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The minimum size of the bootstrap algorithm input parameters have been determined for estimation of
long-term indicators of road traffic noise. Two independent simulation experiments have been performed
for that purpose. The first experiment served to determine the impact of original random sample size,
and the second to determine the impact of number of the bootstrap replications on the accuracy and
uncertainty of estimation of long-term noise indicators. The inference has been carried out based on
results of non-parametric statistical test at significance level α = 0.05. The simulation experiments have
shown that estimation of long-term noise indicators with uncertainty below ±1 dB(A) requires all-day
noise measurements during three randomly selected days during the year in a dense urban development.
The maximum size of original random sample should not exceed n = 50 elements. The minimum number
of bootstrap replications necessary for estimation should be B = 5000. The data used to the simulation
experiments and carry out the analysis were results of continuous monitoring of road traffic noise recorded
in 2009 in one of the main arteries of Krakow in Poland.
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1. Introduction

The basis for creating noise maps for sites under
protection are the values of the two basic long-term
noise indicators: LDEN and LN (European Parliament,
2002). Any plans to prevent and reduce the harmful
effects of noise in the environment are then associ-
ated with their values. These indicators characterise
the acoustic climate over a long period. Most often it
is assumed that this is one full calendar year, so values
of the indicators depend on many factors (i.e. traffic in-
tensity, structure of the vehicle stream, average vehicle
velocity, type and technical condition of the road sur-
face, distance of the nearest buildings from the road
edge, technical condition of the vehicles). Estimation
of long-term noise hazard indicators requires access to
results of an all-year-long sound level monitoring pro-
gram. In practice, it is almost impossible to meet such
a requirement. Therefore estimations of indicators are
usually done on the basis of a highly limited and corre-
lated random sample. Sample size n is very small and
ranges from few to a dozen or so elements. They are

obtained as results of environmental sampling inspec-
tions (Schomer, DeVor, 1981; Gaja et al., 2003;
Romeu et al., 2006).

The necessity of validation of the obtained results,
which requires the analysis of uncertainty budget of
estimation, is connected with the process of calculating
the average long-term noise indicators determined by
values LDEN and LN. Overrating or underestimating
values of this indicators can have notable social and
financial consequences.

Many authors have previously raised the question
of number of control days during which the mea-
surements should be conducted in order to determine
the long-term noise indicators with sufficient accu-
racy. The authors from Italy (Brambilla et al., 2007)
showed that despite the time variability of the sources
and the sound propagation conditions it was found
that, for road traffic noise and railway noise, sam-
pling the dataset on 5–7 non-sequential days allowed
for an estimate of the LDEN annual indicator to within
±1 dB(A). However, based on studies carried out dur-
ing the whole one year, in Lithuania (Jagniatinskis,
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Fiks, 2014), the authors showed that the lowest uncer-
tainty values of LDEN occurred when the total mea-
suring time was 7 consecutive days, provided that
the measurement was done under normal weather and
source emission conditions.

An essential component of such budget is the type
A standard uncertainty defined as the standard devia-
tion of the mean from the inspections results. The rules
given in the ISO/IEC (2008) are based on the point
estimation methods and commonly used in the calcu-
lations. They are based on the classic variance esti-
mators on the condition of assigning the normal dis-
tribution and lack of correlation between elements of
the sample as well as adequate sample size and obser-
vation equivalence to random results of the sampling
inspections. Results of acoustical measurements usu-
ally do not meet these assumptions (Don, Rees, 1985;
Giménez, González, 2009; Przysucha et al., 2020).

For reasons presented above, there is a need
to search for methods to more accurately deter-
mine the expected value of the noise indicators
(Makarewicz, 2011a) and also other acoustic pa-
rameters and their uncertainty (Heiss, Krapf, 2007;
Makarewicz, 2011b; Pilch, 2018). That is why non-
parametric methods of statistical inference which de-
viate from the assumptions of the classical statis-
tical model, i.e. kernel density estimator (Stępień,
2016; Huang, Elhilali, 2017) bootstrap resampling
method (Ruggiero et al., 2016), Bayesian inference
(Schumacher et al., 2012; Stępień, 2018), and in-
terval arithmetic (Batko, Pawlik, 2012; 2013) gain
a wider use in acoustics. These methods are used
mainly due to the accompanying interpretation as-
sumptions, the most important of which include ab-
sence of limitations in terms of form and properties of
the studied statistic and the sample size.

