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Clay content and the ability to reversibly retain cations affect many essential chemical and physical properties of 
soil, such as pH buffering and carbon sequestration. Cation exchange capacity (CEC) and base saturation are also 
commonly used as criteria in soil classification. However, determination of CEC and particle-size distribution is labo-
rious and not included in routine soil testing. In this study, pedotransfer functions including soil test cations (STCat; 
Ca2+ + Mg2+ + K+), pH and soil organic carbon (SOC, %) as explanatory variables were developed for estimating CEC, 
titratable acidity (TA; H+ + Al3+) and clay content (clay, %). In addition, reference values for potential CEC and its com-
ponents were determined for Finnish mineral and organic soils. The mean of potential CEC extracted by 1 M ammo-
nium acetate at pH 7.0 ranged from 14 (range 6.4−25) in coarse soils to 33 (21−45) cmol(+) kg-1 in heavy clay soils, 
and from 42 (24−82) in mull soils to 77 (25−138) cmol(+) kg-1 in peat soils. The average CEC of clay and SOC were 
27 and 160 cmol(+) kg-1, respectively. Titratable acidity occupied 53% and around 40% of the CEC sites in organic 
and mineral soils, respectively, evidencing that it is a prominent component of the potential CEC in these predomi-
nantly acidic soils. STCat, pH and SOC explained 96% of the variation in potential CEC. STCat and pH can be used in 
estimating the clay content especially for soils containing over 30% clay. In coarse textured soils, in contrast, SOC 
hampers the STCat based estimation of clay content.
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Introduction
Cation exchange capacity (CEC) is one of the basic properties commonly reported when characterizing soil in a 
scientific context. Reflecting the negative charges on soil particles, CEC indicates the ability of a soil to reversibly 
retain cations by electrostatic forces (e.g. Bache 1976, Ross and Ketterings 1995). This phenomenon is linked to 
soil nutrient stock and supply, mobility of elements and pH buffering, all of which are important factors in agri-
cultural land use. However, the available methods of CEC analysis are too laborious for CEC determination to be 
included in routine soil testing protocols (Sumner and Miller 1996, Ciesielski et al. 1997).

Predicting the CEC value from more readily available soil data via pedotransfer functions is a credible alternative 
for direct laboratory measurement (McBratney et al. 2002). Permanent charge of layer silicates originating from 
isomorphous substitution within the mineral structure and variable pH-dependent charge generated by dissocia-
tion of hydroxyl and carboxyl groups are the main components contributing to CEC (Bache 1976). Consequently, 
clay and organic matter contents explain the majority of variability in the CEC values in many studies (e.g. Bell and 
van Keulen 1995, Parfitt et al. 1995, Krogh et al. 2000, Fooladmand 2008, Sulieman et al. 2018, Mishra et al. 2019). 
However, due to spatial variation in clay mineralogy and composition of organic matter, different pedotransfer 
functions are needed in different regions (Seybold et al. 2005).

Estimating potential CEC on the basis of soil test results obtained with the acid (pH 4.65) ammonium acetate solu-
tion, which is used in soil testing in Finland (Vuorinen and Mäkitie 1955), is not entirely straightforward. Exchange-
able Ca, Mg, K and Na are extracted from soil roughly equally with the acid and neutral ammonium acetate of the 
same molarity (Niskanen and Jaakkola 1986), but the challenges are mostly related to the amount of the variable 
charge associated with soil organic and mineral matter (Curtin et al. 1996). Part of these sites are available for 
and occupied by exchangeable cations, but in acid soils many of the sites are blocked by non-dissociated protons. 
Those sites are not available for cation exchange at soil pH but become accessible at pH 7.0 or at whatever higher 
pH CEC is determined, and should thus be included in the value of potential CEC. Niskanen and Jaakkola (1986) 
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estimated effective CEC on the basis of the acid ammonium acetate soil test, and in their material of 430 soil  
samples (average pH 5.8), exchangeable acidity occupied only 6% of the effective CEC. Therefore, accurate  
estimates for the effective CEC were obtained. However, potential CEC is a more relevant characteristic, for example, 
in soil classification and in the determination of liming requirements. When attempting to estimate the potential 
CEC at pH 7.0, the component of non-dissociated variable charge sites, operationally determined as titratable 
acidity (TA; H+ + Al3+), is much higher in acid soils, as compared to the exchangeable acidity.     

Soil texture is rarely measured in routine soil analyses aimed to adjust fertilization. However, clay and fine-sized 
particle (FINES; ∅ < 0.02 mm) content plays a significant role in soil fertility and in estimating soil carbon (C)  
sequestration potential (Hassink 1996, Wiesmeier et al. 2019). Further, recent studies have shown that soil clay 
to C ratio plays a key role in determining soil structural stability and yield potential (Soinne et al. 2016, Soinne et 
al. 2021). There is often a close correlation between CEC and clay, encouraging an attempt to predict the soil clay 
content on the basis of CEC or its components. A low-cost estimate of clay content based on agricultural soil test 
data would enable more accurate determination of liming requirement, better targeting of soil improvement mea-
sures based on soil clay/C ratio and better estimation of soil C sequestration potential.

In this study, a data set of CEC values, measured at pH 7.0 and representing various mineral and organic soils of  
Finland, was compiled by collecting previously published and unpublished results from soil surveys and field studies. 
Supplementary analyses of archived samples were carried out to fill major gaps in the existing material. The  
acquired data was used to 1) calculate reference values for the CEC and its components in different soil types, 
2) develop pedotransfer functions for predicting the CEC and its components from soil organic C (SOC) and clay 
contents, pH, and Ca2+, Mg2+, and K+ extracted in standard agronomic soil testing, and 3) develop pedotransfer 
functions for soil clay and FINES content using the above-mentioned characteristics as explanatory variables. The  
results benefit full exploitation of the soil testing data and practical interpretation of the CEC values at farm level. 

