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Introduction

Index-based crop insurance contracts have been 
proposed as the sollution to the informational inef-
ficiencies and problems prevailing in traditional crop 
insurances. In index-based insurance contracts, the 

indemnity payments are functions of certain indices, 
such as an area yield index or weather index (e.g. 
Van Asseldonk and Oude Lansink 2003). A strength 
of these contracts is that they do not suffer from 
adverse selection and moral hazard problems, be-
cause the insured agents cannot influence exogenous 
index values that trigger the indemnity payments 
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(Karuaihe et al. 2008, Barnett et al. 2005, Miranda 
and Vedenov 2001). Index insurances also maintain 
the market-driven economic incentives for informal 
self-insurance mechanisms and investments in risk 
mitigation measures, such as drainage, irrigation 
and protection from soil erosion1. It is also fair to 
claim that information about the distribution of 
future index values is equal amongst the insured 
farmers and the insurers, and the problems of asym-
metric information are not therefore apparent, as in 
traditional crop insurances. Index-based insurances 
are likely to have particular strengths in addressing 
systemic risks, but the existing literature is rather 
inconsistent about these claims (Xu et al. 2009). 

Examples of index-based insurances designed 
in agriculture include the US programme Group 
Risk Plan, which is based on an area yield index 
(Barnett et al. 2005). Weather-based index insur-
ances have also been designed for agricultural 
purposes in the context of developing countries, 
where the auditing of household-specific losses 
incurs high cost (e.g. Barnett and Mahul 2007). 
Index-based contracts and weather derivatives, 
in particular, have also received considerable at-
tention in the financial market, and the trade for 
them has been increasing. Currently, CME Group2 
(2010) offers weather futures and options in four 
categories: temperature (16 contract types), hur-
ricanes (3 contract types), frost (2 contract types) 
and snowfall (2 contract types). The temperature-
related products are offered for 42 cities throughout 
the world. Ten of these cities are in Europe, but 
none in Finland. The cities closest to Finland for 
which these products are quoted are Stockholm and 
Oslo. However, neither of these cities can be con-
sidered to represent weather in Finland accurately 
enough, and cannot therefore provide a weather 
measurement point relevant  for hedging against 
yield risks in Finland.

Although weather index-based crop insurances 
have many advantages, there is concern about how 
much the actual yields respond to weather condi-

1 The market refers here to the commodity market that is 
also incomplete, as there is no market for risk and insurance 
is not available. 
2 The Chicago Board of Trade (CBOT) and NYMEX have 
merged to form CME Group.

tions during the growing season or specific weather 
events, such as the accumulation of temperature, 
rainfall, frost or hail, and how much is left as un-
explained yield variation and to the basis risk (e.g. 
Peltonen-Sainio et al. 2009a; 2011). Thus, to de-
sign attractive and efficient weather-based index 
insurances we need empirical information on how 
the yields respond to weather conditions that can be 
easily and precisely measured and applied in the in-
surance markets. Information is currently available 
about linkages between weather and yields, but not 
in such a simple form that it could be applicable in 
designing efficient weather indices and insurance 
contracts in order to protect Finnish grain growers 
against risks and uncertainty caused by yield vari-
ability and loss. Therefore, this paper estimates the 
response of spring wheat yield to certain weather 
indices for four different locations in Finland. The 
estimating equations are standardized and simpli-
fied so that they can provide information, such 
as piece-wise linear marginal products of certain 
weather conditions, for the design of tradable con-
tracts. Further, the accumulation of weather data is 
fixed to start on a specific calendar date, and high 
frequency daily weather data are aggregated across 
time in a standardized way to guarantee that the 
results can be used for designing tradable weather 
indices. 

Spring wheat is used as the reference crop, 
because its role in Finnish cropping systems has 
markedly increased in recent decades: the number 
of hectares under wheat has doubled since 1995, 
with an average annual increase of 6.7%. Further-
more, wheat has generally higher risks for yield 
losses due to being the latest maturing cereal grown 
in Finland, i.e. it is harvested later than spring-sown 
barley and oats, and winter rye (Peltonen-Sainio et 
al. 2009b). However, this does not necessarily indi-
cate that Finnish farmers have been willing to take 
more risks since EU accession in 1995. There is in 
fact some justification for an increase in risk aver-
sion behaviour (Kondouri et al. 2009). One reason 
for increasing the area under wheat cultivation re-
lates to price risk aversion behaviour, since wheat 
has remained in EU price intervention schemes, 
whereas barley and oats have not. 
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We measure both the yield and weather param-
eters in the same location, and the results indicate 
the potential of using weather indices for predicting 
yields on the local scale. Our results provide infor-
mation that is needed as a first step in designing 
weather index-based insurance contracts to protect 
against yield losses. The estimates also shed a base 
for future research in estimating the relationship 
between the yields and the weather when the spa-
tial distance between the production site and the 
weather station increases.3

Data

Weather data
The weather data are from the Finnish Meteorologi-
cal Institute (FMI) over the period from 1970 to 
2008. These data consist of the daily accumulation 
of “growing degree days” (GDD)4, the daily mini-
mum temperature and precipitation measurements. 

The daily data are first aggregated into weekly 
intervals, and we later test how these weekly data 
can be further aggregated for being applicable to 
build index based insurance contracts. For temper-
ature measures (GDD and minimum temperature), 
the three last weeks are omitted in the analyses, be-
cause the accumulation of GDD after the 17th sam-
ple week (after August 27) no longer contributes 
to the yields. For rainfall the situation is different, 
since excessive rainfall at harvest can still result in 
severe crop damage (Peltonen-Sainio et al. 2009b). 

Growing degree days (GDD)

The growing season comprises the period when the 
average daily temperature remains above +5 °C. 
The annual average GDD for our field experimental 

3 The spatial correlations of weather indices, yields and 
indemnity payments are estimated in Myyrä et. al (2011).  
4 Growing degree days (GDD) are also referred to as the 
effective temperature sum (Mukula and Rantanen 1987).  

data decreases from the south of Finland (1,123 ºC) 
to the north (1,028 ºC), whereas the standardized 
maturation GDD’s for the wheat cropping season 
are between 941 and 1,056 ºC, depending on the 
breeding line. The growing period from sowing 
to maturation required for spring wheat varieties 
grown in Finland varies within the range of 100.9 
to 109.7 days. 

At FMI statistics, the accumulation of growing 
degree days starts from the beginning of the grow-
ing season, which usually takes place in late April 
in Southern Finland, early May in Central Finland, 
and the latter half of May in Lapland. However, 
in this study we have defined the growing season 
to start each year on 1 May and to continue for 
20 weeks (140 days) until 17 September.5 This 
approach of locking the growing season to exact 
calendar dates is often used in corresponding ap-
plications, and is referred to as the “biofix” (Xu 
et al. 2009). 