The analysis of papers published in recent years
indicates a growing recognition among the researchers
for the bootstrap resampling method. It is used with
success in point (Batko, Stępień, 2010) and inter-
val estimation (Stępień, 2017) of the noise indicators
expected value and uncertainty (Farrelly, Bram-
billa, 2003; Mateus et al., 2015), as well as in
planning the measurement strategies (Liguori et al.,
2017a; 2017b). It is often used in statistical analysis of
sound measurement results (Brambilla et al., 2015;
Vos, 2017).

The papers have used various sizes of input pa-
rameters of the bootstrap algorithm which include the
original sample size n, and the number of bootstrap
replications B. The issue of original sample size can
be equated with the number of control days or mea-
surement events used to determine the noise indica-
tors. Mateus et al. (2015) have analysed the impact
of the number of bootstrap samples on the estimation
accuracy of A-weighted equivalent sound level for day,
evening and night periods. The authors stated that the

number of repetitions B = 105 for the bootstrap algo-
rithm satisfies the criteria (standard deviation equal
to 0.01) for all three reference periods while still being
practical in terms of the computation time required.

The reasons presented above indicate the need to
specify the minimum size of the bootstrap algorithm
input parameters, i.e. original sample size n, and the
number of bootstrap replications B, in order to deter-
mine the expected values of long-term noise indicators
LDEN and LN of road traffic noise with required accu-
racy which has been presented in the paper.

Discussion of the algorithms, together with an ex-
ample illustrating their functioning, will be presented
further in this paper. The reference base comprises the
results of the constant noise monitoring recorded in
2009 in one of the main arteries of Krakow, Poland.

2. Bootstrap method background

Consider an observed random sample x = (x1,
x2, ..., xn) from an unknown probability distribution
F with an intent to estimate a parameter of interest
θ = t(F ) on the basis of x. For this purpose, let an
estimate θ̂ = s(x) from x be calculated.

The bootstrap method was introduced in 1979 by
Efron (1979) as a computer-based method for esti-
mating the standard error of θ̂. The bootstrap esti-
mate of standard error requires no theoretical calcula-
tions and is available no matter how mathematically
complicated the estimator θ̂ = s(x) may be.

Bootstrap methods depend on the concept of
a bootstrap sample. Let F̂ be the empirical distri-
bution, assigning probability 1/n to each of the ob-
served values xi, i = 1,2, ..., n. A bootstrap sample is
defined as a random sample of size n drawn from F̂ ,
say xb = (xb

1 , x
b
2 , ..., x

b
n) (Efron, Tibshirani, 1993)

F̂ → (xb
1 , x

b
2 , ..., x

b
n). (1)

The symbol “b” indicates that xb is not the actual data
set x, but rather a resampled version of x.

Symbolic expression (1) can be also verbalised as
follows: the bootstrap data points xb

1 , x
b
2 , ..., x

b
n are

a random sample of size n drawn with replacement
from the population of n objects (x1, x2, ..., xn). The
bootstrap data set (xb

1 , x
b
2 , ..., x

b
n) consists of elements

of the original data set (x1, x2, ..., xn).
Corresponding to a bootstrap data set xb is a boot-

strap replication of θ̂

θ̂b = s(xb). (2)

The quantity s(xb) is the result of applying to xb the
same function s(⋅) as this applied to x.

2.1. Point estimation of distribution parameters

Point estimation of an unknown distribution pa-
rameter θ of the examined variable is based on as-
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suming that the estimator value of this parameter at
the given sample is its estimation. By applying the
Monte Carlo method to the bootstrap, a bootstrap
sample B is generated. The bootstrap samples are gen-
erated from the original data set (analysed sample).
Each bootstrap sample has n elements generated by
sampling with replacement n times from the analysed
sample. Bootstrap replications θ̂1, ..., θ̂b, ..., θ̂B are ob-
tained by calculating the value of the statistics s(x)
on each bootstrap sample. The mean of these values
can be assumed to be an assessment of parameter θ.
Thus, the assessment of parameter θ can be expressed
as (Efron, Tibshirani, 1993)

θB = 1

B

B

∑
i=1

θ̂b. (3)

The bootstrap estimate of the standard error is
the standard deviation of the bootstrap replications
(Efron, Tibshirani, 1993):

ŝB =

√
∑Bb=1(θB − θ̂b)2

B − 1
. (4)

Further, the bootstrap estimate of bias b̂B based on
the B replications is defined by

b̂B = θB − θ̂, (5)

where θB is bootstrap estimate of parameter θ, and θ̂
is estimate of parameter θ. The value of θ̂ may be cal-
culated from the original sample x or may differ from
θ̂ = s (x), e.g. it is determined from the population
(Efron, Tibshirani, 1993). Note that both ŝB and
b̂B can be calculated from the same set of bootstrap
replications.

