key: cord-0918617-tao2f3mq authors: Baradaran Mahdavi, Sadegh; Riahi, Roya; Vahdatpour, Babak; Kelishadi, Roya title: Association between sedentary behavior and low back pain; A systematic review and meta-analysis date: 2021-12-19 journal: Health Promot Perspect DOI: 10.34172/hpp.2021.50 sha: 97258ce848fdbad9a9bf2523fc41ffc7f4fe6fc1 doc_id: 918617 cord_uid: tao2f3mq Background: Sedentariness is a substantial risk for many chronic diseases. We aimed to investigate the correlation of sedentary behavior and its indicators with low back pain (LBP) among adults and children. Methods: Original articles published up to April 28, 2020, using PubMed, Embase, Web of Science and Scopus were evaluated. Odds ratio (OR, 95% CI) was considered the overall effect size for desired associations. Results: We reviewed 49 English articles with analytical observational study design, of which, 27 studies with cross sectional/survey design were retained in the meta-analysis. Among adults, sedentary lifestyle was a considerable risk factor for LBP (OR=1.24, 1.02-1.5); prolonged sitting time (OR=1.42, 1.09-1.85) and driving time (OR=2.03, 1.22-3.36) were the significant risk factors. Sedentary behavior was associated with LBP in office workers (OR=1.23). Moreover, excess weight (OR=1.35, 1.14-1.59) and smoking (OR=1.28, 1.03-1.60) were associated with LBP. Among children, sedentary lifestyle was a remarkable risk factor for LBP (OR=1.41, 1.24- 1.60); prolonged TV watching (OR=1.23, 1.08-1.41) and computer/mobile using and console playing time (OR=1.63, 1.36-1.95) were significant risk factors for LBP. Consumption of coffee, however, has yield conflicting results to be considered as a risk factor. Moreover, the researches on the correlation between sedentariness and high-intensity LBP are scarce and inconclusive. Conclusion: Sedentary behavior, whether in work or leisure time, associates with a moderate increase in the risk of LBP in adults, children and adolescents. Low back pain (LBP) is a paramount public health concern contributing to self-perceived disability and a high economic burden worldwide. 1, 2 It is associated with quality of life, 3 long-term sickness, and early retirement as well. 4 It is estimated that about 80% of the population has experienced an episode of LBP in their lives. 5 LBP is more common in females and those between 40-69 years. LBP prevalence increases with aging, and the LBP in childhood associates with the corresponding figure in adulthood. 6 It is shown that musculoskeletal symptoms in the lower back are correlated with other body segments, including the neck, upper back, and shoulders. 7 Sedentary behaviors, on the other hand, are defined as activities with low energy expenditure, performed in rest positions. Sedentary behavior is a predictor of metabolic risk independent of physical inactivity. 8 The health concerns associated with sedentariness are not merely attributable to lack of movement, but also to other simulations such as leisure or work screen time activities, including computer and internet use, TV (television) watching, cell phone use, and playing videogames. 9 Besides, sedentary behavior is related with all-cause mortality concomitant with overweight and obesity, diabetes, and cardiovascular diseases. 10, 11 The association of sedentary behavior with musculoskeletal conditions such as LBP has been widely investigated among the population of workers and non-workers. 12 With respect to sitting time, the findings regarding the association between sitting periods and LBP are inconsistent. One study among 704 participants demonstrated no independent association of sitting time in work time or the whole day with LBP. In this study, the body mass index moderated the mentioned association. 13 In addition, the previous reviews did not mention any association between sitting time itself and LBP in leisure time or at work. [14] [15] [16] However, a mixture of whole-body vibration, awkward postures, and prolonged sitting increased the risk of LBP. 14 On the other hand, a study among 136 teaching staff reported that physical inactivity was related to LBP; but tobacco use and level of alcohol intake did not have such association with LBP. 17 In a research among 665 blue-collar workers, a longer duration of sitting periods at work was beneficial for LBP. 18 The difference in study design, measurement methods, and participants (or occupational groups) with different sedentary tasks may contribute to inconsistency for the correlation of sitting time and LBP in previous research. 