key: cord-1036513-w9x4pae2 authors: Lundstrom, Kenneth title: Replicon RNA Viral Vectors as Vaccines date: 2016-11-07 journal: Vaccines (Basel) DOI: 10.3390/vaccines4040039 sha: 5bb2fe58be63844d5b13a6b0cacd3ec2c80d3cb3 doc_id: 1036513 cord_uid: w9x4pae2 Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions. Vaccine development against infectious diseases has classically been based on live attenuated or inactivated infectious agents [1] . Recently, the approach of vaccination with recombinantly expressed antigens and immunogens from viral and non-viral delivery systems has been introduced to the repertoire [2, 3] . In this context, immunization with surface proteins and antigens has elicited strong humoral and cellular immune responses and vaccinated animals showed protection against challenges with lethal doses of infectious agents or tumor cells [4] . The types of non-viral vectors applied include liposomes [5] , immunostimulatory complexes (ISCOMs) composed of adjuvant Quil A and peptides [6] , and multiple antigen peptides (MAPs) also known as dendrimers [7] . A number of viral vectors based on adenoviruses, alphaviruses, avipoxiviruses, enteroviruses, flaviviruses, measles viruses (MV), rhabdoviruses, and vaccinia viruses have been engineered for vaccine development [3, 8] . In this context, self-replicating RNA virus vectors have proven highly efficient for immunization studies in various animal models [9] . Among RNA viruses, rabies virus (RABV) and vesicular stomatitis virus (VSV) belonging to the rhabdovirus family carry a single-stranded RNA (ssRNA) genome of a negative polarity [10] . Likewise, MV possess a negative-sense ssRNA genome [11] . In contrast, flaviviruses and alphaviruses are of positive polarity. West Nile virus [12] and Kunjin virus [13] are the most common flaviviruses applied for immunization studies. Similarly, expression vectors have been engineered for alphaviruses such as Semliki Forest virus (SFV) [14] , Sindbis virus (SIN) [15] and Venezuelan equine encephalitis virus (VEE) [16] . In this review, various self-replicating RNA virus vectors are described and their applications as recombinant virus particles, RNA replicons and layered DNA plasmids are compared. Moreover, examples are given of utilization of self-replicating RNA virus systems for immunization studies in Both RABV [10, 31] and VSV [32, 33] have been subjected to expression vector engineering ( Figure 4 ). Similar to MV, reverse genetics has been applied for efficient recovery of VSV based on recombinant vaccinia virus, where the VSV N, P and L genes were inserted downstream of a T7 promoter and an internal ribosome entry site (IRES) [33] . The role of vaccinia virus has been to provide T7 RNA polymerase. However, vaccinia virus causes strong cytopathic effects in transfected cells, the vaccinia virus DNA polymerase contributes to homologous recombination between full-length genome and helper plasmids, and vaccinia virus may also contaminate recombinant virus stocks. For this reason, a BHK cell line stably expressing the T7 RNA polymerase was engineered as a vaccinia virus-free system for RABV [31] . In addition to rhabdovirus vectors, chimeric virus-like particles (VLPs) have been generated by expressing the VSV glycoprotein (VSV-G) in trans with the SFV replicon by introduction of a mutated SFV 26S promoter for packaging of infectious SFV pseudoparticles [34] . This system provides high biosafety standards as VSV-G shares no homology with the SFV genome. Both RABV [10, 31] and VSV [32, 33] have been subjected to expression vector engineering ( Figure 4 ). Similar to MV, reverse genetics has been applied for efficient recovery of VSV based on recombinant vaccinia virus, where the VSV N, P and L genes were inserted downstream of a T7 promoter and an internal ribosome entry site (IRES) [33] . The role of vaccinia virus has been to provide T7 RNA polymerase. However, vaccinia virus causes strong cytopathic effects in transfected cells, the vaccinia virus DNA polymerase contributes to homologous recombination between full-length genome and helper plasmids, and vaccinia virus may also contaminate recombinant virus stocks. For this reason, a BHK cell line stably expressing the T7 RNA polymerase was engineered as a vaccinia virus-free system for RABV [31] . In addition to rhabdovirus vectors, chimeric virus-like particles (VLPs) have been generated by expressing the VSV glycoprotein (VSV-G) in trans with the SFV replicon by introduction of a mutated SFV 26S promoter for packaging of infectious SFV pseudoparticles [34] . This system provides high biosafety standards as VSV-G shares no homology with the SFV genome. The structural genes are from the HEP-Flury strain except the G protein from the CVS strain. Foreign genes can be inserted between the N and P or G and L genes, respectively. CMV, cytomegalovirus promoter; G, rabies G protein; L, rabies L protein; M, rabies matrix protein; N, rabies nucleocapsid protein. Self-replicating RNA virus vectors have been frequently used for vaccine development against infectious diseases and various types of cancers [9] . Both vectors based on ssRNA viruses of positive (Kunjin virus, SFV, SIN, VEE) and negative (MV, RABV, VSV) polarity have been utilized for the expression of viral surface proteins and tumor antigens followed by immunization studies in animal models. Moreover, for vaccination, different approaches including recombinant particles, RNA replicons and layered DNA plasmids have been applied. The targets for vaccine development for infectious diseases comprise mainly surface antigens of pathogenic viruses (Table 1 ) and other infectious agents ( Table 2 ). Obvious targets for vaccine development have been antigens of influenza virus and HIV. In this context, recombinant SFV particles expressing influenza nucleoprotein (NP) have demonstrated strong immune responses [35] . Similarly, VEE-based expression of hemagglutinin (HA) elicited strong immune responses and even provided protection against challenges with H5N1 virus in chicken [36] . Likewise, expression of the swine influenza virus HA H3N2 gene from VEE vectors protected swine from influenza virus challenges [37] . In another study, the swine influenza HA gene was expressed from replicationdeficient alphavirus particles showing no spread of vaccine or reversion to virulence in the intended host (pig) or non-host (mouse) species [38] . Specific humoral and interferon-γ (IFN-γ) responses were observed in pigs, which were also protected