3. Research material

With the intention to solve increasing environmen-
tal noise problems and broaden the knowledge about
acoustic phenomena observed in the Krakow urban
area, a system of continuous noise monitoring has been
put into operation as early as in the year 1996.

This measuring system is composed by the real
time noise analyser Nor 110 (Norsonic, Norway)
equipped with preamplifier and 1/2 inch microphone
with outdoor kit. This system was also equipped
with an automatic calibration function. The system
of continuous noise monitoring allows for simultane-
ous recording and analysis of the acoustic signal. The
value of A-weighted sound pressure level (LpA) is a ba-
sic parameter recorded by the system in an 1 second
resolution.

The solution was implemented by the Małopol-
skie Voivodeship Environment Protection Inspectorate
in co-operation with academics from AGH-UST’s
Department of Mechanics and Vibroacoustics and

Department of Robotics and Mechatronics. Location
for the measuring station was selected bearing in mind
the necessity to diagnose the acoustic climate in the
vicinity of the most crowded traffic arteries in Krakow.
The selected street crosses a dense urban development
area. The measuring probe is situated in the middle of
the green median belt separating two carriageways
of the road with three lanes in each direction, with
the 24-hour average traffic density about 3000 vehicles
per hour. The average traffic density in the day period
(from 06:00 a.m. to 06:00 p.m.) was about 3800 vehi-
cles per hour, in the evening period (from 6:00 p.m. to
10:00 p.m.) was about 4500 vehicles per hour and in the
night period (from 10:00 p.m. to 06:00 a.m.) was about
800 vehicles per hour. In the traffic stream approxi-
mately 6.5% of heavy vehicles was detected. The aver-
age speed of light vehicles was about 55 km/h, whereas
heavy vehicles – about 30 km/h. Traffic intensity mea-
surements on this section of road were made in 2009
by the Management of Municipal Infrastructure and
Transport in Krakow.

The determination of useful (minimum) size of the
bootstrap algorithm input parameters was carried out
with the use of actual measurement results. To this
end, A-weighted sound levels recorded by the above-
mentioned noise monitoring system throughout the
year 2009 were used. The analysis covered a total of
334 days of the year for which complete 24-hour-long
records of the A-weighted equivalent sound levels were
available. For the remaining days, the daily records
were incomplete or did not exist at all.

On the grounds of the recorded A-weighted sound
levels, values of 24-hour day-evening-night sound le-
vels LDEN,i and night-time sound levels LN,i were
calculated which constituted the examined popula-
tions with size t = 334. The values were used to de-
termine long-term (annual) noise indicators. The ob-
tained value of the long-term average day-evening-
night sound level is LDEN = 78.5 dB(A) with the stan-
dard deviation σ(LDEN,i) = 0.8 dB(A). The long-term
night-time sound level was also determined as equalling
LN = 70.8 dB(A) together with its standard deviation
σ(LN,i) = 0.9 dB(A).

Time plots of these quantities throughout the year
are presented in Fig. 1. The calculated skewness val-
ues, which are 1.05 for LDEN,i and 0.37 for LN,i,
confirms the fact that examined populations have
positively-skewed distributions. Kurtosis (excess kur-
tosis) for these populations is 7.33 (4.33) and 3.60
(0.60) for LDEN,i and LN,i, respectively. The obtained
values show that distributions of the examined popu-
lations are not normal.

A number of normality test have been carried out
with the objective to confirm that the analysed pop-
ulation did not come from any normal distribution.
The analysis included performing the Shapiro-Wilk
test, the Jarque-Bera test, the Lilliefors test, and the
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Fig. 1. Time history of noise annoyance indicators during
the year 2009.

Kolmogorov-Smirnov test at the significance level α =
0.05. Probability values (p-values) for these tests are
presented in Table 1.

Table 1. Probability values for the performed
normality tests.

