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The perennial forage grass timothy (Phleum pratense L.) is the most important forage crop in Norway. Future changes 
in the climate will affect growing conditions and hence the yield output. We used data from the Norwegian  
Value for Cultivation and Use testing to find a statistical prediction model for total dry matter yield (DMY) based on 
agro-climatic variables. The statistical model selection found that the predictors with the highest predictive power 
were growing degree days (GDD) in July and the number of days with rain (>1mm) in June–July. These predictors 
together explained 43% of the variability in total DMY. Further, the prediction model was combined with a range of 
climate ensembles (RCP4.5) to project DMY of timothy for the decades 2050–2059 and 2090–2099 at 8 locations in 
Norway. Our projections forecast that DMY of today’s timothy varieties may decrease substantially in South-Eastern 
Norway, but increase in Northern Norway, by the middle of the century, due to increased temperatures and changing 
precipitation patterns.
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Introduction

Global climate change is now the most important challenge for the breeding of forage crops and crop management.  
The warming will be more rapid in northern regions compared to the global average (Rantanen et al. 2022). Both 
winter and summer temperatures across Norway are projected to increase (Hansen-Bauer et al. 2015), and the 
temperature increase is expected to extend the growing season for grasslands (Olesen et al. 2011). Furthermore, 
precipitation patterns are projected to change with more extreme events and more unstable winters across  
Norway (Hansen-Bauer et al. 2015). Less snow cover and more frequent mild spells and rain on snow may increase 
the risks of damage due to freezing and ice encasement (Rapacz et al. 2014, Bjerke et al. 2015). These changes will 
create abiotic stresses that may affect forage yields. Also, drought (caused by periods of decreased precipitation 
and increased evapotranspiration) and increased climate variability are expected to have negative impacts on 
grasslands. The magnitude of changes (both positive and negative) is expected to be the largest in northernmost 
Europe (Olesen et al. 2011). Due to this complex situation with contrasting effects following climate change, more 
detailed projections of location-specific changes across Norway are needed.

Timothy (Phleum pratense L.) is a temperate perennial forage grass widely used in northern parts of Europe  
(Nordic countries), Japan, Canada, and USA (Tamaki et al. 2010, Stewart and Ellison 2016). Stable and high yields, 
high forage quality, good winter hardiness and persistency are decisive factors for a sustainable forage grass  
production in Norway. As timothy possesses most of these traits, it is a key factor for the production of high-quality 
local forage and vital to economically viable livestock production in Norway (Steinshamn et al. 2016). There is a 
need for cultivars with specific adaptation to the short growing season with long days and long winters with variable 
stress conditions. Rapid and ongoing climate changes raise questions of how current timothy varieties will perform 
in future climates. The availability of extensive data from Norwegian official variety testing of timothy combined 
with statistical modeling gives a unique opportunity to study this question. 

Several simulation or process-based models have been developed to predict timothy yield (Korhonen et al. 2018), 
simulating in detail the distinct phases of crop growth and development. Combined with climate projections these 
simulation models have been used to project future yield output, e.g., the use of the CATIMO (Bonesmo and  
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Belanger 2002) to predict yield of timothy across Canada for 2040–2069 (Jing et al. 2013). Persson and Höglind (2014)  
simulated timothy dry matter yields using the LINGRA model for the periods 1961–1990, 2046–2056 and 2080–
2099 for five locations in various parts of Norway based on climate projections. The total biomass yield was  
predicted to increase for all five locations in both future time periods. The model, however, focused on summer growth  
processes. Full-year grassland models, such as BASGRA (Höglind et al. 2016) also accounting for cold hardening 
and the effect of winter conditions, have to date not been used with climate projections. 

Using statistical modeling and a machine learning approach to predict yield avoids the detailed specification and 
calibration of process-based models and lets the prediction framework directly account for uncertainty. Statistical 
modeling has for instance been used to predict yields of 12 major Californian crops (Lobell et al. 2007) but has 
never been used for timothy. A statistical model accounts for the relationship between predictive variables, or 
predictors, and produces an outcome with stochastic noise (Kuhn and Johnson 2013). The most important agro- 
climatic variables for grasslands are temperature and water availability. In general, the growth of temperate (C3) 
plant species is slow at low temperatures and increases as the temperature rises to an optimum level, above which 
it decreases when the temperature becomes too high. This implies a non-linear relation between temperature 
and yields, and Baker and Jung (1968), found that the top growth of timothy was at its optimum at a temperature 
of 18–20 °C. Later experiments have shown, however, that cool-season grasses can grow rapidly also at  
lower temperatures (Thorvaldsson and Martin 2004). Water availability is equally important, as timothy is known to 
be sensitive to drought (Sheaffer et al. 1992). Based on data from Finland, Mäkinen et al. (2015) found that higher 
temperatures during the growing season increased yield, while heat stress at the beginning of the season and  
increased precipitation during autumn had a negative impact.