Material and methods
Study area

In Finland, agricultural land (2.3 million ha) constitutes about 7.5% of the total land area. Medium- and coarse- 
textured mineral soils and clay soils make up about 22%, 36% and 28% of the agricultural area of Finland, respec-
tively. Organic soils account for about 13% of the arable area (Lemola et al. 2018, Luke 2020). Typically, the fine 
clay fraction (<0.0002 mm) mostly consists of illite, chlorite, vermiculite and amorphous material, whereas coarse 
clay (0.0002−0.002 mm) and coarser fractions are increasingly composed of feldspars and quartz (Sippola 1974). 
The formation of geologically young Finnish soils has been influenced by the Weichselian glaciation, which ended 
about 11 500 years ago, and consequently, the soils of Finland are rather young and mostly relatively weakly  
developed. These soils are inherently acidic (Reuter et al. 2008) and rich in organic C at the European scale  
(Aksoy et al. 2016). Cryic temperature regime of Soil Taxonomy prevails in Finland (Yli-Halla and Mokma 1998), 
and commonly the clayey soils have an aquic moisture regime (Yli-Halla and Mokma 2001). According to the World 
Reference Base for Soil Resources (IUSS Working Group WRB 2015), clay soils of Finland are typically classified as 
Vertic Endogleyic Luvic Stagnosols or Luvic Gleysols, and fine silt soils as Stagnic Regosols. Coarse silt and fine sand 
soils with deeper layers rich in clay are commonly classified as Endogleyic Luvic Planosols, whereas Endogleyic 
Cambisols are common in deeper medium-textured soils and (Gleyic) Podzols in coarse-textured soils (Yli-Halla 
and Nyborg 2013). Cultivated organic soils are usually classified as Umbric or Histic Gleysols or Sapric Histosols 
(Yli-Halla and Peltovuori 2009).

Soil samples and analysis
This study was based on Finnish soil samples collected from the plough layer of cultivated soils, and a few virgin 
soils. Owing to the deficient description of land uses in the original paper of Marttila (1965), the distribution of 
the samples into cultivated and virgin soils is slightly unclear. This group of 45 samples consists of 31‒33 cultivated 
and 14‒12 virgin soils. Values of potential CEC determined at pH 7.0 were collected, together with other relevant 
data, from all published sources known and available for participating researchers and personal archives containing 
unpublished data from previous and ongoing projects of the participating researchers (Table 1). The retrieved 
data set was complemented with the determination of CEC in a few additional soils to overcome methodological 
incompatibilities and increase the number of organic soil samples. The CEC analysis was carried out by using 
neutral ammonium acetate (1 M CH3COONH4, pH 7.0) extraction in soil/solution ratio of 1:5 (w/v). The sample  
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suspensions were agitated for 1 h and then allowed to stand overnight, after which the agitation was continued 
for 10 min. Thereafter, the suspensions were centrifuged, and the supernatants filtered. The extraction was  
repeated in 15 min length for 3 times combining all the supernatants. From the final solution, concentrations of 
Ca, Mg, K and Na were analyzed by ICP-OES. The TA was determined by back-titration to pH 7.0. The CEC value 
was calculated as the sum of the extracted cations and TA in cmol(+) kg-1.

Particle-size distribution was determined by a pipette method (Elonen 1971). In the older data sets (Marttila 1965, 
Mäkitie and Virri 1965, Sillanpää 1982), SOC was determined with the Walkley – Black method while in the other 
data sets, including the new measurements for this study, total C was determined using dry combustion  
(Dumas method). In the acid soils of Finland, this total C can be taken to represent SOC (Nelson and Sommers 
1996). Soil pH was measured in a soil-water suspension (1:2.5 v/v). The same procedure for the determination of 
CEC was used in all datasets listed in Table 1, except in Marttila (1965), where the samples were leached with 1 M  
CH3COONH4, pH 7.0, in a percolation tube.

 

The final data comprising 215 soil samples (data set of Mattila and Rajala [2020] not included) was classified in soil 
types according to the Finnish system (Aaltonen et al. 1949) where soils are grouped into mineral and organic soils 
on the basis of the soil organic matter (SOM) content (Table 2). SOC content was converted to SOM content using 
the van Bemmelen factor of 1.724, which is found to be appropriate for Finnish cultivated mineral soils (Heikkinen 
et al. 2021). For descriptive statistics, the mineral soils were further classified to heavy clays, clays, medium- 
textured soils (mostly different loam soils) and coarse soils (mostly loamy sands) based on their clay (<0.002 mm) 
content only, because the complete particle-size distribution had not been presented for every dataset. Organic 
soils were further divided to mull soils and peat soils according to their SOM content (see Table 2). For 71 of the 
samples, information on Ca, Mg and K acquired by the soil testing procedure used in Finland (AAAc; a single acid 
ammonium acetate-extraction, 0.5 M CH3COONH4 - 0.5 M CH3COOH, pH 4.65) in soil/solution ratio of 1:10 (v/v) 
and shaking time of 1 h, Vuorinen and Mäkitie 1955) was available.

Table 1. Data sets with number of soil samples (n) used in this study for the modelling (calibration/validation) of cation exchange 
capacity (CEC) and titratable acidity (TA)

Data set  n Remarks Calibration/Validation

Sillanpää 1982 21 A set of archived samples from cultivated soils in Finland 
reanalyzed due to a different method originally used

Calibration

Yli-Halla et al. 2000 24 Plough layer samples of pedons collected for soil 
classification of cultivated soils in southern and central 
Finland 

Calibration

Soinne et al. 2021 21 Cultivated mineral soils from southwestern and east-
central Finland (Oranki project)

Calibration

Unpublished 22 Archived plough layer results from cultivated experimental 
soils and pedons collected for soil classification purposes 
from various parts of Finland

Calibration

Unpublished 14 Results of plough layer samples from central Finland used 
in compiling Finnish soil database

Calibration

Palojärvi et al. 2002 10 Plough layer samples from conventionally and organically 
cultivated fields in southern Finland (MABIN project)

Calibration

Mäkitie and Virri 1965 10 Clayey plough layer samples from mid-Uusimaa, southern 
Finland

Calibration

Hyväluoma et al. 2020 2 Plough layer samples of organic soils from Ostrobothnia, 
western Finland