Normality test
p-values

LDEN LN

Shapiro-Wilk 2.5120 ⋅ 10−9 2.0221 ⋅ 10−4

Jarque-Bera 1.0000 ⋅ 10−3 0.0072
Lilliefors 1.0000 ⋅ 10−3 0.0079

Kolmogorov-Smirnov 8.7688 ⋅ 10−294 8.7688 ⋅ 10−294

The obtained values are much less than the as-
sumed significance level. This is an evidence of signif-
icant “distance” between the distribution of probabil-
ity of the variable describing the 24-hour day-evening-
night sound levels and the normal distribution.

Fig. 2. Schematic diagram of the Experiment #1.

4. Simulation experiments, results
and discussion

Two simulation experiments have been conducted
in order to specify the minimum size of the bootstrap
algorithm input parameters, i.e. original sample size n,
and the number of bootstrap replications B in order
to determine the expected values of long-term noise
indicators LDEN and LN with required accuracy.

4.1. Experiment #1

The first experiment served to determine the im-
pact of original random sample size n on the estima-
tion accuracy of long-term noise indicators is presented
in Fig. 2.

For that reason, 1000 random samples with sizes
n = 2,3, ...,334 were drawn from the examined popula-
tion. The original random sample size n simulates the
number of control days based on which the LDEN and
LN indicators are estimated. In order to eliminate the
impact of the number of bootstrap replications B on
the estimation result of the expected value of noise in-
dicators, the reconstruction of probability distributions
was performed based on the same number of replica-
tions B for each sample with size n. The distributions
were determined based on B = 10 000 replications, thus
receiving 1000 bootstrap probability distributions with
10 000 elements for each original sample size n. Each
distribution was used to determine the bootstrap es-
timate of the expected value of noise indicators from
the following equations:

LDEN,m = 10 log( 1

B

B

∑
b=1

100.1LDEN,b),

LN,m = 10 log( 1

B

B

∑
b=1

100.1LN,b).

(6)
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The result was 1000-element probability distributions
of LDEN and LN indicators which were subjected to
further statistical analysis.

First, the Kruskal-Wallis non-parametric test has
been performed at the significance level α = 0.01 in or-
der to check if there are statistically significant differ-
ences in estimated long-term noise indicators for vari-
ous original sample sizes. The test gave the probability
values of p = 7.57⋅10−108 for LDEN and p = 4.93⋅10−14 for
LN. These values are much less than the assumed level
of significance which proves the existence of statisti-
cally significant differences in values of estimated indi-
cators. The Tukey-Kramer multiple comparison test at
the level of significance α = 0.05 was conducted in order
to find out between which groups there are differences.
The probability values from this test are presented as
a matrix in Fig. 3. White colour in the figure indicates
the probability values greater than the assumed level
of significance, and the black colour the values which
are less than assumed level of significance. Such presen-

a)

b)

Fig. 3. The probability values (p-values) of the Tukey-
Kramer test: a) for LDEN, b) for LN. The values higher
than the assumed significance level α = 0.05 are marked in
white colour, while the lower values are marked in black

colour.

tation facilitates the analysis of results and inference.
The white points indicate absence of statistically sig-
nificant differences between the analysed groups, and
the black points indicate presence of such differences.

The results of the Tukey-Kramer test for LDEN pre-
sented in Fig. 3a indicate three intervals of the original
random sample size n based on which the estimated
LDEN expected values are not statistically different at
the assumed level of significance. The first interval in-
cludes the original sample sizes from 2 to 51, the sec-
ond from 19 to 98, and the third from 51 to 334. The
determination of the third interval omitted the boot-
strap distribution obtained from the sample size 65
whose expected value of LDEN is statistically different
only from 21 values obtained from the bootstrap distri-
butions reconstructions of which were based on more
numerous original samples. In case of the long-term
average night-time sound level, there are two such in-
tervals (Fig. 3b). The first includes the original sample
sizes from 2 to 31, and the second from 25 to 334, omit-
ting only five pairs of bootstrap distributions based on
which the determined LN are statistically different at
the assumed level of significance.

The results of the Tukey-Kramer multiple compari-
son test confirm the claim that it is possible to estimate
the long-term noise indicators LDEN and LN using the
bootstrap algorithm based on a small sample. Figure 3
shows clearly that in the sample size from 2 to 50 el-
ements there are values of samples size n for which
the values of estimated indicators are not statistically
different from each other regardless of the number of
elements in the original sample. There are 26 and 35
such values for LDEN and LN, respectively.

