key: cord-0850059-qb1mbhme authors: Fazel, Seena; Zhang, Le; Javid, Babak; Brikell, Isabell; Chang, Zheng title: Harnessing Twitter data to survey public attention and attitudes towards COVID-19 vaccines in the UK date: 2021-12-14 journal: Sci Rep DOI: 10.1038/s41598-021-02710-4 sha: ad7f5c938c411a1c39f5c74add8e08165640b1b7 doc_id: 850059 cord_uid: qb1mbhme Attitudes to COVID-19 vaccination vary considerably within and between countries. Although the contribution of socio-demographic factors to these attitudes has been studied, the role of social media and how it interacts with news about vaccine development and efficacy is uncertain. We examined around 2 million tweets from 522,893 persons in the UK from November 2020 to January 2021 to evaluate links between Twitter content about vaccines and major scientific news announcements about vaccines. The proportion of tweets with negative vaccine content varied, with reductions of 20–24% on the same day as major news announcement. However, the proportion of negative tweets reverted back to an average of around 40% within a few days. Engagement rates were higher for negative tweets. Public health messaging could consider the dynamics of Twitter-related traffic and the potential contribution of more targeted social media campaigns to address vaccine hesitancy. Public attitudes towards COVID-19 vaccines. The percentage of negative sentiment tweets varied from 20.7% to 51.1% (excluding the reference week). The percentage of negative sentiment dropped with every new announcement (e.g., 24 .4% with Phase 3 trial results from Pfizer/BioNTech, 20.9% with Phase 3 trial results from Oxford/AstraZeneca, 21.5% with UK starting its vaccine campaign), but then reverted to a higher level (36.4%) after each news announcement. Negative tweets were posted by a smaller number of unique individuals during the study period, compared to tweets presenting positive views (38 vs 45 unique authors per 100 tweets). The engagement pattern for positive and negative tweets changed over time (Fig. 2) . When the first trial results were released in November, negative tweets had higher engagement rates than positive tweets, but negative engagnment rates declined after the release of Oxford/AstraZeneca Phase 3 results (week 3). This was primarily driven by the decreasing number of likes for negative tweets (mean number of likes for negative tweets: 4.6 in week 1 and 2 vs. 3.1 in week 3-11, whereas mean number of likes for positive tweets increased: 4.5 in week 1 and 2 vs. 5.0 in week 3-11). Using Twitter data from the UK during November 2020 to January 2021, we investigated the ecological associations between vaccine-related major news announcements, and attitudes towards vaccines. This period coincided with news on the major vaccine trials being announced or published, and approvals by the UK Medicine and Health Regulations Authority (MHRA). We report two main findings. First, each major news announcement related to vaccines was associated with a large decrease in negative sentiment on the same day, dropping from around 40% to 20% of all daily tweets. www.nature.com/scientificreports/ However, this was short-lived, and the proportion of negative tweets reverted back to the background average within a few days. A similar pattern of decreasing in negative sentiment when Pfizer/BioNTech announced its phase III vaccine trial results has been found 19 . This study also found a fluctuation pattern of public sentiment during the same period but other major news announcements were not investigated. Another study analyzing UK public sentiments toward COVID-19 vaccines on Twitter and Facebook also found public sentiment was potentially associated with news on vaccine development, although their study period ended in November 2020 15 (whereas our study period started in November 2020). Second, tweets with negative sentiment towards vaccines were posted by a smaller number of unique individuals, compared to tweets presenting positive views. Negative tweets were more likely to be liked and retweeted when the trial results were initially released in November, but their popularity gradually decreased with the vaccination campaign underway. Our data are limited by not having more information on the demographic factors associated with the tweets and the algorithm, which is necessarily limited by the nature of Twitter's free text interface. In addition, we examined the absolute change in number regarding COVID vaccine-related tweets during the study period, but were not able to examine the trend relative to the total Twitter traffic, as the background volume of tweets on the platform was not available. This is consistent with previous work using social media to examine health-related content over time 20, 21 . Furthermore, we did not take bot messages into consideration when including COVID-19 related tweets. However, as we examined the trend in number of tweets and engagement of tweets by day/ week, this might not bias the results if the publishing of bot messages is non-differential by time. Finally, this investigation is based in one country, and only harvests information in English, despite many languages being spoken in the UK and possible differential attitudes across them. Our results can inform public campaigns aimed at promoting vaccine take-up. They suggest that information campaigns need to be sustained beyond major news announcements. In addition, public education could consider the dynamics of the Twitter-related traffic on this issue by spacing out news announcements and repeating news stories about the vaccination programme, beyond simply publishing vaccination numbers. One possibility is regular news releases, specifically allied to tweets and other social media posts with more scientific content, as