In this study, we built a statistical prediction model for timothy yield based on agro-climatic predictors, in particular 
temperature and precipitation, using data available from Norwegian variety testing of timothy. We aimed to  
determine the most predictive model and assess its predictive ability attributable to weather patterns. Based on 
climate projections, the optimal model was used to predict yield output for different locations across Norway for 
the decades 2050–2059 and 2090–2099, to quantify how timothy yield will be affected by changes in temperature 
and precipitation during the growing season.

Fig. 1. Map of Norway showing the locations of the 8 experimental stations from 
which the data in the present study originates, see Table 1 for further details.
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Materials and methods
Timothy data

The present study was conducted using data originating from the Norwegian Value for Cultivation and Use (VCU) 
testing of timothy varieties. Results from trials in the period 1988–2017 were retrieved from different digital 
and written sources. Each trial was established in two consecutive years at each location in a monoculture and  
harvested for three ley years. Historically, a total of 24 locations were used for the VCU trials of timothy. We  
focused on data from 8 research stations (Table 1) which comprised 81% of the data material. For these 8 loca-
tions, there were 18 477 observations available for the period 1988–2017, covering in total 166 combinations of 
location and establishment year and 119 different varieties. 

 

The VCU trials use a completely randomized block experimental design with three blocks and a plot size of 
10.5m2 (1.5m × 7.0m). Phenotypic traits are recorded in three consecutive years after the establishment year and  
include spring cover, time of heading before the first cut, weed occurrence before each cut, disease occurrence, dry  
matter yield (DMY), and forage quality. In this study, we focused on the accumulated total DMY for all three 
years and used the median over all repetitions and varieties per location and three-year testing period as the  
dependent variable in the analyses. Trial plots were harvested two to three times per growing season following the  
customary practice at each location. All varieties were harvested at the same time at each location and the first 
harvest was made at about 50% heading of timothy. Trials were harvested using Haldrup harvest machines (Haldrup 
GmbH, Ilshofen, Germany). During the harvesting years, the trials were fertilized according to soil type, nutrient 
status, and local climate i.e., according to common practice at each location with about 280 kg N ha-1 each  
season at the southernmost location and 160 kg N ha-1 at the northernmost location. The trials were not irrigated.

Weather and climate data
Previous studies have shown that a range of agro-climatic variables impacts the DMY of timothy, such as tem-
perature, water availability, length of the growing season, and light conditions (Mäkinen et al. 2015). Historical 
agro-climatic variables for the eight research stations such as daily mean, maximum and minimum temperature 
(°C), and daily precipitation (mm) were collected from Agrometeorology Norway (lmt.nibio.no). Based on the daily 
measurements, monthly and seasonal summary statistics, representing the climatic conditions, were calculated.

We quantified temperature over the growing season in terms of growing degree days (GDD), defined as the cumu-
lative daily temperature above a base temperature that is specific for each species (Baskerville and Emin 1969). 
As the daily mean temperature was available, the growing degree for a single day i was calculated by

                                                                                                                            ,

where     is the daily mean temperature (McMaster and Wilhelm 1997). GDD was summarized per month from 
March through August, as the last cut was typically early September. For timothy, the base temperature Tbase was 
set to 5 °C as is common in models for the growth and development of temperate crops (e.g., Skjelvåg 1998, 
Bonesmo 1999, Nissinen 2001). Korhonen et al. (2018), for example, started simulations in the CATIMO timothy 
model and the BASGRA ryegrass model when the consecutive five-day mean temperature in spring exceeded 5 °C.  
While others have used 0 °C as the base temperature (e.g. Bonesmo and Bélanger 2002), 5 °C was used as the 

Table 1. Overview of VCU trial locations where the data was collected from, with latitude, longitude, and altitude, the period of 
active operation, and the number of trials with complete data for all three ley years for each location. Annual GDD and precipitation 
for each location is found in Table 5.

Location Latitude (°N) Longitude(°E) Altitude(m.a.s.l.) Operating period No. Trials

Holt 69.65 18.91 12 1988–2017 14

Vågønes 67.28 14.45 26 1988–2009 15

Tjøtta 65.83 12.43 10 1988–2004 8

Kvithamar 63.49 10.88 28 1988–2017 22

Fureneset 61.29 5.04 12 1990–2017 16

Løken 61.12 9.06 527 1988–2017 20

Apelsvoll 60.70 10.87 262 1988–2017 20

Særheim 58.76 5.65 90 1988–2015 16

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 = max�𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 0� 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 
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metabolic activity of timothy at 0–5 °C is more related to acclimation than to above-ground plant growth,  
especially in northern varieties (Dalmannsdottir et al. 2017).

