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This paper presents experimental results on whispered speech recognition based on Teager Energy
Operator for linear and mel cepstral coefficients including the Cepstral Mean Subtraction normaliza-
tion technique. The feature vectors taken into consideration are Linear Frequency Cepstral Coefficients,
Teager Energy based Linear Frequency Cepstral Coefficients, Mel Frequency Cepstral Coefficients and
Teager Energy based Mel Frequency Cepstral Coefficients. A speaker dependent scenario is used. For the
recognition process, Dynamic Time Warping and Hidden Markov Models methods are applied. Results
show a respectable improvement in whispered speech recognition as achieved by using the Teager Energy
Operator with Cepstral Mean Subtraction.
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1. Introduction

Whisper is a specific speech mode used in situations
where the communicator wishes to keep information
private or discreet in public places (Ito et al., 2005),
when the caller hides their identity when making tele-
phone calls, due to vocal cord problems, or for other
reasons. Nowadays, when mobile telephone services
have gained popularity, whisper has become a common
speech mode for quiet communication that does not
disturb uninvolved parties in specific settings (schools,
libraries, market places, etc). Research on whispered
speech is highly popular and still ongoing, focusing
on signal/noise ratio, energy level (Jovičić, Šarić,
2008), vocal cord vibration (Catford, 1977), spec-
tral slope (Zhang, Hansen, 2007), shifting the vowel
formants to higher frequencies (Jovičić, 1998), for-
mant frequency estimations (Gang, Heming, 2009),
joint factor analysis for speaker verification (Gang,
Heming, 2012), speaker identification (Fan, Hansen,
2014) and other areas. Therefore, whisper is still a chal-
lenge for research. The intelligibility of whispered
speech is a major issue, despite its significant differ-
ence from normal speech. Hence, some studies have
focused on brain activity during whisper processing,

and on different areas of phonetics related to whisper
(Tsunoda et al., 2012).

The well-known techniques for automatic speech
recognition (ASR) applied to normal speech can also
be applied to whisper, after some modifications. The
most popular ASRs are based on standard methods
such as DTW (Dynamic Time Warping), HMM (Hid-
den Markov Models) (Rabiner, Juang, 1993) and
ANN (Artificial Neural Networks) (Kostek, 1999). In
the present research, standard DTW and HMM meth-
ods have been used as they have proved to be simple
and reliable.

The application of Teager Energy Operator (TEO)
for whisper has not been fully investigated. Some
authors have used this operator for murmur recog-
nition (Heracleous, 2009), others for speech un-
der stress (normal, anger, loud, Lombard) (Hansen,
Patil, 2007). The present study focuses on the use of
TEO for whisper and normal speech recognition, and
their match and mismatch scenarios.

This paper is structured as follows: Sec. 2 ex-
plains the use of the data recorded as the Whi-Spe
(Marković et al., 2013) speech corpus database. Sec-
tion 3 describes preprocessing and extraction of all
feature vectors: Linear Frequency Cepstral Coefficients
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(LFCCs), Teager Energy based Linear Frequency Cep-
stral Coefficients (TELFCCs), Mel Frequency Cepstral
Coefficients (MFCCs) and Teager Energy based Mel
Frequency Cepstral Coefficients (TEMFCCs) with and
without normalization and the first derivative. Results
are presented in Sec. 4 as tables and diagrams, with
the four feature vectors analyzed and compared. Final
remarks and ideas for further research are given in the
Conclusions.

2. Speech corpus

The Whi-Spe database created for the research on
whispered speech was used in the experiment. The
database contains 10 000 patterns of single words spo-
ken in both normal and whispered mode. The vocab-
ulary consists of 50 words of the Serbian language di-
vided in three sub corpora: colors, numbers and pho-
netically balanced words. Five male and five female
speakers were involved. Each pattern was recorded in
the Whi-Spe database as a single wave file at a sam-
pling rate of 22 050 Hz, 16 bits per sample. These files
are inputs to the preprocessing system while the out-
puts include LFCC, TELFCC, MFCC and TEMFCC
feature vectors and their variations. For the purpose of
this research, the entire database was used.

