key: cord-0912992-xdgw6lk3 authors: Jarvis, Nicola; Schiavo, Simone; Bartoszko, Justyna; Ma, Martin; Chin, Ki Jinn; Parotto, Matteo title: A specialized airway management team for COVID-19 patients: a retrospective study of the experience of two Canadian hospitals in Toronto date: 2021-12-08 journal: Can J Anaesth DOI: 10.1007/s12630-021-02169-x sha: 1eef6ec3b4d580c0ac9b5f673b8eacb14d61ad69 doc_id: 912992 cord_uid: xdgw6lk3 BACKGROUND: In the COVID-19 pandemic, an unprecedented number of individuals required endotracheal intubation. To safely face these challenges, expert intubation teams were formed in some institutions. Here, we report on the experience of emergency rapid intubation teams (ERITs) in two Canadian hospitals. METHODS: We retrospectively collected data on all airway management procedures in confirmed or suspected COVID-19 patients performed by ERITs at two academic hospitals between 3 April and 17 June 2020. The co-primary outcomes were incidence of periprocedural adverse events (hypoxemia, hypotension, and cardiac arrest within 15 min of intubation) and first-attempt intubation success rate. Secondary outcomes included number of intubation attempts, device used to achieve successful airway management, and adherence to personal protective equipment (PPE) protocols. RESULTS: During the study period, 123 patients were assessed for airway management, with 117 patients receiving airway interventions performed by the ERIT. The first-attempt success rate for intubation was 92%, and a videolaryngoscope was the final successful device in 93% of procedures. Hypoxemia (peripheral oxygen saturation [SpO(2)] < 90%) occurred in 28 patients (24%) and severe hypoxemia (SpO(2) < 70%) occurred in ten patients (9%). Hypotension (systolic blood pressure [SBP] < 90 mm Hg) occurred in 37 patients (32%) and severe hypotension (SBP < 65 mm Hg) in 11 patients (9%). Adherence to recommended PPE use among providers was high. CONCLUSION: In this cohort of critically ill patients with respiratory failure requiring time-sensitive airway management, specialized ERIT teams showed high rates of successful airway management with high adherence to PPE use. Hypoxemia and hemodynamic instability were common and should be anticipated within the first 15 min following intubation. STUDY REGISTRATION: www.ClinicalTrials.gov (NCT04689724); registered 30 December 2020. Background In the COVID-19 pandemic, an unprecedented number of individuals required endotracheal intubation. To safely face these challenges, expert intubation teams were formed in some institutions. Here, we report on the experience of emergency rapid intubation teams (ERITs) in two Canadian hospitals. Methods We retrospectively collected data on all airway management procedures in confirmed or suspected COVID-19 patients performed by ERITs at two academic hospitals between 3 April and 17 June 2020. The coprimary outcomes were incidence of periprocedural adverse events (hypoxemia, hypotension, and cardiac arrest within 15 min of intubation) and first-attempt intubation success rate. Secondary outcomes included number of intubation attempts, device used to achieve successful airway management, and adherence to personal protective equipment (PPE) protocols. Results During the study period, 123 patients were assessed for airway management, with 117 patients receiving airway interventions performed by the ERIT. The first-attempt success rate for intubation was 92%, and a videolaryngoscope was the final successful device in 93% of procedures. Hypoxemia (peripheral oxygen saturation [SpO 2 ] \ 90%) occurred in 28 patients (24%) and severe hypoxemia (SpO 2 \ 70%) occurred in ten patients (9%). Hypotension (systolic blood pressure [SBP] \ 90 mm Hg) occurred in 37 patients (32%) and severe hypotension (SBP \ 65 mm Hg) in 11 patients (9%). Adherence to recommended PPE use among providers was high. Conclusion In this cohort of critically ill patients with respiratory failure requiring time-sensitive airway management, specialized ERIT teams showed high rates of successful airway management with high adherence to PPE use. Hypoxemia and hemodynamic instability were common and should be anticipated within the first 15 min following intubation. Study registration www.ClinicalTrials.gov (NCT04689724); registered 30 December 2020. Contexte Pendant la pande´mie de COVID-19, un nombre sans pre´ce´dent de patients ont duˆbe´ne´ficier d'une intubation endotrache´ale. Pour faire face en toute se´curite´a`ces de´fis, des e´quipes d'experts en intubation ont e´te´forme´es dans certains e´tablissements. Nous rendons compte ici de l'expe´rience d'e´quipes d'intubation rapide d'urgence (ou ERIT, pour Emergency Rapid Intubation Team) dans deux hôpitaux canadiens. Méthode Nous avons collige´re´trospectivement les donne´es concernant toutes les interventions de prise en charge des voies ae´riennes chez les patients COVID-19 confirme´s ou suspecte´s re´alise´es par les ERIT dans deux hôpitaux universitaires entre le 3 avril et le 17 Keywords airway management Á COVID-19 As a result of the COVID-19 pandemic, unprecedented numbers of patients required advanced support for respiratory failure worldwide. [1] [2] [3] Endotracheal intubation in COVID-19 patients is a highly specialized procedure 4 that carries risk both to patients and attending healthcare workers (HCWs). Healthcare workers involved in airway management for patients infected with coronaviruses may be at high risk of infection due to aerosol and droplet exposure during the procedure. During the severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) outbreak, HCWs performing endotracheal intubation had a relative risk [RR] of 13 for developing SARS compared with others caring for these patients. 