Thus, our weather data over 140 days each year 
cover the growing season of wheat, even if the true 
sowing time has annual variation. It also covers the 
conditions at harvest when risks for yield losses are 
typically high (Peltonen-Sainio et al. 2009b). With-
in the typical wheat production areas, located from 
southern to central coastal regions of the country, 
the length of the growing season and the accumula-
tion of GDD exceed, on average the requirements 
for growing wheat. 

An alternative approach would have been to 
start the growing season each year at different 
time, such as when the accumulated GDD and 
other measures pass certain threshold. However, 
even though it is recorded in the Finnish agricul-
tural statistics, the true sowing date is endogenous 
and could not be used as an exact predetermined 
base for tradable weather index insurances and de-
rivatives. The tradability of contracts requires that 
the underlying weather measures that trigger the 
indemnity payments are precise and locked into 
exact calendar days. 

The GDD index is calculated as the cumula-
tive sum of those daily average air temperatures 
that exceed five degree Celcius. The daily aver-

5 The data are available from the authors upon request. 
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age is computed using eight measurements se-
quenced in three hour intervals of equal duration 
within each day. Formally, the GDD measure is 
(Kangas et al. 2009): 

					     (1)
where subscript ℓ refers to location and 

refer to the air temperature measurements in 
degree Celcius scale at three hour intervals, start-
ing at midnight ( 00

,tC  ) and ending at nine o’clock 
in the evening          ( 21

,tC  ). The first day (t=1) is 
fixed at May 1 and the last day at September 17. 
Thus the total number of days (T) over which the 
GDD is computed is 140. 

Truncating our GDD accumulation at May 
1st did not result in much losses of generality in 
the current data since the GDD did not accumu-
late to a large extent before May (Figure 1). The 
weekly GDD measures gradually increase during 
the first eleven weeks and then, for the last seven 
weeks, turn to a decreasing trend. The variation 
of the weekly GDD is larger up until midsummer 
(May-June) than in late summer (July-August). On 

average, May accounts to only 7 – 11% of the total 
GDD accumulated over the 20-week period. 

Daily precipitation

Daily precipitation (RAIN) is measured in mil-
limetres (Figure 2). This index addresses both the 
drought risk and excessive rain. When the RAIN 
index is aggregated into weekly intervals, it has 
either positive or negative impacts on the yield, 
depending on the time period. 

The distribution of precipitation across the 
growing season is not optimal for crop growth 
(Peltonen-Sainio et al. 2009b). The rainfall is too 
scarce in early summer and it increases gradually 
towards July, also remaining high at harvest. The 
variability in rainfall also increases from May un-
til July and remains high thereafter. The highest 
rainfall events are typically observed in July and 
early August. 

The aggregation of data into weekly intervals 
is reasonable, because rain, even when heavy on a 
Finnish scale, does not usually destroy the whole 
harvest at once unless in the form of hail. Our data 
did not include any two-day rains exceeding 100 
mm, and the frequency for rainfall of more than 
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Fig. 1. The distribution of week-
ly ( week 1 starts at  May 1) 
GDD’s during 1970–2008. The 
six regions (ℓ) are pooled. Tukey 
box: 50% of observations are 
within the box, with the lower 
and upper boundaries of the box 
being quartiles 1 and 3, respec-
tively. The box is divided by the 
mode (Q2), and “+” indicates 
the mean. Circles indicate unu-
sual observations. 
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80 mm was also too small to identify heavy rains 
within a shorter than weekly interval .  Heavy rains 
cause lodging. If rains are long-lasting and abun-
dant soils become wet and do not carry heavy ma-
chinery. Also harvesting is hampered and cereal 
quality deteriorated, especially due to the prolifera-
tion of microflora that are favoured by wet condi-
tions (Peltonen-Sainio et al. 2009b). The weekly 
aggregates are also useful in the determination of 
drought effects as, for instance, rather short peri-
ods of drought prior to heading reduce the number 
of set grains and cause yield penalties that largely 
cannot be compensated later due to the short and 
intensive Finnish growing season (Peltonen-Sainio 
et al. 2009b, 2009c, 2011).

Hail is a form of solid precipitation that consists 
of balls or irregular lumps of ice. Hail is seldom 
observed in a traditional meteorological network, 
because precipitation in the form of hail is a small-
scale event that lasts only for a short time. The 
methodology to detect hail from radar measure-
ment data is gradually improving. In this study we 
could not separate hail from the total precipitation. 

Minimum air temperatures

Minimum air temperatures below zero are possible 
throughout the growing season in Finland, although 
they are most likely and frequently experienced at 
the beginning and at the end of the growing season 
(Figure 3). Below-zero air temperatures during 
the growing season, i.e. night frosts (FROST), 
have caused the worst famines over the centuries 
in Finland. Up until the 1950s, night frost caused 
frequent yield losses every fifth year on average, but 
it has occurred less frequently since then (Mukula 
and Rantanen 1987). In cereals such as wheat, 
night frost seldom causes total crop failure when it 
occurs early or late in the growing season. Wheat 
can survive very low temperatures, even when 
repeated night after night. However, early summer 
night frost retards growth for as much as couple of 
weeks, which causes yield penalties in our short 
growing season (Peltonen-Sainio et al. 2009b). Total 
crop failures are only caused by night frost when 
it occurs at anthesis and thereby destroys the grain 
primordia, which have a high water content prior 
to the onset of grain-filling. Hence, the timing of 
night frost is very important. 
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Fig. 2. The distribution 
of weekly rainfall (in 
millimetres) over the 
growing season in 1970-
2008. The six sample 
regions are pooled. 
Tukey box: see Fig. 1 for 
details.
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Yield data
Over the years, spring wheat yields have varied 
within a large range (Figure 4). The mean yield 
was within the full sample 3,850 kg ha-1, and the 
yield varied from the lowest 1,531 to the highest 
6,198 kg ha-1. 

