key: cord-0872748-99415xr4 authors: Verma, Anurag; Tsao, Noah L.; Thomann, Lauren O.; Ho, Yuk-Lam; Iyengar, Sudha K.; Luoh, Shiuh-Wen; Carr, Rotonya; Crawford, Dana C.; Efird, Jimmy T.; Huffman, Jennifer E.; Hung, Adriana; Ivey, Kerry L.; Levin, Michael G.; Lynch, Julie; Natarajan, Pradeep; Pyarajan, Saiju; Bick, Alexander G.; Costa, Lauren; Genovese, Giulio; Hauger, Richard; Madduri, Ravi; Pathak, Gita A.; Polimanti, Renato; Voight, Benjamin; Vujkovic, Marijana; Zekavat, Seyedeh Maryam; Zhao, Hongyu; Ritchie, Marylyn D.; Chang, Kyong-Mi; Cho, Kelly; Casas, Juan P.; Tsao, Philip S.; Gaziano, J. Michael; O’Donnell, Christopher; Damrauer, Scott M.; Liao, Katherine P. title: A Phenome-Wide Association Study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the Million Veteran Program date: 2022-04-28 journal: PLoS Genet DOI: 10.1371/journal.pgen.1010113 sha: d5d25a6cc32d15c5c02195c5397c7f0912a71ff3 doc_id: 872748 cord_uid: 99415xr4 The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n = 35) or hospitalization (n = 42) due to severe COVID-19 using genome-wide association summary data from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (n(rs495828) = 53 and n(rs505922) = 59); strongest association with venous embolism, odds ratio (OR(rs495828) 1.33 (p = 1.32 x 10(−199)), and thrombosis OR(rs505922) 1.33, p = 2.2 x10(-265). Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p = 4.12 × 10(−191); CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p = 2.26× 10(−12). The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p = 6.48 x10(-23), lupus OR 0.84, p = 3.97 x 10(−06). PheWAS stratified by ancestry demonstrated differences in genotype-phenotype associations. LMNA (rs581342) associated with neutropenia OR 1.29 p = 4.1 x 10(−13) among Veterans of African and Hispanic ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets. The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n = 35) or hospitalization (n = 42) due to severe COVID-19 using genome-wide association summary data from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (n rs495828 = 53 and n rs505922 = 59); strongest association with venous embolism, odds ratio (OR rs495828 1.33 (p = 1.32 x 10 −199 ), and thrombosis OR rs505922 1.33, p = 2.2 x10 -265 . Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p = 4.12 × 10 −191 ; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p = 2.26× 10 −12 . The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p = 6.48 x10 -23 , lupus OR 0.84, p = 3.97 x 10 −06 . PheWAS stratified by ancestry demonstrated differences in genotype-phenotype associations. LMNA (rs581342) associated with neutropenia OR 1.29 p = 4.1 x 10 −13 among Veterans of African and Hispanic ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets. Large population based genomic studies have discovered genetic variations associated with severe manifestations of Coronarvirus Disease 2019 . In this study, we [3] have meta-analyzed genome-wide association study (GWAS) summary statistics at regular intervals to identify novel genetic associations with COVID-19 severity. Thus far, ten independent variants associated with COVID-19 severity at genome-wide significance have been identified, most notably at the ABO locus [4] . These GWASs have also identified variations in genes involving inflammatory cytokines and interferon signaling pathways such as IFNAR2, TYK2, and DPP9 [4] . The unprecedented availability of genome-wide data for COVID-19 provides an opportunity to study clinical conditions that share genetic risk factors for COVID-19 severity. Examining known conditions, each with a body of knowledge regarding important pathways and targets, may in turn improve our understanding of pathways relevant for COVID-19 severity and inform the development of novel treatments against this pathogen. The Phenome-Wide Association Study (PheWAS) is an approach for simultaneously testing genetic variants' association with a wide spectrum of conditions and phenotypes [5] . The Veteran's Affairs (VA) Million Veteran Program (MVP) has generated genotypic data on over 650,000 participants linked with electronic health record (EHR) data containing rich phenotypic data, enables large-scale PheWAS. Moreover, MVP has the highest racial and ethnic diversity of the major biobanks worldwide affording an opportunity to compare whether associations are similar across ancestries [6] . The objective of this