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Abstract 

Resting-state functional magnetic resonance imaging was utilized to measure the amplitude low frequency 
fluctuations (ALFF) in human subjects with Alzheimer’s disease (AD) and normal control (NC). Two specific 
frequency bands (Slow5: 0.01-0.027 Hz and Slow4: 0.027-0.073 Hz) were analysed in the main cognitive 
control related four subregions of the right ventral lateral prefrontal cortex (VLPFC), i.e. IFJ, posterior-
VLPFC, mid-VLPFC, and anterior-VLPFC. Differences in ALFF values between the AD and the NC group were 
found throughout the subregions of the right VLPFC. Compared to normal control group, decreased ALFF 
values were observed in AD patients in the IFJ (in two given frequency bands), and the mid-VLPFC (in 
Slow5). In contrast, increased ALFF valued were observed in AD patients in the posterior- and anterior-
VLPFC (in both Slow5 and Slow4), and also in the mid-VLPFC in Slow4. Moreover, significant ALFF 
differences between the IFJ and three other subregions of the right VLPFC were found. Furthermore, ALFF 
values in the right VLPFC showed significant correlations with the time course of disease. Taken together, 
our findings suggest that AD patients have largely abnormalities in intrinsic neural oscillations which are in 
line with the AD pathophysiology, and further reveal that the abnormalities are dependent on specific 
frequency bands. Thus, frequency-domain analyses of the ALFF may provide a useful tool to investigate the 
AD pathophysiology. 
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Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder leading to cognitive deficits. Though the 

amyloid-β(Aβ) peptides plague aggregation and tau hyperphosphorylation are thought to be two main 
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causal roles in the pathogenesis of AD [1-2], the underlying neural mechanisms remain uncovered.  

Previous neural imaging studies using positron emission tomography (PET) and single-photon emission 

(SPE) have found that AD patients show abnormally low resting cerebral blood flow and a decreased 

cerebral metabolic rate for glucose in the widespread brain regions, including the temporal, parietal, and 

prefrontal cortex [3-6]. Resting-state functional magnetic resonance imaging (rs-fMRI) has also been 

considered for development as a biomarker and analytical tool for brain diseases evaluation such as AD 

and PD. The spontaneous low-frequency fluctuations of the blood oxygen level dependent (BOLD) in rs-

fMRI were thought to reflect spontaneous neuronal activity [7-9]. The amplitude of low frequency 

fluctuations (ALFF) of BOLD signals, which were believed to be physiologically meaningful, was proposed to 

assess the amplitude of resting state spontaneous brain activity [10]. Using resting-state spontaneous brain 

activity technology, researchers found that AD patients were abnormalities of LFF in many brain regions 

including the hippocampus, the medial and lateral temporal lobes, the medial parietal lobe, the posterior 

cingulated cortex (PCC) and the medial and superior prefrontal cortex (MPFC) [11-15]. 

The function of the right ventral lateral prefrontal cortex (VLPFC) is crucial to the goal-directed cognition 

(i.e., top-down control), involving attention re/orienting, cognitive control, working memory, motor 

inhibition, and action updating [16-19]. More research evidence indicated that the right VLPFC could be 

divided into four subregions according to their cognitive function.  However, few researches emphasize the 

changes of the VLPFC in AD patients though AD related disease could lead to learning and memory 

impairments, aprosexia, and executive dysfunction. In this study, we proposed that individual differences 

in AD might be captured based on spontaneous neuronal activity in the functional subregions of the VLPFC 

related to cognitive impairment identified by the ALFF of BOLD signals. Gray matter (GM) related 

fluctuation amplitudes mainly occurred in two frequency bands, i.e. 0.01-0.027 Hz (Slow5) and 0.027-

0.073 Hz (Slow4). And these two given frequency bands contribute differently to the ALFF [12,20-21], 

suggesting that individual frequency bands could link to specific characteristics [22]. To validate the 

hypothesis underlying AD-related ALFF, the characteristic patterns of the changes of ALFF in AD patients 

will be compared with normal control subjects, especially Slow5 and Slow4. We aim to evaluate if the ALFF 

techniques could help us to reveal this intrinsic relationship, which may provide a foundation for further 

investigations of neural cognitive processes in AD. 