against influenza virus challenges. Recombinant MV vectors carrying the HA gene have also been applied for vaccination studies [39] . Also VSV vectors have been utilized for vaccine development against influenza virus [40] . Instead of using full-length HA, expression of the stalk domain of HA generated chimeric HA (cHA) antigens. Both intramuscular and intranasal immunization of mice resulted in HA stalk-specific, cross-reactive antibodies. Prime-boost vaccination provided protection against lethal challenges with both homologous and heterologous influenza strains, which was significantly superior with intranasal administration. The structural genes are from the HEP-Flury strain except the G protein from the CVS strain. Foreign genes can be inserted between the N and P or G and L genes, respectively. CMV, cytomegalovirus promoter; G, rabies G protein; L, rabies L protein; M, rabies matrix protein; N, rabies nucleocapsid protein. Self-replicating RNA virus vectors have been frequently used for vaccine development against infectious diseases and various types of cancers [9] . Both vectors based on ssRNA viruses of positive (Kunjin virus, SFV, SIN, VEE) and negative (MV, RABV, VSV) polarity have been utilized for the expression of viral surface proteins and tumor antigens followed by immunization studies in animal models. Moreover, for vaccination, different approaches including recombinant particles, RNA replicons and layered DNA plasmids have been applied. The targets for vaccine development for infectious diseases comprise mainly surface antigens of pathogenic viruses (Table 1 ) and other infectious agents ( Table 2 ). Obvious targets for vaccine development have been antigens of influenza virus and HIV. In this context, recombinant SFV particles expressing influenza nucleoprotein (NP) have demonstrated strong immune responses [35] . Similarly, VEE-based expression of hemagglutinin (HA) elicited strong immune responses and even provided protection against challenges with H5N1 virus in chicken [36] . Likewise, expression of the swine influenza virus HA H3N2 gene from VEE vectors protected swine from influenza virus challenges [37] . In another study, the swine influenza HA gene was expressed from replication-deficient alphavirus particles showing no spread of vaccine or reversion to virulence in the intended host (pig) or non-host (mouse) species [38] . Specific humoral and interferon-γ (IFN-γ) responses were observed in pigs, which were also protected against influenza virus challenges. Recombinant MV vectors carrying the HA gene have also been applied for vaccination studies [39] . Also VSV vectors have been utilized for vaccine development against influenza virus [40] . Instead of using full-length HA, expression of the stalk domain of HA generated chimeric HA (cHA) antigens. Both intramuscular and intranasal immunization of mice resulted in HA stalk-specific, cross-reactive antibodies. Prime-boost vaccination provided protection against lethal challenges with both homologous and heterologous influenza strains, which was significantly superior with intranasal administration. For obvious reasons HIV has been a popular target for vaccine development. For instance, administration of Kunjin replicons expressing the HIV-1 gag antigen to BALB/c mice elicited gag-specific antibodies and protective gag-specific CD8+ T cell responses [41] . Interestingly, a single immunization with Kunjin virus particles induced 4.5-fold higher CD8+ T-cell responses and protection agains HIV challenges was obtained after two injections. Furthermore, RNA optimized Kunjin virus constructs for SIV Gag-Pol demonstrated improved effector memory and central memory responses as well as protection in primates [45] . Alphavirus vectors have also been employed for HIV vaccine development. Immunization with SFV particles expressing the Env [42] and gp41 [43] genes elicited humoral and cytotoxic T-lymphocyte (CTL) responses in mice. Interestingly, priming with a low dose (0.2 µg) DNA-based SFV replicon expressing the HIV Env and a Gag-Pol-Nef fusion prior to a heterologous boost with poxvirus (MVA) and/or HIV gp140 protein formulated in glycopyranosyl lipid A resulted in significantly enhanced immune responses [44] . Moreover, when macaques were immunized with a VSV vector carrying the SIV Env (smE660) gene neutralizing antibodies were obtained [46] . However, when challenged with SIVsmE660, all animals were infected. In contrast, vaccination with a combination of gag and Env resulted in immunity [47] . RABV vectors have also been employed for the expression of SIV Env and gag in macaques [48] . Although immune responses were detected for RABV glycoprotein G, no cellular responses were obtained against SIV antigens. However, replacing the RABV G with VSV G resulted in SIV-specific immune responses and immunized macaques were protected against SIV challenges. A number of immunization studies have targeted such lethal viruses as Ebola and Lassa viruses. For instance, dose-dependent protection against Ebola virus was achieved in guinea pigs when immunized with Kunjin virus particles expressing the Ebola virus wild-type glycoprotein GP or a mutant GP (D637L) [49] . Similarly, African green monkeys were subcutaneously immunized with Kunjin particles carrying the Ebola GP D673L mutant [50] . Protection of three out of four primates was obtained against challenges with Zaire Ebola virus. Application of VSV vectors expressing the Ebola GP gene has also provided protection of macaques after challenges with the West African EBOV-Makuna strain [51] . Likewise, protection against three different Ebola strains was achieved by expression of Ebola GP from VSV vectors [52] . Alphavirus vectors have also been utilized for vaccine development against Ebola virus. In this context, RNA replicons derived from an attenuated VEE strain were applied for the expression of Ebola GP and nucleoprotein (NP) [53] . Immunization studies showed that VEE-GP alone or in combination with VEE-NP provided protection of both BALB/c mice and guinea pigs. In contrast, VEE-NP alone did not confer protection in guinea pigs, but did in mice. In another study, C57BL/6 mice were immunized with VEE particles expressing Ebola NP, which protected animals from Ebola virus challenges [54] . VSV vectors have been subjected to immunization studies for expression of the Lassa virus glycoprotein (strain Josiah, Sierra Leone), which generated protection in guinea pigs after a single prophylactic injection [55] . It was also shown that macaques were protected against challenges with the genetically distinct Liberian Lassa virus isolate. Importantly, previous VSV-based Lassa virus vaccination did not have an impact on immunization with VSV-Ebola GP particles [77] . Furthermore, alphaviruses have been used for vaccine development against Lassa virus [56] . Guinea pigs immunized with VEE particles expressing Lassa virus glycoprotein or nucleoprotein showed protection against lethal challenges with Lassa virus. Furthermore, a dual expression approach for Ebola and Lassa virus glycoproteins was engineered, which led to protection against both Ebola and Lassa virus challenges. A number of other viral antigens have been subjected to vaccine development. Currently, relevant targets comprise dengue virus, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome corona virus (MERS-CoV). For instance, mice immunized with VEE particles expressing the SARS-CoV glycoprotein provided protection against lethal SARS-CoV challenges [57] . Furthermore, mice were immunized with MV vectors expressing the MERS-CoV glycoprotein, which resulted in induction of T-cell and antibody responses and protection against lethal doses of MERS-CoV [58] . Respiratory syncytial virus (RSV) has also been targeted with recombinant MV vectors by expression of the RSV fusion protein (RSV-F) [39] . Immunization of cotton rats induced neutralizing antibodies against RSV and protected against RSV infection in the lungs. In another application, lipid nanoparticle (LNP) formulations were engineered for VEE RNA replicons, which demonstrated protection against RSV challenges in vaccinated mice [59] . Furthermore, immunization of African green monkeys with VEE particles expressing human RSV-F and metapneumovirus F (hMPV-F) proteins generated RSV-F and MPV-F-specific antibodies resulting in protection against RSV and MPV challenges [60] . In the context of dengue virus vaccines, a hybrid MV vector expressing the hepatitis B surface antigen (HBsAg) and the dengue virus 2 envelope protein (DV2) elicited neutralizing antibodies against MV, HBsAg and DV2 [61] . In another study, MV-DV2 vaccination of mice generated IFN-γ and DV2 antibody responses and protection against four DV serotypes [62] . Alphavirus vectors have also been evaluated for dengue vaccine development. Expression of two configurations of dengue virus E antigen (prME and E85) provided protection in macaques [63] . Moreover, a single immunization of BALB/c mice was sufficient to induce neutralizing antibodies and T-cell responses [64] . The neonatal immunization was durable, could be boosted later in life and provided protection against challenges with dengue virus. Additional viral targets evaluated for vaccine development are listed in Table 1 . Vaccine development has also been extended to other infectious diseases than caused by viral infections (Table 2 ). In this context, mice vaccinated with SFV vectors expressing the Plasmodium falciparum Pf332 antigen elicited immunological memory [68] . Similarly, strong immunity and long-term protection against Mycobacterium tuberculosis was obtained in mice immunized with SIN plasmid DNA vectors carrying the M. tuberculosis 85A antigen (Ag85A) [69] . Furthermore, expression of the botulinum neurotoxin A from layered SFV DNA plasmids elicited antibody and lymphoproliferative responses in immunized BALB/c mice [70] . Co-expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the immune response. Replication-deficient SFV particles carrying the Brucella abortus translation initiation factor 3 (IF3) were subjected to immunization studies in BALB/c mice, which resulted in protection against challenges with the virulent B. abortus strain 2308 [71] . In another study, SIN vectors were utilized for the expression of the protective antigen (PA) for Bacillus antracis in Swiss Webster mice leading to the generation of specific and neutralizing antibodies and partial protection against challenges with pathogenic bacteria [72] . Recombinant SIN vectors were applied for the expression of a class I major histocompatibility complex-restricted 9-mer epitope of the Plasmodium yoelii circumsporozoite protein (CS), which induced a strong epitope-specific CD8+ T-cell response and a high degree of protection against malaria infection in mice [73] . Another approach to develop malaria vaccines involves the application of a live attenuated MV vaccine expressing recombinant antigens against malaria [78] . A modified replication-competent [74] . Due to the generation of neutralizing antibodies against VSV, immunization boosters were only possible for VSV-GP-OVA. CTL responses of similar potency as obtained for state-of-the-art adenovirus administration were observed and complete protection against challenges with Listeria monocytogenes was obtained in mice. In the context of prion disease, SFV DNA, RNA and recombinant particles were employed for the expression of prion protein (PRNP), which allowed generation of monoclonal antibodies against PRNP in immunized mice [75] . Although not directly applied for vaccine development, the generated monoclonal antibodies will be useful for basic research and diagnostics for prions. Alphavirus vectors have also been applied for the development of vaccines against Staphylococcus enterotoxin B (SEB) [76] . Subcutaneous administration of VEE particles expressing SEB resulted in protection against challenge of wild-type SEB in mice. A number of immunization studies have been carried out with self-replicating RNA virus vectors in the area of oncology (Table 3) . For instance, attenuated oncolytic MV strains such as the Edmonston-B (MV-Edm) strain demonstrated anti-tumor activity [79] . The MV-Edm strain does not cause any significant cytopathic effect in normal tissue, but can selectively infect and replicate in tumor cells based on evaluations in cell lines, primary cancer cells and xenograft and syngeneic models for B-cell Non-Hodgkin lymphoma [80] , ovarian cancer [81] , glioblastoma multiforme [82] , breast [83] and prostate [79] cancers. In this context, tumor regression was obtained in SCID mice with human lymphoma xenografts after intratumoral injection of MV-Edm [80] . Moreover, co-administration of MV vectors expressing carcinoembryonic antigen (CEA) and thyroidal sodium iodide symporter (NIS) in mice with SKOV3ip.1 ovarian xenografts showed superior tumor regression in comparison to treatment with either MV-CEA or MV-NIS alone [81] . To improve