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The paper presents and discusses a method of azimuth determination of ultrasonic echo arrival in air.
The basis of the presented approach is the assumption that the received signal is a narrowband one.
In this way, the direction of the signal arrival can be determined based on its phase shift using two
receivers. When the distance between the receivers exceeds half of the wavelength of the received signal,
a problem of ambiguity in determining the angle of arrival arises. To solve this, a method using multiple
pairs of receivers was used. Its robustness and temperature dependence is analysed. The most important
advantages of the presented approach are simplified computations and low hardware requirements. Ex-
perimental data made it possible to show that for strong echoes, the accuracy is higher than 0.5○. In the
case of weak echos, it is reduced to about 2○. Because the method is based on phase shift measurement,
the ultrasonic sonar that uses this method can be compact in size. Moreover, owing to the theoretical
analysis, certain properties of the mutual location of the receivers were found and formally proved. They
are crucial for determining proper receivers’ inter-distances.
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1. Introduction

Popular ultrasonic range finders are very pure in
angular resolution, and can therefore not be effectively
used in the navigation of mobile robots. This can be
changed by using sonars that are able to determine
the distance to an object and the direction of arrival
(DOA) of a received echo. In order to replace simple
ultrasonic range finders with such sonars, their method
of DOA determination should be simple enough to
minimize the necessary hardware and software in order
to make the sensor compact in size. In (Kreczmer,
2017), an approach that makes it possible to estimate
the DOA using the indirect determination of the phase
shift is presented. Because it does not rely on a signal
amplitude measurement, no sampling is needed and
computations are simplified. In this paper, a more de-
tailed analysis and its theoretical justification are pre-
sented. The performed tests and experiments showed
that the method combined the simplicity of computa-
tion and the precision and accuracy of DOA determi-

nation. Moreover, it is shown that this approach can
be extended in a simple way to the 3-D case in which
the distance and azimuth, as well as elevation angles
are determined. The remainder of this paper is orga-
nized as follows: Sec. 2 gives a brief overview of related
studies; Sec. 3 contains the formulation of the analysed
problem and a signal model, and also describes the
main assumptions of the presented approach; Sec. 4
presents a method of azimuth angle determination of
an ultrasonic echo; Sec. 5 discusses the problem of so-
lution ambiguity when the inter-distance between re-
ceivers is bigger than half of the wavelength of a recei-
ved signal; Sec. 6 analyses the influence of measure-
ment errors on the determined value of the azimuth an-
gle of signal arrival; Sec. 7 describes the improvement
of the presented approach by introducing more pairs of
receivers; Sec. 8 presents the dependence between tem-
perature and the accuracy of measurements and also
gives an explanation of the observed phenomena; The
next section shows the results of experiments; and fi-
nally, in the last regular section, the main conclusions
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are summarized. In Appendix, several theorems de-
scribing features of the mutual location of the receivers,
as well as their proofs, are presented. They are crucial
for determining proper receivers’ inter-distances. This
is important because the presented approach is sensi-
tive to these values.

2. Related work

When a signal source is relatively close to receivers,
the problem of DOA determination can be solved by
using triangulation methods based on range difference
information. The critical point in triangulation meth-
ods is the determination of the time of signal flight.
To overcome this problem, signal modulation com-
bined with correlation function methods were applied
in (Walter, Schweinzer, 2014). Range difference
can also be measured by utilizing the signal phase shift
(Choi et al., 2014).

The most common approach to DOA determina-
tion is based on array signal processing, and is used
in many applications of radar, sonar or communica-
tion. The well-known method is multiple signal clas-
sification (MUSIC) (Schmidt, 1986). There are sev-
eral variants of this method, e.g. root-MUSIC (Zhang
et al., 2017), the total spectral search MUSIC method
(Zhou et al., 2013), or the partial spectral search one
(Sun et al., 2015). Another well-known approach to
DOA determination is the estimation of signal param-
eters via rotational invariance techniques (ESPRIT)
(Roy et al., 1986; Roy, Kailath, 1989). This ap-
proach also has a lot of variants and adaptations, e.g.
Unitary ESPRIT (Haardt, Nossek, 1995), Conju-
gate ESPRIT (Tayem, Kwon, 2003). The important
advantage of these methods is that they make it possi-
ble to determine the DOA of signals emitted by several
sources, but they unfortunately require complex com-
putations. Even the improvement of such a method
that was presented in (Yang et al., 2018) still contains
a lot of float-point operations. In (Clapp, Etienne-
Cummings, 2006), a hardware-based approach was
presented. A mixed-signal full-custom VLSI chip was
designed to receive acoustic signals from an ultrasonic
microphone array. It made it possible to extract the
input bearing angles of the incoming wave. The pro-
cessing utilizes simple low-power analog spatiotempo-
ral bandpass filters to extract wavefront velocity across
the array, which is translated to the input bearing an-
gle. Spatial filters are also used in (Steckel et al.,
2013). The presented method applies an array beam-
forming technique to the synthesis of 3-D spatial filters.
By combining broadband beamforming with a sparse
and random array of MEMS microphones, the ob-
taining of 3-D location measurements in the presence
of multiple highly overlapping echoes is permitted.
This type of sonar appeared to be very effective and
made it possible to implement the system BatSLAM

(Steckel, Peremans, 2013) which was able to solve
the simultaneous localization and mapping problem
(SLAM) (Steckel, Peremans, 2015). MEMS micro-
phones were also used in (Herman et al., 2014) to
create a linear array. The DOA was determined by
implementing of beamforming algorithms. To measure
distance, a correlation function-based method was ap-
plied.

In (Im et al., 2013), another approach to processing
signals received on an array of microphones was pre-
sented. The approach is based on a cumulated signal
amplitude in a single period. Because this approach
assumes that the maximal amplitude of a signal is the
same during a long period of time, it is difficult to meet
this assumption in practical implementation.

To obtain a very good accuracy of DOA determi-
nation, the discussed approaches involve methods that
are relatively computationally expensive. Most of them
are able to determine the DOA of signals that come
from several sources. The approach presented in this
paper is restricted to the problem of DOA determina-
tion for an echo coming from a single direction. This
is the obvious drawback. However, when an emitted
signal is short enough, it can be acceptable for many
applications of mobile robot navigation. The impor-
tant advantages are that the computational burden is
reduced and the hardware requirements are very low.
Despite this, a very good accuracy of DOA estimation
is obtained. In this sense, the presented method can be
exploited in order to build an inexpensive sonar that
will be a good replacement of traditional ultrasonic
range finders.

3. Problem formulation and signal model

The 3-D problem of the localization of an ob-
ject by using a sonar (see Fig. 1a) consists of find-
ing the distance to the object, as well as finding the

a)

b)

Fig. 1. Sonar application to the localization of the object in:
a) 3-D space, b) the horizontal plane.