Some differences in yields occurred between 
sample regions (Table 1). The regional yields re-
flect climate conditions, which are more favour-
able in southern parts of Finland (e.g. Mietoinen, 
Pälkäne and Jokioinen) than in northern parts of 
the country (e.g. Ylistaro).  
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Fig. 3. The weekly min-
imum temperatures in 
1970-2008. The six sam-
ple regions are pooled. 
Tukey box: see Fig. 1 
for details.
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Table 1. Spring wheat yields (kg ha-1,) in the sample regions pooled across years (1970-2008). Data 21 

from the MTT Official Variety Trials 1970–2008. The yield data are normalized to fixed 22 
fertilization levels.  23 
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Jokioinen 28 3,863 944 1,581 5,734 
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Pälkäne 36 4,201 773 2,383 6,197 
Ylistaro 34 3,612 988 1,531 5,499 
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Fig. 4. Spring wheat yields in 1970-2008. The sample regions are pooled. Tukey box: see Fig. 1 for details (MTT Official 
Variety Trials)
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 Model and Methods

Indemnity payment function for the 
index insurance contract

Following (Barnet et al. 2005) we define the indem-
nity payment (n) for the weather index insurance 
contract as:
ñt

w(w̃t)=max(
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 20 
To get well defined, indemnity payments over the relevant regimes we define the underlying 21 
function ( tw ) piece-wise linear in two dimensions with respect to the three above described weather 22 
measurements (m): Growing Degree Days (GDD), precipitation (RAIN) and night frost (FROST). 23 
The first dimension is with respect to time so that the marginal yield effect of each weather 24 
measure is allowed to differ between time regimes. The location and the duration of these time 25 
regimes along the cropping season are tested. In this case, we regress the yield ( ty ) on the index 26 
function ( tw ) and the estimating equation is6: 27 
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where , , , andα β φ ϕ θ are parameters and tε is an error. The subscript t indices year and the index 30 
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the piece-wise linear specification.  34 
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measures. This way we allow for asymmetry in marginal yield effects with respect to the values of 37 
the weather measures. For GDD we distinguish three different regimes WARM, NORMAL and 38 
COLD.  WARM and COLD regimes are identified by dummy variables DWARM and DCOLD that 39 
receive value one if the summer is warm or cold and value zero otherwise. The middle regime 40 
(NORMAL) is observed if DWARM =DCOLD =0. For RAIN we consider DRY, NORMAL and WET 41 
regimes with the corresponding dummy variables DDRY and DWET. The underlying idea is that the 42 
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, 0), for excessiveness (2b)

where

 w̃t = a function of the stochastic weather indices 
at time t  

cw = the vector of critical values that trigger the 
payment      

The indemnity payment depends on the realiza-
tion of the stochastic weather index values through 
function w̃t, and the corresponding critical values 
for these  indices cw . 

Estimating equations for the indemnity 
payments  

To get well defined, indemnity payments over the 
relevant regimes we define the underlying function 
( tw ) piece-wise linear in two dimensions with respect

to the three above described weather measure-
ments (m): Growing Degree Days (GDD), pre-
cipitation (RAIN) and night frost (FROST). The 
first dimension is with respect to time so that the 
marginal yield effect of each weather measure is 
allowed to differ between time regimes. The loca-
tion and the duration of these time regimes along 
the cropping season are tested. In this case, we 
regress the yield (yt) on the index function tw  and 
the estimating equation is6:

6 Without losses in generality, we have normalized the price 
of wheat to one and the marginal yield effect 

( ( ) / iy m m∂ ∂ ) equals to the tick price of the contract.

Table 1. Spring wheat yields (kg ha-1,) in the sample regions pooled across years (1970-2008). Data from the MTT 
Official Variety Trials 1970–2008. The yield data are normalized to fixed fertilization levels. 

Region N Mean SD Minimum Maximum

Jokioinen 28 3,863 944 1,581 5,734

Mietoinen 36 3,713 722 2,414 5,273

Pälkäne 36 4,201 773 2,383 6,197

Ylistaro 34 3,612 988 1,531 5,499
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where

are parameters and εt is an error. The subscript t 
indices year and the index function is defined at 
annual frequency to match the annual yield data. 
The superscript ℓ refers to location and the dummy 
variable (D) is used to allow different conditional 
means for different locations. The indices τ=1,...T; 
κ=1,...K and γ=1,...Γ distinguish between different 
regimes in the piece-wise linear specification. 

The second dimension for piece-wise linearity 
is with respect to the values of the weather meas-
ures. This way we allow for asymmetry in mar-
ginal yield effects with respect to the values of the 
weather measures. For GDD we distinguish three 
different regimes WARM, NORMAL and COLD.  
WARM and COLD regimes are identified by dum-
my variables DWARM and DCOLD that receive 
value one if the summer is warm or cold and value 
zero otherwise. The middle regime (NORMAL) is 
observed if DWARM =DCOLD =0. For RAIN we con-
sider DRY, NORMAL and WET regimes with the 
corresponding dummy variables DDRY and DWET. 
The underlying idea is that the marginal yield ef-
fect for RAIN, for example, is expected to differ 
significantly if the growing season is DRY, NOR-
MAL or WET. The regimes are optimized by a 
grid search method so that the mean square error 
between the yield and the weather measurements 
is minimized7. The asymmetric estimating equa-
tion is:

7 The grid search is to give alternative locations and dura-
tions for the regimes and then select the one with the best 
fit.  

Our estimation approach is to start projecting 
the yields conditional on each weather measure-
ment separately. Estimating these first-stage “par-
tial” and incomplete specifications is consistent 
under the null-hypothesis that the weather does not 
significantly imply the yields. For those weather 
indices that turn out significant, we later estimate 
their effects jointly in the second stage. These 
second-stage estimations provide more efficient 
estimates. We may also expect that the weather 
indices have significant joint effects similar to Le-
ontief technologies (e.g. Chambers 1988), because 
the different weather attributes are more likely to 
complement rather than substitute for each other8.  

In the first stage, we use weekly data separately 
regressed on the GDD, FROST, and the RAIN. 
These weekly data are used to test on how best 
aggregate the weather indices further across time 
so that simple indices can be constructed and the 
degrees of freedom allow estimation of the yield 
response to all relevant weather indices jointly. To 
maintain sufficient over-identification restrictions 
in estimation, the site-specific data are pooled in 
most of the specifications, and the error correlation 
induced by unobservable time-invariant site-spe-
cific effects is factored out using dummy variables 
(Wooldridge 2002, p. 133). 

8 In Leontief technology a production factor cannot substi-
tute for another production factor. Here it would imply that 
rainfall, for example, cannot substitute for the shortage of 
GDD.  
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 Model and Methods    1 
 2 
 3 
Indemnity payment function for the index insurance contract 4 
 5 
Following (Barnet et al. 2005) we define the indemnity payment (n) for the weather index insurance 6 
contract as: 7 
 8 
 9 

( ) max ( , 0)w c
t t tn w w w= −   ,    for shortage   (2a) 10 

( ) max ( , 0)w c
t t tn w w w= −   ,   for excessiveness (2b) 11 

where  12 
tw  = a function of the stochastic weather indices at time t   13 
cw = the vector of critical values that trigger the payment       14 

 15 
The indemnity payment depends on the realization of the stochastic weather index values through 16 
function ( tw , and the corresponding critical values for these  indices cw .  17 
 18 
Estimating equations for the indemnity payments   19 
 20 
To get well defined, indemnity payments over the relevant regimes we define the underlying 21 
function ( tw ) piece-wise linear in two dimensions with respect to the three above described weather 22 
measurements (m): Growing Degree Days (GDD), precipitation (RAIN) and night frost (FROST). 23 
The first dimension is with respect to time so that the marginal yield effect of each weather 24 
measure is allowed to differ between time regimes. The location and the duration of these time 25 
regimes along the cropping season are tested. In this case, we regress the yield ( ty ) on the index 26 
function ( tw ) and the estimating equation is6: 27 