delivery and enhance efficacy, CD46 and signaling lymphocytic activation molecule (SLAM) ablating mutations in the hemagglutinin protein in combination with the display of a single-chain antibody against the epidermal growth factor receptor (EGFR) were incorporated into MV vectors for tumor targeting [82] . Tumor regression and significantly extended survival were observed after intratumoral administration of MV. Evaluation of MV-CEA delivery in an MDA-MB-231 mammary tumor model revealed a significant delay in tumor growth and prolonged survival [83] . Moreover, intratumoral administration of MV-CEA vectors showed tumor growth delay and improved survival in a subcutaneous PC-3 xenograft model [79] . Rhabdoviruses have also been applied in cancer therapy [84] . VSV vectors lack pre-existing immunity in humans and have demonstrated high susceptibility of cancer cells. Particularly, VSV vectors have been subjected to aggressive pancreatic ductal adenocarcinoma (PDAC) showing superiority to Sendai virus and RSV in 13 clinically relevant human pancreatic cell lines, although the response varied from one cell line to another [85] . Moreover, evaluation in ten PDAC cell lines of three VSV vectors expressing the wild-type matrix protein or ∆M51 showed activation of VSV-mediated apoptosis [86] . However, high constitutive expression of IFN-stimulated genes (ISGs) was discovered in three cell lines, which also contributed to resistance to apoptosis. Kunjin virus replicons expressing the granulocyte colony-stimulating factor (GM-CSF) have been subjected to intratumoral administration, which resulted in cure in less than 50% of mice with established CT26 colon carcinoma and B16-OVA melanomas [87] . Subcutaneous injection led to regression in CT26 lung metastasis. Moreover, Kunjin vectors were engineered to express a CTL epitope of HPV16 E7 protein, which induced E7-directed T-cell responses and provided protection against challenges with an E7-expressing epithelial tumor in mice [88] . In this study, the Kunjin VLPs were more effective than RNA replicons or DNA vectors. Alphavirus vectors have been applied in many studies on cancer vaccines [4, 8] . In principle, tumor-associated antigens (TAAs), immunomodulating cytokines and combination therapies of TAAs and cytokines, TAAs and antibodies, cytokines and antibodies and even microRNAs (miRNAs) have been evaluated. In this context, intratumoral injection of SFV particles expressing enhanced green fluorescent protein (EGFP) showed apoptosis induction in mice implanted with human non-small cell lung carcinoma H353a cells in mice [109] . Furthermore, intratumoral administration of SFV particles into BALB/c mice with implanted sarcoma K-BALB sarcoma and CT26 colon tumors resulted in significant tumor growth inhibition [103] . Also, vaccination of mice with SFV RNA replicons expressing β-galactosidase showed protection against challenges with colon tumor cells [100] . Only a single intratumoral injection of 1 µg of SFV-LacZ RNA resulted in 10-20 days of survival extension in mice with existing tumors. Similarly, SIN-LacZ vectors demonstrated therapeutic efficacy in a mouse CT26 colon carcinoma model [101] . Despite not targeting specifically CT26 cells, SIN vectors showed susceptibility to mediastinal lymph nodes (MLNs), which induced effector and memory CD8+ T-cells displaying robust cytotoxicity. The well-characterized human carcinoembryonic antigen (CEA) elicited neutralizing antibodies after VEE VLP immunization [120] . Moreover, melanoma antigens such as tyrosine-related proteins TRP-1 and TRP-2, gp100 and melanoma antigen tyrosinase (Tyr) have been expressed from VEE vectors [94, 112] . For instance, immunization of mice with VEE-TRP-2 particles resulted in growth inhibition of B16 transplantable melanoma and strong therapeutic potency [111] . Vaccination with VEE-TRP-2 VLPs was more efficient than the combination of VEE-gp100 and VEE-Tyr particles. Furthermore, VEE particles carrying the Tyr gene induced immune responses and tumor protection in mice after administration of VEE VLPs alone or an initial vaccination with plasmid DNA followed by boosting with VEE VLPs [112] . Breast cancer has been targeted in several therapeutic and prophylactic vaccine studies. SIN plasmid DNA carrying the neu gene were subjected to immunization of mice resulting in inhibition of growth of challenged A2L2 tumor cells [94] . Interestingly, vaccination two days after tumor challenge was inefficient. In contrast, immunization in a prime-boost protocol with SIN-neu DNA followed by adenovirus vectors carrying the neu gene prolonged the survival of mice. Due to their potency of stimulation of antigen-specific T-cells, dendritic cells (DCs) were transduced by VEE-neu particles, which resulted in high-level transgene expression, DC maturation and secretion of pro-inflammatory cytokines [95] . Robust neu-specific CD8+ T-cell and anti-neu IgG responses were observed after a single immunization. Moreover, regression of large established tumors was obtained. Another TAA attractive for immunotherapy is the six-transmembrane epithelial antigen of the prostate (STEAP), which has demonstrated up-regulation in multiple cancer cell lines [121] . Transgenic adenocarcinoma of mouse prostate (TRAMPC-2) tumor-bearing mice pre-immunized with VEE VLPs expressing STEAP demonstrated a strong immune response and a significantly prolonged overall survival [116] . The therapeutic affect was assessed for mice with 31-day-old tumors, which resulted in a modest but significant delay in tumor growth. Furthermore, VEE VLPs have been applied for expression of the prostate stem cell antigen (PSCA) in TRAMP mice, where the initial immunization with a PSCA DNA plasmid was followed by VEE-PSCA VLP delivery [117] . The outcome was a specific immune response and protection against tumor challenges in 90% of TRAMP mice. Also, the prostate-specific membrane antigen (PSMA) has been expressed from VEE vectors demonstrating strong humoral and cellular immune responses in subcutaneously immunized mice [115] . VEE VLPs expressing the prostate-specific antigen (PSA) were used for immunization of mice followed by a challenge with TRAMP cells [118] . The VEE VLPs were capable of infecting DCs in vitro and induced a robust PSA-specific response in vivo. Tumors in vaccinated animals showed low PSA expression levels and tumor growth was significantly delayed. The P815A antigen is expressed in P815 mastocytoma tumors, which triggered an immunization study on