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Accurate definition of boundary conditions is of crucial importance for room acoustic predictions because
the wall impedance phase angle can affect the sound field in rooms and acoustic parameters applied to assess
a room reverberation. In this paper, the issue was investigated theoretically using the convolution integral
and a modal representation of the room impulse response for complex-valued boundary conditions. Theoretical
considerations have been accompanied with numerical simulations carried out for a rectangular room. The
case of zero phase angle, which is often assumed in room acoustic simulations, was taken as a reference, and
differences in the sound pressure level and decay times were determined in relation to this case. Calculation
results have shown that a slight deviation of the phase angle with respect to the phase equal to zero can
cause a perceptual difference in the sound pressure level. This effect was found to be due to a change in modal
frequencies as a result of an increase or decrease in the phase angle. Simulations have demonstrated that surface
distributions of decay times are highly irregular, while a much greater range of the early decay time compared
to the reverberation time range indicates that a decay curve is nonlinear. It was also found that a difference
between the decay times predicted for the complex impedance and real impedance is especially clearly audible
for the largest impedance phase angles because it corresponds approximately to 4 just noticeable differences for
the reverberation metrics.
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1. Introduction

Acoustics of rooms has been studied for many years
because a room behaviour in steady and transient
states needs to be evaluated at the design phase and
before acoustic treatments of rooms. Prediction of in-
door sound field and determination of reverberation
characteristics of rooms are not simple, and several
theoretical and numerical methods of different com-
plexity have been developed. These include statistical-
acoustic methods (Summers, 2012), the acoustic dif-
fusion equation model (Navarro, Escolano, 2015),
geometrical acoustics methods such as the mirror
source method (Aretz et al., 2014), and the ray-
tracing techniques (Winkler-Skalna, Nowoświat,
2021), wave-based approaches such as the modal
expansion method (Dance, Van Buuren, 2013),
the finite-element method (Yoshida et al., 2020),

and the boundary element method (Yasuda et al.,
2020), the finite difference time domain method (Mur-
phy et al., 2014), and meshless techniques (Prędka,
Brański, 2020). The main acoustic elements employed
to improve the acoustic quality of rooms are reflective
surfaces, diffusers, and sound absorbing materials. The
first two are mainly used to distribute indoor sound
field energy, whereas the role of sound absorbers is
reduction of sound levels and control of reverbera-
tion. The effect of sound absorbing walls on the in-
door sound field can be fully characterised by the wall
impedance. In the past, real-valued wall impedance
approximations have been commonly used for room
acoustic simulations (Yokota et al., 2002; Meissner,
2008; Prislan et al., 2016). However, since acous-
tic properties of sound absorbers are characterised
by complex impedances (Cox, D’Antonio, 2009),
it is more correct to use complex-valued boundary



344 Archives of Acoustics – Volume 47, Number 3, 2022

conditions in room acoustics modelling (Meissner,
Wiśniewski, 2020; Szemela, Rdzanek, 2022). It
is especially important for rooms of small volumes,
where the wall impedance phase angle has a signifi-
cant impact on the modal behaviour at low frequencies
(Meissner, 2019).

Previous works examining the effect of the wall
impedance phase angle on steady state and transient
room responses have focused on improving the geomet-
rical acoustics models. Suh and Nelson (1999) imple-
mented the phase image model using the complex re-
flection coefficient to calculate the impulse response in
two small and medium-sized rooms. They found signif-
icant differences between frequency response functions
obtained for the complex wall impedance and in the
case when it is replaced by the real-valued impedance
that has the same normal absorption coefficient as
the complex impedance. Jeong (2012) investigated
real and complex-valued boundary conditions using
the phased beam tracing method and found that the
impedance phase angle affects the sound pressure level.
In the study of Jeong et al. (2014), the phased beam
tracing method was used to investigate the perceived
reverberance for the wall impedance with different
phase angles. It was found that, for uniform absorption
settings, the non-zero impedance phase angle results
in a perceptual difference in reverberance when com-
pared to a zero-phase impedance. It was also shown
that for typical rectangular room configurations with
various types of absorptive ceilings, the impedance
phase angle of the ceiling does not affect substantial
changes in both the sound pressure level and early de-
cay time.