We quantified precipitation over the growing season by the number of rainy days, defined as a day with precipitation 
over a threshold of 1.0 mm. Thus, the variable measured the frequency and not the intensity of precipitation.  
The number of rainy days was summarized per month and for the period from March through August, as the last 
cut was early September. 

Future projections of temperature and precipitation were provided by the EURO-CORDEX initiative (Jacob et 
al. 2020). EURO-CORDEX provided a multi-model ensemble of regional climate projections for Europe at a daily  
temporal resolution and spatial resolution of 12km, obtained by running a regional climate model (RCM)  
using the output of a global general circulation model (GCM) as boundary conditions. In addition, the RCM output 
was bias-corrected using a transformation of a cumulative distribution function (CDF) (Michelangeli et al. 2009, 
Vrac et al. 2012) and distribution-based scaling (DBS) (Yang et al. 2010). The scaling used data from the regional  
reanalysis MESAN (Yang et al. 2010), and the observation-based gridded data product E-OBS (Cornes et al. 2018) 
as calibration data. The projections were based on GCMs from the Coupled Model Intercomparison Project–Phase 
5 (CMIP5) under the representative carbon pathway (RCP) 4.5, representing an intermediate scenario where  
emissions peak around 2040 and decline afterward (Jacob et al. 2014). 

Specifically, we considered 12 different combinations of GCMs, RCMs, and bias-correction approaches. This 
multi-model ensemble of climate projections included two different GCMs (EC-EARTH [Hazeleger et al. 2012] and 
MPI-ESM-LR [Giorgetta et al. 2013]), four different RCMs (CCLM4-8-17, HIRHAM5, RACMO22E, and RCA4, see  
Jacob et al. [2014] for details), as well as three different versions of the bias-correction approaches described 
above. Considering such a variety of combinations helped to better account for uncertainties associated with 
each layer of modeling.

Data quality
Both the phenotypic and the agro-climatic variables had missing observations. DMY was recorded separately for 
each ley year and summed over all three years to produce the total DMY. Hence, if the yield from one or more 
years was missing, the total DMY was also missing. There were in total 166 different three-year trials established 
over all locations. Among these, DMY was not recorded for 12 trials in the first ley year, 18 trials in the second ley 
year, and 26 trials in the third ley year. There were 35 trials where DMY was not recorded in at least one ley year, 
such that total DMY was available for 131 complete three-year trials for all locations.

For the daily agro-climatic variables, the number of missing observations varied substantially between years and 
locations across the data period (1988–2017). The missing observations were, however, largely the same for  
temperature and precipitation, implying that if the temperature was recorded, so was precipitation. A practical limit 
of 15% missing recordings per month (a maximum of 4 missing days) was set to produce a monthly summary. 
There were 55 trials with GDD or the number of rainy days missing for at least one month. Hence, there were 94 
trials overall with complete observations for all variables.

Methodology
We analyzed the data in two steps: First, we determined the best prediction model for DMY based on the agro-
climatic variables. Second, we projected the future yield output at the 8 locations for the two decades 2050–2059 
and 2090–2099. For the prediction model of total DMY, we use linear regression (Hastie et al. 2019) with the yearly 
agro-climatic variables at the locations as predictors. We consider the model with linear predictors: 

and the model with the quadratic predictors: 

where yij is the median of total DM yield after the establishment year i at location j and var1i+k is the agro-climatic 
predictor for the kth ley year at location j. Further, αl is the linear effect of the lth predictor, βl is the corresponding 
quadratic effect, μ is an overall intercept, and ϵij is a noise term with expectation zero.

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇 + 𝛼𝛼𝛼𝛼1𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝑖𝑖𝑖𝑖+1,𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝑖𝑖𝑖𝑖+2,𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼3𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝑖𝑖𝑖𝑖+3,𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼4𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2𝑖𝑖𝑖𝑖+1,𝑖𝑖𝑖𝑖 + ⋯+ 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,   

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇 + 𝛼𝛼𝛼𝛼1𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝑖𝑖𝑖𝑖+1,𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽1𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝑖𝑖𝑖𝑖+1,𝑖𝑖𝑖𝑖
2 + 𝛼𝛼𝛼𝛼2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝑖𝑖𝑖𝑖+2,𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣1𝑖𝑖𝑖𝑖+2,𝑖𝑖𝑖𝑖

2 + ⋯+ 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 
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As the focus was total DMY over all ley years, the climatic variables for all three years were considered as  
predictors. For instance, if a trial was established in 2003, the total yield was given by the sum of the yields from 
the growing seasons in 2004, 2005, and 2006. Hence the agro-climatic variables for all three years were included  
together as a set of predictors. The median of the total DMY per year and location was used as the outcome to  
ensure the robustness of the effect estimates. This minimized the negative effect of outliers and ensured that 
years with different numbers of observations at a given location would be comparable.