the P1A gene coding for the PP815A antigen [119] . SFV particles expressing the P1A gene elicited strong CTL responses and protected immunized mice from challenges with P815 tumors. Other interesting TAA vaccine targets have been the E6 and E7 proteins of the human papilloma virus (HPV). Immunization with SFV particles expressing HPV type 16 E6,7 showed strong HPV-specific CTL activity and eradicated HPV-transformed tumors [97] . Similarly, immunization of mice with VEE particles carrying the HPV16 E7 gene prevented tumor development and eliminated established tumors in 67% of vaccinated animals [99] . In another study, tattoo injection [122] of SFV-HPV E6,7 particles resulted in antigen expression in both the skin and draining lymph nodes leading to ten-fold lower antigen levels in comparison to intramuscular administration [98] . However, tattoo injection provided higher or equal levels of immune responses. Cytokines have played an important role in immunotherapy and vaccine development [8] . For instance, interleukin-12 (IL-12) has been expressed from both SFV and SIN vectors. In this context, SFV vectors expressing IL-12 induced tumor regression with long-term tumor-free survival in the MC38 colon carcinoma model [102] . Repeated intratumoral administration increased the anti-tumor response. In another study, immunization with SFV-luciferase and SFV-IL-12 particles was evaluated in a woodchuck model in which hepatocellular carcinoma (HCC) is induced by the infection by woodchuck hepatitis virus (WHV) [105] . High luciferase expression levels were observed in tumors and IL-12 secretion was measured in the serum after intratumoral injections. In tumor-bearing woodchucks, partial tumor remission was seen. Tumor volumes were reduced by 80%, but tumor growth was restored with time. The plasmid vector pTonL2(T)-mIL12, which provides liver-specific and inducible IL-12 expression, has been compared to SFV-IL-12 particle delivery in a L-PK/c-myc transgenic mouse model of HCC [106] . Overexpression of the c-myc gene in the liver of the transgenic animals induces spontaneous hepatic tumors with characteristics similar to human HCCs. Intratumoral administration of SFV-IL-12 resulted in tumor growth arrest and 100% survival rates. Mice treated with plasmid DNA showed a slightly lower survival rate despite higher IL-12 and IFN-γ levels in serum. The strong anti-tumor response in SFV-IL-12-treated mice was most likely due to the apoptosis and type 1 IFN response induced by SFV particles. Recombinant SIN particles were demonstrated to target tumor cells in SCID mice, which encouraged intraperitoneal injection of SIN-IL-12 particles in mice with established ovarian tumors [113] . The treatment resulted in systemic targeting and eradication of tumor cells without any adverse effects observed. Glioma-bearing mice were immunized with SFV-IL-12 particles, which induced apoptosis of glioma cells and facilitated the uptake of apoptotic cells by DCs and provided prolonged survival of vaccinated animals [91] . Moreover, DCs isolated from bone marrow were transduced with SFV vectors expressing IL-12 for the treatment of brain tumor-bearing mice [92] . The outcome was prolonged survival of immunized animals. In another study, SFV-IL-12 particles were tested in rat RG2 gliomas [93] . Low dose (5 × 10 7 VLPs) treatment resulted in a 70% reduction in tumor volume, whereas high-dose (5 × 10 8 VLPs) showed an 87% reduction in tumor volume. Moreover, intratumoral administration of 10 6 oncolytic SFV particles expressing EGFP generated significant tumor regression in melanoma-bearing SCID mice [123] . Other cytokines such as Il-18 have also been evaluated for alphavirus-based expression in ovarian and colon cancer models [104] . The enhanced SFV10E vector, which provides ten-fold higher levels of expression than the conventional SFV vector [124] , was applied for immunization of BALB/c mice [114] . After in vitro verification of secretion of active IL-18, mice with subcutaneous K-BALB and CT26 tumors were injected with SFV-IL-18 particles, which led to tumor regression and disappearance of tumors in some treated animals. Moreover, GM-CSF, an immunostimulatory cytokine, has been expressed from SFV vectors [114] . Intraperitoneal administration of SFV-GM-CSF particles was evaluated in an ovarian mouse tumor model, which resulted in activation of macrophages to tumor cytotoxicity. Although no prolongation in survival of tumor-bearing mice was achieved, tumor growth was inhibited for two weeks. Among the growth factors targeted for vaccine development, the vascular endothelial growth factor receptor 2 (VEGFR-2) was introduced into the SFV vector [96] . Immunization of mice with SFV-VEGFR-2 particles resulted in substantial inhibition of both tumor growth and spread of pulmonary metastases. Furthermore, vaccination led to tumor inhibition in mice with established CT26 colon tumors and metastatic 4T1 mammary tumors. In another approach, SFV particles carrying the endostatin gene were administered to mice bearing B16 brain tumors [89] . The treatment resulted in a substantial reduction in intratumoral vascularization in tumor sections and a significant inhibition of tumor growth. Endostatin serum levels were three-fold higher 7 days after intravenous administration of SFV-endostatin in comparison to administration of the retrovirus-based GCsap-Endostatin promoting inhibition of angiogenesis in established tumors. In another approach, SIN vectors have been employed for the expression of a fusion protein of HPV16 E7 protein and calreticulin (CRT), an ER Ca2 + -binding transporter participating in antigen processing and presentation with major histocompatibility complex (MHC) class I [108] . Immunization of mice bearing E7-expressing tumors with SIN-E7-CRT particles significantly increased E7-specific CD8+ T-cell precursors and a strong anti-tumor response. Furthermore, a significant reduction in lung tumor nodules was observed in immuno-compromised BALB/c mice. Combination therapy has been evaluated for alphavirus-based gene delivery. For instance, SFV layered DNA vectors were engineered to express one to four domains of VEGFR-2 and IL-12 [110] . Co-immunization with SFV replicon DNA expressing survivin and β-hCG antigens was verified in mice resulting in efficient humoral and cellular immune responses against survivin, β-hCG and VEGFR-2. Moreover, tumor growth was inhibited and the survival rate in a B16 melanoma mouse model was improved. Furthermore, immunization