1 1 1

( )t t t t ty m D GDD RAIN FROSTτ τ κ κ γ γ

τ κ γ
α β φ ϕ θ ε

Τ Κ Γ

= = =

= + + + + +      (3) 28 

 29 
where , , , andα β φ ϕ θ are parameters and tε is an error. The subscript t indices year and the index 30 
function is defined at annual frequency to match the annual yield data. The superscript ℓ refers to 31 
location and the dummy variable (D) is used to allow different conditional means for different 32 
locations. The indices 1,... ; 1,... , 1,...andτ κ γ= Τ = Κ = Γ  distinguish between different regimes in 33 
the piece-wise linear specification.  34 
 35 
The second dimension for piece-wise linearity is with respect to the values of the weather 36 
measures. This way we allow for asymmetry in marginal yield effects with respect to the values of 37 
the weather measures. For GDD we distinguish three different regimes WARM, NORMAL and 38 
COLD.  WARM and COLD regimes are identified by dummy variables DWARM and DCOLD that 39 
receive value one if the summer is warm or cold and value zero otherwise. The middle regime 40 
(NORMAL) is observed if DWARM =DCOLD =0. For RAIN we consider DRY, NORMAL and WET 41 
regimes with the corresponding dummy variables DDRY and DWET. The underlying idea is that the 42 

                                                 
6  Without losses in generality, we have normalized the price of wheat to one and the marginal yield effect 
( ( ) / iy m m∂ ∂ ) equals to the tick price of the contract. 
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Our estimation approach is to start projecting the yields conditional on each weather measurement 9 
separately. Estimating these first-stage “partial” and incomplete specifications is consistent under 10 
the null-hypothesis that the weather does not significantly imply the yields. For those weather 11 
indices that turn out significant, we later estimate their effects jointly in the second stage. These 12 
second-stage estimations provide more efficient estimates. We may also expect that the weather 13 
indices have significant joint effects similar to Leontief technologies (e.g. Chambers 1988), because 14 
the different weather attributes are more likely to complement rather than substitute for each other8.   15 
 16 
In the first stage, we use weekly data separately regressed on the GDD, FROST, and the RAIN. 17 
These weekly data are used to test on how best aggregate the weather indices further across time so 18 
that simple indices can be constructed and the degrees of freedom allow estimation of the yield 19 
response to all relevant weather indices jointly. To maintain sufficient over-identification 20 
restrictions in estimation, the site-specific data are pooled in most of the specifications, and the 21 
error correlation induced by unobservable time-invariant site-specific effects is factored out using 22 
dummy variables (Wooldridge 2002, p. 133).  23 
 24 
 25 
Results  26 
 27 
Growing degree days (GDD) 28 
 29 
Our hypothesis is that, within the range of sample variation, GDD should have a positive effect on 30 
the yield in the late growing season (July−August), but in early growing season (May−June) the 31 
effect may also be negative or insignificant, since moderate GDD values in early summer may 32 
increase the yield potential, which might be realized later in the growing season.  33 
 34 
When the models are estimated separately for each experimental site using weekly GDD values, 35 
they explain 62−74% (R2) of yield variations. Nevertheless, in these site-specific models we found 36 
most of the parameter estimates to be insignificant and alternating their signs, suggesting an 37 
inconsistent specification and lack of over-identification restrictions required for obtaining 38 

                                                 
7 The grid search is to give alternative locations and durations for the regimes and then select the one with the best fit.   
8 In Leontief technology a production factor cannot substitute for another production factor. Here it would imply that 
rainfall, for example, cannot substitute for the shortage of GDD.   
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Results 

Growing degree days (GDD)

Our hypothesis is that, within the range of sample 
variation, GDD should have a positive effect on 
the yield in the late growing season (July−August), 
but in early growing season (May−June) the effect 
may also be negative or insignificant, since moder-
ate GDD values in early summer may increase the 
yield potential, which might be realized later in the 
growing season. 

When the models are estimated separately for 
each experimental site using weekly GDD values, 
they explain 62−74% (R2) of yield variations. Nev-
ertheless, in these site-specific models we found 
most of the parameter estimates to be insignificant 
and alternating their signs, suggesting an incon-
sistent specification and lack of over-identification 
restrictions required for obtaining consistent, well 
identified parameters. In general, it is possible that 
unfavourable conditions causing yield penalties 
at a relatively early stage of the growing season 
are partially compensated for by favourable grow-
ing conditions later on. However, especially in 
northern growing conditions, such compensation 
is marginal due to the exceptionally short growing 
season and long days that enhance development of 
the wheat crop (Peltonen-Sainio et al. 2007, 2009b, 
2009c). This can actually be considered to give a 
good premise for relating weather indices to yield 
losses.

When the site-specific data are pooled, the 
weekly GDD explain 14% of the yield devia-
tions.9 Nevertheless, the site-specific dummy vari-
ables were found to be insignificant, suggesting 
that once the GDD are controlled for, the location 
does not, as such, have a significant effect on the 
yield of wheat within the typical wheat produc-
tion areas. Again, most of the parameter estimates 
on the weekly GDD were insignificant, and their 
signs alternated inconsistently. Overall, the pat-
tern of the point estimates indicates that, within 
the sample variation, an increase in the cumula-

9 The regional dummy variables are insignificant and alone 
explain 0.8% of the yield variation.

tive temperatures significantly implies the yields in 
early summer (June) and late summer (August), but 
not significantly in spring (May) or immediately 
after midsummer (July). 

Aggregating the GDD data into two-week peri-
ods improves the consistency of the estimates and 
more clearly suggests than the results above that 
the GDD significantly implies yields in early sum-
mer and after midsummer (Figure 5). The impact 
is first slightly negative in the early growth stages 
when yields are mostly determined, and then in-
creases to become positive towards later summer. 
However, later on in the autumn and at harvest, 
the effects of GDD decline and once again become 
insignificant. This result is consistent with our hy-
pothesis and earlier experience, so that a moderate 
GDD in early summer supports the formation of 
the yield potential that may or may not be realized, 
depending on the GDD and other conditions later 
on in the summer. In September it is likely that high 
temperatures associate with low precipitation, to-
gether promoting the ripening processes and keep-
ing plant stands unlodged, although they occur too 
late to enhance yields. Therefore, we drop the last 
observations from the estimating equations.  