18 Excessive consumption of coffee and cigarette smoking were associated with an elevated likelihood of recurring LBP among 609 Polish residents. In this study hyperlipidemia, type 2 diabetes, and hypertension, were significantly associated with an increased likelihood of chronic LBP as well. 19 Furthermore, in a cross-sectional study among 1221 school adolescents, playing video games (≥2 hours/day) and watching television (≥12 hours/week) were proposed as independent risk factors of LBP. 20 Given the controversies in different articles, in this study, we investigated the relationship of different indicators of sedentary behavior and inactivity (including sitting time, screen time, smoking, consumption of coffee, and excess weight) with LBP, whether in leisure time or work time. We aimed to synthesize the available data to quantify the abovementioned associations to address inconsistencies in previous research. A brief systematic review has been presented in the case of a lack of required data for meta-analysis. In addition, we addressed the mentioned association among children and adolescents with a particular focus. We performed a comprehensive search through electronic databases, including PubMed, Embase, Web of Science and Scopus for records published up to April 28, 2020. Based on a PEO framework (Patient/Population/Problem, Exposure, and Outcome) for the eligibility of the research question, we combined the indicators or equivalents of sedentary behavior on the one hand and the equivalents of LBP, on the other hand, for building the search strings. To facilitate the process of screening, we refined the results via the following filters wherever those were available in the search engines: article, journals, English language, full text, human studies. Appendix 1 shows the search strings in the abovementioned databases. All the analytical observational studies (cross-sectional, casecontrol, or longitudinal designs) in which the association between sedentary behavior and LBP was investigated, were favorable to be contained in our review. We did not include the experimental studies in which the effects of behavior intervention or experiment on LBP were studied. Studies with individuals with a specific medical condition such as scoliosis or renal failure who may spend most of their time for sedentary activities were excluded. Age range and type of occupation were not considered as limiting factors, i.e., children and adults with sedentary behavior and LBP were considered to be the subjects of our review. Factors contributing to sedentary behavior, including sitting time, screen time, smoking, consumption of coffee, and body mass index, were considered to be the individuals' exposures. The onset or recurrence of nonspecific or mechanical LBP measured via different methods was the desired outcome in our study. We excluded the studies in which sciatica or any kind of radicular pain was investigated. Two independent reviewers (S.B.M and R.R) screened the relevant records using Endnote software (version 18) after removing duplicates. Thereafter, additional letters, books, review or conference papers, non-English language, and unavailable full texts that were not excluded in refining results in the search engines were excluded. Then, we reviewed the full texts of remained records entirely at the next step. We excluded the articles with topics, study design, or participants irrelevant to our review ( Figure 1 ). Any disagreement was solved via a discussion for reaching consensus in the whole process. Two of the researchers (S.B.M and B.V) performed the study quality assessment independently. The STROBE scale, which consists of 22 items (combined version, 2007), was used for this purpose. 21 One score to each item was given by each reviewer separately, if the criteria were fulfilled. For each paper, a mean STROBE scores ≥16.5, in the range 11 to 16.5 and lower than 11 were considered as high, moderate and low with respect to study quality, respectively. 22 The agreement coefficient between researcher's scores was more than 0.5. The desired effect size was considered as an odds ratio with 95% confidence interval (OR, 95% CI). Cochran's Q and inconsistency index (I 2 ) were used to explore the heterogeneity of the included articles. The random-effects model with DerSimonian and Liard method 23 was used when data accumulated from studies, differed in ways that would have impacted on the results (e.g. subjects, exposure), otherwise the fixed effect model with inverse variance method was conducted. Then, the effect of each study on the pooled OR was assessed using sensitivity analysis. We performed subgroup analyses to evaluate the source of heterogeneity based on the following possible variables; type of sedentary behaviors and occupation type. The Begg's and Egger's tests were performed to explore publication bias. P value < 0.05 from both tests indicated remarkable publication bias. All analyses were conducted in the Stata, version 11.2 (STATA Corp, College Station, TX, USA). The items included in the current review have been written according to the checklist and flow diagram of the PRISMA version 2009. 