In this study, theoretical and numerical models
based on a modal approach are used to examine the
effect of the wall impedance phase angle on indoor
sound field and acoustic parameters employed to as-
sess a room reverberation. In the theoretical model, the
convolution integral and the room impulse response de-
termined for complex-valued boundary conditions are
applied. To find a decay curve that enables a predic-
tion of decay times, a time-reverse integration of the
squared room impulse response is used. The theoretical
method is tested numerically for a room with internal
damping provided by sound absorbing material evenly
distributed over all room walls. In computer simula-
tions, a wide range of impedance phase angle is tested,
assuming that the non-zero phase impedance and the
real impedance correspond to the same random inci-
dent absorption coefficient. Although the method ap-
plies to rooms of any shape, a rectangular enclosure
was chosen as the test room because the modal be-
haviour of such a room has been thoroughly stud-
ied in the past. Among these studies, the works of
Maa (1939), Hunt et al. (1939), and Nolan, Davy
(2019) are of particular importance. Maa (1939) de-
rived asymptotic formulas for the cumulative number

of acoustic modes in a rectangular room. Hunt et al.
(1939) examined the sound decay in rectangular rooms
and the interaction of modes with different reverber-
ation times. Nolan and Davy (2019) extended the
existing modal theory for a reverberant sound field in
rectangular rooms with almost hard walls to rectangu-
lar rooms whose walls may have different impedances
and examined the orthogonality of spatial modal func-
tions in this case.

2. Theoretical considerations

2.1. Boundary condition for complex wall impedance

An arbitrary shaped room with sound absorbing
walls is considered. The sound field inside the room
space is produced by a volume source. The room walls
are assumed to be locally reacting, i.e. the normal ve-
locity component un at any point on these walls de-
pends only on the local pressure at that point. In this
case the boundary condition is as follows:

∇p ⋅ n = −ρ
∂un
∂t

= −
1

cζ

∂p

∂t
= −

(cosµ − j sinµ)
c∣ζ ∣

∂p

∂t
, (1)

where p is the sound pressure, ∇ = i∂/∂x + j∂/∂y +
k∂/∂z is the gradient vector operator, the dot is a sca-
lar product, n is the outward normal vector, ρ is the
air density, c is the sound speed, and ∣ζ ∣ and µ are
the magnitude and the phase angle of the normalised
wall impedance ζ, respectively. It is assumed that ab-
sorbing properties of room walls are characterised by
the random incidence absorption coefficient α which
is related to the normalised wall impedance ζ by the
following expression (Kuttruff, 2009):

α =
8

∣ζ ∣2
cosµ[∣ζ ∣ +

cos(2µ)

sinµ
arctan(

∣ζ ∣ sinµ

1 + ∣ζ ∣ cosµ
)

− cosµ ln (1 + 2∣ζ ∣ cosµ + ∣ζ ∣2) ]. (2)

The complex wall impedance should fulfill the re-
quirement of passivity, which means that the room
walls do not supply energy to the sound field. Since
∣ζ ∣ cosµ represents the wall resistance, this requirement
is equivalent to the condition −90○ ≤ µ ≤ 90○. Calcula-
tion results obtained from Eq. (2), shown in Fig. 1, pro-
vide more details about the possible ranges of µ. The
plots depict curves of constant values of α in a coordi-
nate system, whose abscissa and ordinate are the phase
angle and the magnitude of the impedance ζ, respec-
tively. As can be seen, the phase angle µ possesses val-
ues from the range ⟨−µmax, µmax⟩ and µmax is strongly
dependent on the absorption coefficient α. When room
walls are assumed to be perfectly rigid, µmax reaches
the maximum value of 90○. On the contrary, µmax is
equal to zero degrees when the absorption coefficient
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Fig. 1. Contours of constant values of the absorption coeffi-
cient α. The abscissa is the phase angle µ, and the ordinate
is the magnitude ∣ζ ∣ of the normalised wall impedance ζ.

is at its absolute maximum 0.951. In this case, a con-
tour curve becomes the point which is located at the
intersection of the lines µ = 0 and ∣ζ ∣ = 1.567 indicated
in Fig. 1 by dashed lines. A dependence of µmax on the
absorption coefficient α is plotted in Fig. 2. As may
be noted, large values of µmax substantially limit the
range of possible values of the absorption coefficient.
For example, when µmax is equal to 60○, the values of
α cannot be greater than 0.627.