Assessing predictive ability

Earlier work studying the effect of agro-climatic predictors on DMY did not directly assess the predictive power 
of the variables but focused on the statistical significance of predictors (see e.g., Mäkinen et al. 2015, 2018). This 
work emphasized instead the predictive ability of the agro-climatic variables, so that future yield output may be 
accurately predicted under climate change, particularly when extrapolation is required.

To rigorously evaluate the predictive ability of a model, predictions must be assessed on an independent data 
set not used to estimate the predictive model. The resulting predictions are usually referred to as being out-of- 
sample (Hastie et al. 2019). K-fold cross-validation is the most used procedure to assess the out-of-sample prediction 
error and at the same time properly exploit all available training data (Hastie et al. 2019). Then the training 
data is divided into K parts (folds), and each fold is held out of the model building and predicted in turn as an out-
of-sample data set. The final prediction error is calculated by averaging over all folds.

To determine the optimal prediction model, we utilized a cross-validation (CV) scheme where all recorded yields 
for a given location and establishment year constituted a separate fold. This scheme equals leave-one-out (N-fold) 
CV, where each year-location combination constitutes a separate fold. The prediction error was quantified by the 
root mean square error (RMSE) over all folds for the N combinations of years and locations

where        is the prediction of the median yield for a given year and location, when the associated data was  
excluded from the training data. If a predictor decreased the prediction error, it would improve the predictive 
power. The model with the lowest RMSE was selected as the optimal model. We also considered the coefficient 
of determination, R2, and the adjusted R2 to assess the model fit (Kuhn and Johnson 2013) and used a likelihood 
ratio test to determine if a difference in fit between the two models was significant. The R2 can be interpreted 
as the proportion of explained variability, while the adjusted R2 is corrected for in-sample optimism (and may be 
negative), thus more accurately reflecting the out-of-sample predictive power.

The model was selected following a forward stepwise procedure (Claeskens and Hjort 2008), where the best  
predictor in subsequent steps, was included and the prediction error and fit recalculated until no improvement in 
RMSE and adjusted R2 could be achieved.

Results

This section presents the results of the two steps in the analysis. First, an overview of the procedure to determine 
the optimal predictive model for total DMY is given, and then the results of the projected future yield for the  
periods 2050–2059 and 2090–2099 are presented.

Optimal predictive model
The constant baseline model with no agro-climatic predictors, i.e. the average of overall yield, achieved an 
RMSE of 474. Table 2 shows the prediction error quantified by the RMSE, R2, and adjusted R2 for the linear and 
quadratic models of all agro-climatic predictors. Including GDD from March through August as a linear term in 
the model decreased the prediction error to 458 (Table 2). When adding a quadratic effect of GDD from March 
through August to the linear term, the RMSE further decreased to 456 and the adjusted R2 increased from 0.11 
to 0.14 (Table 2). This indicates a modest predictive ability from GDD over the entire growing season. Including 
instead GDD for July only gave a substantial reduction in the RMSE to 413 and increased the R2 to 0.31 (Table 2).  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�[−𝑖𝑖𝑖𝑖]�
2,   

𝑦𝑦𝑦𝑦�[−𝑖𝑖𝑖𝑖] 
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Similarly, the inclusion of rainy days over the entire growing season from March through August increased the 
RMSE for the linear and quadratic models to 487 and 511 (Table 2), respectively. The inclusion of the number of 
rainy days in July only as a quadratic effect, decreased the RMSE to 459 and increased the R2 from 0.01 to 0.12 
(Table 2). This shows that both GDD and rainy days had a non-linear effect on timothy DM yield and that the  
cumulative temperature and precipitation in July were more predictive than the cumulative temperature and  
precipitation throughout the entire growing season. 

 

 
For the forward stepwise model selection procedure, Table 3 shows the RMSE, R2, and adjusted R2 for the best 
model in each step. Details for all models in each step are shown in Tables S.1– S.3 in the Supplementary material. 
Based on the results in Table 2, the GDD for July was added in the first step. After including GDD for July in the 
model, the best-performing predictor in the second step was found to be the quadratic effect of rainy days in June 
(see Table S.1 for details). Including both GDD for July and rainy days in June gave an RMSE of 415 and increased 
the adjusted R2 to 0.30 (Table 3). This is better than both models of the individual predictors, indicating that GDD 
and rainy days contributed predictive skill independently of each other. After including GDD for July and rainy 
days for June in the model, the best-performing predictor in the third step was a quadratic effect of rainy days in 
July (Table S.2). Including GDD for July and the rainy days in both June and July gave an RMSE of 415 and further 
increased the adjusted R2 to 0.34. Given a model with GDD for July and rainy days in June and July, no other pre-
dictors gave an improvement in either RMSE or the adjusted R2 (Table S.3).