Fig. 5. The marginal yield effect of the cumulative de-
gree days (GDD) for two-week periods. Thick line: the 
estimate , thin lines: the estimate plus/minus its  stand-
ard errors. Estimated in Equation 3, imposing  φκ =θγ=0 
for all κ and γ.
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When the data on GDD are further aggregat-
ed into four-week cumulative values and the last 
(fifth) insignificant GDD variable is dropped, the 
projection explains 6.3% (R2) of the yield variation. 
In this case, the data also support the main idea 
that the accumulation of temperature most clearly 
influences the yield in early summer (June) and 
in late summer (August) (Figure 6).  The second 
four-week period, which corresponds to June, has a 
significant negative effect on the yield. The fourth 
four-week period GDD, which corresponds to Au-
gust, has the largest and the only significant posi-
tive effect on the yield. Thus, around the sample 
means, GDD has not significantly influenced the 
yields in spring (May) or in midsummer (July). 
An intercept and the fourth GDD (August) vari-
able alone explain about 4% of the yield deviations. 
Within our sample, these August temperatures 
more strongly influence yields than the total GDD 
for the whole growing season.

We might expect that under Finnish weather 
conditions the cold periods and shortage of GDD 
would delay crop growth and decrease the yield. 
We therefore tested for asymmetry in the GDD by 
defining distinct regimes for colder than average, 
and warmer than average temperatures respec-
tively. The thresholds “mean minus 10 ºC” for the 
cold regime and “mean plus 25 ºC” for the warm 

regime in the four-week GDD aggregates provided 
the best fit for the sample. Nevertheless, the data 
identify significant asymmetries only in the third 
and fourth four-week periods, suggesting that at 
lower than average temperatures the marginal yield 
effect of one GDD is higher than at the mean or at 
higher than average temperatures (Table 3, Figure 
7). In the cold regime, the marginal value of one 
GDD point increases for the third four-week period 
from 17 to 19 kg.10  

Minimum air temperatures: frosts

The night frost is defined as a day when the daily 
minimum air temperature falls below a thresh-
old. Then the frost variable (FROST) equals that 
minimum temperature, and otherwise it equals 
zero. The threshold was first defined at 0, −1 or −2 
ºC. However, the data for the latter two threshold 
values turned out sparse and the parameters were 
not so well identified. We therefore report only the 
results for the model using 0 ºC as the threshold. 

The data suggest that frost is the most critical 
factor in the middle of July. The most damaging 
and significant frost effects are identified for the 

10  Our approach of allowing and testing for asymmetry and 
the threshold effects is commonly adopted in the economet-
ric analysis of time series for price movements (see. e.g. 
Serra et al. 2006; Jalonoja and Pietola 2004) 

Fig. 6. The marginal yield effect of the cumulative de-
gree days (GDD) for four-week periods. Thick line: the 
estimate; thin lines: the estimate plus/minus its stand-
ard error. Estimated in Equation 3, imposing φκ =θγ=0 
for all κ and γ. 

Fig. 7. The marginal yield effect of from asymmetric pro-
jection of yield on GDD for four-week periods. Thick 
line: middle regime, uppermost thin dotted line: COLD 
regime, lower thin dotted line: WARM regime.  Estimated 
in Equation 5, imposing φκ =θγ=0 for all κ and γ. 
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Table 3. The marginal yield effects  (kg ºC-1) of asymmetric projection of yield on GDD for four-week periods. 
Estimated in Equation 5 with the restriction φκ =θγ=0 for all κ and γ.

Variable Weeks1) Parameter Std error

Intercept -4,470 1,500
Location: Mietoinen

9.06 210
Location: Palkane

129 210
Location: Ylistaro

-158 219
GDD 1-4 -2.81 1.75
GDD 5-8 -5.09 1.63
GDD 9-12 2.41 2.23
GDD 13-16 16.8 4.68
GDD, COLD2) 9-12 1.86 0.75
GDD, COLD2) 13-16 1.75 0.934
GDD, WARM2)

13-16 -2.41 0.776

1)Counting the weeks starting at 1 May.
2)Thresholds: average GDD of the period -10 ºC for COLD, and average GDD of the period + 25 ºC for WARM.

two-week period in mid-July (bi-weekly aggregate 
ending at week number 12, Figure 8). The point 
estimate for the losses due to frost in mid-July is 
2,400 kg, with a standard error of 1,500 kg. There-
after, and towards the harvest, the adverse yield 
effect rapidly declines and becomes insignificant. 
Early in the growing season (May) or at harvest 
(September), frosts do not result in significant crop 
damages. In June, some signals of the adverse ef-
fects of frost emerge, but the data are not informa-
tive enough to identify these effects. 

If only the statistically significant parameters 
are included in the estimating equation, the magni-
tude of the yield loss due to mid-July frost remains 
at 2,100 kg. If we estimate the frost effect using a 
dummy variable for the minimum temperatures be-
low zero, the point estimate for the mid-July frost 
effect is 1,200 kg, with a standard deviation of 880 
kg. Nevertheless, the earlier specification performs 
better than this version. 

Rainfall

Our hypothesis is that within the range of variation 
observed in our sample, rainfall has both negative 
and positive yield effects, depending on the timing 
and amount. With respect to timing, we identify 

 15

Minimum air temperatures: frosts 1 
 2 
The night frost is defined as a day when the daily minimum air temperature falls below a threshold. 3 
Then the frost variable (FROST) equals that minimum temperature, and otherwise it equals zero. 4 
The threshold was first defined at 0, −1 or −2 ºC. However, the data for the latter two threshold 5 
values turned out sparse and the parameters were not so well identified. We therefore report only 6 
the results for the model using 0 ºC as the threshold.  7 
 8 
The data suggest that frost is the most critical factor in the middle of July. The most damaging and 9 
significant frost effects are identified for the two-week period in mid-July (bi-weekly aggregate 10 
ending at week number 12, Figure 8). The point estimate for the losses due to frost in mid-July is 11 
2400 kg, with a standard error of 1500 kg. Thereafter, and towards the harvest, the adverse yield 12 
effect rapidly declines and becomes insignificant. Early in the growing season (May) or at harvest 13 
(September), frosts do not result in significant crop damages. In June, some signals of the adverse 14 
effects of frost emerge, but the data are not informative enough to identify these effects.  15 
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If only the statistically significant parameters are included in the estimating equation, the magnitude 17 
of the yield loss due to mid-July frost remains at 2,100 kg. If we estimate the frost effect using a 18 
dummy variable for the minimum temperatures below zero, the point estimate for the mid-July frost 19 
effect is 1,200 kg, with a standard deviation of 880 kg. Nevertheless, the earlier specification 20 
performs better than this version.  21 
 22 
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Figure 8. The marginal yield effect in regressing wheat yield deviations on the night frost (FROST) 25 
in each two-week period. Thick line: the estimate, thin lines: the estimate plus/minus its standard 26 
error. The middle part is not identified. Estimated in Equation 3, imposing  27 
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Fig. 8. The marginal yield effect in regressing wheat 
yield deviations on the night frost (FROST) in each 
two-week period. Thick line: the estimate, thin lines: 
the estimate plus/minus its standard error. The middle 
part is not identified. Estimated in Equation 3, imposing 

three distinct regimes. The first period is defined 
for spring at the beginning of May, when rainfall 
is expected to reduce the yield potential by either 
delaying sowing or by causing crust formation. 
The second regime is in late May and June, when 
the deficiency of rainfall and the risk of drought are 
greatest and rainfall (if not excessive) would have 
a positive yield effect. Thereafter, towards the end 
of July and August (3rd time period), the positive 
effects of rainfall gradually decline, because rain 
comes too late for the crops and begins to adversely 
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affect the harvest. Besides all these impacts within 
the three regimes, extremely intensive excess rainfall 
adversely affects yields and may result in crop dam-
age throughout the growing season, from sowing 
to harvest.  

