key: cord-0871525-lnn03nqo authors: Widiawaty, Millary Agung; Lam, Kuok Choy; Dede, Moh; Asnawi, Nur Hakimah title: Spatial differentiation and determinants of COVID-19 in Indonesia date: 2022-05-23 journal: BMC Public Health DOI: 10.1186/s12889-022-13316-4 sha: 1f255cb21622f8ddff9dc9584a31d11ddfd4fb25 doc_id: 871525 cord_uid: lnn03nqo BACKGROUND: The spread of the coronavirus disease 2019 (COVID-19) has increasingly agonized daily lives worldwide. As an archipelagic country, Indonesia has various physical and social environments, which implies that each region has a different response to the pandemic. This study aims to analyze the spatial differentiation of COVID-19 in Indonesia and its interactions with socioenvironmental factors. METHODS: The socioenvironmental factors include seven variables, namely, the internet development index, literacy index, average temperature, urban index, poverty rate, population density (PD) and commuter worker (CW) rate. The multiple linear regression (MLR) and geographically weighted regression (GWR) models are used to analyze the impact of the socioenvironmental factors on COVID-19 cases. COVID-19 data is obtained from the Indonesian Ministry of Health until November 30th 2020. RESULTS: Results show that the COVID-19 cases in Indonesia are concentrated in Java, which is a densely populated area with high urbanization and industrialization. The other provinces with numerous confirmed COVID-19 cases include South Sulawesi, Bali, and North Sumatra. This study shows that the socioenvironmental factors, simultaneously, influence the increasing of confirmed COVID-19 cases in the 34 provinces of Indonesia. Spatial interactions between the variables in the GWR model are relatively better than those between the variables in the MLR model. The highest spatial tendency is observed outside Java, such as in East Nusa Tenggara, West Nusa Tenggara, and Bali. CONCLUSION: Priority for mitigation and outbreak management should be high in areas with high PD, urbanized spaces, and CW. The year 2019 ended with the outbreak of the novel coronavirus or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Wuhan, the People's Republic of China. This virus was initially called 2019-nCoV but later renamed by the World Health Organization (WHO) as SARS-CoV-2, causing the coronavirus disease and various symptoms similar to those of SARS, which previously plagued the world [1] [2] [3] . People infected by COVID-19 often potentially have associated long term symptoms, know as long COVID-19, such as fatigue, anxiety, breathlessness, dizziness, depression, sleep difficulty, palpitations among others [4, 5] . At the end of 2020, COVID-19 affected more than 80 million people worldwide and 1.8 million deaths (with a case fatality rate [CFR] of 2.2%). The spread of this disease is higher than that of the Spanish flu in the twentieth century. Currently, the spread of COVID-19 is increasing once again owing to the virus mutation SARS-CoV-2 VUI 202012/01 (Variant Under Investigation), which is highly contagious [6] . Within the global community, SARS-CoV-2 is known as the COVID-19 virus, which belongs to the family of viruses causing symptoms such as fever, cough, sore throat, headache, vomiting and others [7, 8] . The virus attacks the respiratory system of people of all ages, thereby endangering individuals with other types of diseases (comorbidities) particularly to those with cardiovascular diseases, obesity, diabetes, and hypertension [9, 10] . Existing health conditions remain the main factor aggravating COVID-19 in patients. In response, a rapid spread of COVID-19 has enforced the governments worldwide to implement a strict lockdown or movement control in their country to curb this virus spreading. Consequently, most of the world economic activities were pending and led to detrimental socioeconomic effects [11] . In contrast, the reduction of worldwide socioeconomic activities has brought somewhat positive impacts on natural environment [12, 13] . Statistically, the ASEAN countries had more than 1.5 million confirmed cases by 31 December 2020. COVID-19 in this region spread mainly in Indonesia, with more than 700 thousand confirmed cases, 600 thousand recovered cases and 22 thousand deaths. Indonesia accounts for 48.82% of the total confirmed COVID-19 cases in the ASEAN countries. In terms of the CFR, Indonesia leads with 3.0% compared with Vietnam (2.4%), Malaysia (0.42%) and Thailand (0.9%) [14] . COVID-19 has spread globally, including in Indonesia. From the onset of the increasing number of confirmed cases, the daily COVID-19 cases in Indonesia have yet to show signs of decreasing. In terms of environmental conditions for the spread of COVID-19, Indonesia's physical environment is relatively unsuitable for the virus, which is susceptible to high temperatures and ultraviolet exposure [15] . Thus, COVID-19 cases in the country should have been controlled easily, such as those in Vietnam, Malaysia and Thailand [16] . Indonesia is an archipelagic country with a tropical climate that receives sunlight nearly all year round. However, these conditions do not guarantee low numbers of COVID-19 cases. The spread of COVID-19 in Indonesia is a cause of concern and should be addressed through the implementation of appropriate policies, especially physical-social restrictions, increasing vaccination coverage, and