� m
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�

Fig. 2. Dependence of µmax on the absorption coefficient α.

2.2. Indoor sound field

The most convenient way of describing the indoor
sound field is to use the room impulse response (RIR).
The RIR is very useful in room acoustics because the
knowledge of the RIR function h(r′, r, t), describing
the pressure response at the receiving point r = (x, y, z)
to the time impulse at the point r′ = (x′, y′, z′), enab-
les to predict the room response to any sound source.
If spatial and temporal properties of the source are de-
scribed by the function q(r′, t), the pressure response
to this excitation can be determined using the convo-
lution integral in the time domain (Damelin, Mil-
ler, 2012):

p(r, t) = ∫

V

q(r′, t) ∗ h(r′, r, t)d3r′

=

t

∫
−∞

∫

V

q(r′, τ)h(r′, r, t − τ)d3r′ dτ, (3)

where V is the room volume, the symbol ∗ denotes the
convolution operation, and d3r′ is the symbol for
the volume element d3r′ = dx′ dy′ dz′. Since the
theoretical model is intended for the low-frequency
range, the modal expansion method was used to deter-
mine the RIR function (Meissner, Zieliński, 2020),
and the result is as follows:

h(r′, r, t) = c2
∞
∑
m=1

e−ξmt sin(ψmt)Φm(r′)Φm(r)

ψm
, (4)

where Φm are eigenfunctions, the modal coefficients ξm
are expressed as:

ξm = rm + jϕm =
c

2
∫

S

(cosµ − j sinµ)Φ2
m

∣ζ ∣
dS, (5)

where S is the surface of room walls, ψm are complex
frequencies given by:

ψm = Ωm + jϑm

=

¿
Á
ÁÀam +

√
a2m + b2m
2

+ j

¿
Á
ÁÀ−am +

√
a2m + b2m

2
, (6)

where am = ω2
m − r2m + ϕ2

m, bm = −2rmϕm, and ωm are
eigenfrequencies. The steady state pressure response to
a point source located at r0 = (x0, y0, z0) can be found
assuming that in Eq. (3) the source function has the
form q(r′, τ) = Qδ(r′ − r0)e

jωτ , where ω is the source
angular frequency and the amplitude Q is depen-
dent on the source power W according to the formula
Q =

√
8πρcW . Thus, after calculating the volume and

time integral in Eq. (3), the formula for the steady
state pressure amplitude P is found as:

P (r) = Qc2
⎧⎪⎪
⎨
⎪⎪⎩

[
∞
∑
m=1

(ω2
m − ω2 − 2ωϕm)Φm(r0)Φm(r)

(ω2
m − ω2 − 2ωϕm)2 + 4r2mω

2
]

2

+[
∞
∑
m=1

2ωrmΦm(r0)Φm(r)

(ω2
m − ω2 − 2ωϕm)2 + 4r2mω

2
]

2⎫⎪⎪
⎬
⎪⎪⎭

1/2

. (7)

Equation (7) indicates that the pressure amplitude
P depends on the source and receiver positions r0
and r, the source frequency ω, the eigenfrequencies
ωm and, through the quantities rm and ϕm, on the
real and imaginary parts of the impedance ζ. Thus, for
a specific location of a point source and a fixed source
frequency, Eq. (7) makes it possible to determine the
spatial distribution of the steady state pressure am-
plitude inside a room. On the other hand, Eq. (7)
enables one to predict the transfer function (TF) be-
tween the source and receiver positions for different
values of the impedance ζ.