5, 6 Initial data from the COVID-19 pandemic (caused by SARS-CoV-2) suggests that 10% of HCWs developed an infection, although causality with professional exposure as opposed to social exposure could not be established with certainty. 7 Expert recommendations were released to guide safe endotracheal intubation in these settings, and included directions on team composition and dynamics, use of videolaryngoscopy, and rapid sequence induction (RSI) with administration of hypnotics and neuromuscular blocking agents (NMBAs). 8, 9 Given the underlying physiologic compromise in critically ill patients, the process is associated with a significant risk of lifethreatening severe adverse events (SAEs), such as hypoxemia, hypotension, and cardiac arrest. 3,10-12 To optimize resources and reduce the risk to patients and HCWs, expert airway teams were developed in several centres in Canada and in other countries to perform endotracheal intubations in COVID-19 patients. The structure of these airway teams differed across countries and healthcare systems. A group from the UK recently published the experience of a London hospital, 13 showing that a highly-skilled designated intubation team utilizing a protocolized, early tracheal intubation model may improve patient and staff safety. To the best of our knowledge, the Canadian experience with similar specialized teams has not been reported to date. In this retrospective study, we describe patient outcomes at two academic hospitals in Toronto where airway management teams were developed and responsible for urgent airway management in all patients with suspected or known COVID-19. Our hypothesis was that the establishment of designated airway teams would be associated with a high rate of successful first-attempt intubation and maintain patient and provider safety. At the onset of the pandemic, a dedicated rapid response team for airway management of all COVID-19 suspected or confirmed patients (internally named the ''Emergency rapid intubation team'' [ERIT] ) was developed at both Toronto General and Toronto Western Hospital, and its activities were designed to follow a shared protocolized approach. Prior to the institution of this team, airway management in the emergency rooms (ERs) and intensive care units (ICUs) was provided by ER and ICU physicians, with anesthesiologists available as back-up in case of an unanticipated or anticipated difficult airway. On medical and surgical wards, airway management was typically provided either by ICU physicians or, in case of code blue scenarios, by an anesthesiologist or supervised anesthesia trainee (resident or fellow). Videolaryngoscopy was not the routine first-line device prior to ERIT, and RSI was not the standard in all cases, with the choice of device and medications at the discretion of individual providers. The ERIT was active 24 hr a day and seven days a week. The ERIT team was composed of one attending anesthesiologist, two operating room registered nurses (OR RNs), one anesthesia assistant (AA), and one patient attendant, with each team working a 12-hr shift. Prepacked boxes containing the required equipment were developed and stored in a designated location. Dedicated pagers and overhead public address system activation codes were utilized to request ERIT assistance, and the team responded to requests from anywhere in the hospital, including ICUs and ERs. Didactic teaching and simulation sessions were attended by team members before the ''go-live'' date. The team would meet at the beginning of each shift to review algorithms and simulate clinical scenarios, including donning and doffing of personal protective equipment (PPE), which was in accordance with the recommendations from the World Health Organization (WHO). 14 The roles of each team member were preidentified and designated as follows: airway manager (anesthesiologist), assistance with airway equipment and airway management (AA), assistance with medications, monitoring, hemodynamics (OR RN1), ''runner'' and safety officer for PPE donning and doffing (OR RN2), and assistance with provision of additional equipment and transportation (attendant). Procedures were documented on standardized clinical forms. The protocol included hemodynamic optimization, preoxygenation, use of RSI (for NMBAs, either succinylcholine at 1.5 mgÁkg -1 or rocuronium at 1.2 mgÁkg -1 were recommended; the choice of hypnotics was left to the discretion of the attending anesthesiologist and included one or more of the following agents: ketamine, propofol, midazolam, and fentanyl) and videolaryngoscopy as a first-line device (Storz C-MACÒ airway management cart with reusable blades, KARL STORZ SE & Co. KG, Tuttlingen, Germany). The blade size and type (Macintoshblade or D-blade) used for the initial attempt was chosen by the individual anesthesiologist. We did not routinely use apneic oxygenation during intubation with low-flow or high-flow nasal oxygen. Following recommendations from experts published at the onset of the pandemic, our strategy included intubation early in the course of illness for patients with respiratory failure, as judged by the attending physician. Typically, intubation was performed in patients with any of the following: persistent or worsening tachypnea (RR [ 25) or a trajectory of increasing respiratory distress despite medical management, marginal and/or rapidly deteriorating oxygen saturations despite supplemental oxygenation, and bilateral infiltrates on chest imaging. 