of Pluchea indica was revealed to have therapeutic properties for antiviral efficacy against HIV-1 [34, 108] . This plant, an evergreen tree, is commonly known as white sandalwood or Indian sandalwood, and is an evergreen tree usually growing up to 20 m reaching with a thickness of 2.4 m with slender wilting twigs. The plant is well distributed in India, China, Sri Lanka, Indonesia, Malaysia, the Philippines, and Northern Australia [109] . Three new neolignanes and benzoic acid derivatives were found from the Santalum album after purification by the chromatographic technique of the ethyl acetate-soluble portion of the methanolic extract. Essential oil from the Santalum album was derived from steam distillation which is known as sandalwood oil [110] . The plant is a precious source of volatile oils. This essential oil contains 90% sesquiterpene alcohol of which around 60% is composed of α-santalol (41) and 25% is β-santalol (42) [111] . Epi-cis-beta-santalol, alpha-trans-bergamotol, cis-betasantalol, cis-alpha-santalol, cis-nuciferol, α-bisabalol, β-curcumen and other sesquiterpens alcohols as epi β-santalol, γ-curcumen-12-ol, cis-lanceol and transfarnesol were recorded [112, 113] . Sandalwood oil of the Santalum album has anti-viral activity. Sandalwood oil can inhibit the replication of Herpes Simplex-1 (HSV-1) & Herpes Simplex-2 viruses (HSV-2), the antiviral property was found dose-dependent, and it was more effective against HSV-1 [114] . β-santalol of sandalwood oil has shown inhibitory activity against influenza A/HK (H 3 N 2 ) virus by interfering the mRNA synthesis [115] . In another study, α and β-santalol of sandalwood oil were observed to be effective against HPV (Human papillomavirus) [116] . (Synonym: Scaevola sericea) It is an evergreen shrub commonly known as beach naupaka, fan flower, beach cabbage, umbrella tree, Merambong (Malay), Naupaka Kahakai (Hawaiian), Ngahu (Tongan), Ruk ta-lay (Thai), and Magoo (Divehi). The plant is salt tolerant and well distributed in beach scrubland around the tropical Indian Ocean, the Arabian Sea, and tropical Islands of the Pacific [117] . According to previous studies, the plant contains chlorogenic acid, scaevolin, saponins, terpenoids, dimethyl acetal, cantleyoside, glycosides, lipids, alkaloids, loganin, steroids sylvestroside-III, etc. [118] . Gas liquid chromatographic analysis of the leaves of the plant S. tacadda revealed that it contains series of alkanes ranging from C 14 -C 29 , stigmastrol, cholesterol, campesterol, α-amyrin as triterpene, β-sitoserol [119] . A new compound, scataccanol in addition with 10 known compounds, including five coumarins, marmesin, ent-ammirin, xanthyletin, nodachenetin, and umbelliferone, two iridoids; loganetin and 6-hydroxy-7-methyl-1-oxo-4-carbomethoxyoc tahydrocyclopenta[c]pyran, a benzaldehyde derivative; 4-formylsyringol, a cinnamoyl ester; 2-(4-hydroxyphenyl 3-(3,4-dihydroxyphenyl-2-propenoate and a lignan; matairesinol have been isolated from the plant in a study [120] . Study found that leaves extract of Scaevola tacadda was found to be active against vesicular stomatitis, HSV-1 and HSV-2 [117, 118] . It was also found that S. tacadda has activity against Human Immunodeficiency virus (HIV) [119] . Asia has the richest flora of the earth's seven continents. The region is a substantial source of countless pharmacologically important phytochemicals among which many contain potential antiviral compounds. It is very much possible that the isolation of active constituents from these plants will lead us to the development of more effective antiviral treatment approaches, especially in this era of the emergence of new virus variants. Based on the knowledge from this review article, the regions of Asia should be explored further for discovering valuable phytoconstituents from the plants to develop effective drugs against dreadful diseases caused by viruses. Hard to Swallow Historical review of medicinal plants' usage Chemical and biological analysis of the bioactive fractions of the leaves of Scaevola taccada (Gaertn.) Roxb The importance of using scientific principles in the development of medicinal agents from plants Herbal medicine: the science of the art Use of alternative medicine by women with early-stage breast cancer The prevalence and pattern of complementary and alternative Why people use herbal medicine: Insights from a focus-group study in Germany Antiviral evaluation of herbal drugs. Qual Control Eval Herb