B. Kreczmer – Estimation of the Azimuth Angle of the Arrival Direction. . . 587

azimuth and elevation angles i.e. (r, φ, θ). The dis-
tance is determined by measuring the time-of-flight
(TOF). The angles are obtained by estimating the
DOA. When the object is located in the horizontal
plane (see Fig. 1b) and only such object locations are
considered, the only angle of the DOA to determine is
the azimuth angle. In this sense, the problem is reduced
to a 2-D one (r, φ). This paper is focused on a method
of determining the azimuth angle of the DOA. To de-
termine TOF, one of the well-known methods can be
used. It is worth noting that when the sonar receiver
system has axial symmetry, it is simple to extend it
to the 3-D case. It is enough to use two such systems
which are perpendicular to each other. The angles de-
termined by both systems make it possible to estimate
the azimuth and elevation angles. Therefore, it is worth
studying features of the 2-D case.

It is assumed that the signal emitted, and then re-
ceived, is narrowband. This assumption is especially
true when piezoelectric transducers are used. In this
case, the signal can be modelled by the function

S(t)=1(t−t0)((t−t0)p1M1e
− t−t0τ1 +(t−t0)p2M2e

− t−t0τ2 )

⋅A sin (ω(t − t0) + γ) + n(t), (1)

where t0 is the time of signal arrival, M1 and M2 de-
termine the signal magnitude, p1, p2, τ1, τ2, and γ
are transducer constants, ω is the angular frequency
of the ultrasound and n(t) is the noise of the sig-
nal. Figure 2a presents the oscillogram, which shows

a)

b)

Fig. 2. a) The oscillogram of a signal transmitted by the
transducer BPU-1640T0AH12 and received by the receiver

MA40S4R; b) the diagram of the signal model.

the signal received by the receiver MA40S4R produced
by Murata. The signal was emitted by the transducer
BPU-1640T0AH12 produced by Bestar. The gap be-
tween the emitter and the receiver was 93 mm. Us-
ing Eq. (1), the approximate model of the signal can
be obtained for the following parameter values: M1 =
3.46 ⋅ 10−9 µs−4, M2 = 8.30 ⋅ 10−6 µs−2, p1 = 4, p2 = 2,
τ1 = 80 µs, τ2 = 300 µs, A = 723 mV, γ = 0○, and
ω = 2πfs where the signal frequency fs = 40.91 kHz.
For simplicity, it was assumed that n(t) ≡ 0. Figure 2b
presents its diagram. The key feature of the observed
signal, which is exploited in the proposed approach, is
that its frequency is not changed rapidly. In fact, it
hardly changes at all. In addition, it is assumed that
inter-distances between receivers are small compared
to the distance to the object. This justifies the assump-
tion that the acoustic wave reflected by the object, and
then registered by sonar receivers, can be treated as
a planewave in the vicinity of the receivers.

4. Determination of signal arrival direction

DOA estimation by using phase shift measurements
is a well-know approach. It can be applied when a sig-
nal has a narrow bandwidth and the distance between
receivers is lower than a half wavelength (see Fig. 3).
Because of assumptions stated at the end of the pre-
vious section, the echo wave is treated as a planewave.
This makes it possible to determine the incident angle
by using the following simple formula:

φ = arcsin
s

b
= arcsin

vaτ

b
, (2)

where s is the distance of a wavefront to the receiver R1

at the moment when the wavefront reached the receiver
R0 (see Fig. 3), va is the speed of the acoustic wave,
b is the distance between receivers R0 and R1, and τ
is the interval time between the moment of wavefront
detection by the first receiver and, then, by the second
one. In this paper, it is assumed that receivers, as well
as a signal source, are located in the same horizontal
plane. Therefore, the incident angle of the signal is the
azimuth angle Fig. 4.

It is impossible to determine the angle correctly due
to the inter-distance b between receivers being bigger
than a half of the signal wavelength. In this case, it is

Fig. 3. A wavefront of a planewave propagated towards two
receivers.
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Fig. 4. Location of the receivers in the 3-D coordinate
system.

a phase ambiguity of an integer multiple of 2π between
the actual and the observed phase shifts due to phase
wrapping. It means that it is possible to obtain a few
angle values φi for which integer numbers ni exist that
determine φi as follows

φi = arcsin
vaτ + niλ

b
, (3)

where λ is the wavelength of the signal. When φ is
known, the correct value of n can be determined by
the formula

n = ⌊b sinφ

λ
⌋λ,

where ⌊.⌋ is the floor function. Using this formula, it
allows the interval time τ by φ to be expressed as fol-
lows

τ(φ) = 1

va
(b sinφ − ⌊b sinφ

λ
⌋λ) . (4)

When τ is measured and the correct value of φ is un-
known, the set of all possible values of ni that can be
used in Eq. (3) can be defined as follows

IΦ(τ, b)τ ={ni ∶ ni ∈ I ∧ sinφmin ≤ vaτ+niλ
b

≤ sinφmax},

where I is the set of integer numbers and φmin and φmax

determine the range Φ = [φmin, φmax] ⊆ (−π
2
, π

2
). This

is the range of azimuth angles for which measurements
can be performed. The additional subscript τ was used
in order to emphasize that this set is determined using
a measured value of τ when φ is unknown. However,
sometimes it will be useful to determine this set for
a known φ, which is possible because of Eq. (4). In
that case, the notation IΦ(φ, b)φ will be applied.

When b > λ
2

, the power of the set IΦ(τ, b)τ is gener-
ally bigger than 1. This is because there are some other
possible incident angles that result in the same value
of s = vaτ (see Fig. 5). Considering Eq. (3), it means
that all possible solutions φs for the given measure-
ment result τ are contained in the set

AΦ(τ, b)τ = {φi = arcsin
vaτ + niλ

b
∶ ni ∈ IΦ(τ, b)τ} .

a) b)

c)

Fig. 5. Ambiguous results of the incident angle φ
for the same value s.

Using the same argumentation that was applied for
introducing the representation of the azimuth angle
values of the set IΦ(φ, b)φ, the set AΦ(τ, b)τ will also
be denoted as AΦ(φ, b)φ. In the sense of this notation,
it is worth noticing that

∀φ ∈ Φ, φ ∈ AΦ(φ, b)φ. (5)

It is also convenient to define a set of all possible solu-
tions of Eq. (3) for the entire Φ as follows

AΦ(b) = {AΦ(φ, b)φ ∶ φ ∈ Φ}.