study was to use existing clinical EHR data to identify conditions that share genetic variants with COVID-19 severity using the disease-agnostic PheWAS approach. Since COVID-19 is a new condition, identifying existing conditions which share genetic susceptibility may allow us to leverage existing knowledge from these known conditions to provide context regarding important pathways for COVID-19 severity, as well as how pathways may differ across subpopulations. The Million Veteran Program received ethical and study protocol approval from the VA Central Institutional Review Board (IRB) in accordance with the principles outlined in the Declaration of Helsinki. All individuals in the study provided written informed consent as part of the MVP. The VA MVP is a national cohort launched in 2011 designed to study the contributions of genetics, lifestyle, and military exposures to health and disease among US Veterans [6] . Blood biospecimens were collected for DNA isolation and genotyping, and the biorepository was linked with the VA EHR, which includes diagnosis codes (International Classification of Diseases ninth revision [ICD-9] and tenth revision [ICD-10]) for all Veterans followed in the healthcare system up to September 2019. The single nucleotide polymorphism (SNP) data in the MVP cohort was generated using a custom Thermo Fisher Axiom genotyping platform called MVP 1.0. The quality control steps and genotyping imputation using 1000 Genomes cosmopolitan reference panel on the MVP cohort has been described previously [7] . Genetic variant selection. An overview of the analytic workflow is outlined in Fig 1. Variants were derived from the COVID-19 HGI GWAS meta-analysis release v6 [3] . In this study, we analyzed the following HGI GWAS summary statistics: 1) hospitalized and critically ill COVID-19 vs. population controls denoted as "A2" in HGI, and referred to as "critical COVID" in this study, and 2) hospitalized because of COVID-19 vs. population controls, denoted as "B2" in HGI, referred to as "hospitalized COVID" in this study [3] . For each GWAS, variants with a Benjamini-Hochberg false discovery rate (FDR) corrected pvalue < 0.01 were selected as candidate lead SNPs (3,502 associated with critical COVID, and 4,336 associated with hospitalized COVID). Variants with r 2 <0.1 were clustered within a 250 kb region according to 1000 Genomes phase 3 trans-ancestry reference panel [8] . Then, the variant with the smallest p-value in the region was selected as lead variant, resulting in 45 independent variants associated with critical COVID and 42 variants associated with hospitalized COVID summary statistics. The lead variants from each set of GWAS summary statistics are available in S1 Table. We used the nearest gene approach to prioritize the potential causal genes. A gene with the smallest genomic distance to a lead variant was selected. Classification of race/ethnicity in MVP. Race and ethnicity was determined using the harmonized ancestry and race/ethnicity (HARE) method for four major groups [9] corresponding to: (1) African ancestry, non-Hispanic Black (AFR), (2) Asian ancestry, non-Hispanic Asian (ASN), (3) European ancestry, non-Hispanic White (EUR), and (4) Hispanic ancestry (HIS). Individuals without a HARE classification were most likely be from ancestries with insufficient numbers to train the HARE algorithm including Native American, Alaska Native, and Pacific Islanders. Briefly, the HARE method was an algorithm developed to assign each subject to one of four groups using both self-reported race/ethnicity as the input to train a machine learning algorithm using ancestry informative genetic markers. This approach provides a classification for each individual leveraging information from genomic markers if selfreported race/ethnicity was missing, enabling analyses that can stratify by the four major groups. When comparing HARE vs self-reported race and ethnicity, the statistical error rate was estimated at 0.05-0.46%. Outcomes. Clinical data prior to the onset of the COVID-19 pandemic were used to reduce potential confounding bias from SARS-CoV-2 infection on existing conditions. Phenotypes were defined by phecodes from prior studies [5, 10] . Each phecode represents ICD codes grouped into clinically relevant phenotypes for clinical studies. For example, the phecode "deep venous thrombosis" includes "venous embolism of deep vessels of the distal