Different parameter sets of vectors containing cep-
stral coefficients without normalization, cepstral co-
efficients with normalization and delta cepstral with
cepstral coefficients with normalization were con-
sidered. These vectors were applied in two speech
modes (normal and whispered) and four scenarios:
normal/normal (N/N), whisper/whisper (W/W), nor-
mal/whisper (N/W) and whisper/normal (W/N). For
example, in the W/N scenario, the model was trained
with (W)hispered patterns, and recognition was per-
formed using (N)ormal patterns.

3. Preprocessing and feature vector extraction

The generation of feature vectors for all these types
involves the same first steps (Rabiner, Juang, 1993):
pre-emphasis, blocking with overlap, windowing and
Fast Fourier Transform (FFT) (Fig. 1).

Fig. 1. Block diagram for LFCC/TELFCC
and MFCC/TEMFCC based coefficients.

The pre-emphasis block produces a spectrally flat-
tened signal and makes it less susceptible to finite
precision effects later in the signal processing. In the
framing/overlap block, the output signal of the pre-
emphasis step is divided into N frames of 512 samples,
with an overlap of 50%. Then, the frames are weighted
with a Hamming window in the next block. The pur-
pose of windowing is to taper the signal to zero at the
beginning and end of each frame. The next step is the
FFT, which calculates short time spectra for the signal.

Other steps to obtain cepstral coefficients for each
feature vector are specific. In addition to cepstral coef-
ficients, the first derivative is also included (delta cep-
stral coefficients). These coefficients are used to im-
prove the performance of speech recognition systems.
In order to calculate the first derivative, three neigh-
boring frames are used.

The extraction of feature vectors for each of these
types is explained in detail below.

3.1. LFCC and TELFCC feature vectors

Linear frequency cepstral coefficients (LFCCs) use
a linear frequency scale. Some researchers have shown
that, for normal speech, LFCCs are preferable for fe-
male speech because they better capture the spec-
tral characteristics in the high frequency region (Zhou
et al., 2011). This can be explained by the relatively
shorter vocal tract in females and the resulting higher
formant frequencies of speech.

The block diagram in Fig. 1 shows the generation
of LFCC/TELFCC and MFCC/TEMFCC feature vec-
tors and their first derivative (delta coefficients).

After preprocessing blocks, log energy is calculated
on a linear scale (for LFCCs). The scale is divided into
30 equal triangular filters. The filters cover a range
from 0 to 11 025 Hz, and are overlapped at the cen-
tral frequencies. Next, the Discrete Cosine Transform
(DCT) is applied. At that point, LFCC feature vectors
are generated, each with 12 coefficients.

To perform normalization, a CMS block is added.
CMS is a channel normalization approach used to com-
pensate for the acoustic channel (De Veth, Boves,
1998). When a speech signal goes through a time in-
variant channel, convolution distortions become mul-
tiplicative in the spectral domain and additive in the
log-spectral domain. Since the cepstrum is just a lin-
ear transformation of the log-spectrum, both can be
treated equally. For the speech signal, a short time
analysis is performed resulting in the speech spectrum
St(ω), and the resulting spectrum Yt(ω). The index t
indicates time dependence. The resulting spectrum is
given as:

Yt(ω) = C(ω) · St(ω) (1)

and the log-spectrum (cepstrum) is:

yt = c+ st. (2)
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Since the channel is constant (C(ω) = const), it
can be compensated by subtracting the mean, leading
to a new cepstral mean subtraction feature zt:

zt = yt − yt = c+ st − (c+ st) = st − st. (3)

Then, a block for the first derivative is applied
(Delta). It produces LFCC delta coefficients. As a fi-
nal result, the second branch of the block diagram in
Fig. 1 generates three types of LFCC feature vectors
used in the experiments.