tracing of the viral transmission. Policies in Indonesia for handling COVID-19 are lacking, as existing ones seems to be focused on distributing social subsidy [17] . To establish effective policies, stakeholders should conduct COVID-19 assessments, with physical and social environment conditions as main inputs for decision making. The government and the people must not be lulled by the success of the physical and social restrictions resulted from the implementation of emergency public activity restrictions and large-scale social restrictions programme [18] , because the virus is always mutating and can become more infectious. The physical and social restriction's policy proven to reduce the transmission rate of COVID-19, apart from being complemented by the mass vaccination programme and natural antibodies developed by the Covid-19 patients who recovered from the infections [19] . However, increased exposure to COVID-19 and the acceleration or support of its spread can be caused by not only individuals' health conditions but also areas' environmental and social factors. Environmental factors such as climate, humidity and ultraviolet radiation play a role in the spread of COVID-19 [20, 21] , a long-duration of exposure with the infected person was the most significant risk factor of the COVID-19 disease spreads [22] . In addition, people's activities can affect the spread of COVID-19. Social factors include population size and population density (PD) [23] . Apart from the physical environment, socioeconomic conditions can influence the spread of the disease. Previous research showed that socioenvironmental conditions have a strong link to high numbers of COVID-19 cases [24] . Busy and crowded places, such as markets, tourist destinations, offices, and schools, have closed temporarily, thereby resulting in risks of national economic recession and increasing unemployment, which may lead to poverty [25] . The number of confirmed cases is also closely related to PD, with densely populated urban areas causing the transmission rate to increase [26] . The community literacy level is another socioenvironmental factor affecting COVID-19 transmission. Presently, certain groups of people believe that the pandemic is part of a global conspiracy or ploy to increase health-related businesses, resulting in their refusal to follow health protocols. This refusal is potentially dangerous, especially in certain age groups, who may be infected by SARS-CoV-2 without exhibiting any symptoms, thereby acting as spreading agents to their families and others in their surroundings [27, 28] . This phenomenon is common among commuter workers (CWs) who do not comply with health protocols, such as maintaining distance, washing hands with soap, or using hand sanitizers and wearing masks [29] . Based on these facts, this study aims to analyze the spatial interactions between socioenvironmental factors and COVID-19 in Indonesia. This study used provincial regions as the analysis unit. Indonesia has 34 provinces in accordance with the current first-level administrative division (Fig. 1) . In Indonesia, the number of confirmed positive COVID-19 cases is increasing, with varying rates in the different provinces. The regional autonomy regulations in the country make each province responsible for handling COVID-19 cases through a task force, in which serious violations are the responsibility of the governor and regent/mayor, as stated in the Instruction of Minister of Home Affairs Number 01 Year 2020 [30] . Despite the poor data synchronization in the first months of the COVID-19 pandemic, emergency communication for disaster management was revamped in November 2020, which reduced data differences between the different government levels [31] . In the final COVID-19 recording for November 2020, Indonesia had 538,883 confirmed cases, including 450,518 recoveries and 16,945 deaths [32] . These statistics marked Indonesia as the country with the highest number of deaths due to COVID-19 in Asia, thereby causing the prohibition of Indonesians from entering other countries. Since the announcement of the first confirmed cases in Indonesia, the COVID-19 curve has yet to slope [33] , and the end of the first wave only came by middle of 2021. Physical and socioenvironmental conditions are known to have a relationship with the spread of diseases (endemic, epidemic or pandemic). Physical environment factors, especially temperature and humidity, can affect the transmission of viruses and other microorganisms, and numerous diseases in tropical environments, such as dengue, malaria, tuberculosis, avian influenza and so on, have changed from a pandemic or an epidemic to being endemic [34] . Migration and intensive interactions among human populations also cause the transmission of diseases, especially in developing countries in the process of enhancing the quality of their human resources through education and health. In response to this phenomenon, many countries established tropical disease research centers, and scientists developed disease spread and outbreak models to address health, economic and security crises [35] . This research used reliable secondary data from authorized and credible Indonesian government agencies, such as the COVID-19 Task Force; Indonesian Ministry of Health; Indonesian Ministry of Manpower and Transmigration; National