Experimental Methods 

Subjects   

Twenty two right-handed subjects with AD group (8 males and 3 females, mean±SD = 69.7±2.4 years) 

and NC group (11 males mean±SD=48.5±8.4 years) were selected in the current study. All subject data 

were obtained from the Alzheimer’s disease neuroimaging initiative (ADNI, http:// 

www.loni.ucla.edu/ADNI) 

Data acquisition and analysis   

Three-dimensional (3D)-T1 was acquired using Philips Healthcare 3T scanner. High-resolution volumetric 

T1-weighted spoiled gradient-recalled (SPGR) images were generated for each subject (TR=3000ms, 

TE=30 ms, flip angle=80°, Slice thickness=3.3 mm, FOV=24×24 cm2, 64×64 matrix size, 6720 slices). 

Data preprocessing were carried out using SPM8 (http://www.fil.ion.ucl.ac.uk/spm), which included 

acquisition times correction, motion correction, image segmentation, and spatially smooth. Then DPARSF 

http://www.fil.ion.ucl.ac.uk/spm
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[23] was used to analyses the ALFF. Briefly, we converted data from time-domain to frequency-domain 

using a Fast Fourier Transform (FFT). The square root of the power spectrum was computed and then 

averaged frequency ranged from 0.01 Hz to 0.08 Hz at each voxel. Slow5 (0.01-0.027 Hz) and Slow4 (0.027-

0.073 Hz) were selected to analyze. This averaged square root was taken as the ALFF. To reduce the global 

effects of variability across participants, the ALFF of each voxel was divided by the global mean ALFF value 

for each subject, resulting in a relative ALFF.  

 
Figure 1. The t-score ALFF maps of AD and NC groups in ROIs. ROIs: regions of interesting; AD: Alzheimer’s 

disease; NC: normal control; VLPFC: Ventral lateral prefrontal cortex; A: Posterior-VLPFC; B: Middle-VLPFC; C: 
Anterior-VLPFC; and D: IFJ, inferior frontal junction.  

To explore the within-group ALFF patterns, one-sample t-test within the group were performed on the 

individual ALFF maps in a voxel-wise way for each group. Two-sample t-test among groups, i.e. AD group 

vs. normal control (NC) group, was conducted. Pearson’s correlation coefficient was implemented to 

analyze the correlations among the mean ALFF and the time course of disease with patients. The statistical 

threshold was set at p < 0.05. 

For regions of interest (ROIs), i.e. the ventrolateral prefrontal cortex (VLPFC) was divided four functional 

subregions. Posterior region is the most caudal extent as shown in Fig. 1-region A. Middle region is rostral 

to the ascending ramus as shown in Fig. 1-region B. Anterior region is the horizontal ramus of the lateral 

sulcus as shown in Fig. 1-region C. The most posterior and superior region is referred to the inferior frontal 

junction (IFJ) as shown in Fig. 1-region D.  

Results and Discussion 

Figure 1 shows the ALFF maps of AD and NC groups in ROIs, i.e. the four functional subregions in the 

right ventral lateral prefrontal cortex. The detail information of regions-related MNI coordinates is shown 

in Table 1. The ALFF values of each subject including both AD (Red circles) and NC (green circles) were 

shown in Figure 2. A Multi-ANOVA statistical analysis within factors (regions: posterior-VLPFC vs. mid-

VLPFC vs. anterior-VLPFC vs. IFJ; frequency band: Slow5 vs. Slow4) and between groups (AD vs. NC) was 
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conducted. It was found that only the main effect of regions was marginal significant (F=2.722, P=0.069, 

Greeenhour-Geisser correction). Further t-test measurement showed that the ALFF in the IFJ was 

significantly different in the other regions (posterior-VLPFC: P=0.025; mid-VLPFC: P=0.007; anterior-VLPFC: 

P=0.052, marginal).  No any conditions achieve significant differences (all ps>0.05) between AD group and 

NC group. Pearson correlation was adopted to measure the relation between time course of disease and 

ALFF for each of the ROIs within the right VLPFC (Fig. 1). As shown in Figure 3, a significant correlation 

between course of disease and the ALFF of the subregions in the right VLPFC were identified (Negative 

correlation: regions including A, B, and D in Slow5, and A in Slow4; Positive correlation: D region in Slow4).  

Apart from that, no other significant relationship was found.  

 

Table 1. Regions showing ALFF differences among the AD and the NC with MNI coordinates. 

