Short communication

Phytolacca acinosa Roxb. (Phytolaccaceae), a new alien species in the Croatian flora

Valentina Borak Martan ${ }^{1}$, Renata Šoštarič ${ }^{2 *}$
${ }^{1}$ Kamaufova ulica 10, HR-10000, Zagreb, Croatia
${ }^{2}$ University of Zagreb, Faculty of Science, Department of Botany with the Botanical Garden, Marulićev trg 20/II, HR- 10000, Zagreb, Croatia

Abstract

Phytolacca acinosa Roxb., an East Asian plant species naturalised in many parts of the European continent, has been recorded for the first time in Croatia in two anthropogenic habitats in Varaždin city (NW Croatia). This study reports the newly discovered localities and presents the characteristics of the new alien species in the flora of Croatia. A determination key is given for Phytolacca taxa registered in Croatia and neighbouring countries.

Keywords: alien plants, Croatia, Phytolacca acinosa, Varaždin

Introduction

Phytolacca L. is the largest genus of the family Phytolaccaceae, with a number of species, ranging from 25 (Dequan and Larsen 2003, King 2011) to over 35 (Willis 1966). The genus is distributed worldwide, is nearly cosmopolitan and mostly native to South America, with a few species in Africa and Asia (Dequan and Larsen 2003). Several species are found in cultivation and occasionally escape and become naturalised (King 2011).

According to Drake (2009), on the List of Alien Species in Europe there are six Phytolacca species: Ph. acinosa Roxb., Ph. americana L. (syn. Ph. decandra L., Ph. vulgaris Crantz), Ph. dioica L. (syn. Pircunia dioica (L.) Moq.), Ph. esculenta Van Houtte, Ph. heterotepala H. Walter and Ph. polyandra Batalin. In Euro+Med PlantBase (2015), the occurrence of Ph. pruinosa Fenzl in Cyprus, Lebanon and Syria is quoted.

In Europe, the most commonly recorded species from the genus is Ph. americana, originating from North America and widely naturalised in southern Europe, locally also in western and central Europe (Webb and Akeroyd 1964). Unlike Ph. americana the species Ph. acinosa is much less common in Europe (Wyrzykiewicz-Raszewska 2009) and it is of East Asian origin. Ph. acinosa is native in China, Eastern Asia (Japan, Korea, Taiwan), the Indian Subcontinent and Indo-China (Dequan and Larsen 2003). It was brought to Europe as a vegetable as well as an ornamental plant (Wyrzykiewicz-Raszewska 2009).

According to available literature, the occurrence of $P h$. acinosa has been reported in several countries: Belgium
(Alien Plants of Belgium 2015, Daisie 2015, Q-bank 2015), Denmark (Daisie 2015, Q-bank 2015), Bulgaria (Q-bank 2015), Slovenia (Lešnik 2009), Sweden, United Kingdom, Netherlands (Q-bank 2015) and France (Daisie 2015). Considering the species Ph. esculenta as a synonym of Ph. acinosa, the species has also been recorded in Austria (Essl 1998, Q-bank 2015), Germany (Jäger et al. 2013, FloraWeb 2015), Switzerland (Info Flora 2015), in the Czech Republic (Pyšek et al. 2012), Romania (Webb and Akeroyd 1964, Q-bank 2015) Hungary (Balogh 2005) and Bulgaria (Zieliński et al. 2012).

Taxonomical status of the species Ph. acinosa and Ph. esculenta has been the subject of several discussions. According to Webb and Akeroyd (1964) the name Ph. acinosa is a synonym of the species Ph. esculenta, while for Clement (1982) there are the clearly separate species, Ph. acinosa and Ph. esculenta (Tab. 1). Recent taxonomists (see for instance Dequan and Larsen 2003) tend to include all eastern Asian'related taxa that are cultivated for ornament ($P h$. esculenta and Ph. latbenia Buch.-Ham. H. Walter) in a broadly circumscribed Ph. acinosa (Alien Plants of Belgium 2015).

In Croatia, Ph. americana is reported in cultivation and naturalised (Nikolić 2014). This species is invasive in Croatia (Nikolić 2015) and in some other European countries like France (Dumas 2011), Italy (Siniscalco et al. 2011), Portugal (Invasoras 2015), Switzerland (Wittenberg 2005), Greece (Arianoutsou et al. 2010), Czech Republic (Pyšek et al. 2012) and Bulgaria (Petrova et al. 2013). So far, no other species of the genus have been recorded in the territory of the Republic of Croatia.

[^0]
Material and methods

The city of Varaždin is the county town of Varaždin County and after Zagreb it is the second biggest city in the north-west of Croatia with 46,946 inhabitants (Fig. 1). According to Koppen's climate classification, the broad Varaždin area has a temperate humid climate with warm summers (Cfa) (Šegota and Filipčić 2003). The forest community of sessile oak and common hornbeam (Querceto-Carpinetum orientalis) (Horvatić 1967) would be the zonal vegetation but recently has been transformed into various kinds of anthropogenic and semi-natural vegetation due long human influence.

