The Description and Use of the NOCTURNAL; By M●… Samuel Foster, late Reader of Astronomy in Gresham-Colledge. With the Addition of a Ruler, showing the Measures of Inches and other Parts of most Countries, compared with our English ones; Being useful for all Merchants & Tradesmen. THIS Nocturnal is made of two Plates; the thick Plate (which I call the Mater) and a Movable Plate, representing the Aequinoctial. On the Mater, the Circle doth represent the Eccliptick. All the rest of the Writing, is the Names of as many of the Fixed Stars as the bigness of the Instrument will give leave. To these must be added an Index or Label, fastened at the Centre, to cut the several Circles upon the Instrument. The Use of the Nocturnal. 1. SET the Label to the Sun's Place in the Zodiac, and the Hour of Twelve in the Aequinoctial to the Star, whose time of coming to the Meridian you inquire after; and then look what hour and minute is cut by the Label in the Aequinoctial, for that is the hour of the Day or Night that the same Star will come to the South Part of the Meridian. But you must observe, that the hours are marked in the Aequinoctial in this manner, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Now the Difficulty lieth, in finding whether the minutes you shall find cut by the Label in the Aequinoctial, doth belong to the upper row of hours, Viz. 12, 1, 2, 3, 4 5, or to the under row, Viz. 6, 7, 8, 9, 10, 11; and whether from Noon, or from Midnight: In order to this you must know in what Sign the Star is that you observe, and take notice how far it is distant from the Place where the ☉ is that day; if it be not above three whole Signs, the Minute cut by the Label, belongeth to the upper row of hours to be accounted from Noon; and if the Distance of the Star, and of the ☉ be four, five, or six Signs, than the said Minute cut by the Label belongeth to the under row of hours, accounted also from Noon: but if the Distance of the ☉ and Star be 7, 8, or 9 Signs, than the Minute belongeth to the upper row of hours accounted from Midnight. Lastly, if the Distance of the ☉ and Star be 10, 11, or 12 Signs, than the Minute belongeth to the under row of hours, accounted from Midnight. All which beforesaid shall be made clear by Examples. Example the first. The ☉ being in the beginning of ♌; when will Spica ♍ come to the Meridian? Set the Label to the beginning of ♌, and the hour 12 in the Aequinoctial to Spica ♍ then will the Label cut the 59th. Minute after 4, or after 10; now this Star being in ♎, which is not above three Signs from ♌, it must be after 4 of the Clock from Noon. I conclude then that the ☉ being in the beginning of ♌, the Spica ♍ will come to the South at 4h. 59′ past Noon. Example II. When will the same Star come to the Meridian, the ☉ being in the 10th. degree of ♊? The Label being set to the 10 of ♊, and 12 to the Star, as before, the Label shall cut the 35 Minute after 2 or 8; now it must