5. Ambiguity removal

The notation introduced in the previous section al-
lows the case for which a unique solution of Eq. (3) is
determined to be described as follows

b ≤ λ
2
∧ ∀AΦ(φ, b)φ ∈ AΦ(b), ∣AΦ(φ, b)φ∣ = 1, (6)

where ∣A(.)∣ is the power of the set A(.). When Φ =
(−π

2
, π

2
), the opposite case can be expressed in the way

presented below

b > λ
2
∧ ∃AΦ(φ, b)φ ∈ AΦ(b), ∣AΦ(φ, b)φ∣ > 1. (7)

If λ
2
< b < λ, then it is possible to restrict the set Φ to

Φres = (−φres, φres) where

φres = arcsin
λ

2b
.
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For the set Φres, the conditions (6) and (7) can be
reformulated as follows

b > λ
2
∧ ∀φ ∈ Φres, ∣AΦ(φ, b)φ∣ = 1,

and

b > λ
2
∧ ∀φ ∈ (−π

2
,
π

2
) /Φres, ∣AΦ(φ, b)φ∣ > 1.

The same can be said about sets IΦ(φ, b)φ. Due to the
effective sensitivity ranges of the popular ultrasonic
transducers being no wider than [−70○,70○], the exam-
ples presented in further analysis are restricted to that
range. Therefore, it is assumed that Φ = [−70○,70○].
The conclusions are also true for wider ranges up to
(−π

2
, π

2
).

Popular piezoelectric transducers operate at the
frequency of 40 kHz. In normal conditions, the length
of this wave is about 8.7 mm. Thus, for φres = 70○, the
corresponding value of b is 4.6 mm.

To visualize how the power of sets A(.) is changed
in relation to a value of b and, in this context, what
φres means, two diagrams are shown in Fig. 6. They
represent sets AΦ(b) for b = 11 mm and b = 15 mm
respectively. The diagrams show the relation between
the real azimuth angle φ and members φi of AΦ(φ, b)φ.
When choosing e.g. the azimuth angle φ = −20○ using
the diagram in Fig. 6a, the following is obtained

AΦ(−20○,11 mm)φ = {−22○,20○}.

a)

b)

Fig. 6. Values of possible solutions φs of Eq. (2) in relation
to the values of the incident angle φ for the size of the gap b

equal to: a) 11 mm, b) 15 mm.

In the second diagram in Fig. 6b, it is

AΦ(−20○,15 mm) = {−48○,−11○,20○,68○}.

It is worth noting that proper values φi, which belong
to each AΦ(.)φ, are aligned along the diagonals of the
diagrams because φi = φ.

In the diagram presented in Fig. 6b, the restricted
set of Φ marked by the darker rectangle is also
shown. In the area of this rectangle, a unique solu-
tion of Eq. (2) can be found. For b = 15 mm, the value
of φres is about 16.9○. As was said before, the angular
sensitivity of a real sonar system is much higher. For
the sonar system used in the experiments presented in
Sec. 9, its range of sensitivity was about [−50○,50○].
In this case, the corresponding value b for φres = 50○

is 5.7 mm. Unfortunately, commercially available pop-
ular piezoelectric transducers do not make it possi-
ble to meet this condition. Their common diameters
are 10 mm, 12 mm, 14 mm, and 16 mm. To overcome
the problem of ambiguity, instead of a single receiver
pair, two pairs that have different inter-distances can
be used. They can be integrated into a single system
of three receivers (see Fig. 7). For simplicity, it is as-
sumed that the sensitivity ranges of all receivers are
the same. In other cases, a common part of all receiver
sensitivity ranges can be set as the range of the en-
tire receiver system. Considering the two receiver pairs,
namely (R0,R1) and (R1,R2), for a given azimuth φ,
the two sets AΦ(φ, b01)φ and AΦ(φ, b12)φ of the possi-
ble solutions are obtained. Because of condition (5),

∀φ ∈ Φ, φ ∈ AΦ(φ, b01)φ ∩AΦ(φ, b12)φ. (8)

Fig. 7. Two pairs of receivers integrated into a single system
of three transducers.

In other words, it means that for all φ ∈ Φ exist
ni ∈ IΦ(φ, b01)φ and nj ∈ IΦ(φ, b12)φ such that

φ = arcsin
vaτ01 + niλ

b01
∧ φ = arcsin

vaτ12 + njλ
b12

. (9)

Because Φ ⊆ (−π
2
, π

2
), the relation (9) is equivalent to

sinφ = vaτ01 + niλ
b01

∧ sinφ =
vaτ12 + njλ

b12
. (10)

When

∀φ ∈ Φ, ∣AΦ(φ, b01)φ ∩AΦ(φ, b12)φ∣ = 1, (11)
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then having τ01 and τ12 the computation of the
azimuth angle φ means to determine the sets
AΦ(τ01, b01)τ andAΦ(τ12, b12)τ and find their common
part, because

AΦ(τ01, b01)τ ∩AΦ(τ12, b12)τ = {φ}. (12)

It shows that the crucial point is to choose such b01 and
b12 for which the condition (11) is met for all φ ∈ Φ.
When b01 and b12 > λ

2
, it is evident that it must not be

b01 = b12. Because otherwise, the condition (7) is ful-
filled and, therefore, there is a subset of Φ or the entire
set Φ whose values φ do not meet the condition (11).

Unfortunately, it can be expected that b01 = b12 is
not the only case for which the condition (11) is not
fulfilled. Therefore, it is essential to find a more gen-
eral rule that will make it possible to omit these cases.
This rule should allow the best configuration of the b01

and b12 values to be found. In the sense of anticipated
errors of measurements, the best configuration should
enable the receiver system to have the largest minimal
distance between the incorrect values of the azimuth
angle that belong to sets AΦ(.) of both receiver pairs.
To explain what the minimal distance means, two in-
tegrated receiver pairs will be considered. Their inter-
distances b01 and b12 are the same as the ones analysed
in the example shown in Fig. 6. For these two pairs,
the diagrams presented in Fig. 6 should be combined.
Its result is presented in Fig. 8. It is worth noting that
their only common part are diagonals that contain the
correct solutions of Eq. (3).

Fig. 8. The diagram of the combined solution sets deter-
mined for two cases of gap b equal to 11 mm and 15 mm.

The minimal distance between ambiguous solutions
of both pairs for this particular case is the distance
between points A and B. The same distance is on the
opposite side of the diagram between points A′ and B′

and is equal to about 12○. Formally, this distance for
a specific azimuth angle φ can be defined as follows

Dφ(b01, b12) = min
φpi ∈ AΦ(φ, b01)φ,
φpj ∈ AΦ(φ, b12)φ,
φpi ≠ φ ∧ φpj ≠ φ

∣φpi − φpj ∣. (13)

It is important to note that in Eq. (13) the case when
φpi and φpj are simultaneously equal φ must be ex-
cluded, because this is the proper solution. In such

a case, the distance is always 0. Using Eq. (13), the
distance for the entire set Φ is defined by the following
formula

DΦ(b01, b12) = min
φi∈Φ

Dφi(b01, b12). (14)

Because Φ ⊆ (−π
2
, π

2
) and, therefore, the rela-

tion (9)is equivalent to (10), it is much more useful and
convenient to analyse this type of distance in the space
of sinus values of the azimuth φ instead of analysing
it directly in the space of angles. Moreover, it is much
simpler, because in the space of sinus values, the curves
from Fig. 8 are transformed into the sinus lines pre-
sented in Fig. 9. They are shifted against each other
along the axis OY . This is the simple conclusion in-
ferred from (3). Each such line is shifted by niλ

b
where

b is, in this case, equal to b01 or b12 respectively. In the
same way, instead of using sets of possible solutions
like

AΦ(φ, b)φ = {φp1 , . . . , φpk},
it is much more convenient to present them in the space
of sinus value

Asin
Φ (φ, b)φ = {sinφp1 , . . . , sinφpk} = {sφ,1, . . . , sφ,k},

where the notation sφ,i is used for emphasizing that
this is a sinus value of i-th solution of Eq. (3) while the
incident angle is φ. The notation Asin

Φ (τ, b)τ , which is
analogous to the previous one AΦ(τ, b)τ , will be used
for emphasizing that sinus values are determined by τ .
When the error of τ measurement is zero, the sets
Asin
Φ (φ, b)φ and Asin

Φ (τ, b)τ are the same.