Finally, as June and July are successive months, the number of rainy days for both months was combined into 
a single predictor, representing the number of rainy days for the period June–July. By using the combined  
predictor (final line, Table 3), the RMSE was lowered to 406 and the adjusted R2 increased slightly to 0.35.  

Table 2. Root mean squared error (RMSE), R2 and adjusted R2 for the linear and quadratic models of all individual predictors. The 
differences in RMSE quantify the predictive contribution of each predictor, and the predictor with the lowest prediction error is 
marked in bold.

Linear Quadratic

Predictors RMSE (kg ha-1) R2 Adj. R2 RMSE (kg ha-1) R2 Adj. R2

GDD March 480 0.02 -0.01 495 0.03 -0.04

GDD April 459 0.12 0.09 475 0.12 0.06

GDD May 473 0.07 0.04 472 0.13 0.07

GDD June 466 0.1 0.07 476 0.12 0.06

GDD July 469 0.08 0.05 413 0.31 0.26

GDD August 452 0.15 0.13 472 0.16 0.11

GDD March-August 458 0.14 0.11 456 0.2 0.14

Rainy days March 481 0.03 0 496 0.04 -0.02

Rainy days April 482 0.03 0 504 0.03 -0.03

Rainy days May 471 0.08 0.05 488 0.08 0.02

Rainy days June 478 0.05 0.02 476 0.11 0.05

Rainy days July 483 0.04 0 459 0.17 0.12

Rainy days August 480 0.04 0.01 478 0.1 0.04

Rainy days March-August 487 0.01 -0.02 511 0.02 -0.04

Table 3. Overview of the root mean squared error (RMSE), R2 and adjusted R2 for the best model in each step of the forward stepwise 
model selection procedure (see Tables S.1–S.3 in the Supplementary material for details), including the model where the number 
of rainy days of June and July is combined into a single predictor. The improvement in RMSE is calculated relative to the baseline 
model. The likelihood ratio test is only calculated for nested models and compares each model to the one from the previous step. 

Step Model predictors RMSE (kg ha-1) R2 Adj.R2 Impro. p-value

0 Baseline 474 0 0 - -

1 GDD July 413 0.31 0.26 13% <0.001

2 GDD July, Rainy days June 415 0.39 0.30 12% 0.076

3 GDD July, Rainy days June, Rainy days July 415 0.47 0.34 12% 0.036

    GDD July, Rainy days June–July 406 0.43 0.35 14%
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According to the likelihood ratio test, the improvements in the model fit of all consecutive models were significant 
under a significance level of 0.1 (Table 3). For all the best-performing predictors, it was beneficial to include the 
effect as a quadratic term. The final model improved the out-of-sample prediction error by 14% compared to the 
baseline model with no agro-climatic variables (Table 3). 

To summarize, the optimal predictive model for total DMY was given by the quadratic functions of the GDD for 
July and the number of rainy days in June and July, for each of the three ley years (Table 4). A scatter plot of the 
observed and the out-of-sample predicted DMY from the final model (using leave-one-out crossvalidation) is pre-
sented in Figure 2. The correlation between the observed and predicted DMY is 0.512. Figure 3 visualizes the es-
timated quadratic effects of GDD and rainy days for each ley year with 95% confidence bands, over the observed 
total DMY. The effects of each predictor are given with all other predictors fixed at their mean value.

Table 4. Regression estimates and p-values for centered predictors in the final model, 
predicting the total DM yield (kg ha-1) per three-year trial period

Predictor Estimate p-value

Constant 33361 <0.001

GDD (Jul) Year 1 Linear term 1.18 0.901

GDD (Jul) Year 1 Quadratic term –0.25 0.014

GDD (Jul) Year 2 Linear term 17.56 0.063

GDD (Jul) Year 2 Quadratic term –0.27 0.006

GDD (Jul) Year 3 Linear term 7.72 0.400

GDD (Jul) Year 3 Quadratic term –0.26 0.009

Rainy days (Jun–Jul) Year 1 Linear term –156.64 0.032

Rainy days (Jun–Jul) Year 1 Quadratic term –18.76 0.013

Rainy days (Jun–Jul) Year 2 Linear term 168.42 0.040

Rainy days (Jun–Jul) Year 2 Quadratic term –12.14 0.162

Rainy days (Jun–Jul) Year 3 Linear term 129.94 0.102

Rainy days (Jun–Jul) Year 3 Quadratic term –2.13 0.808

Fig. 2. Scatter plot of the observed and out-of-sample predicted DMY for each year and 
location combination. The correlation between observed and predicted DMY is 0.512.
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Future scenarios
Based on the climate projections described previously, we predicted the DMY of timothy using the model in  
Table 4. The yield was predicted at 8 locations for each year in the two decades: 2050–2059 and 2090–2099. The 
values of the predictors for the three consecutive ley years were assigned randomly within the two decades, and 
negative predictions were truncated to zero. 