be after 8, because the ☉ is above three Signs distant from the Star, and yet not seven Signs; so Spica ♍ will come to the Meridian at 8h. 35′ past Noon. Example III. When will the same Spica ♍ come to the Meridian, the ☉ being in ♓ the 5th. Degree? The Label being set to the 5° of ♓, shall cut 41′ after 2, or 8; but it must be 2, and after Midnight past, because the distance of the ☉ and the Star is above six whole Signs, and not nine. Example IV. Working after the same manner, you will find that the same Star will come to the Meridian at 9h. 58′ past Midnight, the ☉ being in the 20° 00′ of ♏. I take the lower row of hours, and say, that 'tis after Midnight, because the ☉ is above nine Signs distant from the Star. NB. These Precepts are fitted to an Instrument made for 1671. Additions to the Instrument, in Brass; made by Mr. R. Aug. 1st. 1684. Calculated for the Year 1700, which will make some little difference in the aforesaid Precepts. IF in this Instrument you set down to the several Stars their respective several Declinations, and by adding either an A, or B, according to the Declination of either Austral or Boreal, you shall have the height of the Star when it cometh to the Meridian, Viz. by adding the Declination to the height of the Aequinoctial, when the said Declination is Northward, and by taking the Declination from the height of the Aequinoctial when the Declination is Southward. As for Example. Suppose I desire to know when Cor ♌ shall come to the Meridian, what will be his Altitude in the Latitude of London 51° 30′. The height of the Aequinoctial is 38° 30′, to which add the Stars North Declination, 13° 02′ the Sum is 51° 32′ the Altitude required. So the Altitude of the Spica ♍ in the Meridian will be found to be 28° 57′ in the same Latitude; for the height of the Aequinoctial is 38° 30′; from which take the Stars South Declination 9° 33′, the Remainder is 28° 57′. I have so contrived this Instrument, that by making two little square holes in the Movable Plate, the first showeth you in what Sign the Star is, which is absolutely necessary to be known, to judge of the distance between the ☉ and the Star (as you have been taught before) and the second shows the Magnitude of the Star. To know at any time proposed, what Point of the Eccliptick is in the Meridian. Suppose the ☉ to be in the beginning of ♉, I desire to know what Degree of the Eccliptick shall be in the Meridian at 15′ past Five in the Afternoon. I lay the hour given to the Sun's Place, and then I find over against the 12 a Clock line of the Aequinoctial, 15° 20′ of ♋; and that is the Degree that was then in the Meridian. To know when any of the Planets shall come to the Meridian. The Planets, because of their continual changing of Place, cannot be set fixed in this Nocturnal: Nevertheless, if at any time you desire to know their time of coming to the Meridian, you must look in some Ephemeris for the Place of the Planet, and