Fig. 9. The diagram of sinus values of the combined solution
sets determined for two cases of gap b equal to 11 mm and

15 mm.

Using the same schema of definition of DΦ, the
measure of the minimal distance of the ambiguous so-
lution can be defined in the space of sinus values as
follows

Dsin
φ (b01, b12) = min

sφ,i ∈ Asin
Φ (φ, b01)φ,

sφ,j ∈ Asin
Φ (φ, b12)φ,

sφ,i ≠ sinφ ∧ sφ,j ≠ sinφ

∣sφ,i − sφ,j ∣ (15)

and
Dsin
Φ (b01, b12) = min

φi∈Φ
Dsin
φi (b01, b12). (16)
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This formula is difficult to calculate. Fortunately, it can
be radically simplified (see Theorem 1 in Appendix).

The relation between the values of Dsin
Φ and inter-

distances b01 and b12 cannot be expressed in a simple
analytic form because it is highly nonlinear. However,
by performing numerical computations it is possible
to visualize it. In Fig. 10, diagrams are presented that
show the distribution of Dsin

Φ for b01, b12 ∈ [10, 30 mm]
and Φ = [−70○,70○]. It was mentioned before that when
b01 and b12 are equal to each other, this approach can-
not work. In the diagrams, it is manifested by a kind of
valley along the diameter determined by the condition
b01 = b12. Its bottom is at the zero level. This valley is
not the only place where the value zero is reached. In
the diagram, there are quite a lot of these kinds of val-
leys. Their location determines a more general feature,
which is stated in Theorem 2 in Appendix. In short, if
Dsin
Φ (b01, b12) = 0, then there exist ki, kj ∈ I such that

the following condition is met

kjb01 = kib12.

a)

b)

Fig. 10. The dependence of Dsin
Φ on the values of b01 and

b12 for Φ = [−70○,70○]. In order to get a better expression
of value changes, the diagram is presented from two points

of view.

The diagram in Fig. 10 shows that there are
some discontinuities that start bifurcations and new
valleys. It is easier to notice it when this diagram
is presented in a bird-eye view (see Fig. 11). This
clearly shows that some ridges turn into valleys. In
the diagram presented in Fig. 11, these places are

Fig. 11. The bird-eye view of the surface defined by
the dependence of Dsin

Φ on the values of b01 and b12
for Φ = [−70○,70○].

located at the points (13.05,17.40), (13.05,21.75),
(17.40,21.75), (21.75,26.10) and their symmetri-
cal images, namely (17.40,13.05), (21.75,13.05),
(21.75,17.40), (26.10,21.75). The locations of the dis-
continuity can be determined by using Theorem 3
included in Appendix. The characteristic corner-like
shape of discontinuity regions is also explained there.

It has to be noted that the diagram of Dsin
Φ strongly

depends on the range of Φ. The smaller the range of Φ,
the smaller the number of ambiguous solutions. This
results in a smaller number of valleys and ridges. An
example of such a change is shown in Fig. 12. The
range of Φ is restricted to [−50○,50○]. This range is

a)

b)

Fig. 12. Two views of the diagram of Dsin
Φ in relation to b01

and b12 for Φ = [−50○,50○].
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more reasonable in the sense of the parameters of the
piezoelectric transducers that are available on the mar-
ket. Therefore, in the further part of this paper it will
be used as the reference range for this kind of diagrams.

6. Robustness

Assuming for simplicity that errors of time period
measurement can be approximated by the same value
∆τ for each receiver pair, an error of sinus value de-
termination for the pairs P01 = (R0,R1) and P12 =
(R1,R2) are respectively

∆01(sinφ) =
va∆τ

b01
, ∆12(sinφ) =

va∆τ

b12
. (17)

Considering errors of echo signal detection performed
by each receiver and assuming that errors can be ap-
proximated by the same value ∆t, then

∆τ = 2∆t. (18)

This is because

τ01 = t1 − t0, τ12 = t2 − t1,

where t0, t1, t2 are measurements of time of the sig-
nal detection performed by receivers R0, R1, and R2,
respectively.

The errors of b01 and b12 are systematic errors and
can be taken into account during a calibration proce-
dure. Therefore, they are not considered here. In the
further part of this paper, a shorter notation of the ex-
pressions (17) will be used, namely: ∆s,01 and ∆s,02.

Taking into account these types of errors, sets
Asin
Φ (.)φ of discrete sinus values should be transformed

into sets of value ranges. Such a set is defined as follows

Asin∆

Φ (φ, bij)φ = {[sφ,k −∆s,ij , sφ,k +∆s,ij] ∶
sφ,k ∈ Asin

Φ (φ, bij)φ}.

Then, the condition (12), which guarantees finding the
proper solution in the entire considered range of Φ, is
transformed into the form

∀φ ∈ Φ ∃ [sx, sy] ⊆ [−1,1],

Asin∆

Φ (φ, bb01)φ ∩A
sin∆

Φ (φ, bb12)φ
= {[sx, sy]} ∧ sinφ ∈ [sx, sy],

(19)

where [sx, sy] is a common part of value ranges
which belongs to Asin∆

Φ (φ, bb01)φ and Asin∆

Φ (φ, bb12)φ.
It causes a crucial question to arise. What is the limit
of error ∆t for the given receivers’ configuration that
makes it possible to meet the condition (19)?

In order to answer this question it is necessary to
find the minimal value of Dsin

Φ for which the condi-
tion (19) is met. Then, using this value, ∆t can be
determined.