The dispersion of obtained results was also anal-
ysed by determining the 95% confidence interval width
using the percentiles of the bootstrap distribution
for each probability distribution obtained using the
original random sample of size n. This method was
chosen because some analysed distributions were not
Gaussian and some had a large skewness. The values
of this parameter were from −2.99 to 1.39 for LDEN,
and from −1.34 to 0.35 for LN. This method can be
successfully used to determine to measurement uncer-
tainty which was analysed in detail in previous work
of the author (Stępień, 2017).

The uncertainty of long-term noise indicators was
determined as the function of size of original random
sample n, which is shown in Fig. 4. The uncertainty
was defined as

u (LDEN) = max{∣LDEN−pDEN,2.5∣, ∣LDEN−pDEN,97.5∣},
u (LN) = max{∣LN−pN,2.5∣, ∣LN−pN,97.5∣},

(7)
where LDEN and LN are the bootstrap estimates of the
long-term noise indicators, pDEN,2.5 and pDEN,97.5 are
the 2.5th and 97.5th empirical percentiles of the boot-
strap distributions of LDEN, while pN,2.5 and pN,97.5
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a)

b)

Fig. 4. The 1000-element bootstrap distributions of long-
term noise indicators (light grey stars) obtained on the base
of original samples of size n: a) for LDEN, b) for LN. The
black line in each panel shows the bootstrap estimate of
long-term noise indicator. The values LDEN±u (LDEN) and
LN±u (LN) in the panels a) and b), respectively, are marked

by the dark grey line.

are the 2.5th and 97.5th empirical percentiles of the
bootstrap distributions of LN. The results clearly show
that the uncertainty decreases when the size of origi-
nal random sample increases. From the results, it has
been concluded that the uncertainty of long-term noise
indicators below ±1 dB(A) requires all-day noise mea-
surement on three randomly selected days a year.

The next analysed parameter was bias of boot-
strap estimator calculated according to the Eq. (5),
where θB is a bootstrap estimate of a long-term noise
indicator, and θ̂ is a value of long-term noise indica-
tor from measurements. The parameters values range
from −0.02 dB(A) to 0.04 dB(A) for LDEN, and from
−0.03 dB(A) to 0.02 dB(A) for LN. Figure 5 presents
the mean values of cumulative sums of bias MCSB,j

calculated according to the equation

MCSB,j =
1

j

j

∑
i=1

b̂B,j , (8)

for j = 1,2, . . . ,N , where N is the sample size
(N = 333), and b̂B,j is a bias of bootstrap estimator (5).
The values of this statistics show convergence of boot-
strap estimator towards the expected value of bias. The
MCSB,j value stabilizes around the value determined
for N = 333 at the original sample size n = 50 for LDEN

and n = 34 for LN. The graph of this statistics for
the expected value of long-term noise indicators is the
same as in Fig. 5, only it is shifted towards higher va-
lues by the value of this indicators. Based on the graph
of statistics MCSB,j , it was concluded that the maxi-
mum size of the original sample n used to estimate the
long-term noise indicators should not exceed n = 50,
because further increase of the sample size does not
improve estimation accuracy and only increases mea-
surement costs.

Fig. 5. The convergence processes of the bootstrap algo-
rithm to the expected value of estimator bias of long-term
noise indicators. The mean values of cumulative sums of
estimator bias for LDEN and LN are indicated by the grey

line and the black line, respectively.

4.2. Experiment #2

In the first experiment, it was proved that for the
original sample size n > 50 the estimation accuracy is
significantly not improved. For that reason, the exper-
iment determined the impact of the number of boot-
strap replications B on the estimation accuracy of
long-term noise indicators LDEN and LN for sets of
various sizes of the basic sample n in the 5 to 50 range
with an increment of 5.

This experiment (Fig. 6) was similar to the first ex-
periment (Fig. 2). One thousand original samples each
were randomly drawn from the examined populations
for each analysed size from 5 to 50 elements. Then,
based on these original samples generated were B boot-
strap samples from the interval from 100 to 10 000 with
an increment of 100. Thus, we obtained 1000-element
LDEN and LN probability distributions for each analy-
sed number of bootstrap replications in each set which
were then further statistically processed.
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Fig. 6. Schematic diagram of the Experiment #2.