Teager-Energy based Linear Frequency Cepstral
Coefficients (TELFCCs) are produced by applying the
non-linear Teager-Kaiser Energy Operator on the lin-
ear scale. This operator is proposed for tracking rapid
energy changes within a glottal cycle (Kaiser, 1983),
which is very attractive for whisper. For real discrete-
time signals, TEO is defined as:

Ψ(x[n]) = x2[n]− x[n− 1] · x[n+ 1]. (4)

For complex discrete-time signals, TEO is the sum of
the energy of real and imaginary parts of the signal
(Dimitriadis et al., 2005):

Φ(x[n]) = Ψ(Re{x[n]}) + Ψ(Im{x[n]}). (5)

The third branch in Fig. 1 shows the obtainment of
TELFCC coefficients and their first derivative. After
signal preprocessing (pre-emphasis, framing/overlap,
windowing and FFT), the TEO of the signal is calcu-
lated, and magnitude is weighted by a linear filtered
bank. Then, Log energy is computed for each sub-
band, and finally the DCT is applied. Similarly, as for
LFCC, three types of vectors are generated (depending
on whether the signal goes through the CMS block or
not, and whether the first derivative is calculated or
not).

3.2. MFCC and TEMFCC feature vectors

Mel Frequency Cepstral Coefficients (MFCCs) rep-
resent both the model of the human auditory sys-
tem and a discorrelating property of the cepstrum
(Rabiner, Juang, 1993). They are the most widely
used features for speech recognition. The mel scale is
mapping physical frequencies to perceptual represen-
tations. The mapping between the physical frequency
(in Hz) and the perceptual frequency (in mel) is given
by Eq. (6):

mel = 2595 · log10(1 + f/700). (6)

Similarly, as with LFCC features, after the FFT,
Log energy is calculated based on the mel scale. The
scale is covered with 30 filters. The energy is calculated
for each sub-band, and then the Discrete Cosine Trans-
form is applied. Subsequently, blocks for normalization
(CMS) and Delta are applied.

The third branch in Fig. 1 shows the obtainment
of TEMFCC based coefficients. It is similar to the
TELFCC explained above.

The resulting feature vectors are of three
types: a) vectors of 12 cepstral coefficients without
CMS; b) vectors of 12 cepstral coefficients with CMS,
and c) vectors of 24 coefficients (12 cepstral plus 12
delta cepstral) with CMS. They were used in the fol-
lowing experiments.

4. Experimental results

The experiments were based on four feature vectors
(LFCCs, TELFCCs, MFCCs, TEMFCCs) and their
three types. To evaluate the suitability of these fea-
ture vectors for whispered speech, DTW (Marković
et al., 2013) and HMM (Galić et al., 2014) methods
were used for recognition. These methods are highly
efficient as they use well-known techniques to compare
speech patterns.

The Dynamic Time Warping method is based on
dynamic programming, and focuses on finding an opti-
mal path between the starting and ending points of two
pattern representations. The speech patterns are rep-
resented by a set of vectors. The first set of patterns (50
words) is used as a reference, and the other patterns
(nine sets, each consisting of 50 words) are test data.
For local constraints, the type I proposed by Sakoe
and Chiba (1978) is used when preference is given to
a diagonal step. Global constraints are not used.

The Hidden Markov Models based ASR system is
implemented using the HTK (Hidden Markov Model
Toolkit, 2016). The generation of all the files needed
by the HTK (i.e. script and configuration files as well
as model initialization and phonetic transcription files)
is fully automated using MATLAB. Also, MATLAB
is used for logging ASR system performance with an
evaluation using the HTK.

The Automatic Speech Recognition system back-
end is based on HMM models of context-independent
phonemes. Output probabilities are modeled with con-
tinuous density GMMs and diagonal covariance ma-
trices. Each monophone model has 5 states in total
(3 emitting states), with a strictly left to right topol-
ogy, and without skips. Each word from the Whi-
Spe database is transcribed manually. The number of
training cycles in embedded re-estimation is restricted
to 5. To prevent variance underestimation, the variance
floor for Gaussian probability density functions is set
to 1% of the global variance. Initial model parameters
are estimated by the flat-start method, with the mod-
els initialized using the global mean and variance (all
models are initially given the same set of parameters)
(Galić et al., 2014). The number of mixture compo-
nents is gradually increased. In the testing phase, the
Viterbi algorithm is applied in order to determine the
most probable state sequence.
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Towards a more reliable evaluation of the per-
formance, 5-fold cross-validation was conducted. For
consistent comparison, in match scenarios (N/N and
W/W), the percentage of utterances in the part for
training was the same as in mismatch scenarios (N/W
and W/N) i.e. 80%.