We have two separate measures for rainfall. 
The first is the weekly sum of rainfall and, accord-
ing to the patterns observed in the data, it is then 
aggregated over different durations within the three 
regimes described above. The second measure fo-
cuses on excess rainfall. It is defined as the fre-
quency of rains that exceed a minimum threshold 
within two days. The threshold levels are set at 40 
and 60 mm.11  However, these frequencies were 
found to be sparse and therefore difficult to link 
to yield deviations, as was also shown when using 
daily precipitation values exceeding 10 mm or 20 
mm in Peltonen-Sainio et al. (2009a). Hence, these 
frequency data are not informative enough to iden-
tify the adverse yield effects of excessive rainfall.

In the linear and symmetric projections, the 
weekly rainfall explains 23.4% of the deviations 
in yield when all four locations are pooled and 
the site-specific differences in the mean yields are 
controlled for with dummy variables. The dummy 
variables were also insignificant in this specifica-
tion, suggesting that once the rainfall measures 
are controlled for, the location does not have a 
significant effect on the yield of wheat within the 
typical wheat production areas. Similarly to GDD 
measures, the parameter estimates for the weekly 
rainfall measures alternated their signs, suggesting 
that a weekly aggregation interval is too short for 
consistently identifying rainfall effects in the data. 
We therefore aggregated the rainfall measures us-
ing bi-weekly intervals. Then the rainfall implies 
more consistently and significantly the yield over 
the growing season. 

The results suggest that before and immediate-
ly after sowing in early May, rainfall reduces the 
yield, which may also imply problems in sowing 
in good time. Thereafter, rainfall in midsummer 

11 We also computed the frequency of rains exceeding 80 
or 100 mm within two days. The sample did not include any 
two days of rain exceeding 100 mm, and the number of non-
zero frequencies for rainfall of more than 80 mm was too 
small for identification. 

is predicted to increase the yield, and then later 
on the positive yield effect starts to diminish and 
becomes insignificant towards the harvest. Imme-
diately before and at harvest, rainfall reduces the 
yield (Figure 9). This specification explains 17.0% 
of the total yield variation within the sample. 

Aggregating the rainfall measures further 
across time improves the consistency of the esti-
mates and highlights the three regimes with dis-
tinct yield impacts (Figure 10). This specification 
has the power to explain 14.6% of yield variation 
within the sample. The marginal product of 30 mm 
rainfall, for example, is estimated in early May at 
−200 kg, and then it increases to 300 kg. At the 
beginning of July the marginal product starts to de-
cline, being zero in August and becoming −200 kg 
in early September. 

We could expect that the effect of rainfall on 
the yield is asymmetric and has thresholds, espe-
cially in early and mid-summer, when drought is a 
concern and a deficiency of rainfall restricts crop 
growth. Thus, below a certain threshold, rainfall 
could have a larger positive impact on the yield 
than above the threshold. Similarly, the yield 
impact may become smaller or negative when 
rains are excessive, especially when the harvest 
is approaching. Once the lower (DRY) and upper 

Fig. 9. The marginal yield effect in regressing the wheat 
yield deviations on the cumulative rainfall per two-week 
period. Thick line: the estimate, thin lines: the estimate 
plus/minus its standard error. Estimated in Equation 3, 
imposing  
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(WET) regimes are allowed to differ from the mid-
dle regime, the middle regime may be expected to 
be characterized as a regime of “inaction” in which 
the effects of rainfall are smaller than in the lower 
and upper tails. We therefore further augment the 
estimating equation with asymmetric yield effects 

 18
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 2 
 3 
Figure 10. The marginal yield effect in regressing the wheat yield deviations on the cumulative 4 
rainfall. The horizontal straight lines indicate regimes where parameters are imposed equally. Thick 5 
line: the estimate, thin lines: the estimate plus/minus its standard error. Estimated in Equation 3, 6 
imposing 0 for all andτ γφ θ τ γ= = . 7 
 8 
 9 
We could expect that the effect of rainfall on the yield is asymmetric and has thresholds, especially 10 
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The data were informative enough to identify the distinct effects of drought in early summer and 21 
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30 mm per two weeks and higher threshold of 50 mm per two weeks provided the best sample fit. 23 
At the beginning of the growing season and at harvest, the yield response is nevertheless symmetric 24 
and negative so that all rainfall reduces the yield. Around midsummer, when drought is  common 25 
concern, the marginal yield effect of rainfall within the dry regime is estimated at 15.8 kg, 26 
suggesting that 30 mm of rainfall within the dry regime increases the yield by almost 500 kg. 27 
Within the wet regime, the marginal yield effect of rainfall decreases earlier and faster to a negative 28 
value as compared to the other regimes. Within the wet regime the marginal yield effect becomes 29 
negative already by the end of July.  30 
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Figure 9. The marginal yield effect in regressing the wheat yield deviations on the cumulative 4 
rainfall per two-week period. Thick line: the estimate, thin lines: the estimate plus/minus its 5 
standard error. Estimated in Equation 3, imposing  0 for all andτ γφ θ τ γ= = . 6 
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Aggregating the rainfall measures further across time improves the consistency of the estimates and 9 
highlights the three regimes with distinct yield impacts (Figure 10). This specification has the 10 
power to explain 14.6% of yield variation within the sample. The marginal product of 30 mm 11 
rainfall, for example, is estimated in early May at −200 kg, and then it increases to 300 kg. At the 12 
beginning of July the marginal product starts to decline, being zero in August and becoming 13 
−200 kg in early September.  14 
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Variable Weeks1) Parameter Std error
Intercept -683 405
Mietoinen -26.5 205
Palkane -126 204
Ylistaro -345 210

RAIN 1-2 -6.63 5.87

RAIN 3-10 9.73 2.47

RAIN 11-16 1.44 1.91

RAIN 17-18 -7.02 3.58

RAIN, DRY2) 3-8 6.04 2.83

RAIN, WET2) 9-10 -7.60 3.00

RAIN, WET2) 11-14 -3.79 1.68

1Counting the weeks starting from 1 May.
2DRY regime: rainfall less than 30 mm per two weeks; WET regime: rainfall exceeds 50 mm per two weeks.