Considering the graphical interpretation, lines that
represent possible solutions (see Fig. 9) turn into
stripes (see Fig. 13) whose width along the OY axis
is 2∆s,01 and 2∆s,12 respectively. It is simple to notice
that the maximal distance between points belonging
to two stripes, which represent a proper solution of the
receiver pairs (R0,R1) and (R0,R1), is ∆s,01 +∆s,12.
This distance is reached when the azimuth values de-
termined by measurements are at opposite borders of
the stripes. This is because the stripes partially overlap
each other along the common sinus line. Such a case
is represented by points Pa and Pb in Fig. 13. In this
sense, these points represent acceptable solutions when
their distance is lower or equal to ∆s,01 + ∆s,12. For
this reason, to separate two false solutions of two re-
ceiver pairs, the distance between sinus values located
at borders in regions determined by possible error val-
ues (see points P ′

a and P ′
b in Fig. 13) must be bigger

than ∆s,01+∆s,12. Therefore, the distance between the
sinus values that are not corrupted by errors must be
twice as big. It means that the necessary and sufficient
condition for the given inter-distances b01 and b12 is

Dsin
Φ (b01, b12) > 2(∆s,01 +∆s,12). (20)

Fig. 13. The diagram of sinus values, which includes a range
of approximated maximal measurement errors.

Taking into account Eq. (17), the relation (20) can be
transformed into the form

b01b12D
sin
Φ (b01, b12)

2va(b01 + b12)
> ∆τ. (21)

Thus, for the given b01 and b12 values, it determines the
upper limit ∆τΦ of the acceptable error ∆τ of period
measurement determined for the entire range of Φ

∆τΦ =
b01b12D

sin
Φ (b01, b12)

2va(b01 + b12)
. (22)

Because of Eq. (18), the upper limit of the acceptable
error ∆t of the time measurement is

∆tΦ = 1

2
∆τΦ. (23)

When a bigger error ∆tΦ is acceptable, the system is
more robust. In this sense, b⋆01 and b⋆12 determine the
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best configuration of such a system when they refer
to the biggest value ∆t⋆Φ. Regarding the relations (22)
and (23), it means that

∆t⋆Φ = 1

4va

b⋆01b
⋆
12

b⋆01 + b⋆12

Dsin
Φ (b⋆01, b

⋆
12)

= 1

4va
max
b01,b12

b01b12

b01 + b12
Dsin
Φ (b01, b12).

The relation between ∆tΦ and the values of b01 and b12

is presented on the diagrams shown in Fig. 14. The sur-
face determined by Eq. (22) is shown from two points
of view to give better intuition about this relation. Its
general feature is that bigger values of b01 and b12 cor-
respond to smaller values of ∆tΦ.

a)

b)

Fig. 14. Minimal distance between ambiguous solutions ex-
pressed in time of the upper limit of the acceptable error
∆tΦ for Φ = [−50○,50○]. The distance is shown as a function

of length of baselines b01 and b12.

For the analysed range of b01 and b12 values, the
maximal error ∆t⋆Φ is equal to 1.3 µs and is obtained
for b⋆01 = 11.2 mm and b⋆12 = 16.8 mm. The equivalent
solution is b⋆01 = 16.8 mm and b⋆12 = 10.2 mm.

The obtained value of ∆t⋆Φ is rather small. In or-
der to improve it, a reduction of the inter-distance b01

or b12 should be considered. In Fig. 15, the diagrams
are presented in which the range of the inter-distance
b01 was started from the value 0.01 mm. This time, the
best configuration is for b⋆01 = 5.6 mm and b⋆12 = 10 mm.

a)

b)

Fig. 15. Minimal distance between ambiguous solutions ex-
pressed in time of an acceptable measurement error ∆tΦ
(Φ = [−50○,50○]) for the extended range of values of b01.

The value of the acceptable error ∆t⋆Φ of the time mea-
surement is 2.2 µs. Because of Eq. (23), the value of
the acceptable error ∆τ⋆Φ of the period measurement
is 4.4 µs. Comparing the value of ∆τ⋆Φ with the period
of the signal, which is 25 µs, the tolerance of an error
measurement is about 18% of the signal period.

Taking into account the previous assumption that
a signal wave is a planewave and is propagated
across a plain determined by the receivers’ acoustic
axes, it is possible to arrange a system of three re-
ceivers in a slightly different way. Instead of putting
them along a single line, one of them can be moved
a bit above (see Fig. 16). This allows an effective dis-
tance in a horizontal line to be reduced below their
diameters. In this way, it is possible to reduce b01 to
the distance 4.4 mm.

Fig. 16. Arrangement of three receivers
with a reduced horizontal gap.
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When sτ01 and sτ12 are determined and the com-
mon part of their surroundings, i.e. [sτ01 −∆s,01, sτ01 +
∆s,01] and [sτ12−∆s,12, sτ12+∆s,12], respectively, meet
the condition (19), then the final sinus value should be
computed. In order to do this, errors ∆s,01 and ∆s,12

should be taken into account. Their values can be inter-
preted as factors of confidence that the obtained results
refer to the real ones. Thus, the confidence measure can
be defined in the following way

p01 =
Σ∆ −∆s,01

2Σ∆
, p12 =

Σ∆ −∆s,12

2Σ∆
,

where
Σ∆ = ∆s,01 +∆s,12.

The consequence of such a definition is

p01 + p12 = 1.

Taking this into account, the mean value of the ob-
tained results is computed as follows

µs = p01sτ01 + p12sτ12 .

In a similar way, a squared divergence can be deter-
mined

σ2
s = p01(sτ01 − µs)2 + p12(sτ12 − µs)2.

This computational procedure was described for the
receiver system consisting of two receiver pairs. It is
clear that it can be extended to any number of such
pairs.

7. Multi-pair receiver system

Until now, when analysing the system consisting of
three receivers, the single subsystem consisting of two
pairs {(R0,R1), (R1,R2)} was considered. However,
there are two other subsystems: {(R0,R1), (R0,R2)}
and {(R0,R2), (R1,R2)}. Taking them into account,
condition (19) can be rewritten in the form

∀φ ∈ Φ ∃ [sx, sy] ⊆ [−1,1],

Asin∆

Φ (φ, bb01)φ ∩A
sin∆

Φ (φ, bb12)φ
∩Asin∆

Φ (φ, bb02)φ = {[sx, sy]}
∧ sinφ ∈ [sx, sy].

(24)

As was said at the end of the previous section, com-
puting of µs and σs can be extended to this case.

In (Kreczmer, 2018), it was shown that the accu-
racy of the receiver system was increased by including
these new receiver pairs. A further increase of accu-
racy can be obtained by adding a fourth receiver. In
this way, six subsystems is obtained. The size of a sonar
is also increased by adding a receiver. In consequence,
it is harder to meet the assumption that a received

wave is flat. Four receivers seem to be a good com-
promise between the sonar size and its accuracy of az-
imuth angle determination. The final geometrical ar-
rangement of four receivers is shown in Fig. 17. Consid-
ering the range of azimuth angles Φ = [−50○,50○], due
to simulations it was found that the acceptable error
∆tΦ of the time measurement for this receiver arrange-
ment is 1.56 µs. It gives SNR of about 8.4 dB. The ac-
ceptable error ∆tΦ is lower than the 2.2 µs found in the
previous section for the optimal arrangement of three
receivers. The main reason for this is that the hori-
zontal distance between receivers R2 and R3 is smaller
that the optimal one.