15 The clinical evaluation of potential risk factors for difficult airway and hemodynamic instability was performed at the discretion of the attending anesthesiologist. We retrospectively collected data on all airway management procedures performed by the ERIT. The clinical registry was used to identify patients who received care by this team, and a retrospective chart review was conducted collecting data on demographics, specifics of airway management (e.g., technique, location, number of attempts) and related SAEs (hypoxemia, hypotension, and cardiac arrest within 15 min of intubation) in confirmed or suspected COVID-19 patients at participating centres. Anonymized data were entered in a centralized, encrypted and password-protected database. The study was approved by the University Health Network Research Ethics Board (REB 20-5620, 2 August 2020). This study conforms with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines 16 and was preregistered prior to commencement in January 2021 of data extraction and analysis under ClinicalTrials.gov Identifier NCT04689724 (registration date, 30 December 2020). Data were examined for missing and incomplete data. Results are presented as means (standard deviation) for continuous variables or absolute values with percentages (%) for count data. Contingency table data were compared using the Chi square test for cell count values equal to or greater than 5, and Fisher's exact test for cell counts less than 5. An exploratory analysis examining the association of preoperative patient characteristics and induction medication dosing with outcomes was conducted. The co-primary outcomes of interest were hypotension (defined as a systolic blood pressure (SBP) \ 90 mm Hg within 15 min of induction) and hypoxemia (defined as a postinduction oxygen saturation \ 90% within 15 min of induction). Relative risk ratios were calculated for individual predictors using log-binomial regression, given the incidence of our outcomes of interest was [ 10%. 17 Induction medication dosing, preinduction hypoxemia, and preinduction hypotension were examined as predictors of interest in separate models, each adjusted for the baseline patient characteristics of age, sex, and overall condition (awake, drowsy, or cardiopulmonary arrest), which were a priori specified given our limited number of outcome events. 18 From 3 April to 17 June 2020, 123 COVID-19 patients (suspected or confirmed) with respiratory failure were assessed by the specialized airway teams at the two hospitals, with 117 (95%) ultimately requiring airway management. Table 1 summarizes the details. Incomplete data were noted in five (4%) procedures. A total of 43 anesthesiologists were involved as the primary airway managers in at least one intubation during the study period. The majority of airway management procedures (n = 70/117; 60%) were performed in the ICU. A total of 29 (25%) were performed in the ER, and 20 (17%) in medical/surgical wards (either high acuity step down unit beds [level 2], or regular ward beds) ( Table 2) . One instance of airway management (1%) was conducted in the OR. Rapid sequence induction (predetermined induction doses, high-dose neuromuscular blockade, no bag-mask ventilation, with or without cricoid pressure) or modified RSI (predetermined induction medication doses with some element of titration depending on patient response, no bagmask ventilation) was employed in all cases. A videolaryngoscope was the final successful device used for airway management in most cases requiring endotracheal intubation (109/117; 93%), with a high firstattempt success rate (108/117; 92%) ( Table 2 ). In seven cases (6%), there was a pre-existing endotracheal airway and an exchange was required. Out of the nine intubations with more than one documented attempt, 7/9 (78%) achieved success with videolaryngoscopy (Table 3) . More than two attempts at intubation were required in 2/117 (2%) cases; one intubation required three attempts and another required four attempts (Table 3) . A flexible reusable bronchoscope was required in 2/117 (2%) cases, and a tracheostomy (tube exchange) was involved in one case (1%) ( Table 4 ). Baseline systolic blood pressure (mm Hg), mean (SD) 124 (29) Baseline diastolic blood pressure (mm Hg), mean (SD) 70 (17) Baseline heart rate (min -1 ), mean (SD) 106 (27) Baseline oxygen saturation by pulse oximetry (%), mean situations where multiple attempts were required for airway management. With multiple intubation attempts, the incidence of positive pressure ventilation prior to intubation was more common (2/9; 22%) compared with single intubation attempts (11/108; 10%), although the difference was not statistically significant (Fisher's exact test, P = 0.28). The single incidence of supraglottic airway use occurred in an individual who had hypoxemia prior to induction