Calibration

Peltovuori et al. 2002 3 Plough layer samples of clayey and coarse textured soils 
from southern and western Finland

Calibration

Paasonen-Kivekäs and Yli-Halla 2005 2 Plough layer samples of fine sand soils from Ostrobothnia, 
western Finland

Calibration

Keskinen et al. 2016 41 Monitoring of cultivated soils covering the agricultural 
area in Finland; new analyses of archived samples of 
organic soils from the 2018 sampling campaign

Calibration: 33 soils
Validation: 8 randomly 
selected organic soils

Marttila 1965 45 Cultivated and virgin soils from various parts of Finland Validation

Mattila and Rajala 2020 16 Cultivated soils from Finland sampled in 2019 representing 
productive (K) and unproductive (0) fields

Validation. Not included 
in descriptive statistics 
(exchangeable cations 
and texture not reported)
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For the soil test analysis in Finland, an equal volume of soils is taken for the analysis, whereas the CEC measure-
ment is done on soil mass basis. For the regression models, STCat results (mg l-1) were transformed to cmol l-1 taking 
into account the charge of each cation (i.e. STCat cmol(+) l-1 = STCa cmol l-1 × 2 + STMg cmol l-1 × 2 + STK cmol l-1). 
In predicting the CEC, the sum of cation charges was used whereas in predicting the clay content, each cation 
was included separately (i.e. STCa cmol l-l, STMg cmol l-1 and STK cmol l-1, charges not taken into account) in the 
regression model.  

An additional data set consisting of 571 soil samples mainly from the national soil monitoring of Finland (Keskinen 
et al. 2016) and Oranki-project (Soinne et al. 2021) was compiled for predicting the soil clay content and the fine 
particles content (FINES; ∅ < 0.02 mm) on the basis of pH, C and STCat. The validation data used for clay and FINES 
content models was collected from on-going projects and included 31 samples from different fields in southern 
Finland. 

Data analysis
Pedotransfer functions were constructed using linear regression analysis for the calibration data to estimate CEC, 
TA, Clay% and FINES% from various soil properties (pH, STCat, SOC and Clay). Regression models were fitted sep-
arately for all soils, mineral soils and organic soils in modelling of CEC and TA, and separately for all soils, clay soils 
(clay% > 30) and coarse soils (clay% < 30) in modelling of Clay% and FINES%. The square root transformation was 
applied for TA and STMg to meet model assumptions (normally distributed errors with constant variance). In some 
models, 1−2 observations were excluded as outliers based on their studentized residual values (> 3 or < -3). In all 
models, only predictors significant at the 0.05 level were included. Different models for the same predicted vari-
able were compared by two statistics based on the model specific data: coefficient of determination (R2) was used 
to assess the model explanatory power and root mean square error (RMSE) to assess the model explanatory error. 
In addition to their performance (R2 and RMSE), reported models were selected considering the availability of pre-
dictive variables for the potential users of these equations (e.g., SOC is not commonly analyzed in agronomic soil 
testing in Finland). All models were created using the SAS Enterprise Guide 7.1 (SAS Institute Inc., Cary, NC, USA).  

Models with R2 above 0.7 were tested with validation data and the performance of the models was evaluated us-
ing the statistics R2 (prediction power), RMSE (error variation) and ME (mean error = bias). RMSE was calculated 
from the average square difference between the predicted value (ypred) and the observed value yobs (eq. a) and ME 
as the mean difference between ypred and yobs (eq. b):

     

           

Results
Characteristics of the studied soils

According to descriptive statistics shown in Table 3, the pH(H2O) of the study soils ranged within four pH units from 
very acidic to neutral pH values. Almost all soils were acidic, and the median values of the different soil groups 
ranged between 5.1 and 5.9. The pH values within the individual soil types overlapped but, in general, organic 
soils tended to be more acidic than the mineral soils. The pH in most soils was thus much lower than the pH 7.0 at 
which the potential CEC is usually measured, suggesting an abundance of TA. Because the main grouping of soils 
was based on SOM content, the mean SOC content in peat soils (36%, range 23−53%) was over twofold compared 
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Table 2. Soil classification used in the study based on the soil organic matter 
(SOM) and clay (<0.002 mm) contents

Soil type  SOM (%) Clay (%) n

Organic soils Peat ≥ 40 37

Mull 20−39.9 30

Mineral soils Heavy clay

<20

>60 22

Clay 30−59.9 48

Medium 12−29.9 41

 Coarse <12 37

a) b)



Agricultural and Food Science (2021) 30: 131–145

135

to mull soils (16%, range 12−23%) (Table 3). Within mineral soils, the SOC content ranged between 0.7% and 11%, 
and there was strong overlapping between the different textural groups. However, the mean SOC was higher for 
clay soils (4.3−4.6%) than for medium-textured or coarse soils (2.6−3.5%).

 
 

Potential CEC varied largely among soil types (4.7−138 cmol(+) kg-1) (Table 4). Comparison of the CEC values re-
vealed that the CEC values in organic soils partly overlapped with those of clay soils, and the CEC values in clay 
soils partly with other mineral soils. However, the mean CEC values systematically increased with soil types as fol-
lows: coarse (14 cmol(+) kg-1) < medium-textured (16 cmol(+) kg-1) < clay (25 cmol(+) kg-1) < heavy clay (33 cmol(+) 
kg-1) < mull (42 cmol(+) kg-1) < peat (77 cmol(+) kg-1) soils. Despite a large variation in TA (0−122 cmol(+) kg-1), the 
mean values followed the same ascending order as for the CEC in terms of the soil types (Table 5). Mean TA val-
ues in mull and peat soils (20−49 cmol(+) kg-1) were 1.8−4.3 times higher than in clay soils (11−12 cmol(+) kg-1), 
and 3.5−8.3 times higher than in medium-textured or coarse soils (5.4−6.3 cmol(+) kg-1).