Fig. 17. Geometrical arrangement of sonar receivers
and a transmitter.

8. Temperature dependence

Among the atmospheric parameters, namely: tem-
perature, pressure, humidity; the temperature affects
the propagation of acoustic waves the most. Consider-
ing the range of temperature from −20○C up to 40○C,
the speed of acoustic waves is changed from 319.1 m/s
up to 354.9 m/s. This means that the wavelength of
a signal of 40 kHz is changed from 7.98 mm up to
8.87 mm. In order to perform a more accurate error
analysis for particular values of the azimuth angle φ,
the interval Φ can be limited to the considered single
value φ (i.e. Φ = [φ]). To emphasize this, the toler-
ated error of the time measurement for this case will
be denoted as ∆tφ. Considering the geometrical ar-
rangement of sonar receivers presented in the previous
section, for the temperature of 20○C, due to the per-
formed simulations, it was found that ∆tφ is constant
in a wide range of azimuth angles of signal arrival and
is equal to 1.56 µs (see Fig. 18). In this case, this range
is [−63.4○, 63.4○]. Changes of temperature cause that
the width of this range is slightly decreased with a tem-
perature from [−64.25○, 64.25○] for −20○C to [−62.88○,
62.88○] for 40○C. Nevertheless, this range is still far
bigger than the ranges of sensitivity of most transduc-
ers. In summary, when Φ = [−62.88○, 62.88○] for the
considered case, the value of ∆tΦ is not affected by
temperature changes in the range [−20○C, 40○C].

The presented insensitivity to temperature changes
is not an inherent feature of the presented approach.
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Fig. 18. Values of tolerated error ∆tφ of the time measure-
ment in relation to the azimuth angle of the direction of

signal arrival for the air temperature of 20○C.

It strongly depends on the inter-distances between re-
ceivers. In order to explained this, it is convenient
to consider a system consisting of three receivers R0,
R1 and R2. The diagram presented in Fig. 19 shows
how ∆tΦ depends on inter-distances b01 and b12. The
change of wavelength caused by temperature change
does not cause any significant variation of the height
of ridges. The only changes that are observed are the
positions of bifurcations. In the example presented in
Fig. 19 two diagrams at the bird-eye view are shown.
They refer to the temperatures of 32○C and 2○C re-

a)

b)

Fig. 19. Impact of temperature change on acceptable errors
of time measurements for Φ = [−50○,50○] and the tempe-

rature T : a) +32○C, b) +2○C.

spectively. When the inter-distances of receivers are
b01 = 15.5 mm and b12 = 10.34 mm (see the point A
in Fig. 19), then the acceptable error ∆tΦ is 1.25 µs.
It is the same in the temperatures of 2○C and 32○C.
However, this kind of stability is lost when the selected
inter-distances are b01 = 16.75 mm and b12 = 11.16 mm
(see the point B in Fig. 19). For the temperature of
32○C, it works properly and ∆tΦ = 1.25 µs. But for the
temperature of 2○C it fails because ∆tΦ is reduced to
0.003 µs. It is worth noting that this change is rapid,
which is due to the discontinuity of the bifurcation.

9. Experiments

In the experiments, a sonar module was used (see
Fig. 20a) for which the geometry was described in
Sec. 7. The sonar is equipped with a single transmit-
ter BPU-1640T0AH12 and four MA40S4R receivers.
All ultrasonic transducers are controlled by the module
(Kabała, Wnuk, 2005), which exploits the microcon-
troller MC9S12A64. The sonar module was mounted
on a rotating base (see Fig. 20b). Using it, measure-
ments were performed for different sonar orientations.

a) b)

Fig. 20. a) A sonar module, b) a rotating base
with a mounted sonar module.

In order to check the most important features of
the proposed approach, measurements were performed
for two types of objects, namely, a wall, and a post
with a diameter of 25 mm. In each case, the deter-
mined azimuth angle φ was compared with the sonar
orientation. The relation of the angle α of the sonar ori-
entation and the azimuth angle φ of the echo arrival
is presented in Fig. 21. For the wall case, in spite of
an orientation of the sonar module transmitter, echos
always arrive from the direction that is perpendicular
to the surface of the wall. Therefore, for the ideal case
when there are no measurement errors, the relation
between φ and α should be as follows

φ = −α.

The same relation is also valid for the post.
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Fig. 21. Coordinate systems chosen for the experiment. The
azimuth angle φ measured in the local coordinate system
has an opposite sign to the rotation angle α measured in

the global coordinate system.

For the presented approach to DOA determination,
the wall case seems to be the most beneficial. By using
the method of virtual sources (Kleeman, Kuc, 1995),
it can be shown that the geometry of propagation of
a wave reflected by a wall is the same as for the wave
geometry of a transmitter placed at a distance twice as
far as the distance to the wall. For the post, the same
geometry is obtained when a transmitter is placed at
a distance of an object. Because of this, the curvature
of a wave reflected by a wall is much smaller than for
other objects. It means that it is much closer to the as-
sumption of this approach that a received wave is flat.

To perform measurements, the sonar was placed
at a distance of 2.3 m from the wall (see Fig. 22).
The sonar orientation was changed in the range of
[−30○,30○] by the step of 1○. The wall was correctly de-
tected in the range of [−23○,26○]. At each sonar orien-
tation, the measurement and determination of φ were
repeated 100 times. Next, the mean value of φ and its
root mean square error were computed. The obtained
relation between the azimuth φ of the DOA and the
orientation angle α of the sonar module is presented

Fig. 22. Location of the rotary base with the sonar module
in relation to the wall.

in Fig. 23. Errors of azimuth φ determination turned
out to be so small that in the scale of this diagram
the calculated values seem to be perfectly arranged
along the diagonal of the diagram. The bars of root
mean squared deviation (RMSD) were also marked.
Because of the small values of RMSD, they cannot be
distinguished from the line of the diagonal. The values
of RMSD are no bigger than 0.22○ (see Fig. 24). The
only exception is the result obtained at the right limit
of the orientation range of wall visibility. For this orien-
tation, the obtained measurements are very unstable.
It causes that the RMSD of the determined azimuth
φ is rapidly increased up to 3.75○. This is because of
weak echo signals. In the diagram shown in Fig. 24,
values ∆φ of the errors of azimuth determination are
also presented. They are no bigger than 0.5○.

Fig. 23. Results of azimuth measurements for the wall
at a distance of 2.3 m.

Fig. 24. Values of the root of mean squared deviation
(RMSD) and azimuth error ∆φ = ∣φ−α∣ obtained for the az-
imuth determination of the direction of the signal reflected

from the wall.