24 Overall, 3406 records were recognized via a comprehensive search through biomedical sources. With excluding duplicates, books, letters, conference papers, review articles, non-English records, and unavailable full texts, 2255 records remained to be screened via title, abstract or whole text. Finally, we included 49 studies in this review, of which 27 were retained in the meta-analysis for different purposes, 19, 20, 18 were excluded due to undesirable effect sizes 1,5,13,50-64 and 4 were excluded due to cohort/ case-control designs. [65] [66] [67] [68] Figure 1 shows the process of study selection through a schematic flowchart. With respect to study design of included articles in the review, 8 have been conducted in cohort/prospective design, 51,52,54,56,58,65-67 1 in case-control design, 55 1 in retrospective nested case-control design 68 and the rest in cross-sectional/survey design. Among all studies, 15 were conducted in children or under graduated students. 20, 26, 29, 31, 35, 38, 40, 46, 47, 51, 53, 55, 61, 62, 66 Only four studies investigated the association of coffee drinking with LBP. 19, 32, 57, 62 Complete information of these 49 articles has been presented in Table 1 and ordered chronologically from old studies to new ones. Mean STROBE scores from two reviewers revealed 42 studies conducted in high quality and 7 studies in a moderate quality. We used all these studies in data synthesis or meta-analysis since, concerning moderate quality studies, none of those had small sample sizes or inaccurate estimates. Besides, in the sensitivity analyses, all of the studies were excluded, and the effect sizes were estimated again to ensure the accuracy of data. The quality of each selected study is presented in Table 1 . More details about the assessment of study qualities are presented in Appendix 2. The forest plot for the association between sedentary behaviors and LBP among children and adolescents is shown in Figure 2 . The pooled odds ratio (based on crosssectional studies) illustrated that sedentary lifestyle was a remarkable risk factor for LBP among children and adolescents (OR = 1.41, 95% CI = 1.24-1.60, P = 0.002; I 2 = 66.5%, P = 0.001). No evidence of publication bias was noted (for all studies, P value of Egger's test = 0.40, and P value of Begg's tests = 0.19). The forest plot for the correlation of sedentary behaviors and LBP among the adult population is shown in Figure 3 . The pooled odds ratio (based on cross-sectional studies) illustrated that the sedentary lifestyle was a considerable risk factor for LBP among the adult population (OR = 1.24, 95% CI = 1.02-1.50, P <0.001; I 2 = 84.8%, P < 0.001). No evidence of publication bias was noted (for all studies, P value of Egger's test = 0.91, and P value of Begg's tests = 0.08). Results of subgroup analysis based on the type of sedentary behaviors among children/adolescents and adult populations are shown in Figure 4 and Figure 5 , respectively. Among children and adolescents prolonged watching TV (OR = 1.23, 95% CI = 1.08-1.41, P = 0.003; I 2 = 6.6%, P = 0.37), computer/mobile using and console playing time (OR = 1.63, 95% CI = 1.36-1.95, P = 0.001; I 2 = 47.9%, P = 0.09) were significant risk factors for LBP (P value < 0.05) ( Figure 4 ). Among adult population prolonged sitting time (OR = 1.42, 95% CI = 1.09-1.85, P = 0.03; I 2 = 85.5%, P < 0.001), and driving time (OR = 2.03, 95% CI = 1.22-3.36, P <0.001; I 2 = 56.8%, P = 0.13) were the significant risk factors for LBP ( Figure 5 ). Among office workers, sedentary lifestyle was an essential risk for LBP (OR = 1.23, 95% CI = 1.03-1.47, I 2 = 0%) ( Figure 6 ). As shown in Figures 7 and 8 , overweight or obesity (OR = 1.35, 95% CI = 1.14-1.59, P = 0.02; I 2 = 90.3%, P < 0.001) and smoking (OR = 1.28, 95% CI = 1.03-1.60, P = 0.01; I 2 = 86.5%, P < 0.001) were the significant risk factors for LBP among adult population. In children, excess wight (OR = 1.60, 95% CI = 1.13-2.27, P = 0.021; I 2 = 0.00, P = 0.49) was associated with LBP as well. No evidence of publication bias for BMI was found (P value of Egger's test = 0.41, and P value of Begg's tests = 0.68). We found publication bias for smoking (P value of Egger's test = 0.71, and P value of Begg's tests = 0.03). Therefore, we conducted the Trim and Fill method to explore the effect of publication bias on the meta-analysis results. However, no significant change in the pooled OR was noted. As shown in Figure 9 , leisure time inactivity was an essential risk factor for LBP (OR = 1.28, 95% CI = 0.92-1.77, I 2 = 81%). We found no significant changes between the beforeafter sensitivity pooled OR for the association between sedentary lifestyle and LBP among children and adolescents. However, results showed a remarkable effect between before-after sensitivity pooled OR for the correlation between the sedentary lifestyle and LBP among adult population after excluding Zhang et al 45 Besides, no remarkable changes between the beforeafter sensitivity pooled OR for the association between the sedentary lifestyle and LBP among healthcare workers and office workers were noted. Sedentary behavior at work with non-neutral posture correlates with LBP among workers. 50 Bending postures but not sedentary leisure time itself have been proposed to be associated with new LBP in nurses. 