The descriptive statistics are presented for the contents of exchangeable Ca2+, Mg2+, K+ and Na+ in Table 5. As for the mean 
contents of exchangeable Ca2+, medium-textured and coarse soils had the lowest values (7.2−7.7 cmol(+) kg-1) and organic 
soils the highest values (17−22 cmol(+) kg-1). The lowest mean contents of exchangeable Mg2+, on average of 1.2 cmol(+) kg-1,  
were found in medium-textured and coarse soils and the highest (6.1 cmol(+) kg-1) in heavy clay and peat soils. 

Table 3. General statistics for soil organic carbon (SOC) and pH measured in water in different soil types

Soil type n Mean ± SD Min
Percentiles

Max
5th 25th 50th 75th 90th

pH (H2O)

Organic soils

Peat 37 5.0 ± 0.8  3.5  3.9  4.3  5.1  5.6  5.9  6.5

Mull 30 5.4 ± 0.6  3.9  4.4  5.0  5.5  5.9  6.2  6.8

Mineral soils

Heavy Clay 22 5.9 ± 0.5  5.1  5.1  5.5  5.9  6.2  6.3  6.8

Clay 48 5.7 ± 0.6  4.0  4.9  5.2  5.6  6.0  6.6  7.0

Medium 41 5.8 ± 0.5  4.7  5.1  5.6  5.9  6.1  6.5  7.0

Coarse 37 5.9 ± 0.6  4.0  5.0  5.6  5.9  6.4  6.6  7.2

SOC (%)

Organic soils

Peat 37 36 ± 9.1  23  24  27  35  44  47  53

Mull 30 16 ± 3.4  12  12  13  15  19  21  23

Mineral soils

Heavy Clay 22 4.6 ± 2.0  2.0  2.3  3.4  4.1  4.8  8.1  8.7

Clay 48 4.3 ± 2.0  1.0  2.1  2.9  3.7  5.4  6.7  11

Medium 41 2.6 ± 1.3  0.7  0.9  1.6  2.5  3.3  4.7  6.3

Coarse 37 3.5 ± 1.9  1.0  1.5  2.0  3.0  4.7  6.3  7.9

Table 4. General statistics for potential cation exchange capacity (CEC, cmol(+) kg-1) in different soil types (see 
number of soil samples (n) in Table 2 and 3).

Soil type Mean ± SD Min
Percentiles

Max
5th 25th 50th 75th 90th

CEC (cmol(+) kg-1)

Organic soils

Peat 77 ± 28 25 47 55 68 104 119 138

Mull 42 ± 13 24 25 33 39 46   60   82

Mineral soils

Heavy Clay 33 ± 6.4 21 23 29 33 39 40 45

Clay 25 ± 5.6 13 17 21 24 27 31 44

Medium 16 ± 4.6 4.7 10 12 15 18 22 27

Coarse 14 ± 4.3 6.4 8.0 11 13 17 20 25
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Table 5. General statistics for contents (cmol(+) kg-1) of titratable acidity (TA; H+ + Al3+) and exchangeable calcium (Ca2+), 
magnesium (Mg2+), potassium (K+) and sodium (Na+) in different soil types (see number of soil samples (n) in Table 2 and 3)

Soil type Mean ± SD Min
Percentiles

Max
5th 25th 50th 75th 90th

TA (cmol(+) kg-1)

Organic soils

Peat 49 ± 35 4.3 12 23 32 76 102 122

Mull 20 ± 12 0.6 4.4 13 20 25 30 59

Mineral soils

Heavy Clay 12 ± 6.7 2.2 4.9 8.1 9.4 15 22 29

Clay 11 ± 6.1 1.1 2.3 6.2 9.1 15 18 27

Medium 6.3 ± 2.8 0.6 2.5 4.7 5.9 7.5 9.3 15

Coarse 5.4 ± 3.5 0.0 1.3 3.2 4.7 6.0 9.7 18

Ca2+ (cmol(+) kg-1)

Organic soils

Peat 22 ± 12 4.4 5.9 13 19 30 37 53

Mull 17 ± 9.9 0.6 3.8 11 15 20 33 39

Mineral soils

Heavy Clay 14 ± 4.3 5.3 7.9 12 14 17 20 22

Clay 10 ± 4.7 2.4 5.0 7.2 10 13 15 30

Medium 7.7 ± 3.9 1.5 1.8 5.0 7.3 8.5 14 17

Coarse 7.2 ± 4.4 0.8 1.2 4.4 6.1 8.6 5.0 19

Mg2+ (cmol(+) kg-1)

Organic soils  

Peat 6.1 ± 4.5 0.5 0.8 2.7 4.9 8.7 13 17

Mull 4.1 ± 2.6 0.5 0.7 2.3 3.9 6.0 6.8 11

Mineral soils

Heavy Clay 6.1 ± 2.3 2.2 3.2 4.3 5.9 7.7 8.9 11

Clay 2.8 ± 1.5 0.7 1.0 1.8 2.3 3.5 4.5 7.8

Medium 1.4 ± 0.7 0.4 0.5 0.8 1.3 1.9 2.1 3.8

Coarse 0.9 ± 0.6 0.2 0.2 0.5 0.8 1.2 1.6 2.9

K+ (cmol(+) kg-1)

Organic soils   

Peat 0.48 ± 0.55 0.10 0.13 0.21 0.31 0.38 1.17 2.37

Mull 0.32 ± 0.17 0.11 0.12 0.21 0.28 0.38 0.57 0.82

Mineral soils

Heavy Clay 0.77 ± 0.27 0.30 0.31 0.56 0.79 0.94 1.04 1.41

Clay 0.63 ± 0.30 0.20 0.28 0.40 0.53 0.80 1.08 1.38

Medium 0.31 ± 0.17 0.09 0.12 0.20 0.25 0.36 0.56 0.84

Coarse 0.32 ± 0.19 0.09 0.10 0.17 0.30 0.45 0.56 0.83

Na+ (cmol(+) kg-1)