346 Archives of Acoustics – Volume 47, Number 3, 2022

2.3. Reverberation parameters

Decay times are the main parameters determining
reverberant sound field, thus, they are commonly used
to assess the acoustical quality of a room. For a theo-
retical description of a sound decay process in a room
space, two methods are primarily applied. In the first
method, the sound decay after switching off the pure
tone sound excitation is analysed. In this case, a ma-
thematical expression for a transient pressure response
can be obtained from Eq. (3) assuming q(r′, τ) =

Qδ(r′ − r0)e
jωτ and performing the time integration

from −∞ to zero. However, a presence of decaying
modal vibrations in this response results in high tem-
poral irregularity of pressure amplitude making it dif-
ficult to correctly predict the decay times. One so-
lution to this problem is to use the discrete Hilbert
transform to determine the envelope of decaying sound
(Meissner, 2021). The second method for describing
the sound decay process bases on the backward inte-
gration of the squared RIR. The time reverse integra-
tion results in a statistically stable estimate of a de-
cay process since the obtained decay plot corresponds
to an average over infinitely many decay curves that
would be obtained from exciting the room with band-
pass filtered noise (Schroeder, 1965). This method
is commonly known as the Schroeder integration and it
produces a smoothed decay plot from which the decay
times are directly estimated.

The obtained RIR function can be used to predict
the decay times after transforming the right hand side
of Eq. (4) to the form:

h(r′, r, t) =
∞
∑
m=1

[αm(t) + jβm(t)]Φm(r′)Φm(r), (8)

where the functions αm(t) and βm(t) are expressed by:

αm(t) =
c2e−rmt

Ω2
m + ϑ2m

⋅{[Ωm sin(ϕmt)+ϑm cos(ϕmt)] cos(Ωmt) sinh(ϑmt)

+[Ωm cos(ϕmt)−ϑm sin(ϕmt)] sin(Ωmt) cosh(ϑmt)},

(9)

βm(t) =
c2e−rmt

Ω2
m + ϑ2m

⋅{[Ωm cos(ϕmt)−ϑm sin(ϕmt)] cos(Ωmt) sinh(ϑmt)

−[Ωm sin(ϕmt)+ϑm cos(ϕmt)] sin(Ωmt) cosh(ϑmt)}.

(10)

Since the RIR function is complex, the quantity which
corresponds to the squared RIR is a modulus of
h(r′, r, t) squared:

g(t) = ∣h(r′, r, t)∣2 = [
∞
∑
m=1

αm(t)Φm(r′)Φm(r)]

2

+[
∞
∑
m=1

βm(t)Φm(r′)Φm(r)]

2

. (11)

The decay function Ld describing a sound energy de-
crease in the decibel scale is determined using a nor-
malised version of the backward integration procedure:

Ld(t) = 10 log

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∞

∫
t

g(τ) dτ

∞

∫
0

g(τ) dτ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

Based on temporal changes in the decay function, re-
verberation parameters such as the early decay time
(EDT) and the reverberation time T30 can be evalu-
ated. EDT is predicted from a decrease in Ld from 0
to −10 dB, multiplied by the factor of 6, whereas T30
is the decay time estimated from a drop in Ld from −5
to −35 dB, multiplied by the factor of 2.

3. Numerical study

The proposed method of predicting room acous-
tics on the basis of RIR calculations applies to rooms
of any shape. However, to carry out numerical tests
over a wider frequency band, a rectangular enclosure
with small sound damping on walls was chosen for
the test room because the modal behaviour of such
an enclosure is well known and described. The as-
sumed dimensions of the test room are as follows:
Lx = 7 m, Ly = 5 m, Lz = 3 m (Fig. 3). Since they
correspond to dimensions of lecture rooms or small
music studios, a sound source representing, for exam-
ple, the mouth of a speaker was located at the point:
x0 = 1 m, y0 = 2 m, z0 = 1.6 m. As shown by Eq. (4),
space distribution of the RIR depends on values of the
eigenfunctions Φm at the source and receiver positions.
Since room walls were assumed to provide small sound