of anesthesia and required multiple intubation attempts; hypoxemia was resolved after successful intubation. Hypotension within 15 min of airway management (SBP \ 90 mm Hg) occurred in 37/117 patients (32%), and severe hypotension (SBP \ 65 mm Hg) in 11/117 patients (9%) ( Table 5 ). The type of hypnotic used for induction was not associated with postinduction hypotension in either unadjusted or adjusted models. Neither was the total medication dose used for the agents fentanyl, midazolam, or propofol; however, there was a statistically significant association between the total ketamine dose used and hypotension in both unadjusted and adjusted models (Table 6) . No new cardiac arrests were reported after induction and intubation (Table 4 ). At the time of ERIT team arrival, three (3%) patients were actively receiving chest compressions, and one patient (1%) was documented as being periarrest, although it was unclear if chest compressions had been initiated prior to ERIT activation, and were not required after team arrival. Gloves, N95 masks, face shields, or goggles and caps were used in 100% of cases by the professional conducting the intubation. A gown was used in 98% of cases, and 100% of procedures were supervised by a designated ''spotter'' ( Table 7) . We report the results of a retrospective study on the airway management of patients with suspected or confirmed COVID-19 requiring airway management at two academic hospitals during the first wave of the pandemic in Canada. In this cohort managed by a designated expert team, we observed widespread use of videolaryngoscopy as a firstline device, high first-attempt success rates, and very high adherence to recommended PPE practices. These data appear overall in line with reports from other COVID-19 airway management teams. 13 While accurate comparisons are not possible and some differences in the definitions exist, a previous, large epidemiological study in critically ill patients that included management by a variety of healthcare teams 12 reported peri-intubation rates of cardiovascular instability of 42%, hypoxia (SpO 2 \ 80%) of 9%, and difficult intubation (intubation requiring more than two attempts) of 5%. Such findings reinforce the impact of pre-existing physiologic compromise on airway management in the critically ill. 19 Important planning considerations include patient tolerance of the apneic interval that precedes intubation and ventilation, and the potential of medications used for anesthesia induction to contribute to hemodynamic instability. 19 The choice of induction agent was not generally observed to have a significant association with hypotension in this study; however, a weak association was observed between increasing ketamine dose and postinduction hypotension. This may be related to the known myocardial depressant effects of ketamine, or may be due to residual confounding related to ketamine being chosen as an induction agent in sicker patients. 20, 21 Patient harm can be minimized by anticipating and preparing to manage these adverse effects, as well as having skilled and experienced team members working as a cohesive unit. 22 This is borne out by the absence of periprocedural cardiac arrest in our population, which was associated with prompt administration of supplemental vasopressors in appropriate doses. When we instituted the ERIT system at our centres, we decided to involve only experienced airway management providers to minimize risks to team members and patients. Hence, only consultant anesthesiologists were the designated airway manager on ERIT. For similar reasons, it was decided that the first-line device would be a videolaryngoscope, and that RSI would be employed in all cases. These factors may have contributed to the high firstattempt and overall success rates observed. Indeed, in the INTUBE study, having anesthesia as primary specialty (odds ratio, 0.53; 95% CI, 0.41 to 0.69), and the use of a videolaryngoscope (odds ratio, 0.60; 95% CI, 0.42 to 0.85) were significantly associated with a reduced likelihood of first-pass intubation failure. 12 We observed a nearcomplete adherence to PPE protocols, with higher rates compared with other experiences described in the literature. In an international observational study of more than 4,000 emergent tracheal intubations in COVID-19 patients, Wong et al. reported that PPE in compliance with WHO standards was utilized in 87.5% of cases, 23 compared with over 98% in our centres. Canadian data from the IntubateCOVID database showed that WHO standards were not met in 3.7% of procedures. 