Development Planning Agency (Bappenas); Bureau of Meteorology, Climatology and Geophysics (BMKG); and the Indonesian Statistics Agency (BPS). The data were classified as open data, which can be reused for research purposes and decision making and accessed online through the official website of the providers [36] . The socioenvironmental factors used in this study included seven independent variables, namely, the Internet development index (IDI; X 1 ), literacy index (LI; X 2 ), average temperature (AT; X 3 ), urban index (UI; X 4 ), poverty rate (PR; X 5 ), population density (PD; X 6 ) and commuter workers rate (CW; X 7 ). The socioenvironmental factor data were checked for errors, aggregated at the provincial level, and integrated in the GIS spatial database. The standardized administrative boundaries established by the National Geospatial Information Agency were used as the base map to facilitate the integration of the spatial database. The selection of the variables was based on the increasing threat of disasters and vulnerability in Indonesia owing to COVID-19. The dependent variable in this study was confirmed COVID-19 confirmed cases (Cov; Y) based on the polymerase chain reaction swab test results of SARS-COV-2 carriers in accordance with the confirmation of a government-appointed minimum biosafety level-2 laboratory [37] . Data updating on COVID-19 cases in Indonesia is conducted daily at 3:00-4:00 PM (Western Indonesian Time), which can be viewed via broadcasts on national television or the COVID-19 Task Force webpage. Disease spread models can be analyzed using mathematical models requiring scientists to understand the driving factors [38] . Multivariate models for disease spread analysis include the multiple linear regression (MLR) and geographically weighted regression (GWR) models. The MLR model can define independent variables triggering disease transmission and infection and is flexible and robust for disease spread spatial analysis [39, 40] . The MLR model has other advantages, such as its long developmental history and use in the transmission and mortality analyses of various infectious diseases, such as zika, tuberculosis, dengue, meningococcal, influenza and COVID-19 [41, 42] . Meanwhile, the GWR model is developed from regression models involving spatial variability as weights for compiling regression parameters [36] . The GWR model is used in numerous countries as an analytical tool for the spread of malaria, tuberculosis, and COVID-19. Epidemiological studies typically use both models to determine whether location has an effect on the research variables [42] [43] [44] . The MLR and GWR models have several similarities. Specifically, they both use continuous data and are bound to linear regression assumptions [45, 46] . A quantitative approach was used in this research to reveal the spatial interactions between the socioenvironmental factors and COVID-19, statistical analysis was performed using the MLR and GWR models. The GWR model has a consistent advantage in terms of parsimony, outperforms the classic regression model substantially [47, 48] and interact data from different platforms [49] . Both models require certain criteria to meet the requirements of assumptions such as linearity, normality, absence of multicollinearity, independence of observation, and heteroskedasticity [50, 51] . To obtain the assumption results, we used the Kolmogorov-Smirnov and Shapiro-Wilk test (normality), Durbin-Watson test (autocorrelation), variance inflation factor (VIF for multicollinearity) and scatter plot observations (for heteroskedasticity) [49] . The objective of tests is to guarantee that the regression model is unbiased and consistent and demonstrates estimation accuracy [52] . The advantages of the MLR and GWR models are they can be compared with each other, refer to multivariable regressions and have similar dataset testing criteria. When the assumption tests were completed, the interactions between the variables can be revealed through MLR (Eq. 1) and GWR (Eq. 2). The independent variables in the two models have a significant effect if the F-count value is greater than the F-table value, and the determination rate of the independent variables can refer to the r-squared and adjusted r-squared values with p-values less than 0.05 with 95.0% confidence level [53] . The interactions between the variables can be determined partially through the Pearson correlation test, whilst the level of significance refers to the r-value, and p-value [54] . The spatial distribution of each variable is revealed through Moran's I spatial autocorrelation [55] (Eq. 3). The significance of these statistical analyzes is divided into p-values of 0.05, 0.01, and 0.001. Especially for p-value of 0.05, the threshold is indicative because the confidence interval does not always overlap [56] . where Y is the dependent variable; a is constant; b is the slope of the line (regression coefficient); X is the independent variable; Y i is the observed value of the dependent variable (located in i); u i v i is the geographical location of i; β 0 (u i v i ) is the predictor coefficient of k, which is located in i; and dan ε i is the geographical constant. where I is the Moran's statistics value, X i is a variable of i, X j is a variable of j and W ij is the weight influencing the spatial interaction of i and j. The best model