Fig. 3. Rectangular room under study together with the
associated coordinate system. The source position is indi-

cated by the blue point.
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damping, the eigenfunctions Φm were approximated by
eigenfunctions determined for rigid room walls:

Φnxnynz(r) =

√
εnxεnyεnz

V
cos(

nxπx

Lx
)

⋅ cos(
nyπy

Ly
) cos(

nzπz

Lz
), (13)

where the modal indices nx, ny, nz are non-negative
integers which are not simultaneously equal to zero,
εns = 1 if ns = 0, and εns = 2 if ns > 0. The eigenfre-
quencies corresponding to these eigenfunctions can be
calculated from the equation:

fnxnynz =
c

2

¿
Á
ÁÀ

(
nx
Lx

)
2

+ (
ny

Ly
)

2

+ (
nz
Lz

)
2

. (14)

The use of eigenfunctions for hard box modes in
a series expansion of sound pressure means that the
normal velocity component on the surface of a room’s
wall is equal to zero. As shown by Eq. (1), this condition
is strictly met when the modulus of wall impedance
tends to infinity or is satisfied approximately when
this modulus is large enough. Therefore, the accuracy
of the theoretical model should be good in the low
frequency range, where sound absorbing materials are
characterised by low absorption. This fact is confirmed
by a high agreement between calculation results ob-
tained from the theoretical model and FEM for large
wall impedances (Meissner, Zieliński, 2020).

In the test room, a sound damping was provided by
an absorptive material with the impedance ζ = ∣ζ ∣ejµ,
uniformly distributed on room walls. In order to en-
sure that these properties would be the same for the
different phase angles µ, the value of ∣ζ ∣ was chosen
so that the random incident absorption coefficient α
was kept constant. Therefore, in a developed numeri-
cal algorithm, the coefficient α and the phase angle µ
were input parameters, and for the given values of α
and µ, the impedance magnitude ∣ζ ∣ was determined
by the numerical solution of Eq. (2). In the numerical
tests, it was assumed that the absorption coefficient
takes the values of 0.05, 0.15, and 0.3, and for each
of them, the magnitude ∣ζ ∣ was computed for the angle
µ varying in steps of ±10○. The values of ∣ζ ∣ obtained in
this way are listed in Table 1. For the absorption coeffi-
cient of 0.3 and the phase angle of ±80○, the impedance

Table 1. Magnitude ∣ζ ∣ of the normalised wall impedance
for selected values of the absorption coefficient α and the

impedance phase angle µ.

α
µ

0○ ±10○ ±20○ ±30○ ±40○ ±50○ ±60○ ±70○ ±80○

0.05 150.4 148.1 141.3 130.1 115.0 96.4 74.7 50.8 25.1
0.15 45.5 44.8 42.7 39.3 34.6 28.9 22.2 14.8 6.7
0.3 19.8 19.5 18.5 17.0 14.9 12.3 9.3 5.8 –

magnitude ∣ζ ∣ is not assigned because when µ is equal
to ±80○, the value of α cannot be greater than 0.275
(Fig. 2).

3.1. Simulations of indoor sound field

To assess the perceived difference between spatial
distributions of the pressure amplitude P for consid-
ered values of the angle µ, a quantity based on the
pressure ratio was introduced:

D =
20

Sp
∫

Sp

∣log [
P (r)

P0(r)
]∣ dS, (15)

where Sp is the size of the horizontal observation plane
and P0 is the pressure amplitude for µ equal to zero.
The use of an absolute value in the integrand guaran-
tees that the ratios P /P0 = a and P /P0 = a−1, where
a is any positive number, have identical contribution
to the integral. The parameter D is quantified in deci-
bels and whenD is equal to 0 dB, the distributions of P
and P0 on the observation plane are exactly the same.