Fig. 10. The marginal yield effect in regressing the wheat 
yield deviations on the cumulative rainfall. The horizon-
tal straight lines indicate regimes where parameters are 
imposed equally. Thick line: the estimate, thin lines: the 
estimate plus/minus its standard error. Estimated in 
Equation 3, imposing 
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Joint effects

The joint effects of GDD, FROST and RAIN of the 
yield are estimated by regressing the yield on all vari-
ables jointly, so that each of them enter the equations 
similarly to the above-described with asymmetric 
effects. This model is estimated in equation 5 and 
it explains 38% of the yield variation. The signs of 
the parameter estimates remain unchanged for all 
weather indices in the joint model as compared to 
the separate models, but the magnitudes of some 
of the parameters change (Table 5).

We then tested for heteroskedasticity by first 
regressing the squared error of the ordinary least 
squares (OLS) specification “All” in Table 3 on 
an intercept, fitted values and the squared fitted 
values. This testing approach combines the fea-
tures of Breusch-Pagan and White tests, but re-
quires only two degrees of freedom. For testing 
purposes, the approach is valid under the null hy-
pothesis of homoskedasticity (Wooldridge 2002 p. 
127). This auxiliary regression suggests that the 
OLS model is heteroskedastic, implying that the 
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Fig. 11. The marginal yield effect in the asymmetric mod-
el for wheat yield deviations conditional on the cumula-
tive rainfall. Thick line: middle regime, uppermost dot-
ted thin line: DRY regime (rainfall less than 30mm per 
two weeks), lower dotted line: WET regime (rainfall ex-
ceeds 50 mm per two weeks). Estimated in Equation 5, 
imposing 
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standard error. Estimated in Equation 3, imposing  0 for all andτ γφ θ τ γ= = . 6 
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estimates are consistent but not efficient. The re-
sults reveal thatyield volatility decreases with the 
yield. In other words, low yield regimes are more 
volatile than high yield regimes, suggesting that the 
growing conditions causing crop damage are likely 
to have heterogeneous implications and that they 
therefore also increase yield volatility.  

We further tested for heteroskedasticity by 
regressing all explanatory weather events used in 
the specification “All” on its squared error. This 
auxiliary specification suggests that dry and warm 
early summer periods in June significantly increase 
yield volatility. The yield volatility is higher at Mi-
etoinen and Palkane than at the other locations.

Correcting the model for homoskedasticity, we 
took the fit determined by the significant param-
eters in this (latter) auxiliary equation by impos-
ing all other parameters at zero, and computed the 
weight variable for the feasible generalized least 
squares (FGLS) by taking a square root of this fit. 
The parameter estimates for the re-estimated FGLS 
specification are similar to those in the standard 
OLS specification (Table 6). The results therefore 
suggest that the standard OLS estimates, which are 
known to be consistent but not efficient if the error 
is heteroskedastic, are robust to alternative correc-
tions for heteroskedasticity. 

Conclusions
Our results suggest that growing degree days 
(GDD), rainfall (RAIN) and night frosts (FROST) 
significantly influence the yield of wheat in Fin-
land. When the weather measures are aggregated 
to obtain well-identified and consistent estimates 
as well as simple indices, as required by insurance 
contracts and tradable weather derivatives, they 
jointly explain about 38% of the yield variation. 
Thus, using simple weather event-based indices as 
in our model, about 38% of wheat grower yield risk 
could be insured at best, with the remaining 62% 
being left as uninsured basis risk. 

Within the sample, rainfall contributes the most 
to the yield and alone explains 23% of the yield 
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Table 5. The parameter estimates and their standard errors in the asymmetric models regressed separately on GDD and 
RAIN, and on all weather events jointly. Estimated in Equation 5.

Weeks 
start-

ing from 
May 1

GDD RAIN All
Model 

variable Parameter Std. Error Parameter Std. Error Parameter Std. Error

Intercept -4,470 1,500 -683 405 -5,160 1,420

Mietoinen 9.060 210 -26.5 205 32.5 195

Palkane 129 210 -126 204 -59.0 194

Ylistaro -158 219 -345 210 -309 204

GDD 1-4 -2.81 1.75     -2.39 1.67

GDD 5-8 -5.09 1.63     -3.03 1.54

GDD 9-12 2.41 2.23     1.19 2.08

GDD 13-16 16.8 4.68     16.3 4.42

GDD, 
COLD1)

9-12 1.86 0.748     1.92 0.69

GDD, 
COLD1)

13-16 1.75 0.934     1.97 0.88

GDD, 
WARM1)

13-16 -2.41 0.776     -2.37 0.72

RAIN 1-2     -6.63 5.87 -9.47 5.69

RAIN 3-10     9.73 2.47 9.30 2.39

RAIN 11-16     1.44 1.91 1.49 1.92

RAIN 17     -7.02 3.58 -7.82 3.43

RAIN, DRY2) 3-8     6.04 2.83 5.55 2.66

RAIN, WET2) 9-10     -7.60 3.00 -7.06 2.91

RAIN, WET2) 11-14     -3.79 1.68 -2.70 1.60

FROST 11-12         3,120 1,270

R2  %

1) COLD: cold regime; WARM: warm regime.
2) DRY: dry regime; WET: wet regime.
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The estimates are consistent with our expecta-
tions, in terms of that each of these three meas-
ures has qualitatively and quantitatively different 
yield impacts depending on period. The effect of 
GDD is initially negligible, as a mild early growing 
season may even increase the yield potential. The 
marginal yield effect of GDD increases towards 
August and peaks within the period from late July 
to mid-August (13-16 weeks from the beginning 
of May). In this period the marginal yield effect of 
a GDD point is estimated at 17 kg ºC-1. Within the 
cold regime, i.e. when the accumulation of GDD 

Table 6. The parameter estimates and their standard errors in OLS and FGLS models. Estimated in Equation 5.