to reveal the spatial interactions refers to the lowest residual value, and the superiority of the GWR model over the MLR model can be viewed through the magnitude of the r-squared value [57] . In addition, the best model can refer to the value of deviance (Dev), degree of freedom (DoF), Dev per DoF (DDoF) and Akaike Information Criterion (AIC) as evidence of geographical weighting in accordance with the First Law of Geography or Tobler's Law, stating that 'Everything is related to everything else, but closer things are more related than distant things' [58, 59] . To obtain geographical weighting, this study used a fixed Gaussian and bisquare adaptive kernel functions of GWR model [60] . The bandwidth value was obtained using the golden section search method. Meanwhile, the spatial variability of the model was based on positive or negative Dev, DoF, DDoF and AIC values [44, 61] . Compared with the MLR model, the spatial effect was feasible in the GWR model, as it considered the spatial location of the variables. Before the results of the spatial interactions between the socioenvironmental factors and COVID-19 were discussed, the assumption tests were conducted for the MRL and GWR models to enable them to perform the appropriate statistical analysis and make determinations on the dependent variable [62] [63] [64] . The results of the normality test using the Kolmogorov-Smirnov (K-S) and Shapiro-Wilk (S-W) methods showed that all the variables had a normal distribution pattern with a p-value of > 0.05 (Table 1 and Fig. 2) , which were suitable for the research with 34 to 50 sample data [65, 66] . Meanwhile, the autocorrelation test involving the independent variables showed that all the socioenvironmental factors were free, as the Durbin-Watson value reached 2022 (k = 7, n = 34) and met the distribution threshold. In terms of multicollinearity, all the variables achieved the required VIF value of < 10.00 as shown in Table 2 . We also . 2 Histogram of independent and dependent variables estimate that multicollinearity will not interfere with the statistical model significantly because the tolerance value is more than 0.1 [51, 52] , although, Table 9 shows there are correlations between the independent variables. The fulfilment of the linear regression assumptions was followed by the heteroscedasticity test, in which the scatter plot showed even distribution points and did not form a wave pattern (homoscedasticity) (Fig. 3 ) [67] , this result is reinforced by the F-statistic of 1.06 from Glejser-test with a p-value of 0.42 > 0.05 [68, 69] . Thus, all the classical assumptions for the MLR and GWR analyses were declared fulfilled. COVID-19 has spread to many countries around the world, including tropical regions. Since it was first announced by the president of the Republic of Indonesia in 2020, COVID-19 has infected hundreds of thousands of people in the country [70] . At the end of December 2020, the number of confirmed cases in Indonesia reached more than 743,000, with COVID-19 spreading across the country. This number is expected to increase if the government and society continue to lack common awareness, especially regarding the implementation of health protocols [71] . The findings of this study reveal that the spread of COVID-19 in Indonesia can be explained by pandemic developments, socioenvironmental factors and the interplay between the socioenvironmental factors and COVID-19. The number of confirmed positive COVID-19 cases in Indonesia has exceeded 538,883. The fatality rate is 3.1%, and the number of recovered cases is 450,518, based on the 30 November 2020 records of the Indonesian Ministry of Health. However, the number of new cases continues to increase, with the high daily record exceeding the daily patient recovery rate [32, 72] . The distribution of COVID-19 cases in the country is diverse, based on the spatial distribution in each province. DKI Jakarta recorded the highest number of confirmed cases, followed by East Java, Central Java and West Java (Fig. 4) . The four provinces account for 57% of the total number of confirmed cases in the country, thereby causing health facilities (hospitals) to nearly exceed their capacity, especially as numerous health workers have become infected or died [73] . The average number of confirmed COVID-19 cases in each province has reached 15,850, whereas the range between the regions (maximum and minimum) could reach 121,012 cases. This fairly high difference in range indicates the clustered pattern of the confirmed cases in several regions. COVID-19 in Indonesia is concentrated in Java, as indicated by a z-score of 2.24. This clustering tendency shows a similar trend to deaths by SARS-CoV-2 caused either by pneumonia or the weakening of the immune system, which can aggravate the severity of comorbidities [74] . Nevertheless, several provinces outside Java Island, such as South Celebes, Bali, and North Sumatra, have high confirmed COVID-19 cases. Based on the spatial distribution of COVID-19 cases, without the existence of policies in each province implementing health protocols or limiting intraregional and interregional movements, the number of positive cases will continue to increase owing to the emergence of new clusters triggering local transmission [75] . A disease outbreak caused by a virus or other microorganisms requires ideal conditions for