The pressure amplitude P was computed on the ob-
servation plane located at the distance z = 1.2 m above
the floor of the test room. Such a distance approxi-
mately corresponds to the position of ears of seated
listeners. Simulations were run on the computational
grid with N = 3621 grid points regularly spaced on the
observation plane. Therefore, the calculation of the pa-
rameter D was carried out according to the formula:

D =
20

N

N

∑
n=1

∣log [
P (rn)

P0(rn)
]∣, (16)

where rn is the grid point coordinate. Calculations of
D were performed for the source frequency f of 100 Hz,
250 Hz, and 500 Hz and the results obtained are pre-
sented in Fig. 4 in the form of bar charts. These data
indicate that the spatial distribution of the pressure
amplitude P is very sensitive to changes in the phase
angle µ because already for µ of ±20○ the parameter D
is greater than 1 dB which exceeds the just noticeable
difference (JND) in the sound pressure level for a tone
frequency from 70 Hz to 1000 Hz and the pressure level
greater than or equal to 40 dB (Long, 2014). For the
phase angle greater than 20○ or smaller than −20○, an
increase in parameter D is observed, and its greatest
values of 5–7 dB occur for the highest values of µ. An
explanation of why the parameterD reaches such great
values can be found in Figs 5 and 6 depicting distri-
butions of P on the observation plane for the source
frequency of 100 Hz and 250 Hz, the absorption coef-
ficient of 0.05, and the phase angle equal to 0○, ±50○,
±80○. These figures show that changes in the phase
angle result in modification of both the amplitude P
and its distribution on the observation plane. The ex-
ception is the case: f = 100 Hz and µ = 50○, where the
value of D of about 3 dB is due only to a decrease in P
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Fig. 4. Dependence of the parameter D on the impedance phase angle µ for the source frequency f of 100 Hz (a), (b), (c),
250 Hz (d), (e), (f), and 500 Hz (g), (h), (i). The absorption coefficient α equals 0.05 (a), (d), (g), 0.15 (b), (e), (h), and

0.3 (c), (f), (i).
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Fig. 5. Distributions of the pressure amplitude P on the observation plane for the source frequency f of 100 Hz,
the absorption coefficient α of 0.05, and the impedance phase angle µ equal to: a) 0○, b) −50○, c) 50○, d) −80○, e) 80○.
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Fig. 6. Distributions of the pressure amplitude P on the observation plane for the source frequency f of 250 Hz, the
absorption coefficient α of 0.05, and the impedance phase angle µ equal to: a) 0○, b) −50○, c) 50○, d) −80○, e) 80○.

(Fig. 5c). The most regular distribution of the pressure
amplitude was obtained for f = 250 Hz and µ = −80○

(Fig. 6d). An analysis of calculation data revealed that
this distribution corresponds to the distribution of P
computed for the room mode (6, 5, 2), i.e. the mode
with indices: nx = 6, ny = 5, nz = 2. The frequency of
this mode, calculated from Eq. (14), is 253.17 Hz, so it
clearly differs from the source frequency.

To elucidate this problem, the transfer functions
for the phase angle µ of 0○ and −80○ were computed at
the receiving point: x = 4.7 m, y = 2 m, and z = 1.2 m,
where for µ = −80○ there is a local maximum of the
pressure amplitude P (Fig. 6d). A comparison of TFs
calculated in the frequency band 220–280 Hz is shown
in Fig. 7. The dominant peak in the TF for µ = 0○

corresponds to the mode (6, 5, 2). However, when µ
drops to −80○, the frequency of this peak changes to
250.3 Hz, making this mode dominant in the distribu-
tion of the pressure amplitude. Such a behaviour can
be explained using Eq. (7). This equation shows that
peaks of the pressure amplitude P occur near source
frequencies:

ω =
√
ω2
m + ϕ2

m − ϕm. (17)

On the other hand, the relationship between ϕm and
the phase angle µ is given by Eq. (5), and this equation

P 
 �P
a�

f  �Hz�

Fig. 7. Comparison of TFs computed at the receiving point:
x = 4.7 m, y = 2 m, z = 1.2 m, for the absorption coefficient
α of 0.05, and the impedance phase angle µ equal to: 0○

(thick solid line) and −80○ (thin dashed line).

indicates that when µ is negative, the pressure peak
frequency is lower than the peak frequency for µ equal
to zero.