Figure 4 shows the median (diamond) with the 80% quantile bands (10% and 90% quantiles) of the yield for the 
observed data from 1988–2017 (black), together with the projected yield for the 2050s (red) and the 2090s (green) 
for all 8 locations. For Apelsvoll (interior of Southeastern Norway), the median yield decreases for the period 2050–
2059 and decreases further for 2090–2099. Even though the upper 90% quantile remains similar, the lower 10% 
quantile decreases substantially (up to 78%), hence greatly increasing the variability. 

Fig. 3. The effects of GDD in July and rainy days in June–July in ley years 1, 2 and 3 on DMY in total 
for three ley years (solid line) with 95% confidence bands (dashed lines) with all observations (gray 
dots). The effects of each predictor are given with all other predictors set at their mean value.
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For Fureneset and Løken (Western and mountainous Norway) there are only minor changes with a slight increase 
in the median yield in 2050–2059 and in the variability at both locations. For Særheim (South-Western Norway), 
there is a small decrease in annual yield in 2050–2059, and a further decrease in 2090–2099, while for Kvithamar  
(Central Norway) there is no change from 1988–2017 to 2050–2059, but a decrease after that. For Tjøtta and Vågønes 
(representing the southern part of Northern Norway), the median yield increases substantially from 1988–2017 to 
the 2050s, but then decreases slightly again to the 2090s. For Holt (Northern Norway), the median yield increases 
substantially in 2050–2059 and increases further in 2090–2099. Common to all these locations is a predicted  
increase in yield variability, although not as conspicuous as for Apelsvoll in the southeast. It may also be observed 
that the historical measurements at Tjøtta consistently underperformed without any known reason (additional 
investigation of the source material was conducted), and the location should therefore be viewed as an outlier.

An overview of the climate at each individual VCU trial location is given in Table 5, in terms of the average GDD in July 
and the number of days of precipitation in June-July for the historic period 1988–2017 and projected for the periods 
2050–2059 and 2090–2099. Figure 5 shows the scatter plots of the GDD (July) and rainy days (June–July) for the 
first ley year for the observed period (black) and for the projected periods 2050–2059 (red) and 2090–2099 (green). 

 

The left panel shows the distributions for all locations, while the middle and right panels show the distributions 
for Apelsvoll and Holt. At all locations, it is seen that GDD will increase while the number of rainy days and 
the negative correlation between the two predictors remains the same. To see the more distinct differences 
between individual locations, we show the most contrasting locations: Apelsvoll and Holt. For Apelsvoll the  

Fig. 4. The distributions of the observed total (DM) yield over three ley years (black) compared to the projections 
for the periods 2050–2059 (red) and 2090–2099 (green) for all locations. The distributions for each location and 
time period are shown by the 10% and 90% quantiles (as upper and lower limits) and the median (diamond). 

Table 5. Overview of climate at VCU trial locations, in terms of the average GDD in July and the number of days of precipitation 
in June-July for the historic period 1988–2017 and projected for the periods 2050–2059 and 2090–2099.

GDD (July) Days of precipitation (June-July)

Location 1988–2017 2050–2059 2090–2099 1988–2017 2050–2059 2090–2099

Holt 225 260 293 21 24 26

Vågønes 262 304 329 25 23 25

Tjøtta 292 321 343 23 25 27

Kvithamar 316 340 360 26 23 23

Fureneset 298 300 310 27 29 31

Løken 290 319 336 22 21 21

Apelsvoll 339 395 412 20 19 20

Særheim 300 342 353 23 23 24
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median of the GDD distribution increases for the 2050s and 2090s, while the median of the number of rainy days 
decreases slightly (Table 5). For Holt, in the right panel, both the GDD and the number of rainy days will increase 
for the periods 2050–2059 and 2090–2099 (Table 5).

 

Discussion
Optimal predictive model 

The optimal predictors of timothy DMY were found to be cumulative GDD in July and the number of rainy days 
(>1mm) in June and July. These two agro-climatic variables explained 43% of the yield variability, which is consistent 
with other statistical models for crop yield. Lobell and Field (2007) showed that the share of the year-to-year 
variations in global average yields attributed to temperature and precipitation during the growing season for the 
world’s six most widely grown crops ranged from 29% (for rice and sorghum) to 65% (for barley).