transmission to continue and the virus to acquire new vectors [76] . The COVID-19 pandemic resulted from interactions between physical and socioeconomic environments known as socioenvironmental factors, and the complexity of the interactions between these factors causes disease transmission characteristics to either differ or become similar in different regions [77] . The socioenvironmental factors used in this study as the main indicators of regional development are the IDI (X 1 ) and LI (X 2 ). Since the introduction of the Internet in Indonesia in the 1990s, its development has continued to improve, with residents currently enjoying 4G services on their smartphones from various cellular operators [78] . Internet access has become a necessity in education, economic transactions, entertainment, and communication. The average IDI in Indonesia is 4.70, with DKI Jakarta having the highest score (Table 3) . However, a high IDI value does not necessarily indicate a high literacy level, which is crucial during a pandemic, as the ability to understand and obtain information is necessary for the successful implementation of health protocol programs, considering Indonesia's low literacy rates [79] . The distribution of the LI value of each province shows [80] . In terms of disasters in general, COVID-19 has an impact on economically weak communities (PR; X 5 ) with residents with no savings [81] . This outcome forces such communities to ignore preventive measures, such as movement control and the limitation of interactions, owing to the residents' financial demands to sustain their primary needs. Pressure from the surrounding environment will increase, especially for people living in urban areas. The livelihood base in the manufacturing and service sectors forces residents to interact intensively with one another, thereby [82] . The results show that the UI value is centered in Java Island, where nearly all major cities developed hundreds of years ago, though efforts for the equitable distribution and development of new growth centers are currently being discussed, including the relocation of the country's capital to Kalimantan (Borneo) [83] . In addition, the manufacturing and service sectors are mostly located in urban areas, thereby entailing the daily shuttle or commute of workers (X 7 ) from surrounding suburbs or rural areas, especially when the new normal policy is perceived by industries as permission to reopen their business. Currently, the highest number of CWs is recorded in DKI Jakarta, Banten, DI Yogyakarta and West Java, which have major growth centers [84] . Workers who do not want to commute choose to settle near their workplace, thereby increasing the PD (X 6 ) of the province and the industrialbased sector [85] . Currently, Java has the highest population concentration and density in Indonesia. Faced with high PD and challenges to improve economic conditions and health, the Indonesian government took risks, which further increased the number of confirmed COVID-19 cases in the country. As a tropical country, Indonesia has limiting factors for the growth and transmission of the virus, that is, ultraviolet radiation from the sun throughout the year. Ultraviolet radiation has very high prevalence with the outdoor AT value (X 3 ) in the tropics [86] . Therefore, the temperature is assumed to be one of the controllers of COVID-19 in tropical environments, where the average temperature of every province of Indonesia can reach up to 27.62 °C. The differences in the spatial distribution and variation of the socioenvironmental factors are presented in Fig. 5 . The analysis shows that the socioenvironmental factors result in different and unequal spatial distribution characteristics, that is, either a centralized or dispersed pattern. Clustered distribution occurs significantly in the UI, PD and CW rate, whereas random distribution occurs in the IDI, LI, AT and PR (Table 4) . Although Indonesia is a tropical country with consistent average temperatures that do not exhibit high fluctuations, the spatial autocorrelation results show random characteristics in the spatial distribution of the temperature of the different provinces. The phenomenon showing the random distribution of air temperature seems reasonable owing to the local and monsoon influences on the local climate of the provinces, which are spread across islands with a large landmass and tiny islands exposed predominantly to the influence of the sea [87, 88] . The difference in the spatial distribution of the socioenvironmental factors may potentially contribute to the increase in the number of COVID-19 cases. Meanwhile, the IDI, LI and PR variables demonstrate random distribution, which indicates unbalanced national development efforts and socioeconomic threats endangering the residents of each province. The interactions between the socioenvironmental factors and COVID-19 in Indonesia are significant, with p-values of < 0.01, based on the MLR and GWR models. Based on the MLR model, the simultaneous interactions between the independent and dependent variables show an r-squared value of 0.68, which means that the socioenvironmental factors can explain 68% of the confirmed COVID-19 cases. However, when geographical locations are involved, the r-squared value of this interaction model increases to 0.70 ( Table 5 ). The GWR model shows that the COVID-19 