3.2. Predictions of decay times

In the numerical study, the early decay time (EDT)
and the reverberation time T30 were predicted on the
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basis of the temporal changes in the decay function
Ld which is defined by Eq. (12). A method for deter-
mining the EDT and T30 was based on finding fit lines
to appropriate parts of the function Ld and it was re-
alised by the linear regression. To display the depen-
dence of the decay times on the sound frequency, the
function g(t) corresponding to the squared RIR was
bandpass filtered to yield the decay function Ld for the
octave bands with the centre frequency from 63 Hz to
1000 Hz. Since g(t) is determined by a series, the fil-
tering algorithm was realised by summing such compo-
nents of the series for which the eigenfrequency ωm sa-
tisfies the condition ωl < ωm < ωu, where ωl and ωu are
the lower and upper limits of the octave bands.

Figure 8 shows exemplary results of calculating the
decay function Ld together with the predicted values
of the decay times EDT and T30. The graphs illustrate
temporal changes in Ld at the receiving point: x = 3 m,
y = 4 m, z = 1.2 m, located on the observation plane for
the octave bands with the centre frequency from 63 Hz
to 500 Hz, and the phase angle µ of 0○ (solid lines) and
80○ (dashed lines). The values of the EDT and T30 at
the top correspond to the phase angle of 0○. The data in
Fig. 8 prove that a change of µ from 0○ to 80○ re-
sults in a decrease in the reverberation time T30. More-
over, the values of T30 decrease with increasing the
octave band centre frequency. This regularity results
from the fact that in the RIR determined for a rect-
angular room, the share of modes with a lower modal
reverberation time increases with the modal frequency
(Meissner, 2017). As shown in Fig. 8, in almost all
cases the values of EDT and T30 are close to each other,
suggesting a nearly exponential nature of the sound de-
cay. However, for the octave band 125 Hz and the phase
angle of 0○, changes in the decay function Ld are highly
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Fig. 9. Distributions of the decay times EDT and T30 on the observation plane for the absorption coefficient α of 0.15,
and the impedance phase angle µ of: a), b) 0○ and c), d) 80○. Octave band 250 Hz.
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Fig. 8. Time dependence of the decay function Ld at the
receiving point: x = 3 m, y = 4 m, z = 1.2 m, for the ab-
sorption coefficient α of 0.15, and the impedance phase
angle µ of 0○ (solid lines), 80○ (dashed lines), for the octave
bands: a) 63 Hz, b) 125 Hz, c) 250 Hz, d) 500 Hz. Values
of the EDT and T30 at the top correspond to the phase

angle of 0○.

nonlinear, resulting in a significant difference between
EDT and T30 (Fig. 8b). This kind of sound decay is
concave in nature because it is characterised by a fast
early decay rate and a slow late decay rate.

Equation (11) indicates that the decay function
Ld depends on the receiver and source coordinates r
and r0. Since the source position is fixed (x0 = 1 m,
y0 = 2 m, z0 = 1.6 m), the developed method allows to
predict changes in EDT and T30 on the observation
plane (z = 1.2 m). Exemplary calculation data are
shown in Fig. 9. These results were obtained for the oc-
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tave band 250 Hz, the absorption coefficient α of 0.15,
and the phase angle µ of 0○ and 80○. As can be seen,
surface distributions of EDT and T30 are highly irregu-
lar and there is significant difference between the dis-
tributions of T30 obtained for the phase angle equal to
0○ and 80○. Another interesting observation resulting
from Fig. 9 is a much larger range of the early decay
time compared to the reverberation time range. This
finding proves that the decay curve is nonlinear and its
shape may be concave (EDT much smaller than T30)
or convex (EDT much greater than T30).