according as you find it, set it with Black-Lead on your Instrument, which if it be in Brass, shall be easily put out. The Planet thus set, shall be as a Fixed Star, and its time of coming to the Meridian found out, as that of any of the Fixed Stars. But Note, that if it be the Moon that you observe, you must allow about a degree for every two hours passed since Noon; and thus you shall have her true Place; for the Ephemeris gives you her Place only at Noon. For Example. When will the Moon come to the Meridian on january the 1st. 168 4/5? The ☉ is then in ♑ 22° 5′, and the Moon in ♈ 10° 12′. Now placing the Moon on my Instrument in ♈ 10° 12′, I find that the Moon shall come to the Meridian at a little past 5 in the Afternoon: and because there are five hours passed since Noon, I must for these five hours allow two degrees and a half to the Moon's Place, and so set it to ♈ 13° 00′; which being done, I shall find the Moon's true hour of coming to the Meridian, and that is at about 5h. 15′ past Five in the Afternoon. Hitherto is the Instrument general to all those that live on this side the Aequioctial; and may serve to any Intelligent Man that shall have South Declination. But besides, I have made two little Windows in the Movable Plate, but the Figures of them are Calculated for the Meridian of London, or any other Place that is under the same Latitude of 51° 30′. The first Window shows the Semi-Nocturnal Arch of the Star in Hours and Minutes; and the Use of it is to know the time of the Stars Rising and Setting, as also how long it continues above the Horizon. First. For the Rising, take the Semi-Nocturnal Arch from the time of the Stars coming to the Meridian, and the Remainder gives you the time of the Stars Rising. So the ☉ being in the beginning of ♊, the Spike of the Virgin comes to the Meridian at 9h. 18′ after Noon, from which take the Stars—— 5 11, Semi-Nocturnal Arch, there remains—— 4 07, which is the time of the Stars Rising in the Afternoon. Secondly, For the Setting, add the Semi-Nocturnal Arch to the time of coming to the Meridian, and the Sum gives the time of the Stars Setting. So on the same day, the ☉ being in the beginning of ♊, the Spike of the Virgin coming to the Meridian at 9h. 18′ if you ●…dd to it the Star's Semi-nocturnal Arch, 5 11′ the Sum is 14h. 29′ past Noon, or 2h. 29′ past Midnight. Thirdly, For the time of the Stars being above the Horizon, double the Semi-Nocturnal Arch, and the Sum is the time of the Star's being above the Horizon. The other Window showeth the Star's Amplitude in Degrees and Minutes, which is counted from the East towards the North, when the Star's Declination is North; and from the East to South, when the Declination is South: Where note, that the Stars Set at the same Distance from the West that they Rise from the East. This Instrument was first invented by Mr. Samuel Foster, and given to me, drawn upon Pasteboard by his own hand, which