lower extremities," and "deep venous thrombosis of the proximal lower extremity," both of which have distinct ICD codes. Using this approach, all ICD codes for all Veterans in MVP were extracted and each assigned a phenotype defined by a phecode. ICD-9 and ICD-10 codes were mapped to 1,876 phecodes, as previously described [5, 10] . For each phecode, participants with �2 phecode-mapped ICD-9 or ICD-10 codes were defined as cases, whereas those with no instance of a phecode-mapped ICD-9 or ICD-10 code were defined as controls. Based on our previous simulation studies of ICD EHR data, populations where the phecode comprises < 200 cases were more likely to result in spurious results [11] , and we thus applied this threshold in four ancestry groups: AFR, ASN, HIS, and EUR. In total, we analyzed 1,617 (EUR), 1304 (AFR), 993 (HIS), 294 (ASN) phecodes from the MVP cohort. Phenome-wide association studies. The primary PheWAS analysis used SNPs identified from the HGI GWAS of critical and hospitalized COVID, and tested association of these SNPs with phenotypes extracted from the EHR using data prior to the COVID-19 pandemic. Logistic regression using PLINK2 to examine the SNP association with phecodes and firth regression was applied when logistic regression model failed to converge. Regression models were adjusted for sex, age (at enrollment), age squared, and the first 20 principal components. Ancestry-specific PheWAS was first performed in these four groups, and summary data were meta-analyzed using an inverse-variance weighted fixed-effects model implemented in the PheWAS R package [10] . We assessed heterogeneity using I 2 and excluded any results with excess heterogeneity (I 2 > 40%). To address multiple testing, an association between SNP and phecode with FDR p < 0.01 was considered significant. Thus, the threshold for significance was p < 6.07 × 10 −05 for critical COVID lead variants, and p < 4.13 × 10 −05 for hospitalized COVID lead variants. In the main manuscript we highlight PheWAS significant associations using FDR < 0.01 and an effect size associated with increased or reduced risk for a condition by 10%, with complete PheWAS results provided in S2 and S3 Tables. We studied 658,582 MVP participants, with mean age 68 years, 90% male, with 30% participants from non-European ancestry ( Table 1 ). The PheWAS was performed on 35 genetic variants associated with critical COVID-19, and 42 genetic variants (S1 Table) associated with hospitalized COVID, across 1,559 phenotypes. From the trans-ancestry meta-analysis, we identified 151 phenotypes significantly associated with critical COVID GWAS-identified variants, and 156 associations with hospitalized COVID GWAS-identified lead variants (FDR, p<0.01). Among these lead variants with significant PheWAS associations, 10 SNPs were associated with reduced risk of critical and hospitalized COVID-19 in HGI. Six variants were common to both critical and hospitalized COVID and had significant PheWAS associations, namely, variations nearest to the genes ABO (rs495828 and rs505922), DPP9 (rs2277732), MUC5B (rs35705950), TYK2 (rs11085727), and CCHCR1 (rs9501257) (S2 and S3 Tables). In the trans-ancestry meta-analysis, the phenotype with the strongest association with variants near ABO locus (rs495828 and rs505922) was "hypercoagulable state" (OR critical_PheWAS = 1.48 [1.42-1.54], P critical_PheWAS = 1.84 × 10 −40 ; OR hospitalized_PheWAS = 1.51 [1.46-1.56], P hospitalized_PheWAS = 2.11 × 10 −55 , Fig 2) . The ABO loci had the largest number of significant PheWAS association findings, accounting for 35% (53/151) of significant phenotype associations in the critical COVID Phe-WAS, and 37% (59/156) in the hospitalized COVID PheWAS. The phenotypes with the most significant associations and largest effect size were related to hypercoagulable states and coagulopathies. As expected, conditions not related to coagulopathy associated with the ABO locus, included type 2 diabetes and ischemic heart disease, have been reported as risk factors for or are complications associated with COVID-19 severity and mortality [1, 4, 12, 13] (Fig 2 and S2 and S3 Tables) . Among 68 respiratory conditions, only 11 diseases had significant associations (FDR < 0.01) shared with genetic variants associated with severe COVID-19. The most significant association was observed between rs35705950 (MUC5B) and idiopathic fibrosing alveolitis (OR = 2.83 [2.76-2.90]; P = 4.12 × 10 −191 ), also known as idiopathic pulmonary fibrosis (IPF). [14] . The rs11085727-T allele of TYK2, a lead variant from the both critically ill and hospitalized COVID GWAS was associated with a reduced risk for psoriasis (OR = 0.88 [0.86-0.91], . This TYK2 signal has been previously reported to be associated with reduced risk of psoriasis, psoriatic arthropathy, type 1 diabetes, systemic lupus erythematosus and RA as well as other autoimmune inflammatory conditions (Table 2 ) [15, 16] . The PheWAS analyses performed across four major ancestry groups in MVP observed similar findings as the overall meta-analysis with few associations unique to a specific ancestry (Fig 3 and S8 Table) . SNP rs581342 (LMNA), associated with severe COVID-19, was a highly prevalent variant among subjects with AFR ancestry (MAF = 0.53) and was associated with neutropenia (OR AFR = 1.29 [1.21-1.39] P AFR = 4.09 × 10 −13 ); this association was also observed in HIS ancestry (OR HIS = 1.65 [1.32-2.06], P HIS = 8.84 × 10 −06 ) but was not in the larger EUR ancestry (S8 Table) . To follow-up on this association, we extracted data on laboratory values for white blood cell (WBC) count and neutrophil fraction on all subjects. LMNA was associated with lower WBC in AFR, EUR, and HIS ancestries. However, LMNA was associated with a lower median neutrophil fraction only among Veterans of AFR ancestry (beta = -1.84 [-1.94, -1.75], P AFR = 1 x 10 −300 ) and HIS ancestry (beta = -0.67, P HIS = 7.2 x 10 −13 ) but not among Veterans of EUR ancestry (beta = -0.09, P EUR = 0.005). Among individuals of AFR ancestry, each allele was associated with a 1.84% lower neutrophil fraction, where among individuals of HIS and EUR ancestry, each allele was associated with 0.67% and 0.04% reduction, respectively (S9 Table) . Similarly, associations between rs9268576 (HL-DRA) and thyrotoxicosis was only observed in individuals of AFR ancestry. The EUR ancestry specific PheWAS identified 39 significant associations which were not observed in other ancestry groups. One such association was between MUC5B variant and phecode for "dependence on respirator [ventilator] or supplemental oxygen" (OR EUR = 1.16 [1.11-1.12], P EUR = 1.72× 10 −10 ) among individuals of EUR ancestry was not significant in other ancestry groups (S8 Table) . It is important to note that the conditions with significant association among individuals of EUR ancestry had similar prevalence among other ancestries. However, since there were overall fewer subjects in non-EUR ancestry groups, this likely resulted in lower statistical power to detect associations. All ancestry specific PheWAS results are available in supplementary tables (S4, S5, S6, and S7 Tables, and S1 and S2 Figs). In the hospitalized COVID-19 GWAS, we identified rs4830964 as the only lead variant on chromosome X. The SNP is located near ACE2 and was associated with "non-healing surgical wound" (OR = 0.92 [0.89-0.96], P = 2.23× 10 −05 ). Notably, the SNP had nominal association (p<0.05) with type 2 diabetes and diabetes related complications that are previously reported association with variation in ACE2 (S3 Table) . We did not observe any association with this variant in the ancestry specific PheWAS analysis. In this large-scale PheWAS, we identified the shared genetic architecture between variants associated with severe COVID-19 and other complex conditions using data from MVP, one of the largest and most diverse biobanks in the world. Broadly, these risk alleles identified conditions associated with risk factors for severe COVID-19 manifestations such as type 2 diabetes and ischemic heart disease across all ancestries examined here. Notably, the strongest associations with the highest effect size were related to coagulopathies, specifically, hypercoagulable state including deep venous thrombosis and other thrombotic complications, also shared variants associated with severe COVID-19. In contrast, among respiratory conditions, only idiopathic pulmonary fibrosis and chronic alveolar lung disease shared genetic risk factors, with the notable absence of an association with COPD and other respiratory infections. When comparing findings across ancestry groups in MVP, we observed that a risk allele associated with severe COVID-19, LMNA, also shared an association with neutropenia among Veterans of The plot highlights the association between rs581342 SNP and