Fig. 1. Localities with coordinates of Phytolacca acinosa Roxb. in Croatia.

Plant identification was done according to Webb and Akeroyd (1964) and Clement (1982). The plants were photographed with Canon digital camera and geocoding of the locations was performed with use of a GPS device.

Results and discussion

During a floristic investigation of Varaždin in 2014 Ph. acinosa was found at two localities. At the first location (GPS coordinates: 5601192,5131810) a single specimen was recorded on June $8^{\text {th }} 2014$ in a landfill for various types of waste (occasional fire site). On August $11^{\text {th }} 2014$ two specimens were found at the second location (GPS coordinates: 5603637,5129550) in the green area around a building (under a fir) (Fig. 1).

As the taxonomical status of the species Ph. acinosa and Ph. esculenta is still a matter of discussion (Webb and Akeroyd 1964, Clement 1982, Tab. 1), we consider both opinions in the analysis of specimens found in Varaždin.

The material had all characteristics of the species $P h$. acinosa s. str., except the anther colour. According to Clement (1982) the anthers of Ph. acinosa are white, while our specimens had pink anthers. Something similar was noticed in Belgium where collections of the Ph. acinosa group are usually more or less intermediate between Ph. acinosa and

Tab. 1. Differences between Phytolacca esculenta Van Houtte and Phytolacca acinosa Roxb. according to Clement (1982).

Flowers characteristics	Ph. esculenta	Ph. acinosa
Pedicels and inflorescence axis	almost glabrous	scabrid-glandular
Perianth	white	greenish white to pinkish white
Anthers	pink	wis

Ph. esculenta: inflorescence axes are often scabrid-glandular (as in Ph. acinosa) but the floral characters resemble Ph. esculenta (Alien Plants of Belgium 2015). Whether this intermediate characteristic manifests possible hybridization is not quite clear and further investigation should give the answer.

Ph. acinosa s. str. (Fig. 2) is a perennial, growing to a height of $1.5(-3) \mathrm{m}$ (Nienaber and Thieret 2003). Roots are thick, fleshy. Stems are erect, green or reddish purple, longitudinally grooved, fleshy, branched (Dequan and Larsen 2003), naked, juicy, branching in the upper part (Wyrzykie-wicz-Raszewska 2009). Leaves are spirally arranged, leaf blade is elliptic or lanceolate-elliptic, $10-30 \mathrm{~cm}$ long, and $4.5-15 \mathrm{~cm}$ wide. Leaf base is cuneate, apex acuminate or sharply pointed. Petiole is $1.5-3 \mathrm{~cm}$ long (Dequan and Larsen 2003). Numerous, densely clustered flowers form a cylindrical raceme of $15-20 \mathrm{~cm}$ in length, which grows sympodially and is erect not only during flowering, but also during fruiting. Flowers are radial, bisexual, of approx. 8 mm in diameter, growing from axils on peduncles 6-10(13) mm long. The simple perianth is composed of five petaloid sepals, initially white in colour, later changing into green to become purple-red during fruit ripening. Sepals are elliptical to ovoid, $3-4 \mathrm{~mm}$ in length and 2 mm in width. After pollination of flowers they do not drop, but tilt backwards. There are 8-10 stamens, equal in length to the perianth, filaments are persistent, white, subulate, wider at the base with pinkish, elliptical anthers. The pistil of hypogynous flower is composed of 7-15 free carpels. The fruit (Fig. 2), generally defined as a berry, is juicy and composed of 7-15, most often eight, adjacent single-seeded berries, forming a compound berry, approx. 7 mm in diameter. Each berry has

Fig. 2. Phytolacca acinosa Roxb. in location number 2 (Photo by V. Borak Martan).
an excrescence on the top, a remnant of the style. At maturity fruits are shiny purple-black. Seeds are kidney-shaped, smooth, slightly 3 -angulate, approx. 3 mm in length (Wyr-zykiewicz-Raszewska 2009).

All three specimens have been found in anthropogenic habitats, similar to cases in the neighbouring countries (Essl 1998, Lešnik 2009, Zieliński et al. 2012). Ph. acinosa is a gradually spreading, locally naturalised garden escaper. It most often occurs in gardens or parks (under trees or shrubs, foot of walls), in cemeteries or in urban wastelands. Ph. acinosa often occurs in single specimens but bigger local populations are increasingly recorded (Alien Plants of Belgium 2015). Ph. americana survives in most environments, in woodlands, pastures, fields, forest margins and disturbed sites such as ornamental landscapes, urban waste areas (Di Tomaso et al. 2013) so it is possible to find both species in the same type of habitat. According to the available literature Ph. acinosa always is a much smaller plant (rarely exceeding 100 cm) with an erect inflorescence and broader leaves (Wyrzykiewicz-Raszewska 2009, Alien Plants of Belgium 2015) and fruit composed of eight free segments (representing the eight carpels) and erect inflorescences, which remain erect even after the ripening of the fruits (Petrova et al. 2013).