Since the decay times EDT and T30 vary from point
to point on the observation plane, an indicator which
is adequate to quantify the impact of the impedance
phase angle µ on the decay times is the mean relative
difference E defined as:

E 
 ��
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� ��� � ��� � ���
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Fig. 10. Dependence of the parameter E on the impedance phase angle µ for the early decay time EDT (blue lines) and
the reverberation time T30 (red lines), for the octave bands: 63 Hz (a)–(c), 125 Hz (d)–(f), 250 Hz (g)–(i), 500 Hz (j)–(l),

1000 Hz (m)–(o), and the absorption coefficient α equal to 0.05, 0.15, and 0.3.

E =
1

N

N

∑
n=1

∣T (rn) − T0(rn)∣

T0(rn)
⋅ 100%, (18)

where the quantities T and T0 represent the EDT or
T30, and T0 is determined for µ equal to zero, and
the coordinate rn, as before, determines a grid point
position on the observation plane. It is worth adding
here that audible differences in the decay times are
typically identified using the just noticeable difference
(JND) for the reverberation metrics. This parameter
is defined as the minimum change in the decay time
that can be readily perceived and for the EDT and T30
the generally accepted value of the JND is 5% (Hak
et al., 2012).

Figure 10 depicts changes in the parameter E with
the impedance phase angle µ in the considered octave
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bands for the assumed values of the absorption coef-
ficient α. Based on these data, it can be concluded
that for α of 0.05 the change in µ from zero to ±80○

may be noticeable only for the EDT because in this
case the parameter E is around 6%, which is slightly
above the JND. As could be expected, a much greater
influence of µ on the decay times is noted for the ab-
sorption coefficient α of 0.15 and 0.3. Indeed, as can
be seen from Fig. 10, the EDT and T30 are not sig-
nificantly influenced by the phase angle µ, when its
values are from −60○ to 60○ for α of 0.15 and from
−50○ to 50○ for α of 0.3. For the remaining values of µ,
the parameter E is greater than 5% and in extreme
cases it reaches values around 19% (Figs 10n and 10o).
Such a difference between the decay times should be
especially clearly audible because it corresponds to ap-
proximately 4 JNDs.

4. Conclusions

Proper selection of the boundary conditions is crit-
ical in room acoustics modelling because the phase of
wall impedance can have a significant impact on modal
behaviour of a room. However, this phase is difficult to
estimate from energy parameters such as the normal or
random incident absorption coefficients, therefore real-
valued boundary conditions are predominantly used in
room acoustic simulations. In this study, a room acous-
tics model based on a modal approach was used to in-
vestigate to what extent the replacement of the com-
plex wall impedance with the real impedance affects
the indoor sound field and acoustic measures employed
for quantifying a room reverberation.

In order to determine the indoor sound field, the
convolution integral and the room impulse response
for complex-valued boundary conditions were applied.
Distributions of sound pressure levels in terms of the
phase angle were simulated for a fixed value of the ran-
dom incident absorption coefficient. This requirement
ensures that absorption properties of the room will be
the same for different values of the phase angle. The
calculation results have shown that the phase angle
greater than 20○ or smaller than −20○ results in a per-
ceptual difference in the sound pressure level when
compared to a zero-phase impedance. This effect was
found to be caused by a change in the modal frequen-
cies and can be explained as follows. When the phase
angle is negative, the sound waves are reflected from
a virtual wall situated at some distance behind the
real wall. This means that the acoustical volume of
a room is greater than the physical volume, thus caus-
ing the modal frequencies to shift towards the lower
frequencies.

A decay curve allowing to predict the early decay
time (EDT) and the reverberation time T30 was found
using a time-reverse integration of the squared room
impulse response. As shown by the simulation data,

the surface distributions of the decay times are highly
irregular. Moreover, a significant difference is observed
between the distributions of T30 obtained for the phase
angle equal to 0○ and 80○. A much greater range
of early decay time compared to the reverberation
time range indicates that the decay curve is nonlin-
ear and its shape may be concave (EDT much smaller
than T30) or convex (EDT much greater than T30).
Based on the simulation data, it can also be concluded
that the differences between the decay times predicted
for the complex impedance and real impedance should
be especially clearly audible when the absolute value
of the phase angle is 80○ for the absorption coeffi-
cient of 0.15 and is equal to or greater than 60○ for
the absorption coefficient of 0.3.
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