Similarly, firstly Kruskal-Wallis test was performed
for each dataset at the level of significance α = 0.01
in order to check if there were statistically significant
differences in estimated long-term noise indicators de-
pending on the number of bootstrap replications B.
The probability values in all analysed sets were higher
than the assumed level of significance α: for LDEN they
were in the 0.2275 to 0.8389 range, and for LN in the
0.1215 to 0.9938 range. The results clearly show that
in all analysed sets the estimates of expected value of
long-term noise indicators are not statistically differ-
ent regardless of the number of bootstrap replications
which was used to determine them.

The convergence of the bootstrap algorithm to-
wards the expected value of long-term noise indica-
tors has been also analysed in the function of num-
ber of bootstrap replications based on the mean value
of cumulative sums of bootstrap estimates MCSE,j de-
scribed by the equation

MCSE,j =
1

j

j

∑
i=1

θB,j , (9)

for j = 1,2, ...,N , whereN is the sample size (N = 100),
and θB,j is a bootstrap estimate of the expected value
of long-term noise indicator. The graph of the statistics
determined based on the Eq. (9), showing the conver-
gence of the bootstrap algorithm for extreme cases, is
presented in Fig. 7. The analysis of graphs shown in
Fig. 7 clearly indicates that the estimates of expected
values of long-term noise indicators obtained before the
algorithm stabilization have a higher bias than the es-
timates obtained after the stabilization. The number
of bootstrap replications at which the algorithm has
stabilized, for both expected value and uncertainty, is
presented in Table 2. The analysis of values included in
Table 2 indicates that the number of bootstrap repli-
cations B at which the algorithm has been considered

a)

b)

Fig. 7. The selected convergence processes of the bootstrap
algorithm to the expected values of long-term noise indica-
tors as a function of the number of bootstrap replications:
a) for LDEN, b) for LN. The grey line shows the fastest pro-
cess of convergence to the expected value, while the slowest

one is marked by the black line.

stable was different depending on the size of the origi-
nal random sample on which the estimation was based.
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Table 2. Minimum number of bootstrap replications that guarantees the stability of bootstrap algorithm for different
sizes n of the original random samples for estimation expected value and uncertainty of LDEN and LN.

Indicator
Number of bootstrap replications B

Original sample size n
5 10 15 20 25 30 35 40 45 50

Expected value
LDEN 5000 3000 1000 5000 3000 1500 3500 2000 2000 2000
LN 4500 1000 2000 3000 3500 2500 3500 2000 1000 4000

Uncertainty
LDEN 1500 2000 2000 3000 2000 1200 3000 2000 1500 2000
LN 4000 2000 1500 1000 2000 3000 2000 3000 3000 2000

The results do not show any trend which could indi-
cate any relationship between the required number of
bootstrap replications B depending on the size of orig-
inal random sample in order to stabilize the algorithm.
These are random values which depend on the struc-
ture of the examined population. The number of boot-
strap replications B at which the algorithm was stable
is from 1000 to 5000 for LDEN and from 1000 to 4500
for LN.

The next parameter analysed for each dataset was
uncertainty of LDEN and LN in the function of the

a)

b)

Fig. 8. The uncertainty of long-term noise indicators for different sizes n of the original random samples as a function
of the number of bootstrap replications for: a) LDEN, b) LN.

number of bootstrap replications. The uncertainty
was defined identically as in Experiment #1 on the
basis of expression (7). The uncertainty values of
long-term noise indicators are presented in Fig. 8. The
results do not show any trend which could indicate
any relationship between the uncertainty of long-term
noise indicators and the number of bootstrap replica-
tions. The presented graphs oscillate around some set
values, that is expected values of uncertainty of long-
term noise indicators which are included in Table 3.
The values are from 0.2565 to 0.7909 for LDEN, and
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Table 3. Expected value of uncertainty of LDEN and LN for different sizes n of the original random samples.

Indicator
Expected value of uncertainty [dB(A)]

Original sample size n
5 10 15 20 25 30 35 40 45 50

LDEN 0.7881 0.6836 0.5683 0.4646 0.4059 0.3624 0.3269 0.3015 0.2772 0.2574
LN 0.8639 0.6082 0.4977 0.4193 0.3717 0.3406 0.3112 0.2876 0.2693 0.2546

from 0.2549 to 0.8610 for LN. The analysis of graphs in
Fig. 8 and values in Table 3 indicates that the uncer-
tainty is inversely proportional to the size of original
random sample based on which the long-term noise in-
dicators LDEN and LN were estimated.