24 The repeated simulation training and the presence of a ''spotter'' who ensured proper PPE practice among team members may have played an important role in these figures. [25] [26] [27] Nevertheless, even with these considerations in mind, there were (albeit very rare) breaches in best practices (such as not wearing a gown), and providers should always be mindful of the importance of adequate PPE. The study has several inherent limitations that merit discussion. First, those related to the retrospective design and limited sample size of the study. Second, we present the experience of two academic centres, part of the same institution, which adopted a similar approach. The findings may not necessarily be generalizable to other settings. Third, the periprocedural data were extracted from a standardized clinical form that was filled in by one of the ERIT team members immediately following the event, rather than by an independent observer; hence, there is a potential for reporting and observer bias. Additionally, we did not capture data regarding the clinical evaluation by the attending anesthesiologist of potential risk factors for difficult intubation. We also have no direct comparison data from intubations in the critically ill population at our institution conducted by non-specialized airway teams, limiting our capability to ascertain the impact of the airway team per se on patient outcomes or HCW safety. No data are available on the incidence of COVID-19 infection in ERIT HCWs. We had initially planned, with REB approval, to interview team members to assess whether they had developed signs, symptoms, or confirmed infection related to ERIT activities; however, the response rate to a call for voluntary participation in this interview was too low to provide meaningful information. We present data from a Canadian experience with a consultant anesthesiologist-led specialized team for airway management in patients with COVID-19 experiencing respiratory failure. A highly protocolized team-based approach was used, and only experienced providers performed airway management. In this setting, we observed high adherence to PPE recommendations, high first-attempt success rates at intubation, and periprocedural rates of severe hypotension and hypoxemia of 9% each. We believe that this model of emergency airway management in critically ill patients could be readily implemented in other Canadian settings, and may be beneficial for provider and patient safety during future pandemics or in subsequent waves of the present COVID-19 pandemic. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area Intubation and ventilation amid the COVID-19 outbreak: Wuhan's experience Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review Intubation of SARS patients: infection and perspectives of healthcare workers Risks to healthcare workers following tracheal intubation of patients with COVID-19: a prospective international multicentre cohort study Consensus statement: Safe Airway Society principles of airway management and tracheal intubation specific to the COVID-19 adult patient group Consensus guidelines for managing the airway in patients with COVID-19: guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists Morbidity related to emergency endotracheal intubation-a substudy of the KETAmine SEDation trial The physiologically difficult airway Intubation practices and adverse peri-intubation events in critically ill patients from 29 countries A prospective, observational, cohort study of airway management of patients with COVID-19 by specialist tracheal intubation teams World Health Organization. Rational use of personal protective equipment for coronavirus disease (COVID-19) and considerations during severe shortages: interim guidance Pragmatic recommendations for intubating critically ill patients with suspected COVID-19 The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies Evidence-Based Medicine Teaching Tips Working Group. Tips for teachers of evidence-based medicine: understanding odds ratios and their relationship to risk ratios Relaxing the rule of ten events per variable in logistic and cox regression Endotracheal intubation in the ICU Association of ketamine use with lower risks of post-intubation hypotension in hemodynamically-unstable patients in the emergency department Ketamine versus etomidate and peri-intubation hypotension: a National Emergency Airway Registry study Tracheal intubation in the critically ill. Where we came from and where we should go Emergency airway management in patients with COVID-19: a prospective international multicenter cohort study Chin KJ; intubateCOVID Canadian collaborators; suspected COVID-19 in Canada: data from the intubateCOVID registry A developing nation's experience in using simulation-based training as a preparation tool for the coronavirus disease 2019 outbreak Implementation of simulation training during the COVID-19 pandemic: a New York hospital experience Effect of an intervention package and teamwork training to prevent healthcare personnel self-contamination during personal protective equipment doffing Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations Acknowledgements The authors would like to express their gratitude to all members of the Emergency Rapid Intubation Team, who selflessly stepped-up to help amid the uncertainties and fears in the first wave of the COVID-19 pandemic, and the collaboration from all members of the Critical Care and Emergency departments and all clinical units at our hospitals. We are indebted to Mrs. Samareh Ajami, research coordinator, for her invaluable help in the organization of this study.Disclosures None. Editorial responsibility This submission was handled by Dr.Stephan K.W. Schwarz, Editor-in-Chief, Canadian Journal of Anesthesia/Journal canadien d'anesthe´sie. Author contributions Matteo Parotto and Ki Jinn Chin contributed to the study conception and design and manuscript preparation. Nicola Jarvis, Simone Schiavo, and Martin Ma contributed to the data collection. Justyna Bartoszko contributed to the statistical analysis. All authors contributed to the manuscript amendment.