cases are influenced by the independent variables located near one another. If some of the provinces have similar socioenvironmental characteristics, then they will have the same high number of confirmed COVID-19 cases (accumulative) as the consequence of the GWR model [89, 90] . Both models have an F-count value higher than the F-table value (7.74 > 3.98) . To determine whether spatial interactions produce an improved model, Table 6 shows the improvement in the GWR and MLR models. The suitability of the GWR model is better than that of the MLR model, and the GWR model has lower Dev, SS and DoF values and is reinforced by better mean square and − 2 log-likelihood values despite having the opposite AIC parameter. Differences in one parameter will not eliminate the advantages of a statistical model if the other parameters support the model [91, 92] . Moreover, in this case, the AIC value exhibits only a small difference of 0.65, which could occur owing to the differences in the coefficient value of each independent variable. The GWR model is selected as the best option to reveal the interactions between the socioenvironmental factors and COVID-19 in Indonesia based on the SD of the coefficient of variation of the independent variables (Table 7 and Fig. 6 ). The GWR model has a low deviation, which means that the independent variables can estimate effectively and closely to the average value [93] . Table 8 also shows that the IDI, UI and PD contribute positively to the confirmed COVID-19 cases. However, the LI, AT, PR, and CW rate of each province have opposite contributions. In Indonesia, the more developed the area in terms of the urbanised [71, 94, 95] . In addition, this interaction model indicates that AT plays a significant role in pandemic transmission, as seen in the spike in cases during the wet season, when temperatures are lower and more humid than usual [96] . COVID-19 in Indonesia has a spatial relationship with various socioenvironmental factors through the MLR and GWR models. The GWR model is better than the MLR model for explaining the spatial effects of the interactions between the independent and dependent variables, with an r-squared value of 0.70. This study shows that the IDI, LI, AT, UI, PR, PD and CW rate simultaneously influence the increasing confirmed COVID-19 cases in the 34 provinces of Indonesia. When referring to the local r-squared value of the GWR model, the highest simultaneous interactions occur in the three provinces of East Nusa Tenggara, West Nusa Tenggara and Bali. The link between socioenvironmental factors and COVID-19 should be emphasised in mitigation plans to control the transmission rate in areas with high PD, urbanized spaces, and CW, this effort will prevent health facilities from collapsing. However, the contribution of socioenvironmental factors to the pandemic requires further research to reveal other factors and improve management. Furthermore, this research has several limitations. For example, it does not examine city or regency region II levels in the context of Indonesian political-administration after the regional autonomous. Future studies should add other independent variables, such as public perceptions and attitudes, policy implementation, access to and quality of health services and the effectiveness of health communication. Finally, understanding of the spread of diseases can also be improved to save lives. The actual situation of the COVID-19 pandemic in Indonesia has a central distribution pattern. The interactions from the MLR and GWR models also produced similar results, that is, a clustered pattern ( The spatial interaction models also jointly confirm Java as the centre of the pandemic in Indonesia, followed by Bali, North Sumatra and South Celebes. If not managed wisely, the COVID-19 pandemic may become an epidemic in the country, such as malaria, dengue hemorrhagic fever and tuberculosis [97] [98] [99] . In addition to the interactions between the socioenvironmental factors and COVID-19, understanding the disease through the partial correlation between the independent variables is necessary [100] [101] [102] . Table 9 shows a very high correlation between the socioenvironmental factors, such as the IDI with the LI and UI, which indicates harmony in regional development rates, including increased access to health services. The government and other stakeholders should focus on PD, which has a high correlation with the UI and a very high correlation with the CW rate and should be controlled in the context of outbreak management. Java, as the center of economic activities and the most populated island in Indonesia, is home to megapolitans with interprovincial influence, such as Greater Jakarta, Bandung Raya, and Surabaya (Gerbang-Kertosusila), where daily migration of commuters is common in these areas [103] . Moreover, the spatial interaction model in Eqs. 4 and 5 indicates that commutation level is a potential controller, because the UI is an uncontrolled factor in the short term. (4) Y = 12.65+6.40 (X 1 )−6.89 (X 2 )−3.28 (X 3 )+1.01 (X 4 )−0.16 (X 5 )+0.46 (X 6 )−0.11 (X 7 ) (5) Y = 11.99+7.01 (X 1 )−6.99 (X 2 )−2.83 (X 3 )+0.86 (X 4 )−0.16 (X 5 )+0.46 (X 6 )−0.11 (X 7 ) The socioenvironmental factors have a distribution pattern similar to that of COVID-19, which illustrates the location suitability of SARS-CoV-2 to infect people as a