Organic soils

Peat 0.20 ± 0.14 0.05 0.07 0.11 0.17 0.24 0.42 0.59

Mull 0.14 ± 0.14 0.03 0.05 0.07 0.11 0.14 0.21 0.70

Mineral soils

Heavy Clay 0.16 ± 0.07 0.06 0.10 0.12 0.16 0.19 0.20 0.40

Clay 0.13 ± 0.12 0.00 0.03 0.10 0.10 0.14 0.21 0.77

Medium 0.14 ± 0.27 0.00 0.00 0.06 0.10 0.12 0.17 1.80

Coarse 0.09 ± 0.07 0.00 0.00 0.04 0.09 0.12 0.15 0.36
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The mean contents of exchangeable K+ approached an average of 0.70 cmol(+) kg-1 in clay soils, while it averaged 
0.36 cmol(+) kg-1 among other soil types. Most soil types had rather similar and very low mean contents of ex-
changeable Na+ (0.09−0.20 cmol(+) kg-1). In terms of specific cation ratios, the average ratio of exchangeable Ca 
to Mg was 7.5 in coarse, 5.5 in medium-textured, 3.8 in clay and 2.3 in heavy clay soils, and 4.1 in mull and 3.5 in 
peat soils. The relative proportions of cations and TA varied less between the soil groups than did the absolute 
concentrations (Table 6). The average TA occupied more than half of potential CEC sites in organic soils, being more 
abundant than Ca2+, but it was not much lower in mineral soils, where it was around the same level as Ca2+. This 
outcome highlights the importance of TA as a major component of potential CEC in this soil material. The scarcity 
of K+ in organic soils was also striking.

 
Linear regression models for estimating cation exchange capacity (CEC) 

STCat (cmol(+) l-1) extracted with acid ammonium acetate soil test solution and soil pH explained 83% of the varia-
tion in the CEC (eq. 1; Table 7). When the two major soil types (organic and mineral soils) were analyzed separate-
ly, pH and STCat explained 89% of the variation in CEC in mineral soils (eq. 3) and root mean square error (RMSE) 
decreased to 3.21, whereas in organic soils, RMSE was above 8 (eq. 8) (Table 7, Fig. 1). Validation of the models 
with independent dataset produced relatively good agreement with observed and predicted values for mineral 
and organic soils (R2 = 0.69 and 0.83, respectively, Table 7). The functions, however, slightly underestimated CEC 
(ME < 0) in mineral soils (Table 7, Fig. 1).

Table 6. Percentages (mean ± SD) of titratable acidity (TA; H+ + Al3+) and different cations (Ca2+, Mg2+, K+, Na+) occupying 
the potential cation exchange capacity (CEC) sites in different soil types (see number of soil samples (n) in Table 2 and 3)

Soil type TA Ca2+ Mg2+ K+ Na+

(%)

Organic soils

Peat 57 ± 25 32 ± 18 9.7 ± 7.8 0.8 ± 1.4 0.3 ± 0.4

Mull 49 ± 23 40 ± 18  10 ± 6.1 0.8 ± 0.4 0.4 ± 0.3

Mineral soils    

Heavy Clay 35 ± 16 43 ± 11  19 ± 6.7 2.4 ± 1.0 0.5 ± 0.2

Clay 42 ± 19 43 ± 17  11 ± 5.4 2.6 ± 1.2 0.5 ± 0.5

Medium 41 ± 16 47 ± 16 9.0 ± 4.5 2.0 ± 1.0 0.9 ± 1.8

Coarse 41 ± 22 49 ± 20 6.9 ± 4.2 2.4 ± 1.4 0.7 ± 0.8

Table 7. Pedotransfer functions for estimating potential cation exchange capacity (CEC, cmol(+) kg-1) using sum of soil test cations  
(STCat cmol(+) l-1 = STCa cmol l-1 × 2 + STMg cmol l-1 × 2 + STK cmol l-1), pH and soil organic carbon (SOC, %) as explanatory variables, 
and statistics of calibration data and validation data

CEC   Calibration Validation

Eq. No. Predictors Regression equation n RMSE R2 n RMSE ME R2

All soils

1 STCat, pH CEC = 145.68 + 1.91 × STCat - 24.36 × pH 63 7.71 0.83 24 8.88 -0.18 0.78

2 STCat, pH, SOC CEC = 70.97 + 1.25 × STCat - 11.40 × pH + 0.71 × SOC 63 3.95 0.96 24 6.16 -0.10 0.85

Mineral soils

3 STCat, pH CEC = 82.88 + 1.30 × STCat - 12.97 × pH 29 3.21 0.89 15 7.05 -0.30 0.69

4 STCat, pH, SOC CEC = 50.83 + 1.17 × STCat - 8.38 × pH + 1.48 × SOC 29 2.26 0.95 15 6.72 -0.16 0.62

5 SOC CEC = 11.23 + 2.41 × SOC 114 7.00 0.33

6 Clay CEC = 10.29 + 0.31 × Clay 114 4.37 0.74 34 6.26 -0.10 0.66

7 SOC, Clay CEC = 4.89 + 1.67 × SOC + 0.27 × Clay 114 2.89 0.89 34 6.39 -0.14 0.82

Organic Soils

8 STCat, pH CEC = 147.84 + 1.98 × STCat - 24.60 × pH 34 8.42 0.72 9 4.94 0.08 0.83

9 STCat, pH, SOC CEC = 78.47 + 1.33 × STCat - 12.95 × pH + 0.69 × SOC 34 4.98 0.90 9 4.12 -0.02 0.86

10 SOC CEC = 17.17 + 1.51 × SOC 46 16.56 0.54 20

11 SOC, pH CEC = 70.10 + 1.30 × SOC - 9.11 × pH 46 15.37 0.62 20
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Including SOC in the model increased the explanation power of the regression model such that the STCat, pH and 
SOC explain 96% of the variation in the CEC in all soil types (eq. 2; Table 7, Fig. 2). The validation data showed 
good agreement between the observed and predicted values (R2 = 0.85, Table 7), and further, the absolute value 
of the ME of the validation data was lower, though still below 0. 

In mineral soils, SOC solely explained 33% of the variation (eq. 5) and pH was not a statistically significant predic-
tor when included in the model with SOC. In contrast for the organic soils, including pH in the model with SOC 
resulted in both variables to be statistically significant and increased the explanatory power from 54% (eq. 10) to 
62% (eq. 11).