with SFV HPV E6/E7 was combined with sunitib and a single low-dose of irradiation, which enhanced the intratumoral ratio of anti-tumor effector cells to myeloid-derived suppressor cells [107] . Triple treatment of tumor-bearing mice demonstrated enhanced anti-tumor efficacy and provided 100% tumor-free survival. An interesting approach comprises the introduction of micro RNA-124 (miR-124) into an SFV4 vector [90] . As IFN-1 tolerance has been associated with the SFV nsP3-nsP4 genes, conditionally replicating SFV4-miR-124 virus was able to replicate in neurons and allowed targeting of gliomas otherwise sensitive to IFN-1. Evaluation of CT-2A mouse astrocytoma cells and IFN-1 pretreated human glioblastoma cells showed increased oncolytic potency. Moreover, a single intraperitoneal injection of SFV4-miR-124 into mice with implanted CT-2A orthotopic gliomas showed significant inhibition of tumor growth and improved survival rates. Self-replicating RNA virus vectors have been subjected to several clinical studies, albeit at an inferior level in comparison to adenovirus, AAV and lentivirus vectors. For instance, healthy volunteers were subjected to low-dose (3 × 10 5 pfu) immunization with the VSV-based Ebola vaccine (rVSV-ZEBOV) expressing the Zaire Ebola virus glycoprotein in a double-blinded study in comparison to a previous study with a high dose (5 × 10 7 pfu) [125] . No serious adverse events occurred and the overall safety was good. The low-dose immunization improved early tolerability, but generated inferior antibody responses and failed to prevent vaccine-induced arthritis, dermatitis or vasculitis. Furthermore, VSV particles expressing the HIV-1 gag gene were evaluated in a clinical trial on safety and immunogenicity [126] . In the randomized double-blinded placebo-controlled dose-escalation study, healthy HIV-negative volunteers received 4.6 × 10 3 to 3.4 × 10 7 pfu of rVSV HIV-1 gag vaccine intramuscularly at months 0 and 2. All vaccinated individuals showed antibody responses against VSV, and gag-specific T-cell responses were detected in 63%. Overall, the safety profile was good. Alphaviruses have been subjected to some gene therapy and vaccine studies. In one approach, replication-deficient SFV particles were encapsulated in liposomes to promote passive targeting of tumors [127] . Initially, intraperitoneal administration of encapsulated SFV-LacZ particles showed enhanced accumulation of β-galactosidase in SCID mice implanted with LNCaP prostate tumors. Liposome-encapsulated SFV particles expressing the p40 and p35 subunits of IL-12 generated active secreted IL-12 in BHK-21 cells [128] . Next, encapsulated SFV-IL-12 particles were administered intravenously in terminally ill melanoma and kidney carcinoma patients in a phase I clinical trial. The patients showed a five to ten-fold increase in IL-12 plasma levels. The maximum tolerated dose was determined to 3 × 10 9 infectious particles and the safety profile was good. A phase I dose-escalation trial was conducted in prostate cancer patients with VEE particles expressing PSMA [129] . Patients with castration-resistant metastatic prostate cancer (CRPC) received up to five doses of either 0.9 × 10 7 IU or 0.36 × 10 8 IU of VEE-PSMA particles at weeks 1, 4, 7, 10 and 18. The study showed no toxicity and good toleration of the vaccination. However, only weak PSMA-specific immune responses were detected and no clinical benefits obtained. In another clinical trial, VEE particles expressing the CEA tumor antigen were demonstrated to efficiently infect DCs [120] . The VEE particles could be repeatedly administered and overcame high titers of neutralizing antibodies and elevated regulatory T cells (Tregs), which allowed induction of clinically relevant CEA-specific T cell and antibody responses. In another approach, VEE particles expressing the cytomegalovirus (CMV) gB and pp65/IE1 fusion protein were evaluated in a phase I randomized, double-blinded clinical trial [67] . Intramuscular or subcutaneous immunization at weeks 0, 8 and 24 of CMV seronegative adult volunteers showed good Most of the studies have been conducted with replication-deficient recombinant particles. However, promising results have also been obtained with layered DNA plasmid vectors. A limited number of studies have applied administration of RNA replicons, but the results have been quite encouraging. The obvious advantage to using nucleic acid-based delivery is the elimination of any risk of virus progeny production through recombination events. On the other hand, superior delivery and prolonged duration of expression can be achieved with recombinant viral particles, especially applying replication-proficient oncolytic viruses. For this reason, it is difficult to make any recommendations related to which delivery format to use, and the choice of target will play an important role in decision making. Similarly, it is practically impossible to favor one viral vector system over another. Reverse genetics systems engineered for MV and rhabdoviruses and packaging cell lines for flaviviruses surely facilitate recombinant particle production and ease of use. Although packaging cell lines have also been generated for alphaviruses, the straightforward in vitro RNA transcription has provided the means for sufficient preparation of replicon RNA and particles for immunization studies. Obviously, plasmid DNA can be directly applied for vaccinations. In comparison to other viral vectors and also non-viral delivery systems, self-replicating RNA viruses can surely be considered competitive ( Figure 5 and Table 4 ). An extensive comparison to other delivery systems is not within the scope of this review, so only a few examples are addressed. Clearly, adenovirus-based vaccine development and gene therapy has a longer history, which has generated a multitude [130] of vector improvements and also resulted a number of clinical trials [131, 132] . Similarly, herpes simplex virus (HSV) vectors have been frequently applied and HSV-GM-CSF have, for instance, been subjected to phase I−III human clinical trials in glioblastoma and melanoma patients [133] . HSV vectors were recently approved by the FDA for use in standard patient care [134] . Related to non-viral vectors, recently dendrimer-RNA nanoparticles have demonstrated protective immunity against lethal challenges with Ebola virus, influenza H1N1 virus and Toxoplasma gondii after a single injection in BALB/c mice [135] . Overall, self-replicating RNA viral vectors