For the LFCC feature and all three types of vec-
tors, the results expressed as the word recognition
rate (WRR) for normal/normal, whisper/whisper, nor-
mal/whisper and whisper/normal scenarios are pro-
vided in Table 1. Confidence intervals were cal-

Table 1. Average WRR with Margin of Error of LFCC feature vectors (in %).

LFCC (no CMS) LFCC (with CMS) LFCC+∆ (with CMS)

Vector/Scenar. DTW HMM DTW HMM DTW HMM

Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE

N/N 97.25 ±0.92 97.46 ±1.29 98.29 ±0.78 98.50 ±0.53 98.33 ±0.74 99.32 ±0.29

W/W 91.45 ±3.50 96.18 ±0.96 94.33 ±2.61 97.78 ±0.39 94.67 ±2.58 98.74 ±0.53

N/W 45.33 ±6.96 28.31 ±7.59 69.16 ±6.54 71.19 ±5.09 69.20 ±6.65 77.93 ±3.98

W/N 36.67 ±4.53 22.76 ±6.15 62.53 ±5.31 61.62 ±7.41 63.67 ±5.14 69.66 ±7.01

Table 2. Average WRR with Margin of Error of TELFCC feature vectors (in %).

TELFCC (no CMS) TELFCC (with CMS) TELFCC+∆ (with CMS)

Vector/Scenar. DTW HMM DTW HMM DTW HMM

Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE

N/N 97.22 ±0.88 97.18 ±1.40 98.40 ±0.67 97.86 ±0.86 98.36 ±0.63 98.40 ±0.43

W/W 91.42 ±3.55 96.34 ±0.95 94.64 ±2.52 96.70 ±0.83 94.62 ±2.59 98.18 ±0.50

N/W 44.08 ±7.70 25.89 ±5.79 69.71 ±6.78 71.34 ±3.67 69.53 ±6.67 75.46 ±3.36

W/N 37.36 ±4.26 27.11 ±9.51 63.29 ±5.62 60.95 ±6.46 64.47 ±5.72 65.66 ±6.23

Table 3. Average WRR with Margin of Error of MFCC feature vectors (in %).

MFCC (no CMS) MFCC (with CMS) MFCC+∆ (with CMS)

Vector/Scenar. DTW HMM DTW HMM DTW HMM

Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE

N/N 99.00 ±0.24 98.16 ±0.91 99.29 ±0.27 98.84 ±0.63 99.20 ±0.27 99.28 ±0.36

W/W 95.22 ±2.43 95.64 ±0.80 97.18 ±1.60 97.14 ±0.75 97.25 ±1.65 98.90 ±0.26

N/W 34.73 ±3.84 14.41 ±3.64 72.84 ±5.32 67.77 ±4.18 72.69 ±5.61 73.03 ±6.27

W/N 18.36 ±2.44 20.98 ±5.36 47.29 ±5.12 64.34 ±7.39 48.85 ±5.12 77.62 ±7.18

Table 4. Average WRR with Margin of Error of TEMFCC feature vectors (in %).

TEMFCC (no CMS) TEMFCC (with CMS) TEMFCC+∆ (with CMS)

Vector/Scenar. DTW HMM DTW HMM DTW HMM

Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE Avg MoE

N/N 98.87 ±0.29 98.16 ±1.04 99.24 ±0.31 98.98 ±0.67 99.18 ±0.28 99.38 ±0.37

W/W 95.33 ±2.56 97.20 ±0.88 97.18 ±1.70 97.36 ±0.64 97.11 ±1.76 99.20 ±0.27

N/W 34.71 ±4.12 11.07 ±2.27 73.15 ±5.30 66.27 ±4.61 73.22 ±4.94 75.76 ±4.57

W/N 18.56 ±2.56 12.02 ±2.45 48.60 ±4.81 60.45 ±7.41 49.56 ±5.05 77.38 ±6.74

culated for all results using a confidence level of
95%. They are described in MoE (Margin of Error)
columns.

For the TELFCC feature and all three types of vec-
tors, the results are presented in Table 2.

For MFCC and TEMFCC features, the same types
of vectors as explained for LFCC and TELFCC were
used. The results are given in Tables 3 and 4 for MFCC
and TEMFCC, respectively.