is still in my Power; but the Additions to it were put in by an Ingenious Gentleman of the French Nation, and by him drawn in Brass, which I received from him, and will keep for his Sake. The following Table is made to insert all the Stars expressed there according to their Right Ascensions, which is fourfold as great as the true is, the Nature of the Instrument requiring it to be so; because the Aequinoctial, which should be divided into twenty four hours, is divided but into six hours. A Table A. R. As Rec. 4. Decli. Semi-Diurnal Arch. Amplit. ° ′ h. mi. Lucid. Comae Beren. ♎ 182 45 731 00 30 06 8 48 53 30 Lucid. Lyrae ♑. 276 42 1106 48 38 32 24 00 00 00 Syrius. ♋. 98 00 392 00 16 15 4 33 26 43 Vindemiatrix. ♎. 191 53 767 32 ●…2 35 7 05 〈◊〉 30 Spica Virgins. ♎. 197 23 789 32 9 33 5 11 15 27 protion. ♋. 110 57 443 48 6 00 6 30 9 40 Aquila. ♑. 294 06 1176 24 8 07 6 41 13 07 Luc. cap. Arieties. ♈. 27 38 110 32 22 03 8 04 37 05 Arcturus. ♏. 210 34 842 16 20 49 7 55 34 49 Cauda Delphin. ♒. 304 30 1218 00 10 14 6 54 16 35 Austra lanx ♎. ♏. 218 37 874 28 14 45 7 17 24 09 Cap. Medus. ♉. 42 15 169 00 39 47 12 00 00 00 Bo. lanx. ♎. ♏. 225 16 901 04 8 14 5 18 13 18 Luc. Hydr. ♌. 138 16 553 04 7 22 5 22 11 53 Luc. Pleiad. ♉. 52 26 209 44 23 10 8 11 39 12 Luc. Coron. Sep. ♏. 230 31 922 4 27 45 8 46 48 25 Os Pega. ♒, 322 28 1289 52 8 31 6 44 13 46 Med. nex. col. Serp: ♏ 232 27 929 48 7 25 6 38 11 52 Bo. Fron. Scor. ♏. 237 02 948 08 18 57 4 18 31 27 Antares ♐. cor ♏. 242 50 971 20 25 42 3 30 44 00 Cor Leonis. ♌. 148 08 592 32 13 02 7 08 21 15 Luc. colli Leonis. ♌. 150 51 603 24 21 21 7 58 35 48 Luc. colli Peg. ♑. 336 30 1346 00 09 10 6 47 14 50 In basi Crater. ♍. 161 10 644 40 16 33 4 32 27 14 Marchab. Pega. ♓. 342 30 1370 00 13 37 7 11 22 13 Rigel. ♎. 75 07 300 28 8 33 5 16 13 49 Sin. Hum. Orion. ♊. 77 17 309 08 6 03 6 31 9 45 Cing. Orion. ♊. 80 18 321 12 1 24 5 54 2 15 Caput Ophiuci. ♐. 260 16 1041 04 12 49 7 06 20 52 Cauda Leonis. ♍. 173 28 693 52 16 13 7 26 26 39 Seq. Hum. Orion. ♊. 84 48 339 12 7 20 6 37 11 50 Cuspis Sagit. ♐. 266 00 1064 00 30 22 2 50 54 18 Cap. Andromed. ♓. 358 16 1433 04 27 28 8 44 47 48 Extreme. ala Pegas. ♓. 359 30 1438 00 13 32 7 10 22 05 Aldeban Tauri. ♊. 64 43 258 52 15 53 7 24 26 05 The 5. 10 15 20 25 ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ ♈ ♎ 00 00 18 20 36 44 55 12 73 48 92 36 ♉ ♏ 111 36 130 48 150 16 170 04 190 08 210 32 ♊ ♐ 231 12 252 08 273 24 294 52 316 28 338 12 ♋ ♑ 360 00 381 48 403 32 425 08 446 36 467 48 ♌ ♒ 488 48 509 28 529 52 549 56 569 44 589 12 ♍ ♓ 608 24 627 24 646 12 664 48 6●…3 16 701 40 FINIS. In the diagonal Scale you have London foot Divided into 1000 Equal parts, Whereof (France) Paris Foot is ... 1: 068 Lions el ... 3: 976 Boloine el ... 2 076 The XVII Provinces Amsterdam foot ... 0: 942 Ell ... 2: 269 Antwerp foot ... 0: 948 Brill foot ... 5: 103 Dort foot ... 1: 184 Leyden foot ... 1: 133 Ell ... 2: 260 Lorain foot ... 0: 958 Mecalin foot ... 