 

In mineral soils, 74% of the variation in CEC was explained by clay content (eq. 6) and together with SOC, clay ex-
plained 89% of the variation in CEC (eq. 7) (Table 7, Fig. 3). Soil pH showed not to be a statistically significant pre-
dictor when included in the model. The regression coefficients indicated CECs of 27 cmol(+) kg-1 for clay and 167 
cmol(+) kg-1 for SOC. For the validation dataset, the strength of the linear relationship (R2) between observed val-
ues and values predicted using eq. 7 (Table 7) was 0.82, and ME indicated potential underestimation of the CEC 
(Table 7, Fig. 3).

 
Fig. 1. Predicted cation exchange capacity (CEC, cmol(+) kg-1) modelled using soil test cations (STCat cmol(+) l-1 = STCa cmol 
l-1 × 2 + STMg cmol l-1 × 2 + STK cmol l-1) and pH as predictors for a) the whole data, b) for mineral soils and c) for organic 
soils plotted against observed CEC (cmol(+) kg-1). Open circles represent the results of the calibration data and blue circles 
represent the validation data. Data point excluded from the regression analysis as an outlier is marked with red square.

 
Fig. 2. Predicted cation exchange capacity (CEC, cmol(+) kg-1) modelled using soil test cations (STCat cmol(+) l-1 = STCa 
cmol l-1 × 2 + STMg cmol l-1 × 2 + STK cmol l-1), pH and soil organic carbon (SOC, %) as predictors for a) the whole data, b) 
for mineral soils and c) for organic soils plotted against observed CEC (cmol(+) kg-1). Open circles represent the results 
of the calibration data and blue circles represent the validation data. Data point excluded from the regression analysis 
as an outlier is marked with red square.
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Linear regression models for estimating titratable acidity (TA) 
Soil pH and SOC explained the majority of the TA (eq. 12‒16, Table 8, Fig. 4 and 5). In minerals soils, including the 
clay content in the explanatory variables (eq. 15) increased R2 and reduced the RMSE (Table 8, Fig. 5). Validation 
of the developed TA models with independent dataset indicated that eq. 13 for all soils and eq. 15 for mineral 
soils produced best agreement with observed and predicted values estimated based on MRSE and R2 (Table 8, 
Fig. 4 and 5). The validation data indicated risk for equations 12 and 14‒16 to underestimate the TA (Table 8).

Fig. 3. Predicted cation exchange capacity (CEC, cmol(+) kg-1) in mineral soils modelled using  
a) clay (%) and b) clay and soil organic carbon (SOC, %) as predictors plotted against observed 
CEC (cmol(+) kg-1). Open circles represent the results of the calibration data and blue circles 
represent the validation data.

 

Table 8. Pedotransfer functions for estimating titratable acidity (TA, cmol(+) kg-1) using soil organic carbon (SOC, %), pH and clay content 
(%, for mineral soils) as explanatory variables, and statistics of calibration data and validation data

TA   Calibration  Validation

Eq. No. Predictors Regression equation n RMSE R2  n RMSE ME R2

All soils

12 SOC, pH SQRT(TA) = 10.97 + 0.067 × SOC - 1.45 × pH 159 0.69 0.84 53 0.86 -0.003 0.93

TA = (10.97 + 0.067 × SOC - 1.45 × pH)2 6.76

13 SOC, pH, SOC×pH SQRT(TA) = 9.19 + 0.20 × SOC - 1.13 × pH - 0.02 × pH × SOC 159 0.65 0.86 53 0.64 0.004 0.93

TA = (9.19 + 0.20 × SOC - 1.13 × pH - 0.02 × pH × SOC)2 5.87

Mineral soils

14 SOC, pH SQRT(TA) = 7.523 + 0.200 × SOC - 0.946 × pH 112 0.50 0.72 34 0.45 -0.002 0.71

TA = (7.523 + 0.200 × SOC - 0.946 × pH)2 2.97

15 SOC, Clay, pH SQRT(TA) = 7.282 + 0.162 × SOC + 0.012 × Clay - 0.952 × pH 112 0.41 0.81 34 0.43 -0.005 0.77

TA = (7.28 + 0.16 × SOC + 0.01 × Clay - 0.95 × pH)2 2.23

Organic soils

16 SOC, pH SQRT(TA) = 15.030 + 0.051 × SOC - 2.138 × pH 46 0.78 0.87 19 1.04 -0.041 0.95

  TA = (15.030 + 0.051 × SOC - 2.138 × pH)2  11.6       

Fig. 4. Predicted titratable acidity (TA, cmol(+) kg-1) modelled using pH and soil organic carbon (SOC, %) as predictors 
for a) whole data, b) for mineral soils and c) for organic soils plotted against observed TA (cmol(+) kg-1). Open circles 
represent the results of the calibration data and blue circles represent the validation data. Data points excluded from 
the regression analysis as outliers are marked with red squares.
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Linear regression models for estimating clay content with soil test cations and pH

Together with pH, STCa, STMg and STK explained 76% of the variation in clay% in mineral soils (eq. 17) (Table 9, 
Fig. 6) and including SOC in explanatory variables further improved the explanatory power of the model (eq. 18) 
(Table 9, Fig. 7). Regression models fitted separately for clay soils and coarse mineral soils revealed that clay% es-
timation for coarse soils was uncertain. Including SOC in the model improved the model for coarse soils but still 
only 46% of the variation was explained (eq. 22 and 23). For the clay soils, STCat and soil pH explained 78% of the 
variation and SOC was not statistically significant as an explanatory variable (eq. 21). Soil test cations were included 
separately as the share of Mg increased with increasing clay content, whereas the share of Ca decreased (Fig. 7). 
Explaining FINES content with soil test variables turned out to be uncertain and only 50 or 53 % of the variation in 
FINES content could be explained with STCat and pH or STCat, pH and SOC, respectively (eq. 19 and 20) (Table 8). 
Validation of the equations 17, 18 and 21 with independent dataset produced larger RMSE’s and in addition, the 
validation data pointed towards a risk for underestimating the clay content (Table 8).