54 However, three studies stated no association between sedentary habits and LBP. 55, 61, 62 Sitting behavior was associated with chronic LBP and functional disfunction among 70 call center employees. 1 Among a population of truck drivers, the only factor correlated to LBP was the number of working hours. 5 Also, the daily number of studying hours (>5 hours) precipitated the LBP in young adults. 57 On the other hand, sitting time was not considered a risk factor for LBP in 3 studies. [58] [59] [60] LBP was reported more in school children playing videogames >2 hours/day and not for television watchers in the Gunzburg et al study. 51 Similar to this finding, a cohort study by Croft et al reported that watching television > 3 hours/day did not enhanced the risk of recurrent LBP in the UK general population. 52 Similarly, in a cohort study among Finnish children, the sedentary class boys (derived from latent class analysis) did not presented with increased risk for reporting LBP or consultation for LBP. 66 More conflicting results have been reported in Shehab et al study in which the LBP correlated with female gender and TV watching time in children and adolescents. 53 In Hussain et al. study, TV watching time in women was associated with greater LBP disability. The authors suggested that targeting the time spent TV watching would be effective in reducing LBP disability in adults at the level of community. 65 A retrospective study revealed that sedentary work was associated with LBP in both genders after a 24 year period. 68 Also, in Shiri et al study, lifestyle including abdominal obesity and smoking increased the risk of LBP. Reduced risk of LBP was obtained via walking and cycling to work (OR = 0.75). 67 Regarding the intensity of LBP, Gupta et al showed a notable association between total sitting time and high LBP intensity among 201 participants (OR = 1.43). 63 The duration of sitting time both in work and leisure time was associated with LBP intensity in another study. 56 Such a relationship was investigated in Ye et al study among 417 office workers. In contrast, in this study computer use ≥ 8 hours/day was not associated with high intensity LBP. 64 In the Korshøj et al study, the sitting pattern was not correlated with the intensity of LBP. 13 Moreover, in Hussain et al. cohort study on 5058 individuals, no significant associations between < 2.5 hours/week physical activity and ≥ 2 hours/day TV watching, with LBP intensity at follow-up were reported. 65 Thus, further research is necessary to better elucidate the effect of sedentariness on the risk of high-intensity LBP. In a survey, Citko et al showed that coffee drinking, 6 cups per day or more, increased the risk of non-specific LBP recurrence by 16 times compared to smaller amounts in medical personnel. 19 Also, a survey of 134 postmenopausal women reported a significant association of drinking coffee (yes/no) with LBP (OR = 3.1). 32 However, in the Aggarwal study, regular or occasional coffee intake was not associated with LBP among undergraduate students. 62 The absence of association was found in the Ganesan et al study as well. 57 Abovementioned studies were all crosssectional in their design. The effect of coffee on back pain may be dose-dependent or through indirect mechanisms such as via affecting bone health. 32 To better clarify this issue, further exploration is necessary, with a standard measurement of coffee/caffeine intake, especially in longitudinal research. Our study explored the association of sedentary behavior and LBP. The results demonstrate the role of sedentary behavior as a risk factor for the increased incidence of LBP, both in adults and children (OR = 1.24 and 1.41, respectively). A similar systematic review to ours, published in 2009, was performed on 15 observational studies up to 2006 and revealed that there was no correlation between sedentary behavior both in work or leisure time with LBP. 12 However, given that more articles have been published in recent years, we were able to obtain the pooled OR for the abovementioned association for adults and children separately. In addition, in the previous review, only prolonged sitting was considered as sedentary behavior, whereas we conducted subgroup meta-analyses according to the type of sedentary behaviors and occupation type. The time spent in sedentary lifestyle has become a significant health concern. The sedentary behavior prevalence is high, even in developed countries. 69 One study showed that children spend 51.4% of their working time in sedentary lifestyle. These common behaviors may be established in childhood and track through later life. 70 Sedentary behavior is linked to various musculoskeletal pain conditions. 71 Despite the controversies observed in included articles in our systematic review, the pooled effects sizes obtained from meta-analysis of other studies revealed that prolonged sitting time and prolonged driving time are significant risk factors of LBP among adults (OR = 1.42, 2.03 respectively). However, prolonged screen time and standing time were not associated with LBP in adults. Also, among children, prolonged TV watching (OR = 1.23), and computer/mobile using or console playing time (OR = 1.63) were associated with LBP. A meta-analysis study indicated that excess weight is a risk factor for LBP in both genders. 