Weeks 
starting 

from 
May 1

OLS (All) FGLS (All) FGLS (Restricted)

Model variable Parameter Std. Error Parameter Std. Error Parameter Std. Error
Intercept -5,160 1,420 -4,780 1,450 -4,870 1,37
Mietoinen 32.5 195 -40.6 197
Palkane -59.0 194 29.2 198
Ylistaro -309 204 -261. 213 -256 162
GDD 1-4 -2.39 1.67 -2.21 1.65 -2.19 1.63
GDD 5-8 -3.03 1.54 -3.45 1.56 -3.44 1.52
GDD 9-12 1.19 2.08 -0.26 2.05
GDD 13-16 16.3 4.42 16.7 4.61 16.7 4.51
GDD, COLD1) 9-12 1.92 0.69 1.48 0.67 1.54 0.49
GDD, COLD1) 13-16 1.97 0.88 1.78 0.89 1.78 0.87

GDD, WARM1) 13-16 -2.37 0.72 -2.40 0.71 -2.39 0.70
RAIN 1-2 -9.47 5.69 -11.3 5.69 -11.4 5.54
RAIN 3-10 9.30 2.39 9.69 2.42 9.88 2.32
RAIN 11-16 1.49 1.92 1.52 1.91 1.51 1.85
RAIN 17 -7.82 3.43 -6.08 3.45 -6.12 3.38
RAIN, DRY2) 3-8 5.55 2.66 5.87 2.64 5.86 2.53
RAIN, WET2) 9-10 -7.06 2.91 -6.56 2.92 -6.64 2.84

RAIN, WET2) 11-14 -2.70 1.60 -2.14 1.55 -2.13 1.52

FROST 11-12 3,120 1,270 3,100 1,310 3,090 1,300

R2  % 3) 37.9 39.4 39.3

1) COLD: cold regime; WARM: warm regime.
2) DRY: dry regime; WET: wet regime.
3) R2 is not fully comparable between the OLS and FGLS specifications, since FGLS is rescaled.

variation, whereas the corresponding explanatory 
power for GDD was estimated at 16%. Thus, when 
the production site and the weather measurement 
points are at the same location, rainfall-based 
measures seem to have larger potential for hedg-
ing against yield risks, but it is known that rainfall 
has more spatial variation than temperature-based 
GDD. Therefore, when the distance from the 
weather station to the production site increases, 
the relative efficiency of the rainfall- and tempera-
ture-based measures may become ambiguous and 
reversed. These spatial questions require different 
analysis and are addressed in Myyrä et. al (2011).
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is a particular concern, the corresponding marginal 
yield effect is estimated even higher (19 kg ºC-1 ). 

Another temperature-related index, night frost 
(FROST), is estimated to be the most critical, with 
the most severe crop damage in the middle of July. 
The marginal yield effect of night frost in the mid-
dle of July was estimated to be as high as 2,100-
2,400 kg of wheat, depending on the specification 
of the frost variable. In other words, if a night frost 
hits in mid-July, it is expected to result in yield 
losses of between 2,100 and 2,400 kg per hectare. 
At the beginning and towards the end of the grow-
ing season, the damage caused by night frost is 
estimated to be negligible. 

Rainfall has three separate regimes with re-
spect to time. First, at the beginning of May, the 
approximate sowing time in Southern Finland, any 
significant rainfall is estimated to reduce the yields, 
since it delays sowing and excessive rains may also 
result in crust formation. However, in June, when 
drought typically influences crop yields, the mar-
ginal yield effect of rainfall peaks at a significant 
positive value of 10 kg mm-1. Thereafter, in July 
and August, the impact of rain gradually declines 
with the passage of time and turns negative at the 
end of August. Rain in late July and thereafter, 
comes too late to improve the growth and begins 
to adversely affect both standing yields and their 
harvest. 

With respect to rainfall, the data are not inform-
ative enough to identify the negative yield effects 
of excessive rainfall, when the rainfall is measured 
as the frequency of excessive rain defined as, for 
example, at least 40 mm within a two-day period. 
The data are nevertheless informative enough to 
identify asymmetric rainfall effects early and late 
in the growing season. In the early season the dry 
regime differs from the other regimes, and in late 
summer the wet regime differs from the others. In 
June, when a shortage of water is a particular con-
cern, the marginal yield effect of one millimetre 
of rain is estimated within the dry regime at 16 
kg. Within the wet regime, on the other hand, the 
marginal yield effect of rain decreases earlier and 
faster than in other regimes to negative values in 
July and August, towards the harvest. The marginal 
yield effect is estimated at the lowest and negative 

value (-7 kg mm-1) at the end of the growing season 
in all regimes. 

In addition to the above-described effects on 
the expected yields, the data indicate that weather 
events have heterogeneous yield implications so 
that, within the range of sample variation, the yield 
volatility increases with adverse weather events 
causing crop damage. In particular, dry early and 
midsummer periods in June increase yield volatil-
ity and  reduce yields.12

Our results have several important implications 
for the design of simple and tractable (efficient) 
weather index-based insurance contracts. First, the 
weather events triggering the indemnity payments 
should be focused on certain critical periods and 
regimes. When protecting against yield losses re-
sulting from a shortage of GDD, the period from 
late July to mid-August is the most critical. When 
the shortage of GDD accumulation is of particular 
concern (the cold regime), the marginal yield effect 
of one GDD unit  is estimated to be as high as 19 kg 
of wheat. If, for instance, the daily temperature is 
decreased by one degree over a month, the GDD is 
reduced by 31 degree points and the resulting yield 
loss per hectare is estimated at 590 kg.   

Second, when protecting the grain grower 
against yield losses caused by night frosts, mid-
July is the most critical time. The likelihood for a 
night frost in July is low, but if a frost hits it results 
in yield losses of more than 2,100 kg per hectare. 

Third, when protecting grain grower against 
yield losses from a shortage of rainfall, June is the 
critical month, when the marginal yield effect of 
one millimetre of rain  is estimated at 16 kg. Thus, 
30 mm of rainfall has a marginal product of almost 
500 kg. However, if excessive rainfall is a concern, 
the contract should focus on the beginning and end 
of the growing season. 

When the distance between the location of 
weather measurement  and the standing crop in-
creases, the spatial correlation between the weather 
events becomes an issue (e.g. Myyrä et al. 2011). 
The higher the spatial correlation is the more prom-

12 The result holds only locally within the range of sample 
variation. The asymptotic property should be that when a 
weather event is so severe that the yield approaches zero, the 
volatility also approaches zero. 
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ising the indices would be in establishing liquid 
market regimes to trade these contracts. But if the 
correlation is low (as in the case of rain and hailing) 
the weather index measurement  has to be located 
at a very close to the standing crops to be relevant 
and efficient in hedging. In this case the contracts 
have to be tailored to local measurement points and 
can perhaps be sold at the best over the counter. 
These spatial questions are, nevertheless, left as 
a topic for another research. This paper addresses 
only the correlations between the weather indices 
and yield when the weather measurement point and 
the standing crops are at the same location.

Finally, complying with the WTO and CAP 
regulations would be a challenge for a subsidized 
index based contract, if these regulations require 
that only yield losses of more than 30% can be 
subsidized and receiving the indemnity payments 
require that the losses have to be observed on the 
farm. Since index-based contracts are only indi-
rect measures of the true yield losses, proving yield 
losses of more than 30% may ultimately be chal-
lenged by the heterogeneity of the weather effects, 
as our results suggest that not only are expected 
yields reduced, but the yield volatility is also in-
creased when adverse weather shocks are realized. 
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