0: 919 Middleburg foo 0: 991 Germany Strasburg foot ... 0: 920 Bremen foot ... 0: 964 Cologne foot ... 0: 9TH Francfort foot ... 0: 948 Menain foot ... 0: 948 Ell ... 1: 826 Hamburg el ... 1 905 Leipsig el ... 2: 260 Lubeck el ... 1 903 Noremberg foot ... 1: 006 Ell ... 2: 227 Bavaria foot ... 0: 954 Vienna foot ... 1 053 Spain & Portugal Spanish or Castil. palm: 751 Spanish Vare or rod 3: 004 Spanish foot ... 3: 004 Lisbon Vare ... 2: 750 Gibraltar Vare ... 2: 760 Toledo foot ... 0: 399 Vare ... 2: 685 Italy Roman foot on the Monum of Cossutius 0: 967 of Statelius 0: 972 Roman foot for building w. of 10 make the Cauna 0 722 Bononia foot ... 1 204 el ... 2 113 Bononian Perch w: of 500 to a Mile ... 12: 040 Florence Brace, or el 1: 913 Naples Palm ... 0: 861 Brace ... 2: 100 Cauna ... 6: 880 Genoa Palm ... 0 830 Mantua foot ... 1 569 Milan Calamus 6: 544 Parma Cubit ... 1: 860 Venice foot ... 1 162 Other Places Danzick foot ... 0: 944 Ell ... 1: 903 Copenhagen foot 0: 965 Prague foot ... 1: 026 Riga foot ... 1: 831 China cubit ... 1 016 Turin foot ... 1 062 Cairo cubit ... 1 824 Persian Arash ... 3 197 Turkish Pike at Constantinop: the greater 2: 20● The Greek foot ... 1: ●07 Moutons universal foot ... 0 675 A Pendulum of which length will Vibrate 132 times in a minute, A Pendulum of 3 foot 268 parts long will Vibrate 60 times in a minute Ex: per me Ionas Moor Ruler or scale Tabula Ascensionum Obliquarum ad Latitudinem 51 deg. 00 min. ° ′ ♈ ♉ ♊ ♋ ♌ ♍ ♎ ♏ ♐ ♑ ♒ ♓ 0 0 00 13 21 30 46 57 31 95 10 137 33 180 00 222 27 264 50 302 29 329 14 346 39 1 0 25 13 50 31 29 58 37 96 33 138 59 181 24 223 52 266 12 303 34 329 56 347 08 2 0 50 14 20 32 13 59 44 97 56 140 24 182 49 225 17 267 34 304 38 330 38 347 37 3 1 16 14 50 32 57 60 51 99 19 141 50 184 03 226 43 268 56 305 41 331 19 348 0●… 4 1 41 15 20 33 42 61 59 100 42 143 15 185 38 228 08 270 18 306 44 331 59 348 3●… 5 2 07 15 50 34 27 63 08 102 06 144 40 187 03 229 34 271 39 307 46 332 58 349 0●… 6 2 32 16 21 35 13 64 18 103 30 146 06 188 27 230 59 272 59 308 47 333 16 349 3●… 7 2 58 16 53 36 00 65 29 104 54 147 31 189 52 232 25 274 19 309 47 333 54 349 5●… 8 3 24 17 24 36 48 66 40 106 18 148 56 191 16 233 52 275 39 310 46 334 32 350 2●… 9 3 50 17 56 37 36 67 52 107 42 150 21 192 41 235 17 276 58 311 44 335 10 350 5●… 10 4 16 18 28 38 25 69 04 109 07 151 46 194 06 236 42 278 17 312 42 335 47 351 20 11 4 42 19 01 39 15 70 17 110 32 153 11 195 30 238 08 279 35 313 39 336 23 351 4●… 12 5 08 19 34 40 05 71 30 111 57 154 36 196 55 239 33 280 52 314 35 336 59 352 14 13 5 34 20 07 40 56 72 44 113 22 156 01 198 20 240 58 282 10 315 30 337 35 352 41 14 6 00 20 40 41 48 73 59 114 47 157 26 199 45 242 23 283 28 316 25 338 11 353 08 15 6 26 21 14 42 41 75 15 116 12 158 50 201 10 243 48 284 45 317 19 338 46 353 34 16 6 52 21 49 43 35 76 32 117 37 160 15 202 34 245 13 286 01 318 12 339 20 354 00 17 7 19 22 25 44 30 77 50 119 02 161 40 203 59 216 38 287 16 319 04 