In comparison, Persson and Höglind (2014) used daily temperature and precipitation as inputs in the process-based 
LINGRA model to predict future yield. Jing et al. (2013) used the process-based CATIMO model that also considered  
temperature and precipitation as input to their model. We found in initial analyses that the number of days with 
precipitation (>1mm) gave better predictions than using the amount of precipitation itself (see Supplementary 
Table S.4). This means that an even distribution of precipitation in June and July has a higher impact on yield than 
the actual amount of precipitation. This is reasonable, considering that June and July are the warmest months in 
Norway with the highest evapotranspiration and the highest risk of a water deficit. A similar phenomenon was 
seen by Virkajärvi (2003) who observed that smaller but frequent rain showers (<5mm) were more important for 
sward production than the soil moisture content (at 20 cm depth). Timothy has, in general, a low regrowth capacity 
after 1st cut compared to many other grasses (Lemeziene 2004). The root system is rather shallow and has low 
tolerance to drought during this period (Garwood and Sinclair 1979, Garwood et al. 1979).

The optimal agro-climatic predictors were found to be monthly rather than seasonal variables, which may be  
surprising as the plant grows throughout the season. However, the growth will be relatively more affected by  
temperature in the month with the highest temperatures than in cooler months. The warmest month there-
fore acts as a more parsimonious description of the driver of yield. Even though the information content may be  
regarded as higher for seasonal variables, there is also more random noise, and to exploit the additional information,  
one would require a more complex model at the cost of generalizability. 

The signs of quadratic terms were found to be negative for both GDD and rainy days and each of the three ley 
years. This implies that there is an optimal temperature and an optimal rain frequency, as seen in Figure 3. The 
GDD optimum for July was observed at 300–320, which corresponds to an average of 9.7–10.3 growing degrees per 
day. Adjusting for the base temperature of 5 °C, this can be interpreted as an average daily temperature of around 
15 °C. This is lower than the optimal temperature found by Baker and Jung (1968) but agrees with Bertrand et al. 
(2008) who found an optimum daytime temperature of 17 °C for the growth of timothy in summer. These results 

Fig. 5. The distributions of the predictors, GDD in July, and the number of rainy days in June–July, for the observed period 1988–
2017 (black) and for the projected periods 2050–2059 (red) and 2090–2099 (green) for all locations (left panel), Apelsvoll in South-
eastern Norway (middle panel) and Holt in Northern Norway (right panel). The medians for all distributions are shown by crosses 
in a corresponding darker color. 
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also agree with experiments from countries with low summer temperatures, showing that cool-season grasses 
can grow quickly at lower temperatures (Thorvaldsson and Martin 2004). Longer photoperiods at higher latitudes 
may also partly compensate for the lower growth temperature (Hay 1990, Mølmann et al. 2021). 

The optimal precipitation frequency in June-July was found at 19 rainy days in ley year 1 and 30 rainy days in ley 
year 2 but showed a rather flat pattern with no distinct optimum in ley year 3. This suggests that timothy is less 
sensitive to both more and less frequent precipitation as plants become older, which may be attributed to a higher 
root density with increasing plant age. In timothy and other perennial grasses, the increase in root biomass with 
increasing age mostly occurs in the upper 15 cm (Bolinder et al. 2002), which is important to make the sward more 
drought tolerant in dry summers and more robust to traffic damage in rainy summers. 

Projection of future DM yields in various parts of Norway
The projections showed that changes in forage yields in the future may differ substantially across Norway. The  
results for the eight locations suggested three groupings based on yield projections: Eastern (Apelsvoll),  
southern (Særheim), and central Norway (Kvithamar) were characterized by a reduction in yield in the future. 
At Fureneset, Tjøtta, and Vågønes the yield was predicted to increase until 2050–2059 (especially at Tjøtta and 
Vågønes) and then decrease again towards 2100. The yield at the northernmost location Holt in Tromsø was  
predicted to increase right up to 2100, but with the most rapid increase from the present until 2050–2059.

Interior areas (Eastern Norway) may experience a substantial decrease and higher variability in DM yields in the 
future due to increasing temperatures and decreasing frequency of precipitation. Our projections, therefore, 
suggest that the current varieties of timothy may not be suitable for a location such as Apelsvoll. For coastal and 
mountainous Southern Norway and southern parts of Northern Norway, there seems to be a minor increase in 
average yield in the near future, but a minor decrease towards the end of the century. For Løken, representing 
the mountainous areas in Southern Norway, our results agree with Höglind et al. (2013) who predicted higher 
DMY in 2040–2065 in this area, along with 13 other sites in Northern Europe. In contrast, our results for Særheim 
were not in agreement with the predictions of Höglind et al. (2013) for the nearby location Sola in Southwestern  
Norway. Our predictions for a decrease in DMY already in the 2050s in Eastern Norway and in the 2090s in the 
rest of Southern and Central Norway were not in accordance with Persson and Höglind (2014) who predicted the 
DMY to increase across a wide range of Norwegian locations. 