The specimen found at locality number 1 was burnt down during a fire in the habitat, whereas the other two specimens found at locality number 2 survived through the winter, showing that they are adjusted to a moderate continental climate. The same was also noticed in Slovenia. According to Lešnik (2009) Ph. acinosa is a perennial and it recovers from the buds on a thickened root.

References

Alien plants of Belgium, 2015: Retrieved May 15, 2015 from: http://alienplantsbelgium.be/content/phytolacca-acinosa
Arianoutsou, M., Bazos, I., Delipetrou, P., Kokkoris, Y., 2010: The alien flora of Greece: taxonomy, life traits and habitat preferences. Biological Invasions 12, 3525-3549.
Balogh, L., 2005: A Phytolacca esculenta Van Houtte szelíd inváziója a magyarországi településflórábon. Flora Pannonica 3, 135-161.
Clement, E. J., 1982: Pokeweeds (Phytolacca sp.) in Britain. Botanical Society of Britain and Ireland News 32, 22-23.
Daisie, 2015: European invasive alien species gateway. Phytolacca acinosa. Retrieved May 15, 2015 from: http://www.eu-rope-aliens.org/speciesFactsheet.do?speciesId=8652
Dequan, L., Larsen, K., 2003: Phytolaccaceae. In: Wu Z., Raven, P. H. (eds.), Flora of China. Vol 5., 435-436. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis. Retrived from http://www.efloras.org/florataxon.aspx?flora_id= 600\&taxon_id=10687
Di Tomaso, J. M., Kyeser, G. B., Oneto, R. S., Wilson, R. G., Orloff, S. B., Anderson, L. W., Wright, S. D., Roncoroni, J. A., Miller, T. L., Prather, T. S., Ransom, C., Beck, K. G., Duncan, C., Wilson, K. A., Mann, J. J., 2013: Weed control in natural areas in the Western United States. Weed Research and Information Center, University of California, 544 pp .
Drake, J. A. (ed.), 2009: List of species alien in Europe and to Europe. In: DAISIE Handbook of Alien Species in Europe, 133265. Springer, Berlin.

Since it is the first finding of the species Ph. acinosa in Croatia, it is necessary to follow its spread so it can be classified according to criteria applied for alien species, established by Richardson et al. (2000) (casual plants, naturalised plants, invasive plants) and adjusted for Croatia according to Mitić et al. (2008). According to the above stated criteria, the mentioned species has been already naturalised in several countries of Europe: Switzerland (Wittenberg 2005), Hungary (Balogh 2005), the Czech Republic (Pyšek et al. 2012), Belgium (Alien Plants of Belgium 2015) and Germany (FloraWeb 2015). In neighbouring Hungary the occurrence of both species (Ph. acinosa and Ph. esculenta) has been recorded (Balogh 2005). Ph. esculenta is considered an invasive alien species in Hungary (Balogh 2005, Tiborcz et al. 2012), so it is important to emphasise the possibility of the species spreading into the territory of the Republic of Croatia.

Determination key for Phytolacca species in Croatia and neighbouring countries:

1 Carpels $7-15$, usually 8 , free; racemes erect in ripening; 8 single seed berries forming a compound berry; leaves broadly ovate.
. 2
1 Carpels 10 , united; nodding racemes; typical single berry (10 -seeded); leaves ovate-lanceolate . . .Ph. americana
2 Flower pedicels and inflorescence axis almost glabrous; perianth white; anthers pink.

Ph. esculenta
2 Flower pedicels and inflorescence axis scabrid-glandular; perianth greenish white to pinkish; anthers white .