72 Another study revealed that smokers have a higher incidence of LBP compared to nonsmokers; these associations were fairly modest (OR = 1.32 for former and OR = 1.31 for the current smokers). Of note, the association between current smoking and LBP was more remarkable in adolescents than in adults (OR = 1.82 vs. 1.16) . 73 Similarly, we found that increased body mass index in adults and children and smoking in adults, are risk factors for LBP (OR = 1.35, 1.60 and 1.28 respectively), in whom the sedentary behavior has been investigated. These finding suggest that smoking and body mass index interact with sitting and LBP. 13 In addition, to avoid heterogeneity, we identified two main occupation categories as healthcare workers and office workers among the included studies. We found that sedentary behavior is a risk for LBP in office workers (OR = 1.23). In previous research, prolonged sitting and computer use were contributed to LBP in office workers. 48 As for underlying pathways, decreased level of water supply to the vertebral disc, which in turn leads to degenerative changes and disk herniations, reduced strength and muscular power, and developing hyperlordosis are some proposed pathophysiological mechanisms for sedentary behavior contributing to LBP. 19 Specifically, prolonged sitting is contributed to decreased postural change, as well as muscle strength and disk degenerations. 13 Obesity or overweight causes overload on the spinal tissues and contributes to disk herniation and LBP. On the other hand, obesity is associated with other disorders such as diabetes and hyperlipidemia that are also correlated to LBP by different mechanisms. 74 Smoking can alter the blood supply of vertebral disks via the processes of vasoconstriction and atherosclerosis. Impaired perfusion of vertebral structures leads to degenerative changes and LBP. Besides, smoking is a risk factor of osteoporosis or is a behavior seen only the people with massive physical works; thus, it has direct and indirect effects on the LBP. 73 Moreover, coffee consumption is proposed to be associated with flushing magnesium from the body and increased painful contractions of paraspinal muscles. 75 The data heterogeneity of included studies in our review can be explained in part by variations in study designs, study population, sample sizes, occupation type, gender, race, and age range. However, beyond those, some factors seem to be more important, as follows. First, the definition of LBP and its measurement scales were considerably different in the studies. For instance, experiencing LBP during the current week for at least 48 hours via the Roland-Morris Disability Questionnaire was measured in the Inoue et al. study. 36 In the Ben Ayed et al study, however, participants were asked about discomfort and pain in the low back area during the prior month. 20 Some authors, though, defined recurrent LBP as pain episodes of at least three times in the last 12 months and chronic LBP as the pain persisted for at least 12 weeks based on the Nordic Musculoskeletal Questionnaire. 19 Many studies, however, did not differentiate chronic LBP from acute LBP. Second, sedentary behavior has diverse definitions and types in various studies. While some authors explored the association of sitting time merely with LBP, 28 some others have turned their attention to the screen time or a combination of both. 49 In some other studies, sedentary habits were not categorized into any different types. 68 In addition, the common measurement tool for sedentary behavior is subjective self-reported questionnaires, which, in turn, are prone to information bias from participants. However, a few studies used objective-based tools such as an accelerometer or textile pressure mat to estimate the sitting time. 1, 63 Thus, to make accurate estimations, we performed subgroup analyses for specified sedentary behavior in the papers, both for adults and children separately. For future research, focusing on objectivebased measurement of sedentary behaviors is highly suggested. The third is that LBP, as a complex multifactorial disease, is affected by psychological conditions and the tasks performed in non-sitting positions at work or leisure time. Therefore, just a part of the variation in LBP is because of sedentary-related risk factors. 