A reason for the differences between our projections and those by Persson and Höglind (2014) could be that 
our analysis did not account for changes in crop management (the timing and number of harvests), as done by  
Persson and Höglind (2014). Rather, our projections are to be interpreted as conditional projections, where we  
assume no changes in crop management. As such, our results thus give good indications for regions where adaptation 
of crop management practices and/or timothy varieties will be needed to keep up or increase current yield levels.  

Northern Norway, in particular the Troms and Finnmark counties, on the other hand, can become optimal  
locations for production of the current timothy varieties, as both the temperature and the days of precipitation 
are projected to increase. An important assumption for these projections is that there is no change in genetic 
composition either intentionally or by natural selection. Our results mirror the conclusions of Dellar et al. (2018) 
where regions with warmer and wetter conditions (the northern and Alpine regions of Europe) can expect higher 
pasture yields, while warmer and drier areas can expect a reduction in yield. Likewise, Golinski et al. (2018) found 
a significant positive effect of increasing GDD on grassland yields at Holt. Jing et al. (2013) found a similar pattern 
in Canada, where the annual DM yield is expected to increase in eastern Canada but decrease in western Canada 
under climate change. Increased variability in annual yield was also projected by Chang et al. (2017).

The projections suggest that the overall DM production across Norwegian locations will not change for the two  
future decades, mainly because decreases in southeast Norway may be compensated by increased yield in Northern 
Norway. Increased total DMY in the Northern parts of Norway can be considered a positive effect of climate change, 
especially if we keep in mind that almost the entire agricultural area in this region is grassland-based. Note that 
the extrapolation error to future decades will be larger in Eastern Norway as the projected future climate at this 
location is unprecedented in the historical record. For Holt and the Northern locations, on the other hand, we 
are more certain of the conclusion as the projected future climate at these locations has been observed at other  
locations in the training data. The variation in DMY will, however, increase, in accordance with the likelihood of 
extreme weather events. Warmer and wetter autumn in combination with the mostly unchanged light conditions 
may also cause reduced winterhardiness and lead to less persistent grasslands (Dalmannsdottir et al. 2017). These 
interactions were not accounted for in this paper.
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As with any analysis, our investigation has some limitations. The statistical approach presented here cannot  
assess the effect of changing conditions if the future condition was not present in the training data, for instance, 
changes in the timing and number of harvests, or changes in the CO2 levels. We have also not considered the  
aspects of a longer growing season, increased risks of winter damage, or changes in the nutritive value of timothy. 
Similarly, using predictors aggregated over single months instead of over the full season may be a limitation 
when extrapolating if the peak of summer shifts in the future. The climate projections were based on the RCP4.5  
scenario, representing an intermediate pathway where emissions peak around 2040 and decline afterward. If 
the real-world development of climate gas emissions deviates from this scenario, the conditions underlying the  
projections will change. However, this is a limitation facing any climate change study and it has recently been 
strongly argued (e.g. Hausfather and Peters 2020) that the more extreme RCP8.5 scenario should not be used in 
studies focusing on the most likely outcome. 

Extrapolation beyond the historical range of a predictor is always difficult, and we emphasize the importance of 
using a non-linear relation that captures the physiological processes outside the observed predictor range in a 
reasonable fashion. We ensured this by specifying the non-linear relations to be quadratic and not using spline 
functions or additive models, which would be too flexible outside the predictor range. The choice of the quadratic 
function is founded on the knowledge of plant physiology (Thorvaldsson and Martin 2004). Additional factors that 
may affect the predictability include genetic differences, micro-climate at a given location, soil characteristics, 
and systematic errors. 

Even though yearly weather patterns have been found to explain 30–40% of year-to-year variations in yield, this 
does not translate directly to improvement in out-of-sample prediction. Our best weather predictors gave a 14% 
improvement in the out-of-sample prediction error compared to the constant baseline model. From a statistical 
point of view, one may argue that weather, therefore, has limited predictive power. However, we believe that this 
prediction performance can be satisfactory given the many sources of noise affecting plant growth. The natural 
limitation of data when observing yearly time series may cause the prediction errors to be sensitive to outliers or 
influential observations. Therefore, also the statistical significance of the model fit was evaluated to choose the 
best parsimonious model.

Conclusion

In this study we have, based on all available Norwegian VCU data for timothy: 1) identified the most predictive 
agro-climatic variables for total DMY, and 2) projected future timothy production for 2050–2059 and 2090–2099 for 
8 locations across Norway, using climate projections. We have shown that quadratic functions of growing degree 
days (GDD) in July and the number of days with precipitation above 1mm in June and July are the most predictive 
climatic variables for the total DMY of timothy. Our projections indicate that the production of today’s timothy 
varieties may decrease substantially in South-Eastern Norway but increase in Northern Norway by the middle of 
the century, assuming other aspects such as crop management practices remain unchanged. 
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