viral vector [81, [104] [105] [106] . Efforts to understand the interactions simultaneously or partially can be meaningful for effective and efficient decision making in handling COVID-19 in Indonesia, because we are confronted with viral mutations that can increase the disease transmission and reduce the effectiveness of vaccines e.g. Alpha, Beta, Gamma, Gamma, and Delta variants [107] . This step could be better than simply referring to pandemic prediction models, which only consider virus transmission based on increasing rates of daily cases until the saturation point is reached and mostly miss, especially those created during the early stage of the pandemic [108] [109] [110] owing to insufficient attention to overfitting. The GWR spatial interaction model can serve as input for the development of a pandemic model for Indonesia, which can determine up to 70% of the spreads of COVID-19 pandemic cases. Investigation of effective climatology parameters on COVID-19 outbreak in Iran Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis Global prevalence of persistent neuromuscular symptoms and the possible pathomechanisms in COVID-19 recovered individuals: a systematic review and meta-analysis Persistence of long COVID symptoms in COVID-19 survivors worldwide and its potential pathogenesis -a systematic review and meta-analysis Understanding variants of SARS-CoV-2 Coronavirus disease 2019 (COVID-19): a literature review A review on novel coronavirus (Covid-19): symptoms, Transmission and Diagnosis Tests COVID-19 and comorbidities: deleterious impact on infected patients Clinical characteristics and diagnostic challenges of COVID−19: an update from the global perspective The prevalence and clinical significance of Presymptomatic COVID-19 patients: how we can be one step ahead in mitigating a deadly pandemic COVID-19's impact on the atmospheric environment in the Southeast Asia region Coronavirus pandemic (COVID-19) and its natural environmental impacts WHO. Coronavirus disease 2019 (COVID-19) Situations Report Correlation between weather and Covid-19 pandemic in Jakarta COVID-19 and ASEAN responses: comparative policy analysis Permasalahan Keakuratan Data Penerima Bantuan Sosial COVID-19 National Vaccination and local intervention impacts on COVID-19 cases Separuh Penduduk Jakarta Terdeteksi Memiliki Antibodi COVID-19. 2021 Available from Spatial statistics and influencing factors of the COVID-19 epidemic at both prefecture and county levels in Hubei Province, China COVID-19 pandemic: environmental and social factors influencing the spread of SARS-CoV-2 in São Paulo Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology Population density, a factor in the spread of COVID-19 in Algeria: statistic study Socio-economic impacts of the COVID-19 pandemic: the case of Bandung City A brief review of socio-economic and environmental impact of Covid-19 Impact of Population Density on COVID-19 Infected and Mortality Rate in India The hidden vulnerability of COVID-19 observed from asymptomatic cases in Indonesia COVID-19 transmission through asymptomatic carriers is a challenge to containment. Influenza Other Respir Viruses COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs Instruksi Menteri Dalam Negeri Nomor 1 Tahun 2020 tentang Pencegahan Penyebaran dan Percepatan Penanganan Corona Virus Disease 2019 di Lingkungan Pemerintahan Daerah Beda Data BNPB vs Kemenkes. Jakarta: Media Kernels Indonesia Situasi Terkini Perkembangan Novel Coronavirus (COVID-19) per Dilemma of Prioritising health and the economy during COVID-19 pandemic in Indonesia Endemic and emerging acute virus infections in Indonesia: an overview of the past decade and implications for the future The pandemic and its impacts Spatial interaction of groundwater and surface topographic using geographically weighted regression in built-up area Assessing the COVID-19 diagnostic laboratory capacity in Indonesia in the early phase of the pandemic. WHO South East Asia Linear regression models in epidemiology Integration of multiple regression model in an epidemiological decision support system Regression Model based COVID-19 Outbreak Predictions in India Multiple Linear Regression Model of Meningococcal Disease in Ukraine: 1992-2015 Predicting and analyzing the COVID-19 epidemic in China: based on SEIRD, LSTM and GWR models Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales A comparison of least squares regression and geographically weighted regression modeling of West Nile virus risk based on environmental parameters Multivariable analysis Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia Advantages of geographically weighted regression for modeling benthic substrate in two greater Yellowstone ecosystem streams A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of Understanding and checking the assumptions of linear regression: a primer for medical researchers Introduction to multivariate regression analysis. Hippokratia Developing internet online procurement frameworks for construction firms The classical assumption test to driving factors of land cover change in the development region of northern part of West Java Evaluation of ordinary Least Square (OLS) and geographically weighted regression (GWR) for water quality monitoring: a case study for the estimation of salinity Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin Urbanisasi