neutropenia, which was only observed in the AFR ancestry. The phenotypes are represented on the x-axis and ordered by broader disease categories. The red line denotes the significance threshold using false discovery rate of 1% using the Benjamini-Hochberg procedure. The table on the top right of the plot shows the association results between rs581342 and neutropenia in other ancestries. The association was not tested among participants of ASN ancestry due to low case numbers. https://doi.org/10.1371/journal.pgen.1010113.g003 PheWAS of genes associated with COVID-19 severity with complex diseases in the MVP AFR and HIS ancestry. Finally, we observed that variants associated with severe COVID-19 had an opposite association, or reduced odds with autoimmune inflammatory conditions, such as psoriasis, psoriatic arthritis, RA, and inflammatory lung conditions. A classic GWAS tests the association between millions of genetic variants with the presence or absence of one phenotype, e.g., GWAS of deep venous thrombosis. In the COVID-19 HGI GWAS, the "phenotype" was patients hospitalized for or critically ill from COVID-19. Clinically, this population includes a mixture of patients with a complex list of medical conditions at high risk for severe COVID complications and those who had actual complications from COVID-19. Thus, we would anticipate that many of the significant phenotypes would be associated with risk factors such as obesity and deep venous thrombosis. Additionally, our findings suggest that the PheWAS approach can be a useful tool to identify clinical factors related to emerging infectious diseases regarding severity or complications when genomic data are available. The PheWAS results of SNPs in the ABO locus served as a positive control for this study. Genetic variations in ABO are an established risk factor for COVID-19 severity. Patients with blood group A have a higher risk of requiring mechanical ventilation and extended ICU stay compared with patients with blood group O [17] . These same variations at ABO had known associations with a spectrum of blood coagulation disorders identified in studies pre-dating COVID-19 [18] [19] [20] . The PheWAS of ABO variants identified associations with increased risk of deep vein thrombosis, pulmonary embolism, and other circulatory disorders, in line with prior studies, and recent studies among patients hospitalized with COVID-19 [21] [22] [23] [24] [25] . Among the respiratory conditions, only idiopathic pulmonary fibrosis (IPF) and chronic alveoli lung disease had shared associations with the variants near genes MUC5B, CRHR1, and NSF. Located in the enhancer region of the MUC5B, rs35705950, is a known risk factor for IPF, and a high mortality rate was observed among the COVID-19 patients with pre-existing IPF [26] . However, the MUC5B variant is associated with a reduced risk of severe COVID-19 (OR = 0.89), suggesting the risk allele's opposing effect for infection and pulmonary fibrosis. In a separate study of MVP participants tested for COVID-19, we identified a significant mediating effect of the MUC5B variant in reducing risk for pneumonia due to COVID-19 [27] . Several conditions shared genetic variants associated with severe COVID-19, however, the association was for reduced odds for these conditions. All except one, rosacea, have an autoimmune etiology. The existing literature can help explain some of the dual association between reduced risk of autoimmune conditions such as psoriasis and RA and increased risk of severe COVID-19 via TYK2. TYK2, a member of the Janus Kinase (JAK) family of genes, plays a key role in cytokine signal transduction and the inflammatory response [28] , specifically in type 1 interferon signaling, part of the innate immune response blocking the spread of a virus from infected to uninfected cells. Partial loss of TYK2 function is associated with reduced risk for several autoimmune disorders such as RA and psoriatic disease, conditions treated with immunosuppressive therapy [15, [29] [30] [31] [32] . Humans with complete TYK2 loss of function have clinically significant immunodeficiency with increased susceptibility to mycobacterial and viral infections [28, 33] . Thus, this observation for opposing associations of variants with COVID-19 and autoimmune conditions highlights the fine balance between host immune response and autoimmunity. While non-white populations are disproportionately