In order to check the features of the pre-
sented method of DOA determination in a situation
when a wave curvature is much bigger then for the wall
case, a post with a diameter of 25 mm was used and
placed at a distance of 0.8 m (see Fig. 25). The post
was correctly detected in the range of sonar orientation
[−18○,18○] (see Fig. 26). In Fig. 27, RMSD and values
of error ∆φ are presented. It can be noticed that their
level is very similar to the case of the wall. Therefore,
for this sonar, the change of wave curvature for these
distances does not have a meaningful influence on the
final result.
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Fig. 25. Location of the rotary base with the sonar module
in relation to the post.

Fig. 26. Results of azimuth measurements for the post
at a distance of 0.8 m.

Fig. 27. Values of root of mean squared deviation (RMSD)
and azimuth error ∆φ = ∣φ − α∣ obtained for the azimuth
determination of the direction of the signal reflected from

the post.

The post is a source of much weaker echo signal
than the wall. The sonar used in this experiment was
able to detect the post at a distance of 3.4 m (see
Fig. 28). For such a case, SNR increases due to the
drop in signal strength. Nevertheless, the azimuth an-
gle was still determined with a relatively small error of
no more than about 2○ (see Fig. 29).

Fig. 28. Location of the rotary base with the sonar
module in relation to the post at a distance of 3.4 m.

Fig. 29. Values of root of mean squared deviation (RMSD)
and azimuth error ∆φ = ∣φ − α∣ for the post at a distance

of 3.4 m.

10. Conclusion

A very important advantage of the presented
method is simplicity. The required computations
are uncomplicated, and powerful microcontrollers are
therefore not needed. Moreover, the measurement tech-
nique is also very simple. Because receivers have to
be placed close to each other, the sonar module used
in this technique can be compact in size. In spite of
simplicity, the improvement of reliability of data inter-
pretation compared with traditional ultrasonic range
finders is dramatic. The increase of the number of re-
ceiver pairs made it possible to obtain a more accurate
determination of the DOA. For four receivers, and all
the pairs they create, the level of accuracy approxi-
mated by 3σ is still below 1○. For weak echos, σ is
about 1○. The error of DOA determination increases
up to 2○.

The disadvantage of the presented approach is its
sensitivity to the mutual position of receivers. How-
ever, thanks to the theoretical analysis, it was possible
to establish and formally prove the essential properties
that allowed the selection of the best possible positions
of the receivers. The choice made has also ensured the
stability of the method for a wide range of air temper-
atures.

Using MEMS microphones, it is possible to arrange
all receivers along a single line. Because of its axial
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symmetry, two such systems placed perpendicular to
each other can be used for obtaining data which al-
low azimuth and elevation angles, as well as distance
to be determined. In this sense, the approach can be
extended to the 3-D case in an almost straightforward
way.

Appendix. Features of a narrow-band system
of two receiver pairs

To be more precise, in this section, as well as in
others, it is assumed that b01 and b12 are positive real
numbers.

Theorem 1. Assuming that Φ = [φmin, φmax] ⊂
(−π

2
, π

2
), then

Dsin
Φ (b01, b12) =Dsin

φmin
(b01, b12) =Dsin

φmax
(b01, b12).

Proof: First, the case of φmax will be considered. For
this angle, there exits such a number nmax01 that

sinφmax =
vaτ01(φmax) + nmax01λ

b01
.

Because this value is the maximal one, all others ob-
tained for ni ∈ IΦ(φmax01 , b12)φ are lower and uni-
formly placed in the range [sinφmin, sinφmax]. The in-
terval between them is equal to λ

b01
. The same can be

said about values related to the second receiver pair
(R1,R2). The difference is that the interval is equal
to λ

b12
. It is obvious that the minimal distance between

the values of both receiver pairs must be lower or equal
to min{ λ

b01
, λ
b12

}. The sets of sinus values for b01 and
b12 create all possible combinations, and the set of dis-
tances which should be considered is

Dsin
Φ (φmax) = {∆sin

ij = ∣ sinφi − sinφj ∣ ∶

φi ∈ AΦ(φmax, b01)φ ∧ φj ∈ AΦ(φmax, b12)φ
∧ (φi ≠ φmax ∧ φj ≠ φmax)

∧ ∣ sinφi − sinφj ∣ ≤ min{ λ
b01
, λ
b12

}}.

Due to formula (15)

Dsin
φmax

(b01, b12) = min
∆sin
ij ∈Dsin

Φ (φmax)
∆sin
ij .

For other choices of φ, it is simple to note that
Dsin
Φ (φ) ⊆ Dsin

Φ (φmax). The reason is that the sinus
lines of the incorrect solutions of (3) are symmetri-
cally shifted in relation to the sinus line of the correct
one (see Fig. 9). Thus, the set Dsin

Φ (φmax) contains the
minimal value of the distance of sinus values computed
for all possible solutions of Eq. (3) for both receiver
pairs. Therefore

Dsin
Φ (b01, b12) = min

∆sin
ij ∈Dsin

Φ (φmax)
∆sin
ij .

In consequence,

Dsin
Φ (b01, b12) =Dsin

φmax
(b01, b12).

Considering the second case of φmin, it is worth
noting that the diagram presented in Fig. 9 possesses
some kind of symmetry. As was said before, the sinus
lines of the incorrect solutions of Eq. (3) are symmetri-
cally shifted in relation to the sinus line of the correct
one. Since the limitation of the considered range of an-
gles also limits the values of sines that correspond to
these angles, then the number of sinus curves near the
left and right limits are the same. An example of such
a situation is shown in Fig. 30. For the sake of clar-
ity, only one set of shifted sine curves has been used.
For this reason, an analogous line of reasoning may be
used for the case of φmin, in relation to that which was
presented for the case of φmax. ◻

a)

b)

Fig. 30. The diagrams of shifted sine curves for different
ranges of angles φ and their corresponding ranges of sine

values: a) Φ = [−60○,10○], b) Φ = [−40○,80○].

The feature proved in Theorem 1 makes it pos-
sible to obtain a simple geometrical interpretation
of a procedure of Dsin

Φ determination for given b01

and b12. Considering the case of φmin, to compute
Dsin
Φ (b01, b12) it means finding the minimal distance

between the points of two sequences in the range of
[sinφmin, sinφmax], whose common origin is the value
sinφmin (see Fig. 31). The points of each of these se-
quences are equally spaced by distances λ

b01
and λ

b12
,

respectively.
Set IΦ(.). creates an interval of integer numbers.

Using (4), it is useful to define the size of the interval
of e.g. IΦ(φ, b)φ as follows

∆IΦ(b) = ⌊b(sinφmax − sinφmin)
λ

⌋ .
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Fig. 31. Two sequences of solution values of Eq. (3), which are generated by receiver pairs (R0,R1) and (R1,R2)
for the azimuth angle φ = φmin.