possess several attractive features. The presence of RNA replicons provides the efficient means for rapid generation of a large number of RNA copies for immediate protein translation in the cytoplasm of host cells. Moreover, the strong subgenomic promoter utilized by alphaviruses generates extreme levels of heterologous gene expression. The transient nature of expression is also an advantage for immunization studies. Furthermore, there is no risk of integration of viral genes in the host genome as the viral RNA is degraded within 3-5 days. In the case of immunization with layered alphavirus DNA vectors, approximately 100-to 1000-fold lower doses are required compared to immunizations with conventional plasmid DNA [136] . Although strong immune responses have been obtained and protection against challenges with lethal pathogens and tumor cells have been achieved and even tumor regression observed in animals with established tumors, some further technology development is necessary. Much development has been invested in vector design including mutant vectors, enhancement signals, targeting DCs and fusion constructs. Furthermore, quite an effort has been paid to the evaluation of different target antigens and immunogens. Several studies, particularly clinical trials, have indicated that although target-specific immune responses have been obtained, further investment is required in finding the right dose for the achievement of optimal response. One area which recently has received much attention is combination therapy. Tumor-associated antigens (TAAs) have been combined with cytokines and antibodies, as well as drugs and radiation co-administered with cytokines. Additionally, optimization of adjuvant composition and stability issues in case of RNA delivery needs to be addressed. Further research in these areas will certainly provide progress and should make immunotherapy an important approach in both prophylactic and therapeutic applications. right dose for the achievement of optimal response. One area which recently has received much attention is combination therapy. Tumor-associated antigens (TAAs) have been combined with cytokines and antibodies, as well as drugs and radiation co-administered with cytokines. Additionally, optimization of adjuvant composition and stability issues in case of RNA delivery needs to be addressed. Further research in these areas will certainly provide progress and should make immunotherapy an important approach in both prophylactic and therapeutic applications. Inactivated virus vaccines: From chemistry to prophylaxis: Merits, risks and challenges Developments of subunit and VLP vaccines against influenza A virus Vaccine delivery methods into the future. Vaccines Alphavirus-based vaccines Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo Alphaviruses in gene therapy Self-replicating RNA viral vectors in vaccine development and gene therapy Fields' Virology The measles virus replication cycle Replication cycle and molecular biology of West Nile virus Kunjin RNA replication and applications of Kunjin replicons A new generation of animal cell expression vectors based on the Semliki Forest virus replicon Sindbis virus: An efficient, broad host range vector for gene expression in animal cells In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: Analysis of a viable deletion mutant The Alphaviruses: Gene Expression, Replication and Evolution Kunjin virus replicons: An RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications Construction and characterization of subgenomic replicons of New York strain of West Nile virus Trans-packaged West Nile virus-like particles: Infectious properties in vitro and in infected mosquito vectors Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins Construction and applications of yellow fever virus replicons Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression Development of Dengue virus Type 2 replicons capable of prolonged expression in host cells Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line Sub-genomic replicons of Tick-borne encephalitis virus Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans Skipping the co-expression problem: The new 2A "CHYSEL" technology Rescue of measles viruses from cloned DNA A recombinant measles virus expressing hepatitis B surface antigen induces humoral responses in genetically modified mice Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system Vaccinia virus-free recovery of vesicular stomatitis virus Genetically modified VSV(NJ) vector is capable of accommodating a large foreign gene insert and allows high level gene expression Vesicular stomatitis virus glycoprotein: A transducing coat for SFV-based RNA vectors Mucosal immune responses associated with polynucleotide vaccination Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects against lethal infection with Hong Kong-origin H5N1 viruses Replicon particle vaccine protects swine against influenza Safety, immunogenicity and efficacy of an alphavirus replicon-based swine influenza virus hemagglutinin vaccine Recombinant measles virus incorporating heterlogous viral membrane proteins for use as vaccines Vaccination with Vesicular Stomatitis virus-vectored chimeric hemagglutinins protects mice against divergent influenza virus challenge strains Kunjin virus replicon vectors for human immunodefiency virus vaccine development Comparative analysis of humoral immune responses to HIV type 1 envelope glycoproteins in mice immunized with a DNA vaccine, recombinant Semliki Forest virus RNA, or recombinant Semliki Forest virus particles Generation of monoclonal antibodies to native human immunodeficiency virus type 1 envelope glycoprotein by immunization of mice with naked RNA Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA) or with HIV gp140 protein antigen Kunjin replicon-based simian immunodeficiency virus gag vaccines Antigenic requirement for Gag in a vaccine that protects against high-dose mucosal challenge with simian immunodeficiency virus Immunogenicity of viral vector, prime-boost SIV vaccine regimens in infant rhesus macaques: Attenuated vesicular stomatitis virus (VSV) and modified vaccinia Ankara (MVA) recombinant SIV vaccines compared to live-attenuated SIV Highly attenuated rabies virus-based vaccine vectors expressing simian-human immunodeficiency virus89.6P Env and simian immunodeficiency virus mac239 Gag are safe in rhesus macaques and protect from an AIDS-like disease Kunjin virus replicon-based vaccines expressing Ebola virus