affected by COVID-19, the majority of studies still predominantly consist of individuals from EUR ancestry. The COVID-19 GWAS data from the HGI consists of participants from over 25 countries EUR (33% non-EUR samples), enabling identification of variants more prevalent in non-EUR populations. We used these data to perform a PheWAS on the linked genotype-phenotype data from MVP, the most racial and ethnically diverse biobank in the US. From this large-scale study across ancestries, we observed that a variant located in the LMNA gene locus was associated with a diagnosis of neutropenia in AFR ancestry and HIS, but not EUR which would otherwise would have been well powered to detect an association. LMNA was associated with lower WBC counts across all ancestries, but its association with a lower fraction of neutrophils was observed in AFR and HIS only, but not EUR, in line with the overall association with diagnoses codes for neutropenia. ASN ancestry comprised the smallest ancestry group in MVP and was not tested due to low case numbers for neutropenia. LMNA variants are associated with a broad spectrum of cardiomyopathies such as dilated cardiomyopathies, familial atrial fibrillation. However, the association with neutropenia has not been previously reported. Neutropenia refers to an abnormally low number of neutrophils in the blood, and predisposing to increased risk of infection. Epidemiology studies have shown that lower neutrophil counts are more common in individuals of AFR ancestry [34, 35] and are hypothesized to be a result of selection and generally considered benign. To our knowledge benign neutropenia has not been previously reported among individuals of HIS ancestry [36] . Whether low neutrophil levels may clinically impact COVID-19 outcomes remains to be seen and warrants further study. The PheWAS of risk alleles associated with severe COVID-19 did not observe an association between other chronic pulmonary conditions such as COPD, a risk factor for severe COVID manifestations [13, 37, 38] . This absence of association allows us to discuss a few limitations of the PheWAS approach. The PheWAS was designed to broadly screen for potentially clinically relevant associations between genes and thousands of phenotypes. The phenotypes are based on ICD codes, and the accuracy of these codes can vary across conditions. Misclassification of cases and controls would reduce power to detect associations. The clinical definition of COPD itself is an area of active discussion and thus could impact the already modest accuracy of COPD diagnostic codes, further limiting power to detect an association [39, 40] . As well, the PheWAS has limited power to detect associations for uncommon conditions and may explain the absence of associations with another chronic pulmonary condition, CF which has a prevalence of 0.02% in this Veteran population. Alternatively, studies to date have yielded mixed results with regards to risk for severe COVID among patients with CF [41] . To enable a transancestry study, we applied a conservative approach using 20 PCs to adjust all models, used in prior studies. One potential pitfall of this approach is that the models may be overadjusted and thus are more likely to miss few significant associations. Finally, COPD is a condition where cigarette smoking, an environmental risk factor, accounts for the majority of cases [42] . While genetics is an important aspect of COPD, the link between variants and COPD may be weaker compared to other conditions where genetic variants drive the phenotype, ABO blood type as an example. Thus, conditions such as COPD where environmental risk factors or where geneenvironment interactions play a major role in risk, may be more difficult to identify in a standard PheWAS. Findings from this study suggest that variants associated with severe COVID-19 are also associated with reduced odds of having an autoimmune inflammatory condition. However, the results cannot provide information on the impact of actual SARS-CoV-2 infection in these individuals after diagnosis of an autoimmune disease. The PheWAS of genetic variants reported to associate with severe COVID-19 demonstrated shared genetic architecture between COVID-19 severity and known underlying risk factors for both severe COVID-19 and poor COVID-19 outcomes, rather than susceptibility to other viral infections. Overall, the associations observed were generally