one way to develop a more informed discourse in the public sphere. This view is supported by research on attitudes before vaccines were available in Israel, which found an overall vaccine hesitancy rate of 25% 22 , whereas Israel has subsequently achieved very high rates of vaccine take-up 23 . This suggests that attitudes to vaccination may, in a proportion of people, be malleable and permeable to public health messaging. To study social media attention and attitudes to COVID-19 vaccine news announcement, we obtained COVID-19 vaccine related tweets in the UK from November 2, 2020 to January 24, 2021 via Sprout Social-Twitter official partner platform 24 . Tweets were collected using following keywords: covid, covid19, covid-19, covid_19, coronavirus, corona virus, covid19uk, vaccine, vaccines, vaccination, vaccinate, vaxx, oxford, astrazeneca, oxford/ astrazeneca, oxford-astrazeneca, pfizer, biontech, pfizer/biontech, pfizer-biontech, moderna. Detailed search strategy is described in Appendix 1. www.nature.com/scientificreports/ We plotted the number of vaccine related tweets by day and indicated when major news were announced using RStudio Version 1.1.463. During the study period, major news releases about COVID-19 vaccine include announcements of trial results, and authorisation and distribution of COVID-19 vaccine from major manufacturers (i.e., Pfizer/BioNTech, Moderna, and Oxford/AstraZeneca) in the UK. Using a hybrid algorithm combining machine learning and rule-based approaches, each tweet was classified as expressing positive, negative, or neutral sentiment. Several steps of pre-processing including part-of-speech tagging, lemmatization, prior polarity, negations, amplifiers & other grammatical constructs were done before the machine learning model was performed. The machine learning model used by Sprout Social was built on a dataset of 50,000 tweets drawn randomly from Twitter. 10,000 tweets were used to test and tune the algorithm, none of which were used for building the algorithm. As the tweets are not specific on domains, the sentiment analysis could be performed on a wide range of domains 25 . Combining machine learning and rule-based approaches have been widely used to estimate the public sentiment 26, 27 , and such methods have been shown to improve the effectiveness of sentiment analysis 25, 27 . The daily proportion (%) of negative tweets among the COVID-19 vaccine-related tweets dataset was calculated during the study period. Engagement with COVID-19 vaccine-related tweets was measured as average number of comments, shares and likes of the original tweet. We compared the average number of engagements with negative and positive tweets and present the figures week by week (reference week: Nov 2 to Nov 8, 2020; week 1: Nov 9 to Nov 15, 2020; week 2: Nov 16 to Nov 22, 2020 … week 11: Jan 18 to Jan 24, 2021). www.nature.com/scientificreports/ A global survey of potential acceptance of a COVID-19 vaccine COVID-19 vaccine hesitancy in the UK: The Oxford Coronavirus Explanations, Attitudes, and Narratives Survey (OCEANS) II The online anti-vaccine movement in the age of COVID-19 Lack of trust and social media echo chambers predict COVID-19 vaccine hesitancy Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases Sentiment, contents, and retweets: A study of two vaccine-related twitter datasets The online competition between pro-and anti-vaccination views The covid-19 social media infodemic Coronavirus goes viral: Quantifying the COVID-19 misinformation epidemic on Twitter Social media and vaccine hesitancy Public health messaging in an era of social media Zika virus pandemic-Analysis of Facebook as a social media health information platform A new dimension of health care: Systematic review of the uses, benefits, and limitations of social media for health communication Quantifying the rise of vaccine opposition on Twitter during the COVID-19 pandemic Artificial intelligence-enabled analysis of public attitudes on Facebook and Twitter toward covid-19 vaccines in the United Kingdom and the United States: Observational study Using Twitter for sentiment analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 vaccines COVID-19 vaccine hesitancy in the month following the start of the vaccination process Tweet topics and sentiments relating to COVID-19 vaccination among Australian Twitter users: Machine learning analysis COVID-19 vaccine-related discussion on Twitter: Topic modeling and sentiment analysis Too far to care? Measuring public attention and fear for ebola using Twitter Using social media to monitor mental health discussions-Evidence from Twitter Vaccine hesitancy: the next challenge in the fight against COVID-19 Coronavirus (COVID-19) Vaccinations. Our World in Data Sentiment Analysis 101: How Sprout's Data Science Team Built a Hybrid Model Sentibench-a benchmark comparison of state-of-thepractice sentiment analysis methods Sentiment analysis: A combined approach We are grateful for the comments of Prof Helen McShane. IB is supported by the Swedish Brain Foundation. ZC is supported by the Swedish research council (2018-02213). SF is funded by the Wellcome Trust (202836/Z/16/Z). S.F. and Z.C. conceived of the study. L.Z. prepared figures and all authors contributed to interpreting the findings. Z.C., L.Z., I.B. and S.F. drafted the paper, and all authors revised it critically. Open access funding provided by Karolinska Institute. The authors declare no competing interests. The online version contains supplementary material available at https:// doi. org/ 10. 1038/ s41598-021-02710-4.Correspondence and requests for materials should be addressed to S.F. or Z.C.Reprints and permissions information is available at www.nature.com/reprints.Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.