Fig. 5. Predicted titratable acidity (TA, cmol(+) kg-1) modelled using a) pH, soil organic carbon 
(SOC, %) and pH x SOC as predictors for whole data and b) pH, clay and SOC for mineral soils 
plotted against observed TA (cmol(+) kg-1). Open circles represent the results of the calibration 
data and blue circles represent the validation data. Data points excluded from the regression 
analysis as outliers are marked with red squares.

 

Table 9. Pedotransfer functions for estimating mineral soil clay content (%) and FINES content (%, fine-sized particles; ∅ < 0.02 mm) 
using soil test cations (STCa, cmol l-1; STMg, cmol l-1; STK, cmol l-1) pH and soil organic carbon (SOC, %) as explanatory variables, and 
statistics of calibration data and validation data

Clay/Fines   Calibration Validation

Eq. no. Predictors Regression equation n RMSE R2 n RMSE ME R2

All soils

17 Mg, Ca, K, pH Clay = 72.62 + 24.23 × sqrt(Mg) + 4.32 × Ca + 
17.15 × K - 16.13 × pH

571 9.38 0.76 31 10.72 -0.23 0.79

18 Mg, Ca, K, pH, SOC Clay = 116.54 + 24.17 × sqrt(Mg) + 5.82 × Ca + 
13.29 × K - 22.80 × pH - 2.37 × SOC

571 8.54 0.80 31 10.61 -0.16 0.74

19 Mg, Ca, K, pH Fines = 105.77 + 34.35 × sqrt(Mg) + 5.16 × Ca + 
10.34 × K - 19.35 × pH

571 19.98 0.50

20 Mg, Ca, pH, SOC Fines = 168.07 + 35.37 × sqrt(Mg) + 7.41 × Ca - 
28.85 × pH - 3.28 × SOC

571 19.31 0.53

Clay soils

21 Mg, Ca, K, pH Clay = 82.08 + 21.52 × sqrt(Mg) + 2.76 × Ca + 
10.30 × K - 13.83 × pH

146 6.52 0.78 28 9.03 -0.13 0.73

Coarse soils

22 Mg, Ca, K, pH Clay = 33.53 + 6.08 × Mg + 2.39 × Ca + 8.70 × 
K - 6.32 × pH

425 6.55 0.34

23 Mg, Ca, K, pH, SOC Clay = 71.52 + 8.28 × Mg + 3.78 × Ca + 6.81 × K 
- 12.54 × pH - 1.75 × SOC

425 5.94 0.46     
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Discussion

The basic soil test data available on farms at field level, i.e. plant available cations (STCat) and pH were found 
to explain 83% of the variation in CEC. This was anticipated, as the soil test procedure (AAAc, pH 4.65) extracts 
around 80% of the total exchangeable cations (Vuorinen and Mäkitie 1955) and pH links to exchangeable acidity as  
described below. Previously, Niskanen and Jaakkola (1986) congruently reported STCat and pH to explain over 80% 
of the variation in effective CEC in soils from Helsinki, Finland. Including information on SOC in the current mod-
el increased the explanatory power up to 96%. Organic matter is known to exhibit a major contribution to CEC, 
and organic compounds may even reduce the relative contribution of the clay fraction by blocking of the negative 
charges (e.g. Syers et al. 1970, Parfitt et al. 1995, Seybold et al. 2005). However, in the mineral soils of the current 
study, clay alone explained 74% of the variation in CEC, and with SOC the explanatory power increased to 89%. 
Similarly, in Danish soils, 90% of the variability in CEC values could be modelled by clay and organic matter content 
(Krogh et al. 2000), whereas in Iran, the explanatory power of SOM, clay and sand on CEC was 97% (Fooladmand 
2008). The average CEC attained for clay in the present study (27 cmol(+) kg-1) is in the range typical of illite as the 
predominant mineral (e.g. Martel et al. 1978, Kahr and Madsen 1995, White 1997). For SOC, the corresponding 
value of 167 cmol(+) kg-1 agrees with the value of 184 cmol(+) kg-1 SOC reported for unfractionated soil materi-
als by Thompson et al. (1989), but also considerably higher values have been reported, e.g. 284−291 cmol(+) kg-1  

organic matter found by Krogh et al. (2000) in Denmark. 

 
Fig. 6. Predicted clay content (%) in a) all soils, b) coarse-textured and c) clay soils having soil test cations (STCa, cmol l-1; 
STMg, cmol l-1; STK, cmol l-1) and pH as explanatory variables plotted against observed clay content. Open circles represent 
the results of the calibration data and blue circles represent the validation data.

 
Fig. 7. The share of Ca and Mg of the total soil test cations (STCa, cmol l-1; STMg, cmol l-1; STK, 
cmol l-1) plotted against clay content in coarse- and medium-textured soils and clay soils.
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The potential CEC extracted by neutral ammonium acetate (TA determined by back-titration to pH 7.0) varied  
considerably among the different soil types. In mineral soils (CEC 14−33 cmol(+) kg-1), the means and trends in soil 
CEC appeared to be similar to previously reported values for topsoils and subsoils of cultivated and virgin mineral 
soils (Kaila 1971a, 1972, Sippola 1974, Martel et al. 1978, Niskanen and Jaakkola 1986, Manrique et al. 1991, Krogh 
et al. 2000). In terms of different soils grouped by their taxonomic order, Manrique et al. (1991) found the means 
of potential CEC to range between 8.9 cmol(+) kg-1 for Oxisols (n = 299) and 38 cmol(+) kg-1 for Vertisols (n = 1274). 
In the present study, the means of potential CEC also followed the typical increasing trend with an increase in clay 
content among soil types (Kaila 1972, Sippola 1974). 