dan HIV di Kota Bandung (Perspektif Geografi Kesehatan) Overlapping confidence intervals and statistical significance Developing a geographically weighted complex systems model using open-source data to highlight locations vulnerable to becoming terrorist safe-havens Tobler's first law and spatial analysis Mari Mengenal Sains Informasi Geografis. Bandung: Aria Mandiri Group The effect of kernel and bandwidth specifcation in geographically weighted regression models on the accuracy and uniformity of mass real estate appraisal Geographically weighted regression: Sebuah Kajian Regresi Geografis. Yogyakarta: Mobius Geographically weighted regression: a tutorial on using GWR in ArcGIS 9.3. Maynooth: National Centre for Geocomputation The detection of heteroscedasticity in regression models for psychological data Spatial autoregressive (SAR) model for average expenditure of Papua Province Lilliefors and Anderson-Darling tests Normality tests for statistical analysis: a guide for non-statisticians Dealing with Heteroskedasticity within the Modeling of the Quality of Life of Older People Application of box-cox transformation as a corrective measure to heteroscedasticity using an economic data Pedoman Umum Menghadapi Pandemi COVID-19 bagi Pemerintah Daerah Indonesian Ministry of Health. COVID-19 vaccine acceptance survey in Indonesia. Jakarta: NITAG, UNICEF & WHO COVID-19's impact on Indonesia's economy and financial markets. Yusof Ishak Institute Analyse Current Events Healthcare workers security: Jaminan Regulasi, dan Sanksi Comorbidity and its impact on patients with COVID-19. SN Compr PDF) Analisis Cluster Virus Corona (COVID-19) di Indonesia pada 2 Maret 2020-12 April 2020 dengan Metode K-Means Clustering Characteristics of microbes Most likely to cause pandemics and global catastrophes Stability of SARS-CoV-2 in different environmental conditions Kajian Awal 5G Indonesia (5G Indonesia early preview) What school life means for students' lives: PISA, OECD Publishing Covid-19, family, and information literacy The impact of COVID-19 outbreak on poverty: an estimation for Indonesia Post-pandemic cities -the impact of COVID-19 on cities and Urban Design Urbanization and regional imbalances in Indonesia Inter-regional migration in Indonesia: a micro approach Indonesia -the rise of metropolitan regions: towards inclusive and sustainable regional development World Bank Lanham-New SA. Vitamin D status in the tropics: is sunlight exposure the main determinant? The Indonesian seas and their role in the coupled ocean-climate system Geographically weighted regression: the analysis of spatially varying relationships Geographically weighted regression in the analysis of unemployment in Poland Penggunaan Geographically Weighted Regression (GWR) dengan Pembobot Gauss Kernel untuk Klasifikasi Desa Miskin (Studi Kasus Desa-desa di Kabupaten Jember Geographically weighted regression using a non-Euclidean distance metric with a study on London house Price data Uncertainties analysis of collapse susceptibility prediction based on remote sensing and GIS: influences of different data-based models and connections between collapses and environmental factors Misinformation related to COVID-19 in Indonesia Pentingnya Kesadaran Hukum dan Peran Masyarakat Indonesia Menghadapi Penyebaran Berita Hoax COVID-19 Winter is coming: a southern hemisphere perspective of the environmental drivers of SARS-CoV-2 and the potential seasonality of COVID-19 Spatial distribution analysis of dengue incidence in Makassar, Indonesia The Republic of Indonesia Health System Review: WHO Regional Office for South-East Asia Decline of notified dengue infections in Indonesia in 2017: discussion of the possible determinants The correlation between the spread of COVID-19 infections and weather variables in 30 Chinese provinces and the impact of Chinese government mitigation plans ):em243. research data, including large and complex data types • gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year submit your research ? Choose BMC Influencing factors of COVID-19 spreading: a case study of Thailand Rural-urban linkages: Indonesia case study Effects of temperature and humidity on the spread of COVID-19: a systematic review Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach Poverty and Covid-19: rates of incidence and deaths in the United States during the first 10 weeks of the pandemic European Centre for Disease Prevention and Control. SARS-CoV-2 variants of concern as of 4 Prediksi Akhir Pandemi COVID-19 di Indonesia dengan Simulasi Berbasis Model Pertumbuhan Parametrik Model Prediksi Jumlah Kumulatif Kasus COVID-19 di Indonesia Menggunakan Deep Learning Real-time forecasting of the COVID-19 epidemic using the Richards model in South Sulawesi, Indonesia | Zuhairoh | Indonesian journal of science and technology Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations Not applicable. Authors' contributions MAW designed the research; LKC assisted in the research design; MD performed the research analysis; NHA edited and improved the document. All authors read and approved the final manuscript. Not applicable. The datasets used and analysed in this study are available from the corresponding author on reasonable request. Ethics approval and consent to participate Not applicable. Not applicable. The authors declared that they have no competing interests.