33, 48 Thus, the variety in the combination of these factors in different participants seems to be accounted for the data heterogeneity. We applied different statistical methods to obtain the desired associations for adults and children separately, as the risk factors of LBP may be different in these age groups. We found new data and demonstrated significant but moderate associations between different sedentary behaviors and LBP. Regarding the large number of studies conducted in this field (which were retained in the metaanalysis), the results can be well generalized to different communities. A recent meta-analysis evaluating the lifestyle interventions to reduce sedentary behavior among five categories of population with a clinical condition (including musculoskeletal conditions) demonstrated that after multicomponent interventions, individuals with different medical conditions successfully reduced their sedentary behavior (by 64 minutes/day). The interventions consisted of the use of technologies, social facilitation, motivational counselling and self-monitoring. 76 As LBP is a complex disorder, health education to reduce the prevalence or occurrence of LBP should be address the risk factors as much as possible including sedentary behavior. In brief, according to our meta-analysis, sufficient evidence exists from recent studies that indicate the association of different types of sedentary behavior with the occurrence or recurrence of LBP both in adults and children. Given the increasing trend of sedentary behavior worldwide, especially in the era of the COVID-19 pandemic, meticulous and robust preventive strategies are suggested to be applied to avoid the establishment of sedentariness early in childhood and to prevent its' musculoskeletal consequences such as LBP. Search string for Web of Science TOPIC: (tea OR coffee OR caffeine OR "sedentary lifestyle" OR "physical inactivity" OR "sedentary behavior*" OR "screen time" OR "sitting time" OR sedentary OR "watching TV" OR "playing video game*" OR "working on a computer") AND TOPIC: ("low back pain" OR "back pain" OR "spinal pain" OR "spine pain" OR lumbago OR backache OR "lumbar spondylosis" OR "postural low back pain" OR "mechanical low back pain") 492 Records [with these filters: article, English] Search string for Scopus ( ALL ( tea OR coffee OR caffeine OR «sedentary lifestyle» OR «physical inactivity» OR «sedentary behavior*» OR «screen time» OR «sitting time» OR sedentary OR «watching TV» OR «playing video game*» OR «working on a computer» ) AND TITLE-ABS-KEY ( «low back pain» OR «back pain» OR «spinal pain» OR «spine pain» OR lumbago OR backache OR «lumbar spondylosis» OR «postural low back pain» OR «mechanical low back pain» ) ) AND ( LIMIT-TO ( DOCTYPE , «ar» ) ) AND ( LIMIT-TO ( LANGUAGE , «English» ) ) AND ( LIMIT-TO ( SRCTYPE , «j» ) ) 1744 Records [with these filters: article, journals, English] Low back pain and its relationship with sitting behaviour among sedentary office workers Does sedentary behavior increase the risk of low back pain? a population-based co-twin study of Spanish twins Factors associated with chronic and acute back pain in Wales, a crosssectional study Prognostic factors for duration of sickness absence due to musculoskeletal disorders Study of the prevalence and risk factors for low back pain in truck drivers in the state of São Paulo, Brazil Non-specific low back pain Low back symptoms among hospital nurses, associations to individual factors and pain in multiple body regions Fundamental questions about genes, inactivity, and chronic diseases Sedentariness and health: is sedentary behavior more than just physical inactivity? Front Public Health Daily sitting time and all-cause mortality: a meta-analysis Total sitting time and risk of myocardial infarction, coronary heart disease and all-cause mortality in a prospective cohort of Danish adults Sedentary lifestyle as a risk factor for low back pain: a systematic review Is objectively measured sitting at work associated with low-back pain? a cross sectional study in the DPhacto cohort Association between sitting and occupational LBP Spinal mechanical load as a risk factor for low back pain: a systematic review of prospective cohort studies. Spine (Phila Pa 1976) Is sitting-while-at-work associated with low back pain? a systematic, critical literature review Prevalence and risk factors for low back pain among university teaching staff in Nairobi, Kenya: a cross-sectional study Prolonged sitting at work is associated with a favorable time course of low-back pain among blue-collar workers: a prospective study in the DPhacto cohort Sedentary lifestyle and nonspecific low back pain in medical personnel in North-East Poland Prevalence, risk factors and outcomes of neck, shoulders and low-back pain in secondary-school children The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies Association between maternal smoking and child bone mineral density: a systematic review and metaanalysis Cochrane Handbook for Systematic Reviews of Interventions Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement Psychosocial and physical risk factors for musculoskeletal disorders of the neck, shoulders, and lower back in salespeople Associations between activities and low back pain in adolescents Low back pain and its risk indicators: a survey of 7,040 Finnish male conscripts Prevalence of low back pain in Greek public office workers Associations of physical activity and inactivity with low back pain in adolescents Low back