In productive agricultural soils, the distribution of major cations is generally considered to be Ca2+ > Mg2+ > K+ 
> Na+ (e.g. Graham 1959, Bohn et al. 2001). In terms of basic cations of the present study, the average degree 
of base saturation of potential CEC was higher in mineral (60%) than in organic (47%) soils, and the distribution 
of base cations and the Ca to Mg ratio followed the typical trends. In the plough layer of Finnish mineral soils,  
Kaila (1972) found exchangeable Ca2+ to be the dominant cation (mean 61−78%), being followed by Mg2+ (9−30%), 
K+ (3−5%) and Na+ (1−2%). In the same study, the mean ratio of Ca to Mg decreased from about 9 in sand soils to 
about 2 in heavy clay soils (Kaila 1972). Similarly, in our data, the Mg2+ appeared to occupy more CEC sites than 
Ca2+ with increasing clay content. Acid soils are also characterized by exchangeable aluminum (Al3+) and hydrogen 
(H+), although rarely being the predominant cations (Bohn et al. 2001). In the present study, however, the promi-
nent or predominant part of potential CEC was occupied by the TA in mineral (mean 35−42%) and organic (mean 
49−57%) soils.

For a farmer, an estimate of the TA component of the potential CEC may be of more use than the estimate of the 
potential CEC as a whole, since the acidity reveals the extent of binding sites that could be released for nutrient 
cations by neutralization with liming. The TA comprises exchangeable Al3+ and H+ often determined in unbuffered 
KCl extracts (Coscione et al. 1998, Dai and Richter 2000) and in addition, pH-dependent dissociation of H+ from the 
functional groups in organic matter and edges of clay minerals and release of adsorbed hydroxy-Al cations (Bache 
1976). Besides the pH-dependent acidity, soil pH is related to the amount of exchangeable Al3+, which tends to 
decrease with increase in soil pH due to formation of Al oxides (Cabrera and Talibudeen 1977). Organic matter is 
known to complex Al and thus control its amounts and lability in soil (Cabrera and Talibudeen 1977, Wesselink 
et al. 1996). These relationships explain the observed contribution of SOC, pH and clay on the TA such that an  
increase in SOC or clay increases, and an increase in pH decreases the amount of TA. The mean contents of TA in 
the present study were comparable to those in Kaila (1971b), who reported the mean TA of about 9, 12 and 49 
cmol(+) kg-1 for Finnish coarse (n = 141), clay (n = 100) and organic (n = 57) soils, respectively. In the study of Kaila 
(1971b), the average titratable, nonexchangeable acidity extracted by KCl at pH 8.2 was about 8−12 times higher 
within the soil groups than the corresponding exchangeable acidity displaced by unbuffered KCl. Kaila (1972) and 
Niskanen and Jaakkola (1986) found that exchangeable acidity displaced by unbuffered KCl had a relatively minor 
importance in most soil groups (<10% of effective CEC). 

On a weight basis, the highest CEC values are generally reported for the organic soils among the soil types due to 
the lower bulk densities. Previous studies have shown a markedly higher mean or median CEC as well as larger 
variation in CEC values in organic soils than those of mineral soils (e.g. Krogh et al. 2000). In the present study, 
the variation in potential CEC values (24−138 cmol(+) kg-1) of organic soils was somewhat smaller when compared 
with the range of 22−257 cmol(+) kg-1 (median 61 cmol(+) kg-1) obtained for Danish organic soils (SOM > 10%, n = 
68) by Krogh et al. (2000).

Use of soil test data to unravel soil clay content
Methods used for analyzing clay content are known to be laborious and therefore costly and thus, not feasible in 
surveys where large numbers of samples are analyzed. In routine soil tests for farmers, soil texture is determined 
by sensory identification (finger assessment) and reported to the farmer on a nominal scale as a soil type includ-
ed in the Finnish soil texture triangle (Halonen and Juusela 1957). Clay soils are classified as clays or heavy clays 
having clay content of 30−60% or above 60%, respectively. Our results showed that for clay soils, the clay content 
can be estimated relatively well with soil test data obtainable for most of the fields in Finland. However, for coarse 
textured soils, where SOM contributes significantly to cation exchange sites, the use of STCat in estimating clay 
content might result in a significant error.  

Arthur et al. (2015) reported regression relationships for estimating clay content based on the link between hy-
groscopic water and clay content. Their models predicted clay contents well for most soils (RMSE varying between 
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3–6%), however, large SOC and prevalence of 1:1 clay minerals in soil increased the prediction error of the equa-
tions (Arthur et al. 2015). The high SOC content has a larger effect in medium- and coarse-textured soils where 
SOC significantly increases the specific surface area of the soil whereas in clay soils, the contribution of SOC to 
sorption sites becomes insignificant compared with that of clay as the clay content increases. The SOC content 
of mineral soils in our data set was relatively high, the mean being 2.6% and 3.5% also in medium- and coarse- 
textured soils, respectively. According to Arthur et al. (2015), in soils with SOC% higher than 2.4, there is a risk of 
a consistent increase in prediction error with increasing SOC contents especially in low clay soils. Predicting clay 
content based on Finnish soil test data resulted in larger RMSE than estimations based on the hygroscopic water 
reported by Arthur et al. (2015). However, for soils first classified as clays with finger assessment, the regression 
model based on ST data can be used to get more precise information on the clay content of the soil.

Conclusions

In the present study, pedotransfer functions were developed for predicting the soil clay content, potential CEC and 
TA. The estimation of potential CEC was based on 148 mineral and 67 organic soil samples collected from plough 
layers from various parts of Finland, which were further grouped into different soil types. In the studied soils, the 
means of potential CEC and TA increased from coarse-textured soils to heavy clay soils and mull soils to peat soils. 
The results highlighted the importance of TA as a prominent or predominant component of the potential CEC. The 
results of Finnish soil test (acid ammonium acetate-extraction, pH 4.65) can be used in estimating the potential 
CEC as STCat and pH explain 83% of the variation and together with SOC 96% of the variation. In estimating TA, 
knowledge of SOC is required and SOC and pH explained 86% of the variation. Soil test data can also be utilized 
in estimating the clay content especially for soils with clay content over 30%. However, SOC hampers STCat based 
estimations on clay content especially in coarse-textured soils. 
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