339 53 354 2●… 18 7 46 23 01 45 25 79 08 120 27 163 05 205 24 248 03 288 30 319 55 340 26 354 52 19 8 13 23 37 46 21 80 25 121 52 164 30 206 49 249 28 289 43 320 45 340 59 355 18 20 8 42 24 13 47 18 81 43 123 18 165 54 208 14 250 53 290 56 321 35 341 32 355 44 21 9 07 24 50 48 16 83 02 124 43 167 19 209 39 252 18 292 08 322 24 342 04 356 10 22 9 35 25 28 49 14 84 21 126 09 168 44 211 04 253 42 293 20 323 12 342 36 356 36 23 10 02 26 06 50 13 85 41 127 35 170 08 212 29 255 06 294 31 324 00 343 07 357 02 24 10 30 26 4●… 51 13 87 01 129 01 171 32 213 54 256 30 295 42 324 47 343 39 357 28 25 10 58 27 22 52 14 88 21 130 26 172 57 215 20 257 54 296 52 325 33 344 10 357 53 26 11 26 28 01 53 16 89 42 131 52 174 22 216 45 259 18 298 01 326 18 344 40 358 19 27 11 55 28 41 54 19 91 04 133 17 175 47 218 10 260 41 299 09 327 03 345 10 358 44 28 12 23 29 22 55 22 92 26 134 43 177 11 219 36 262 04 300 16 327 47 345 40 359 10 29 12 52 30 04 56 26 93 48 136 08 178 36 221 01 263 27 301 23 328 31 346 10 359 35 30 13 21 30 46 57 31 95 10 137 33 180 00 222 27 264 50 302 29 329 14 346 39 360 00 Tabula Ascensionum Obliquarum ad Latitudinem 51 deg. 30 min. ° ′ ♈ ♉ ♊ ♋ ♌ ♍ ♎ ♏ ♐ ♑ ♒ ♓ 0 0 00 13 04 30 12 56 48 94 36 137 15 180 00 222 45 265 24 303 12 329 48 346 56 1 0 24 13 32 30 54 57 54 95 05 138 42 181 25 224 10 266 47 304 17 330 29 347 ●…5 2 0 49 14 01 31 38 59 01 97 24 140 08 182 50 225 36 268 9 305 21 331 11 347 53 3 1 14 14 30 32 21 60 08 98 46 141 34 84 15 227 02 269 32 306 24 331 51 348 21 4 1 39 15 01 33 06 61 16 100 10 143 00 185 40 228 48 270 54 307 27 332 39 348 49 5 2 04 15 30 33 50 62 25 101 35 144 26 187 06 229 54 272 16 308 29 333 09 349 16 6 2 29 16 00 34 35 63 35 102 59 145 52 188 30 231 20 273 37 309 30 333 47 349 44 7 2 54 16 31 35 22 64 46 104 23 147 17 189 56 232 46 274 57 310 30 334 25 350 11 8 3 19 17 02 36 08 65 57 105 48 148 43 191 21 234 13 276 17 311 29 335 2 350 38 9 3 45 17 33 36 37 67 10 107 13 150 09 192 46 235 39 277 36 312 27 335 40 351 05 10 4 10 18 05 37 46 68 22 108 38 151 34 194 12 237 05 278 56 313 24 336 17 351 32 11 4 36 18 37 38 35 69 35 110 03 153 00 195 37 238 32 280 14 314 21 336 52 351 58 12 5 01 19 10 39 26 70 49 111 29 154 25 197 02 239 57 281 32 315 16 337 27 352 25 13 5 26 19 42 49 16 72 03 112 54 155 51 198 28 241 23 282 51 316 11 338 2 352 51 14 5 52 20 14 41 08 73 19 114 21 157 16 199 53 242 49 284 8 317 6 338 38 353 17 15 6 17 20 48 42 01 74 35 115 46 158 44 201 16 244 14 285 25 317 59 339 12 353 43 16 6 43 21 22 42 54 75 52 117 11 160 07 202 44 245 39 286 41 318 52 339 46 354 8 17 7 09 21 58 43 49 77 09 118 37 161 32 204 09 247 6 287 57 319 44 340 18 354 34 18 7 35 22 33 44 44 78 28 120 03 162 58 205 35 248 31 289 11 320 34 340 50 354 59 19 8 02 23 08 45 39 79 46 121 28 164 23 207 00 249 57 290 25 321 25 341 23 355 24 20 8 28 23 43 46 26 81 04 122 55 165 48 208 26 251 22 291 38 322 14 341 55 355 50 21 8 55 24 20 47 33 82 24 124 21 167 14 209 51 352 47 292 50 323 3 