glycoprotein GP protect the guinea pig against lethal Ebola virus infection A Kunjin replicon virus-like vaccine provides protection against Ebola virus infection in nonhuman primates VSV-EBOV rapidly protects macaques against infection with the Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg infections Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus Protection from Ebola virus mediated by cytotoxic T-lymphocytes specific for the viral nucleoprotein A recombinant Vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus A Highly immunogenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform Nonviral delivery of self-amplifying RNA vaccines Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates Immunogenic subviral particles displaying domain III of Dengue 2 envelope protein vectored by measles virus The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection. Hum. Vaccines Immunother An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection A tetravalent alphavirus-vector based dengue vaccine provides effective immunity in an early life mouse model Virus-like vesicle-based therapeutic vaccine vectors for chronic hepatis B virus infection A vectored measles virus induces hepatitis B surface antigen antibodies while protecting macaques against virus challenge Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers Comparative immunization study using RNA and DNA constructs encoding a part of the Plasmodium falciparum antigen Pf332 Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice Recombinant Sindbis virus vectors designed to express protective antigen of Bacillus anthracis protect animals from anthrax and display synergy with ciprofloxacin Recombinant Sindbis viruses expressing a cytotoxic T-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice VSV-GP: A potent viral vaccine vector that boosts the immune response upon repeated applications Generation of monoclonal antibodies against prion proteins with an unconventional nucleic acid-based immunization strategy Immune protection against staphylococcal enterotoxin-induced toxic shock by vaccination with a Venezuelan equine encephalitis virus replicon Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses Live attenuated measles vaccine as a potential multivalent pediatric vaccination vector Attenuated oncolysis measles virus strains as cancer therapeutics Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR-or EGFRvIII expressing gliomas A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma Induction of apoptosis in pancreatic cancer cells by vesicular stomatitis virus A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour Induction of therapeutic antitumor antiangiogenesis by intratumoral injection of genetically engineered endostatin-producing Semliki Forest virus MicroRNA-attenuated clone of virulent Semliki Forest virus overcomes antiviral type I interferon in resistant mouse CT-2A glioma Induction of a therapeutic antitumor immunological response by intratumoral injection of genetically engineered Semliki Forest virus to produce interleukin-12 Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12 Semliki Forest virus-mediated gene therapy of the RG2 rat glioma Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7 Tattoo delivery of a Semliki Forest virus based vaccine encoding Human Papillomavirus E6 and E7 Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA Cancer therapy using a self-replicating RNA vaccine Sindbis viral vectors transiently deliver tumor-associated antigens to lymph nodes and elicit diversified antitumor CD8+ T-cell immunity Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas Treatment of rapidly growing K-BALB and CT26 mouse tumors using Semliki Forest virus recombinant particles Inhibition of murine K-BALB and CT26 tumour growth using a Semliki Forest virus vector with enhanced expression of IL-18 Semliki forest virus expressing interleukin-12 induces antiviral and antitumoral responses in woodchucks with chronic viral hepatitis and hepatocellular carcinoma Short-term intratumoral interleukin-12 expressed from an alphaviral vector is sufficient to induce an efficient antitumoral response against spontaneous hepatocellular carcinomas. Hum A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development Sindbis virus replicon particles encoding calreticulin linked to a tumor antigen generate long-term tumor-specific immunity Inhibition of human lung carcinoma cell growth by apoptosis induction using Semliki Forest virus recombinant particles Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity Comparison of two cancer vaccines targeting tyrosinase: Plasmid DNA and recombinant alphavirus replicon particles Systemic tumor targeting and killing by Sindbis viral vectors Activation of peritoneal cells upon in vivo transfection with a recombinant alphavirus expressing GM-CSF A novel alphavirus vaccine encoding prostate-specific membrane antigen elicits potent cellular and humoral immune responses In vivo effects of vaccination with six-transmembrane epithelial antigen of the prostate: A candidate antigen for treating prostate cancer Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer Induction of P815 tumor immunity by recombinant Semliki Forest virus expressing the P1A gene An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer STEAP proteins: From structure to applications in cancer therapy A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression Oncolytic capacity of attenuated replicative Semliki Forest virus in human melanoma xenografts in severe combined immunodeficient mice Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12 The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: A randomised double-blind, placebo-controlled phase 1/2 trial First-in-Human Evaluation of the Safety and Immunogenicity of a Recombinant Vesicular Stomatitis Virus Human Immunodeficiency Virus-1 gag Vaccine (HVTN 090) Biology and application of alphaviruses in gene therapy Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication incompetent Semliki Forest virus vector carrying the human interleukin-12 gene-A phase I/II protocol A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer Gutless adenovirus: Last-generation adenovirus for gene therapy Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity Biodistribution and safety assessment of bladder cancer specific oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose Enhancement of tumor-specific immune response with plasmid DNA replicon vectors