The most interesting results were found for the type
of vectors containing 24 coefficients (12 cepstral plus
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12 delta cepstral coefficients). Figures 2 and 3 present
word recognition rates (with confidence intervals) for
match scenarios (normal/normal, whisper/whisper, re-
spectively), and the type of vectors consisting of 24
coefficients, for both recognition methods.

Fig. 2. Average word recognition rate for normal/normal
scenario.

Fig. 3. Average word recognition rate for whisper/whisper
scenario.

Figures 4 and 5 present word recognition rates
for mismatch scenarios (normal/whisper and whis-
per/normal, respectively).

An additional statistical analysis was performed us-
ing a p-value and H0/H1 hypothesis (Neyman, Pear-
son, 1933). Two pairs of hypothesis were analyzed:

When CMS is used or not: Hypothesis H0A: “Both
algorithms (with no CMS and with CMS) produce the
same WRR”. Hypothesis H1A: “The algorithm with
CMS gives better results”.

When TEO is used or not: Hypothesis H0B : “Both
algorithms (with no TEO and with TEO) produce the
same WRR”. Hypothesis H1B : “The algorithm with
TEO gives better results”.

Results for H0A/H1A hypotheses are provided in
Table 5, where the Hypothesized Mean Difference is
set to zero, and the Alpha value is set to 0.05.

Table 5. p-values for H0A/H1A hypotheses.

Vector/Scenario
LFCC TELFCC MFCC TEMFCC

DTW HMM DTW HMM DTW HMM DTW HMM

N/N 0.054 0.081 0.025 0.214 0.063 0.123 0.051 0.105

W/W 0.110 0.004 0.082 0.291 0.102 0.007 0.127 0.389

N/W 5.87 E–05 1.6 E–08 5.8 E–05 6.96 E–11 5.89 E–10 1.31 E–13 7.38 E–10 1.99 E–14

W/N 4.6 E–07 1.43 E–07 5.26 E–07 9.12 E–06 4.45 E–09 1.32 E–08 1.34 E–09 2.05 E–10

Fig. 4. Average word recognition rate for normal/whisper
scenario.

Fig. 5. Average word recognition rate for whisper/normal
scenario.

These results show that differences for N/W and
W/N scenarios were statistically significant (p < 0.05)
and those for N/N and W/W scenarios close to being
statistically significant.

Results for H0B/H1B hypotheses are shown in Ta-
ble 6, where vectors of 24 coefficients are used.

Table 6. p-values for H0B/H1B hypotheses.

Vector/Scenario
LFCC/TELFCC MFCC/TEMFCC

DTW HMM DTW HMM

N/N 0.482 0.002 0.454 0.353

W/W 0.490 0.075 0.457 0.074

N/W 0.473 0.182 0.445 0.249

W/N 0.420 0.207 0.424 0.481

These results show no significant difference (in most
cases p > 0.05). Also, the results based on the HMM
method are closer to a low p-value than those based
on the DTW method.



8 Archives of Acoustics – Volume 43, Number 1, 2018

5. Conclusions

The results suggest the following conclusions:
1. Cepstral Mean Subtraction normalization pro-

vided a huge improvement in speech recognition
in all scenarios, especially when mismatch scenar-
ios were used.

2. TEO with CMS improved recognition in most
cases when applied on a mel scale.

3. Hidden Markov Models as a recognition method
outperformed DTW for all scenarios when CMS
normalization was used.

4. The highest WRR for match scenarios was 99.38%
(for N/N scenario) and 99.20% (for W/W sce-
nario) when the TEMFCC feature vector and the
HMM method were used.

5. The highest WRR for mismatch scenarios was
around 77% (for N/W and W/N scenarios), and
was obtained using TEMFCC, MFCC and LFCC
feature vectors.

6. The use of the first derivative of cepstral coeffi-
cients led to an important improvement in recog-
nition (up to 17%), especially when the HMM
method was applied.

In general, the TEMFCC feature vector ensures re-
spectable results, especially when HMM is used as a
recognition tool. Using a normalization technique such
as CMS is necessary for good results. Its impact is es-
sential for N/W and W/N scenarios.

Further research can focus on ASR using these
feature vectors, different recognition tools, such as
Kaldi Toolkit (Kozierski et al., 2016), new methods
i.e. ANN (Kostek, 1999), and an enlarged whisper
database.
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