Ph. acinosa

Dumas, Y., 2011: Que savons-nous du raisin d'Amérique (Phytolacca americana), espèce exotique envahissante? Rendezvous techniques 33-34, 48-57.
Euro+Med (2006-): Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Retrieved November 22, 2015 from: http://ww2.bgbm.org/EuroPlusMed/
Essl, F., 1998: Floristische Beobachtungen aus dem östlichen oberösterreichischen Alpenvorland II. Beiträge zur Naturkunde Oberösterreichs 6, 107-126.
FloraWeb, 2015: Retrieved May 15, 2015 from: http://www.floraweb.de/pflanzenarten/artenhome.xsql?suchnr=6502\&
Horvatić, S., 1967: Phytogeographical characteristics and division of Yugoslavia (In Croatian). In: Horvatić, S. (ed.), Analitička flora Jugoslavije 1, 23-61.
Info Flora, 2015: Das nationale Daten- und Informationszentrum der Schweizer Flora. Retrieved May 15, 2015 from: https:// www.infoflora.ch/de/flora/5242-phytolacca-esculenta. html\#map
Invasoras, 2015: Invasive plants in Portugal. Phytolacca americana. Retrieved November 23, 2015 from: http://invasoras.pt/ wp-content/uploads/2012/10/Phytolacca-americana_en.pdf
Jäger, E. J., Müller, F., Ritz, C. M., Welk, E., Wesche, K., 2013: Rothmaler Exkursionsflora von Deutschland, Gefäßpflanzen: Atlasband, 12. Auflage, page 524. Springer-Verlag, Berlin Heidelberg.
King, C. J., 2011: Phytolacca Linnaeus. In: Cullen, J., Knees S. G., Cubey H. S. (eds.), The European garden flora. Flowering plants: a manual for the identification of plants cultivated in

Europe, both of-doors and undress glass. Vol 2., $2^{\text {nd }}$ edition, 133-134. Cambridge University Press, New York.
Lešnik, M., 2009: New weed species in Slovenia - estimation of dynamics of transition from ruderal to field crop and perennial crop weed communities. Proceedings 9th Slovenian Conference on Plant Protection. Nova Gorica, 299-308 (in Slovenian).
Mitić, B., Boršić, I., Dujmović, I., Bogdanović, S., Milović, M., Cigić, P., Rešetnik, I., Nikolić, T., 2008: Alien flora of Croatia: proposals for standards in terminology, criteria and related database. Natura Croatica 17, 73-90.
Nienaber, M. A, Thieret, J., 2003: Phytolacacceae. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 18+ vols. New York and Oxford. Vol. 4, 3-12. Retrieved from http://www.efloras.org/ florataxon.aspx?flora_id=1\&taxon_id=200007011
Nikolić, T., 2014: Phytolacca americana L. In: Nikolić, T., Mitić, B., Boršić, I., 2014: Flora of Croatia: Invasive plants (In Croatian), 242-245. Alfa, Zagreb.
Nikolić, T., (ed.), 2015: Flora Croatica Database. Retrived May 5, 2015 from: http://hirc.botanic.hr/fcd/InvazivneVrste/Detalji. aspx?IdVrste=7450
Petrova, A., Vladimirov, V., Georgiev, V., 2013: Invasive alien species of vascular plants in Bulgaria. Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia.
Pyšek, P., Danihelka, J., Sádlo, J., Chrtek, J., Chytry, M., Jarošík, V., Kaplan, Z., Krahulec, F., Moravcová, L., Pergl, J., Štajerová, K., Tichý, L., 2012: Catalogue of alien plants of the Czech Republic ($2^{\text {nd }}$ edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84, 155-255.
Q-bank, 2015: Comprehensive databases of quarantine plant pests and diseases. Retrieved May 15, 2015 from: http://www.qbank.eu/Plants/BioloMICS.aspx?Table=Plants $\% 20-\% 20$ Species\&Rec=1124\&Fields=All

Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., West, C. J., 2000: Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6, 93-107.
Siniscalco, C., Barni, E., Bacaro, G., 2011: Non-native species distribution along the elevation gradient in the western Italian Alps. Plant Biosystems 145, 1-15.
Šegota, T., Filipčić, A., 2003: Koppen's classification of climates and the problem of corresponding Croatian terminology (In Croatian). Geoadria 8, 17-37.
Tiborcz, V., Csiszár, Á., Korda M., Schmidt, D., Šporčić, D., Teleki, B., Zagyvai, G., Bartha, D., 2012: Distribution of some invasive alien plant species in Hungary. International Scientific Conference on Sustainable Development and Ecological Footprint. Sopron, 1-5.
Webb, D. A, Akeroyd, J. R., 1964: Phytolacca L. In: Tutin T. G., Burges N. A., Chater A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., Webb, D. A. (eds.), Flora Europaea. Vol 1., $2^{\text {nd }}$ edition, 134. Cambridge University Press, Cambridge.
Willis, J. C., 1966: A dictionary of flowering plants and ferns. Cambridge at the University Press, London.
Wittenberg, R. (ed.) 2005: An inventory of alien species and their threat to biodiversity and economy in Switzerland. CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape. The environment in practice no. 0629. Federal Office for the Environment, Bern.
Wyrzykiewicz-Raszewska, M., 2009: Phytolacca acinosa Roxb. - a new anthropophyte in the flora of Poland. Botanika - Steciana 13, 3-7.
Zieliński, J., Petrova, A., Natcheva, R., 2012: New species for the Bulgarian flora. Phytologia Balcanica 18, 197-204.

[^0]: * Corresponding author, e-mail: rsostar@biol.pmf.hr