consistent across genetic ancestries, with the exception of a stronger association with neutropenia among Veterans of AFR and HIS ancestry and not EUR. Notably, only few respiratory conditions had a shared genetic association with severe COVID-19. Among these, variants associated with a reduced risk for severe COVID-19 had an opposite association, with reduced risk for inflammatory and fibrotic pulmonary conditions. Similarly, other divergent associations were observed between severe COVID-19 and autoimmune inflammatory conditions, shedding light on the concept of the fine balance between immune tolerance and immunodeficiency. This balance will be important when considering therapeutic targets for COVID-19 therapies where pathways may control both inflammation and the viral host response. Supporting information S1 Table. List of lead variants from critical ill and hospitalized COVID GWAS included in the study. CDC. About COVID-19-CDC An interactive web-based dashboard to track COVID-19 in real time Mapping the human genetic architecture of COVID-19 by worldwide meta-analysis. Genetic and Genomic Medicine Genetic mechanisms of critical illness in COVID-19 PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations Million Veteran Program: A mega-biobank to study genetic influences on health and disease Genotyping Array Design and Data Quality Control in the Million Veteran Program A global reference for human genetic variation Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity in Genome-wide Association Studies R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment A simulation study investigating power estimates in phenome-wide association studies Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State Mild or Moderate Covid-19 Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis TYK2 Protein-Coding Variants Protect against Rheumatoid Arthritis and Autoimmunity, with No Evidence of Major Pleiotropic Effects on Non-Autoimmune Complex Traits Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity The association of ABO blood group with indices of disease severity and multiorgan dysfunction in COVID-19 Associations between blood type and COVID-19 infection, intubation, and death Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19 Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention Transethnic Meta-Analysis of Genome-Wide Association Studies Identifies Three New Loci and Characterizes Population-Specific Differences for Coronary Artery Disease Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach ABO blood group associations with markers of endothelial dysfunction in the Multi-Ethnic Study of Atherosclerosis Risk Factors for Mortality after COVID-19 in Patients with Preexisting Interstitial Lung Disease A MUC5B gene polymorphism, rs35705950-T, confers protective effects in COVID-19 infection. Infectious Diseases (except HIV/ AIDS) Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia Evidence for Genetic Association and Interaction Between the TYK2 and IRF5 Genes in Systemic Lupus Erythematosus Polymorphisms in the Tyrosine Kinase 2 and Interferon Regulatory Factor 5 Genes Are Associated with Systemic Lupus Erythematosus Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus Human Tyk2 Kinase Deficiency: Another Primary Immunodeficiency Syndrome Neutropenia: Causes and consequences Reduced Neutrophil Count in People of African Descent Is Due To a Regulatory Variant in the Duffy Antigen Receptor for Chemokines Gene Prevalence of Neutropenia in the U.S. Population: Age, Sex, Smoking Status, and Ethnic Differences Impact of COPD on COVID-19 prognosis: A nationwide population-based study in South Korea COVID-19) in the U.S. In: Centers for Disease Control and Prevention Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstr Pulm Dis Algorithms to identify COPD in health systems with and without access to ICD coding: a systematic review Systematic review: cystic fibrosis in the SARS-CoV-2/ COVID-19 pandemic We are grateful to our Veterans for their contributions to MVP. Full acknowledgements for the VA Million Veteran Program COVID-19 Science Initiative can be found in the S1 Text. We would like to thank the Host Genetic Initiative for making their data publicly available (https://www.covid19hg.org/acknowledgements/). This publication does not represent the views of the Department of Veteran Affairs or the United States Government.