The results of this experiment are in line with the
results obtained in Experiment #1 at the constant
number of bootstrap replications (B = 10 000). The
similarity of results of two independent experiments
proves a very good stability of the bootstrap algorithm,
confirming that this approach can be used successfully
in estimating the expected value and standard uncer-
tainty of long-term noise indicators.

The convergence of the bootstrap algorithm to-
wards the expected value of uncertainty of long-term
noise indicators has been analysed in the function of
the number of bootstrap replications, which is pre-
sented in Table 2. Similarly to the algorithm conver-
gence towards the expected value of long-term noise
indicators, there is no trend which could indicate any

a) b)

c) d)

Fig. 9. The selected convergence processes of the bootstrap algorithm to the expected value of uncertainty of long-term
noise indicators as a function of the number of bootstrap replications for: a) and b) LDEN, c) and d) LN. The b) and d)
panels show the fastest process of convergence to the expected value of uncertainty, while the slowest one are show in

panels a) and c).

relationship between the required number of bootstrap
replications B depending on the size of original random
sample in order to stabilizes the algorithm. The num-
ber of bootstrap replications at which the algorithm
has been stabilized ranges from 1200 to 5000 for LDEN

and from 1000 to 5000 for LN. The graph of mean value
of cumulative sums of uncertainty

MCSU,j =
1

j

j

∑
i=1

uB,j , (10)

for j = 1,2, ...,N , where N is the sample size (N = 100),
and uB,j is an uncertainty of the expected value of
long-term noise indicators determined based on the ex-
pression (7), showing the convergence of the bootstrap
algorithm towards the expected value of uncertainty is
presented in Fig. 9.

Based on the presented results of algorithm con-
vergence, it was concluded that the minimum number
of bootstrap replications for estimation of the expected
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value and uncertainty of long-term noise indicators
should be B = 5000 in order to ensure an adequate
algorithm convergence and consequently a satisfactory
accuracy of estimated statistics.

5. Conclusions

The paper determines the minimum size of the
bootstrap algorithm parameters (size of the original
random sample and the number of bootstrap replica-
tions) necessary to estimate the expected value and
the uncertainty of long-term indicators of road traffic
noise with required accuracy. To this end, two indepen-
dent simulation experiments were conducted. Experi-
ment #1 served to determine the size of the original
random sample, and Experiment #2 was used to deter-
mine impact of the number of bootstrap replications on
the estimation accuracy of long-term noise indicators
and their uncertainty.

The statistical analysis was carried out on the basis
of Kruskal-Wallis test. Next, multiple comparison pro-
cedures were used for pairwise comparisons between
the means using non-parametric Tukey-Kramer test at
significance level α = 0.05.

Two independent simulation experiments described
above show that the estimation of long-term noise
indicators with uncertainty below ±1 dB(A) requires
all-day noise measurements during three randomly se-
lected days during the year in a dense urban develop-
ment.

The statistical analysis has shown that the maxi-
mum size of original random sample n used to estimate
the values of long-term noise indicators should not ex-
ceed 50 elements.

The estimates of long-term noise indicators do
not have a statistically significant difference regard-
less of the number of bootstrap replications B based
on which they were determined.

The minimum number of bootstrap replications
necessary to estimate the expected value and the
uncertainty of long-term noise indicators should be
B = 5000 in order to ensure an adequate algorithm con-
vergence and consequently a satisfactory accuracy of
estimated statistics.

The results of both experiments clearly indicate
that the uncertainty decreases as the original random
sample grows, thus proving a very good stability of the
bootstrap algorithm and confirming that this approach
can be successfully used to estimate not only long-term
indicators of road traffic noise, but also other acoustic
parameters.

The numerical experiment results presented in this
paper refer only to one measuring cross-section lo-
cated in a dense urban area. The minimum size of the
bootstrap algorithm input parameters can be differ-
ent in other measurement conditions. Therefore the
minimum size of these parameters used for the cha-

racterization of each other place must be adapted ac-
cording to the characteristics of the noise source and
the local propagation conditions, because the proposed
methodology may be applied to other situations where
the temporal variation patterns of the environmental
noise are known.
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