342 27 356 15 22 9 22 24 58 48 31 83 43 125 47 168 39 211 17 254 12 294 3 323 52 342 58 356 41 23 9 49 25 35 49 30 85 03 127 14 170 04 212 43 255 37 295 14 324 38 343 29 357 6 24 10 16 26 13 50 30 86 23 128 40 171 30 214 08 257 1 296 25 325 25 344 0 357 31 25 10 40 26 51 51 31 87 44 130 06 172 54 215 34 258 25 297 35 326 10 344 30 357 36 26 11 11 27 30 52 33 89 06 131 32 174 20 217 00 259 59 298 44 326 54 344 59 358 21 27 11 39 28 09 53 36 90 28 132 58 175 45 218 26 261 14 299 52 327 39 345 35 358 46 28 12 07 28 49 54 39 91 51 134 24 177 10 219 52 262 36 300 59 328 22 345 59 359 11 29 12 35 29 31 55 43 93 1●… 135 50 178 35 221 18 264 1 302 6 329 6 346 28 359 36 30 13 04 30 12 56 48 94 36 137 15 180 00 222 45 265 24 303 12 329 48 346 56 360 0 Tabula Ascensionum Obliquarum ad Latitudinem 52 deg. 00 min. ′° ♈ ♉ ♊ ♋ ♌ ♍ ♎ ♏ ♐ ♑ ♒ ♓ 0 00 00 12 48 29 42 56 11 94 06 137 0●… 180 9 223 0 265 54 303 4 330 18 347 12 1 00 24 13 16 30 24 57 17 95 30 138 27 181 25 224 26 267 17 304 54 330 59 347 40 2 00 48 13 45 31 7 58 24 96 54 139 54 182 51 225 52 268 40 305 58 331 39 348 7 3 1 13 14 14 31 50 59 31 98 18 141 20 184 16 227 19 270 3 307 1 332 19 348 35 4 1 37 14 43 32 34 60 39 99 42 142 47 185 42 228 45 271 26 308 4 332 58 349 2 5 2 02 15 12 33 18 61 48 101 9 144 13 187 8 230 12 272 48 309 6 333 37 349 29 6 2 26 15 42 34 3 62 58 102 32 145 40 188 33 231 38 274 9 310 7 334 15 349 56 7 2 51 16 13 34 49 64 09 103 57 147 6 189 59 233 5 275 49 311 7 334 52 350 23 8 3 15 16 43 35 36 65 20 105 22 148 32 191 25 234 32 276 50 312 6 335 29 350 49 9 3 40 17 14 36 24 66 32 106 47 149 58 192 51 235 58 278 10 313 ●… 336 6 351 16 10 4 5 17 45 37 12 67 45 108 12 151 24 194 17 237 25 279 30 314 1 336 42 351 42 11 4 30 18 16 38 1 68 59 109 38 152 50 195 42 238 52 280 49 314 57 337 17 352 8 12 4 55 18 48 38 51 70 13 111 4 154 16 197 8 240 18 282 8 315 52 337 52 352 33 13 5 20 19 20 39 42 71 28 112 30 155 42 198 34 241 45 283 26 316 47 338 26 352 59 14 5 45 19 52 40 34 72 44 113 56 157 8 200 0 243 11 284 43 317 41 339 1 353 25 15 6 10 20 25 41 26 74 0 115 23 158 54 201 26 244 37 286 00 318 34 339 35 353 50 16 6 35 20 59 42 19 75 17 116 49 160 0 202 52 246 4 287 16 319 26 340 8 354 15 17 7 1 21 34 43 13 76 34 118 15 161 26 204 18 247 30 288 32 320 18 340 40 354 40 18 7 26 22 08 44 8 77 52 119 42 162 52 205 44 248 56 289 47 321 9 341 12 355 5 19 7 52 22 43 45 3 79 11 121 8 164 18 207 10 250 22 291 1 321 59 341 44 355 30 20 8 18 23 18 45 59 80 30 122 35 165 43 208 36 251 48 292 15 322 48 342 15 355 55 21 8 44 23 54 46 56 81 50 124 2 167 9 210 2 253 13 293 2●… 323 36 342 46 356 20 22 9 11 24 31 47 54 83 10 125 28 168 35 211 28 254 38 294 40 324 24 343 17 356 45 23 9 37 25 08 48 53 84 31 126 55 170 1 212 54 256 3 295 51 325 11 344 18 357 9 24 10 4 25 45 49 53 85 51 128 22 171 27 214 20 257 28 297 ●… 325 57 344 18 357 34 25 10 31 26 23 50 54 87 12 129 48 172 52 215 47 258 53 298 12 326 42 344 48 357 58 26 10 58 27 2 51 56 88 34 131 15 