Theorem 2. Considering the ultrasonic system pre-
sented in Fig. 7, in which the sensitivity ranges
of all receivers are Φ = [φmin, φmax] ⊂ (−π

2
, π

2
), if

Dsin
Φ (b01, b12) = 0 then integer numbers ki and kj exist

such that

0 < ki ≤ ∆IΦ(b01) ∧ 0 < kj ≤ ∆IΦ(b12)

and
kjb01 = kib12.

Proof: If DΦ(b01, b12) = 0 then taking into account
Theorem 1, it means that

∃φ′ ∈ Φ; φ′ ≠ φmax ∧ φ′ ∈ AΦ(φmax, b01)φ

∩ AΦ(φmax, b12)φ.
(25)

Because of (5), there are integer numbers ni ∈
IΦ(φmax, b01)φ and nj ∈ IΦ(φmax, b12)φ such that

sinφmax=
vaτ01(φmax)+niλ

b01
=
vaτ12(φmax)+njλ

b12
. (26)

Because of (25) there exist integer numbers n′i ∈
IΦ(φmax, b01)φ and n′j ∈ IΦ(φax, b12)φ such that

sinφ′ = vaτ01(φmax) + n′iλ
b01

=
vaτ12(φmax) + n′jλ

b12
. (27)

The numbers n′i and n′j can be expressed by ni and nj
as follows

n′i = ni + ki, n′j = nj + kj . (28)

Because
ni, n

′
i ∈ IΦ(φmax, b01)φ

and because ki = n′i − ni and n′i ≠ ni, thus

0 < ∣ki∣ ≤ ∆IΦ(b01). (29)

A similar line of reasoning can be applied to kj , which
gives the conclusion

0 < ∣kj ∣ ≤ ∆IΦ(b12).

Substituting (28) to (27), the following is obtained

vaτ01(φmax) + niλ + kiλ
b01

=
vaτ12(φmax) + njλ + kjλ

b12
.

(30)
Using (26), the equation is reduced to the form

ki
b01

=
kj

b12
. (31)

Knowing that b01, b12 > 0, ki and kj have to be simul-
taneously negative or positive values. For both cases,
the same values of b01 and b12 are obtained. Thus, it is
enough to consider only positive values. It allows the
condition (29) to be rewritten into the form

0 < ki ≤ ∆IΦ(b01).

The same can be said about kj . ◻
To exemplify the described feature, the diagram

presented in Fig. 10 can be considered. Analysing its
border created for the case b01 = 30 and 10 ≤ b12 ≤ 30,
it can be noticed that Dsin

Φ is 0 when b12 = 10, 12, 15,
18, 20, 22.5, 24, 25, 30 mm. To have a better view, this
section of the diagram is presented in Fig. 32. The re-
spective values of (kj , ki) are (1,3), (2,5), (1,2), (3,5),
(2,3), (3,4), (4,5), (5,6), (1,1).

Fig. 32. The dependence of Dsin
Φ on the values of b12

when b01 = 30 mm.

Theorem 3. Considering the ultrasonic system pre-
sented in Fig. 7, in which the sensitivity ranges of all
receivers are Φ = [φmin, φmax] ⊂ (−π

2
, π

2
), when rela-

tively prime positive integer numbers kp and kq exist
such that kp ≠ kq and

sinφmax − sinφmin =
kpλ

b01
=
kqλ

b12
(32)

then Dsin
Φ is discontinuous at the points (b01, b12) and

(b12, b01).
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Fig. 33. Two sequences of the solution values of Eq. (3) generated by receiver pairs (R0,R1) and (R1,R2)
for the azimuth angle φmin with a common point at the right border of the range of [sinφmin, sinφmax].

Fig. 34. Two sequences of the solution values of Eq. (3) generated by receiver pairs (R0,R1) and (R1,R2)
for the azimuth angle φmin.

Proof: Since

∆IΦ(b01) = kp ∧ ∆IΦ(b12) = kq,

and because of Theorem 2,

Dsin
Φ (b01, b12) = 0.

Using the geometrical interpretation presented in
Fig. 31, Eq. (3) means that the points of both se-
quences referring to b01 and b12 and generated for
φ⋆ meet each other at the border of the range
[sinφmin, sinφmax]. Such a situation is illustrated in
Fig. 33. Because numbers kp and kq are relatively
prime, such a case cannot happen inside the range
[sinφmin, sinφmax]. It is obvious that kp and kq must
be bigger than 1, and because the sequences of num-
bers are finite, there exists δ > 0 that

δ < min
ki∈[1,kp−1]I∧kj∈[1,kq]I

RRRRRRRRRRR

kiλ

b01
−
kjλ

b12

RRRRRRRRRRR
.

It is possible to choose ε > 0 so that, for all ε′ ∈ (0, ε]
and b′01 = b01 − ε′ the following condition is met

δ < min
ki∈[1,kp−1]I∧kj∈[1,kq]I

RRRRRRRRRRR

kiλ

b′01

−
kjλ

b12

RRRRRRRRRRR
.

When ε < b01

kp
, then

∆IΦ(b′01) = kp − 1.

Therefore

Dsin
Φ (b′01, b12) = min

ki∈[1,kp−1]I∧kj∈[1,kq]I

RRRRRRRRRRR

kiλ

b′01

−
kjλ

b12

RRRRRRRRRRR
.

It means that

Dsin
Φ (b01, b12) = 0 ∧ ∀b′01 ∈ [b01 − ε, b01);

Dsin
Φ (b′01, b12) > δ. ◻

The discontinuities of Dsin
Φ observed in Figs 10

and 11 have a characteristic shape of corners. The
biggest jump is at the vertex of a corner, and it is
then reduced along each edge. To explain this, the ex-
ample presented in Fig. 34 can be considered. In this
example, it is simple to notice that

∃δ > 0; Dsin
[φmin, φmax)(b01, b12)

−Dsin
[φmin, φmax](b01, b12) > δ.

Then, when b01 is slightly decreased, the last point is
outside of [sinφmin, sinφmax]. Therefore

∃ε′ > 0, ∀ε ∈ (0, ε′]; Dsin
[φmin, φmax](b01 − ε, b12)

−Dsin
[φmin, φmax](b01, b12) > δ.

This discontinuity is observed for values of b12 which
belongs to the range [b′12, b

′′
12) in which the distance be-

tween points determined by 3λ
b12

and 4λ
b01

is the smallest
(see Fig. 34). The left boundary of the range deter-
mines the beginning point (b01, b

′
12) of the bifurcation

at which
Dsin

[φmin,φmax](b01, b
′
12) = 0.

In the example presented in Fig. 34, it is when
3λ
b′12

= 4λ
b01

. The right boundary of the range determines

the point (b01, b
′′
12) at which the discontinuity disap-

pears i.e.

Dsin
[φmin,φmax)(b01, b

′′
12) −Dsin

[φmin,φmax](b01, b
′′
12) = 0.
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By changing places of b01 and b12 in Fig. 34, the same
can be said about b01. It means that the discontinuity
extends along two perpendicular lines which start at
the same vertex.
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