Drugs Antiviral agents. Encycl Virol Microbes in food and health. Microbes Food Heal Is the safety of herbal medicines for kidneys under question? Herbal drugs: their collection, preservation, and preparation; evaluation, quality control, and standardization of herbal drugs Dosage forms of herbal medicinal products and their stability considerations-an overview Phytochemical and pharmacological uses of Acacia nilotica-a review Babool (Acacia nilotica) A review of ethnomedicine, phytochemical and pharmacological activities of Acacia nilotica (Linn) willd An Overview on Indigenous Knowledge of Achyranthes aspera Anti-herpes virus activities of Achyranthes aspera: an Indian ethnomedicine, and its triterpene acid Antiviral activities of oleanolic acid and its analogues A pharmacological review on Achyranthes aspera Sulfated modification can enhance antiviral activities of Achyranthes bidentata polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV) in vitro You-bin L (2011) Studies on chemical constituents and pharmaceutics activity of Achyranthes bidentata Bl Barleria cristata: perspective towards phytopharmacological aspects An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections Anti-HIV-1 reverse transcriptase activities of hexane extracts from some asian medicinal plants Non-wood forest products of the Philippines Aleurites moluccana and its main active ingredient, the flavonoid 2″-O-rhamnosylswertisin, have promising antinociceptive effects in experimental models of hypersensitivity in mice Hypolipidaemic activity of methanol extract of Aleurites moluccana Preliminary phytochemical and pharmacological studies of Aleurites moluccana leaves Edible medicinal and non-medicinal plants Antiviral activity of Hawaiian medicinal plants against human immunodeficiency Virus Type-1 (HIV-1) Aleurites moluccana (L.) Willd. leaves: mechanical antinociceptive properties of a standardized dried extract and its chemical markers. Evidence-based Evaluation of immune boosting properties and combating of multiple respiratory viral infections by fifteen Euphorbiaceae plant extracts Bioassay guided isolation of anti-HIV active compounds from the methanol extract of Aleurites moluccana New iridoids from the medicinal plant Barleria prionitis with potent activity against respiratory syncytial virus Betula utilis A Potential Herbal Medicine Betula utilis D. Don Betulaceae. Ethnobot Himalayas Phytochemical investigation, isolation and characterization of Betulin from Bark of Betula utilis Isolation, characterization and anticancer potential of cytotoxic triterpenes from Betula utilis bark Current developments in the discovery and design of new drug candidates from plant natural product leads Anti-HIV triterpene acids from Geum japonicum Pharmacological activities of natural triterpenoids and their therapeutic implications The synergistic effects of betulin with acyclovir against herpes simplex viruses Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Compilation of Secondary Metabolites from Bidens pilosa L The low polar constituents from Bidens pilosa L. var. minor (Blume) sherff Constituents of Bidens pilosa L.: Do the components found so far explain the use of this plant in traditional medicine? Anti-Herpes Simplex Virus Activity of Bidens pilosa and Houttuynia cordata Efficacy of Bidens pilosa extract against herpes simplex virus infection in vitro and in vivo. Evidence-based Bidens pilosa: Nutritional value and benefits for metabolic syndrome Chemistry and pharmacology of Bidens pilosa: an overview Investigation on the antibacterial activity of the aqueous and ethanolic extracts of the leaves of Sub-chronic Toxicity Studies of the Aqueous Extract of Boerhavia diffusa Leaves Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa linn Antiviral plant extracts Detail study on Boerhaavia diffusa plant for its medicinal importance-A Review Antiviral activity of Boerhaavia diffusa root extract and the physical properties of the virus inhibitor A possible mechanism of action for the inhibition of plant viruses by an antiviral glycoprotein isolated from Boerhaavia diffusa roots Study stimulated antivirus activity in Piper nigrum culture in vitro by Glycoprotein from Boerhavia Diffusa A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery A Pharmacognostic and pharmacological overview on Bombax ceiba Antiangiogenic activity of lupeol from Bombax ceiba Ethnomedicinal and pharmacological activities of Mochrus Bombax ceiba Linn.: pharmacognosy, ethnobotany and phyto-pharmacology Study on chemical constituents from leaf of Bombax ceiba (II) Screening of Nepalese medicinal plants for antiviral activity A new lignan with anti-HBV activity from the roots of Bombax ceiba Cannabis sativa: an ancient wild edible plant of India Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches Cannabis phenolics and their bioactivities Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species Potential of flavonoidinspired phytomedicines against COVID-19 Uses of Cassia fistula Linn as a medicinal plant Pharmacological and chemical potential of Cassia fistula La critical review Cassia fistula Linn. (Amulthus)-an important medicinal plant: a review of its traditional uses, phytochemistry and pharmacological properties Anti-viral activity of Cassia fistula against IBR virus Anthraquinone rich Cassia fistula pod extract induces IFIT1, antiviral protein Flavonoids from the bark and stems of Cassia fistula and their anti-tobacco mosaic virus activities Celastrus paniculatus, an endangered indian medicinal plant with miraculous cognitive and other therapeutic properties: an overview Phyto-pharmacology of Celastrus paniculatus: an overview A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms Antioxidant activity of Cinnamomum cassia Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H 7 N 3 influenza a virus Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry Evaluation of genetic diversity of Clinacanthus nutans (Acanthaceaea) using RAPD, ISSR and RAMP markers Tumbuhan Obat dan Khasiatnya Phytosterols isolated from Clinacanthus nutans induce immunosuppressive activity in murine cells Sulfur-containing glucosides from Clinacanthus nutans Chemical constituents of the leaves of Clinacanthus nutans Lin-dau Chemical constituents and bioactivities of Clinacanthus nutans aerial parts Protective efficacy of Clinacanthus nutans on yellow-head disease in Black Tiger Shrimp (Penaeus monodon) Clinacanthus nutans (burm. F.) Lindau: a useful medicinal plant of south-east Asia Anti-herpes simplex virus activities of monogalactosyl diglyceride and digalactosyl diglyceride from Clinacanthus nutans, a traditional Thai herbal medicine Genetic resources of Guava: importance, uses and prospects Estudo fitoquímico e avaliação das atividades moluscicida e larvicida dos extratos da casca do caule e folha de Eugenia malaccensis L. (Myrtaceae) Nutrient and mineral composition of dried mamaki leaves (Pipturus albidus) and infusions Antioxidant activity and total phenolic content of some Asian vegetables Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants Nutrition, health benefits and applications of Pluchea indica (L.) Less leaves Bioactive constituents from the aerial parts of Pluchea indica less Volatile Compounds of Pluchea indica Less and Ocimum basillicum Linn Essential Oil and Potency as Antioxidant Ethanolic extracts of Pluchea indica induce apoptosis and antiproliferation effects in human nasopharyngeal carcinoma cells Phytochemistry and pharmacology of Santalum album L.: a review Aromatic constituents from the heartwood of Santalum album L ChemInform Abstract: Total syntheses, optical rotations and fragrance properties of sandalwood constituents: (-)-(Z)-and (-)-(E)-β-santalol and their enantiomers, ent-β-Santalene Sandalwood (Santalum album): ancient tree with significant medicinal benefits Essential oil content and composition of Indian sandalwood (Santalum album) in Sri Lanka Antiviral activity of sandalwood oil against Herpes simplex viruses-1 and -2 In vitro anti-viral effect of β-santalol against influenza viral replication The effects of reduced impact logging and logging intensity on stand damage, biomass loss and tree species richness in tropical forests: a meta-analysis The goodeniaceae Meta-topolin and liquid medium enhanced in vitro regeneration in Scaevola taccada Pharmacognostical and biological exploration of Scaevola taccada (Gaertn.) roxb. grown in Egypt A new furanocoumarin from the fruits of Scaevola taccada and antifungal activity against Pythium insidiosum Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations This review work would not have been possible without the help of Dr. Mohammad Mofizur Rahman, Department of Pharmacy, Daffodil International University, Bangladesh and Toki Tazwar Islam, Department of Pharmacy, University of Dhaka, Bangladesh. We want to pay our heartfelt gratitude to them for their constant support and guidance.