 

Regions 

 

Group 

MNI coordinates  

Brodmann area x y z 

Frontal_lnf_Oper_R (A) AD 57.7 16.1 12.2 44 

Frontal_lnf_Tri_R  (B) AD 56.41 27.27 8.891 45 

Frontal_lnf_Orb_R (C) AD 52.54 37.64 -3.39 45 

Frontal_lnf_Oper_R (D) AD 44.65 12.32 38.79 44 

Frontal_lnf_Oper_R (A) NC 57.9 16.38 14.23 44 

Frontal_lnf_Tri_R (B) NC 55.14 30.13 10.47 45 

Frontal_lnf_Orb_R (C) NC 49.48 38.26 -9.554 44 

Frontal_lnf_Oper_R (D) NC 46.95 20.18 31.16 44 

Ps. Frontal_Inf_Oper_R: right inferior frontal operculum; Frontal_Inf_Tri_R: right inferior frontal operculum; 
Frontal_Inf_Orb_R: right inferior frontal operculum. A: posterior-VLPFC; B: mid-VLPFC; C: anterior-VLPFC; D: IFJ.  

 
Figure 2. The ALFF values of AD and NC groups in ROIs. ROIs: regions of interesting; AD: Alzheimer’s disease; 

NC: normal control; VLPFC: Ventral lateral prefrontal cortex; A: Posterior-VLPFC; B: Middle-VLPFC; C: Anterior-
VLPFC; and D: IFJ, inferior frontal junction. 

In the present study the AD related changes in the intrinsic brain activity was correlated to the 

individual ALFF values of rs-fMRI signals in the functional subregions of the right VLPFC (i.e., posterior-
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VLPFC, mid-VLPFC, anterior-VLPFC, and IFJ) and then the associated course of disease. We found that there 

were differences in ALFF values between the AD and the NC group throughout the subregions of the right 

VLPFC. Decreased ALFF values were observed in AD patients in the IFJ (in both Slow5 and Slow4), and the 

mid-VLPFC (in Slow5). In contrast, increased ALFF valued were observed in AD patients in the posterior- 

and anterior-VLPFC (in both Slow5 and Slow4), and also in the mid-VLPFC in Slow4. Moreover, significant 

ALFF differences between the IFJ and three other subregions of the right VLPFC were found. Further 

analysis revealed that the ALFF value for the right VLPFC can be applied to differentiate AD patients from 

normal controls with a high sensitivity. We also found that ALFF values in the right VLPFC showed 

significant correlations with the time course of disease.  

 
Figure 3. Relationships between the ALFF values and the course of disease (month) in ROIs. ROIs: regions of 

interesting; AD: Alzheimer’s disease; NC: normal control; VLPFC: Ventral lateral prefrontal cortex; A: Posterior-
VLPFC; B: Middle-VLPFC; C: Anterior-VLPFC; and D: IFJ, inferior frontal junction. * :significant level. 

 

The broader evidence indicated that specific forms of cognitive control are linked with distinct 

functional subregions of the right VLPFC [16-17]. The IFJ supports the detection of behavioral relevant 

stimuli. The top-down modulation mediated by the IFJ plays a causal role between early attentional 

processes and subsequent memory performance [16-17, 24-25]. In our current study, decreased ALFF in 

several subregions in the right VLPFC including IFJ (in both Slow5 and Slow4) was in accordance with 

previous studies that this region had structural and functional abnormalities. Furthermore, we noticed that 

there were significant negative correlations between the ALFF of the IFJ in Slow5 and the course of disease, 

indicating that the decline ALFF for this region along with the course of disease were associated with 

memory-related cognitive impairment in these patients. In contrast, the significant positive correlation 

between the ALFF of the IFJ in Slow4 and the course of disease, suggesting the existence of compensation 

process for cognitive resources [12]. Other subregions in right VLPFC are related to motor control, i.e. 

posterior-VLPFC is activated by the active plan updating and mid-VLPFC is responsible for decision 

uncertainty. Anterior-VLPFC encoding higher-order goals usually bridge the longer time spans, and the mid-

VLPFC (in Slow5) [16]. In our study, the significant negative correlations between the ALFF of the posterior-

VLPFC and the course of disease, suggest that the longer  time after the onset of disease  accompanied 

with the weaker motor control.   
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Conclusions 

In summary, we found that AD patients had abnormal ALFF in the subregions of right VLPFC, including 

IFJ, posterior-VLPFC, mid-VLPFC, and anterior-VLPFC. These findings were similar with previous studies in 

AD. Our findings indicated that the abnormal intrinsic neural oscillations in AD present different neural 

patterns in different frequency bands, predicting the memory related impairment with the course of 

disease. Further investigations are important to reveal how they relate to the clinical and pathological 

correlations of ALFF changes in AD. 
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