pain: prevalence and associated risk factors among hospital staff Physical activity and low-back pain in schoolchildren Bone mineral density and perceived menopausal symptoms: factors influencing low back pain in postmenopausal women Studying the relationship between low back pain and working postures among those who stand and those who sit most of the working day Occupational low back pain in primary and high school teachers: prevalence and associated factors Low back pain in schoolchildren: a cross-sectional study in a western city of São Paulo State The prevalence and characteristics of low back pain among sitting workers in a Japanese manufacturing company Non-specific low back pain: occupational or lifestyle consequences? Multivariable modeling of factors associated with spinal pain in young adolescence Analyzing musculoskeletal system discomforts and risk factors in computer-using office workers Late bedtimes, short sleeping time, and longtime video-game playing are associated with low back pain in school-aged athletes Behavior-related factors associated with low back pain in the US adult population. Spine (Phila Pa 1976) Risk factors associated with pain severity in patients with non-specific low back pain in Southern China Longer sitting time and low physical activity are closely associated with chronic low back pain in population over 50 years of age: a cross-sectional study using the sixth Korea National Health and Nutrition Examination Survey Oneyear prevalence of low back pain and its correlates in Hisar urban population Low back pain in emergency ambulance workers in tertiary hospitals in China and its risk factors among ambulance nurses: a cross-sectional study Musculoskeletal spine pain in adolescents: epidemiology of non-specific neck and low back pain and risk factors Low back pain in adolescents and association with sociodemographic factors, electronic devices, physical activity and mental health The relationship between sedentary behavior, back pain, and psychosocial correlates among university employees. Front Public Health Prevalence of and risk factors for low back pain among healthcare workers in Denizli Occupational risk factors for low back pain among sedentary workers Low back pain in a population of school children Short-term physical risk factors for new episodes of low back pain. Prospective evidence from the South Manchester Back Pain Study. Spine (Phila Pa 1976) Nonspecific low-back pain in Kuwaiti children and adolescents: associated factors New low back pain in nurses: work activities, work stress and sedentary lifestyle Risk factors for nonspecific low-back pain in Chinese adolescents: a case-control study Associations of objectively measured sitting and standing with low-back pain intensity: a 6-month follow-up of construction and healthcare workers Prevalence and risk factors for low back pain in 1,355 young adults: a cross-sectional study Total sitting time, leisure time physical activity and risk of hospitalization due to low back pain: The Danish Health Examination Survey cohort Determination of pain in musculoskeletal system reported by office workers and the pain risk factors Low back pain in Brazilian medical students: a cross-sectional study in 629 individuals Prevalence of low back pain in young Brazilians and associated factors: sex, physical activity, sedentary behavior, sleep and body mass index Low back pain and associated risk factors among undergraduate students of a medical college in Delhi Is objectively measured sitting time associated with low back pain? a cross-sectional investigation in the NOMAD study Risk factors of non-specific neck pain and low back pain in computer-using office workers in China: a cross-sectional study Associations between television viewing and physical activity and low back pain in communitybased adults: a cohort study Accumulation of psychosocial and lifestyle factors and risk of low back pain in adolescence: a cohort study Risk factors for low back pain: a populationbased longitudinal study Physical and psychosocial factors related to low back pain during a 24-year period. A nested case-control analysis. Spine (Phila Pa Amount of time spent in sedentary behaviors in the United States Prevalence of objectively measured sedentary behavior in early years: systematic review and meta-analysis Impact of sedentary behavior on bodily pain while staying at home in COVID-19 pandemic and potential preventive strategies Obesity as a risk factor for low back pain: a meta-analysis The association between smoking and low back pain: a meta-analysis Evaluation of metabolic syndrome in patients with chronic low back pain: using the fourth Korea national health and nutrition examination survey data Mechanical factors and vitamin D deficiency in schoolchildren with low back pain: biochemical and cross-sectional survey analysis Lifestyle interventions to reduce sedentary behaviour in clinical populations: a systematic review and meta-analysis of different strategies and effects on cardiometabolic health