174 18 217 13 260 18 299 21 327 26 345 17 358 23 27 11 25 27 41 52 59 89 57 132 41 175 44 218 40 261 42 300 29 328 10 345 46 358 47 28 11 53 28 21 54 2 91 20 134 8 177 9 220 6 263 6 301 36 328 53 346 15 359 12 29 12 20 29 01 55 6 92 43 135 34 178 35 221 33 264 30 302 43 329 36 346 44 359 36 30 12 48 29 42 56 11 94 06 137 00 180 9 223 0 265 54 303 49 330 18 347 12 360 0 Tabula Ascensionum Obliquarum ad Latitudinem 53 deg. 00 min. ° ′ ♈ ♉ ♊ ♋ ♌ ♍ ♎ ♏ ♐ ♑ ♒ ♓ 0 0 0 0 12 14 28 34 54 46 92 58 136 26 180 0 223 34 267 2 305 14 331 26 347 46 1 0 23 12 41 29 15 55 52 94 23 137 54 181 26 225 1 268 27 306 20 332 6 348 13 2 0 40 13 8 29 57 56 5●… 95 48 139 22 182 53 226 29 269 51 307 25 332 45 348 40 3 1 09 13 36 30 39 58 6 97 13 140 49 184 20 227 56 271 15 308 28 333 24 349 6 4 1 32 14 4 31 22 59 14 98 38 142 17 185 47 229 24 272 38 309 30 334 2 349 32 5 1 56 14 32 32 6 60 23 100 4 143 44 187 14 230 52 274 0 310 31 334 40 349 58 6 2 19 15 1 32 51 61 33 101 30 145 12 188 40 232 19 275 22 311 31 335 17 350 24 7 2 43 15 30 33 36 62 44 102 56 146 39 190 7 233 47 276 44 312 30 335 53 350 50 8 3 6 15 59 34 22 63 56 104 22 148 7 191 34 235 15 278 5 313 29 336 29 351 15 9 3 30 16 29 35 8 65 9 105 48 149 34 193 1 236 43 279 26 314 27 337 4 351 40 10 3 54 16 59 35 55 66 22 107 15 151 1 194 28 238 11 280 47 315 24 337 39 352 5 11 4 17 17 29 36 43 67 36 108 42 152 29 195 55 239 19 282 7 316 21 338 13 352 30 12 4 41 18 0 37 32 68 51 110 9 153 56 197 22 241 6 283 26 317 16 338 47 352 55 13 5 5 18 31 38 22 70 6 111 36 155 23 198 49 242 34 284 45 318 10 339 20 353 19 14 5 29 19 2 39 11 71 22 113 4 156 50 200 16 244 1 286 3 319 3 339 53 353 43 15 5 53 19 34 40 5 72 39 114 32 158 17 201 43 245 28 287 21 319 55 340 26 354 7 16 6 17 20 7 40 57 73 57 115 59 159 44 203 10 246 56 288 38 320 47 340 58 354 31 17 6 41 20 40 41 50 75 15 117 26 161 11 204 37 248 24 289 54 321 38 341 29 354 55 18 7 5 21 13 ●…2 44 76 34 118 54 162 38 206 4 249 51 291 9 322 28 342 0 355 19 19 7 30 21 47 43 39 77 53 120 21 164 5 207 31 251 18 292 24 323 17 342 31 355 43 20 7 55 22 2●… 44 36 79 13 12●… 49 165 32 208 59 252 45 293 38 324 5 343 1 356 6 21 8 20 22 56 45 3●… ●…0 34 123 17 166 59 210 26 254 12 294 51 324 52 343 31 356 30 22 8 45 23 3●… 46 31 81 5●… 124 45 168 26 211 53 255 38 296 4 325 38 344 1 356 54 23 9 10 24 7 47 3●… ●…3 16 126 13 169 53 213 21 257 4 297 26 326 24 344 30 357 17 24 9 36 24 4●… 8 2●… ●…4 38 127 41 171 20 214 48 258 30 298 27 327 9 344 59 357 41 25 10 2 25 20 49 29 86 0 129 8 172 46 216 16 259 56 299 37 327 54 345 28 358 4 26 10 28 25 58 50 30 87 22 130 36 174 13 217 43 261 22 300 46 328 38 345 56 358 28 27 10 54 26 3●… 51 3●… ●…8 45 132 4 175 40 219 11 262 47 301 54 329 21 346 24 358 51 28 11 20 27 1●… 52 3●… 90 9 133 31 177 7 220 38 264 12 303 1 330 3 346 52 359 14 29 11 47 27 53 53 40 91 33 134 59 178 34 222 ●…6 265 37 304 8 330 45 347 19 359 37 30 12 14 28 34 54 46 92 58 136 26 180 0 223 34 267 2 305 14 331 26 347 46 360 0