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Base population allele frequencies (AF) should be used in genomic evaluations. A program named Bpop was imple-
mented to estimate base population AF using a generalized least squares (GLS) method when the base population 
individuals can be assigned to groups. The required dense matrix products involving (A22 )

-1v were implemented ef-
ficiently using sparse submatrices of A-1, where A and A22 are pedigree relationship matrices for all and genotyped 
animals, respectively. Three approaches were implemented: iteration on pedigree (IOP), iteration in memory (IM), 
and direct inversion by sparsity preserving Cholesky decomposition (CHM). The test data had 1.5 million animals 
genotyped using 50240 markers. Total computing time (the product (A22)

-11) was 53 min (1.2 min) by IOP, 51 min 
(0.3 min) by IM, and 56 min (4.6 min) by CHM. Peak computer core memory use was 0.67 GB by IOP, 0.80 GB by IM, 
and 7.53 GB by CHM. Thus, the IOP and IM approaches can be recommended for large data sets because of their 
low memory use and computing time.
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Introduction

Base population allele frequencies (AF) are recommended to be used in computation of the genomic relationship 
matrix  used in the genomic evaluation (VanRaden 2008) and estimation of the genomic compliant relationship 
matrix among metafounders (Garcia-Baccino et al. 2017). For example, the single-step GBLUP method assumes 
that the pedigree and genomic based relationship matrices have the same scale and base population definition 
(Christensen et al. 2012, Mäntysaari et al. 2020) which may be achieved by using base population AF. Garcia- 
Baccino et al. (2017) reviewed methods for the estimation of base population AF when the pedigree of genotyped 
animals is known for single and multiple group populations. In two of the presented three methods, i.e., general-
ized least squares (GLS) and maximum likelihood (ML), computationally the most challenging step is the product  
v = (A22)

-1s where vector s is a function of marker genotypes and A22 is the pedigree based relationship matrix be-
tween the genotyped animals. When the number of genotyped animals is large, the need to invert a large A22 may 
make the method computationally unfeasible because this matrix is often dense.

An alternative to the brute force inversion of a large A22 matrix is to solve the vector v in linear system of equa-
tions A22v = s, e.g., by an iterative method such as preconditioned conjugate gradient (PCG) iteration. However, 
when the number of genotyped animals is large, storing and using the dense A22 matrix will slow down the com-
putations considerably. Thus, solving by an iterative method may take too long. Strandén et al. (2017) present-
ed an alternative computational approach for the GLS method (McPeek et al. 2006) where explicit calculation of  
(A22)

-1 is avoided. They used equality (A22)
-1s = (A22 –A21(A11)-1A12)s where Aij, i,j = 1,2,are submatrices of A-1 which 

are often sparse, and numbers 1 and 2 refer to the non-genotyped and the genotyped animals, respectively. 
Product Aijs can be calculated either using pedigree information without making matrix Aij (Henderson 1976, 
Quaas 1976) or after Aij has been computed using pedigree information. Computationally the most challenging 
task is the product (A11)-1x where x = A12s. This product requires using either an iterative or a sparse matrix solver  
(Strandén et al. 2017).

Aldridge et al. (2018) compared two approaches to compute the GLS method estimates. One method used the 
direct inversion of the A22 matrix approach and another used the sparse matrix solver approach as in Strandén et 
al. (2017). Aldridge et al. (2018) estimated base population AF for 1670 markers using genotypes from 100 078 
animals. According to their results, the direct A22 matrix inversion approach took more than 1 day but the algo-
rithm using sparse matrices took about 49 seconds. The direct inversion approach needed 118.5 GB of memory, 
but the sparse matrix approach needed only 1.3 GB of memory.
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Strandén et al. (2017) used the sparse matrix approach in the iterative PCG method to solve single-step GBLUP 
(Aguilar et al. 2010, Christensen and Lund 2010) where the product (A22)

-1d was calculated in every iteration of the 
PCG algorithm. They presented and tested three approaches and found the sparse matrix solver approach to be 
the fastest (Strandén et al. 2017). In single-step GBLUP, the product (A22)

-1d needs to be computed every iteration 
using a different d vector. Note that the product (A22)

-1d above is due to the mixed model equations of ssGBLUP, 
and not due to PCG iterations used in the GLS method for the base population AF estimation in the current study. 
In the GLS method, however, the product v = (A22)

-1s needs to be computed only once and the same v vector is 
used in every AF calculation. Thus, when the number of AF to be estimated increases, time to compute v = (A22)

-1s 
can become less significant. Because the two other approaches, named IOP and IM (see “Solving approaches in 
Bpop” in Material and Methods) in Strandén et al. (2017) were computationally simpler than the sparse matrix 
solver approach called CHM, and needed less computing memory, the simpler approaches may be better in AF 
estimation for large data sets having millions of genotyped animals.

In this study, we describe Bpop program for estimation of base population AF using the GLS method. We consider 
one and multiple group populations in AF estimation. We implement and compare the three algorithms, called 
IOP, IM and CHM, presented in Strandén et al. (2017). We use a large genomic data from cattle to illustrate per-
formance of the developed approaches. 

Material and methods
Base population allele frequency estimation

Base population AF in a single population can be estimated using the GLS model in McPeek et al. (2004). Let M be 
an n by m genotype matrix for n individuals and m SNP (single-nucleotide polymorphism) markers. Genotype is 
coded 0 for homozygote AA, 1 for the heterozygote AB, and 2 for the homozygote BB. For each marker i, the ap-
proach uses a GLS model where the only fixed effect is the unknown general mean µi: 

where mi is marker genotype column i in M, i = 1,...m , e~ (0, A22σ
2), A22 is pedigree relationship matrix of the 

genotyped animals, and σ2 is common variance. The variance of gene content σ2 is assumed to be the same for 
all genotypes and need not be known (e.g. Garcia-Baccino et al. 2017). Solving this GLS model gives estimator

         [1]

Base population AF is half of this, i.e.,                        

This approach can be generalized for an admixed population using a genetic groups model having r groups  
(Garcia-Baccino et al. 2017). Let Q be an n by r matrix of fractions of genetic groups represented in individuals 
where each row sums to one. The Q matrix can be calculated using pedigree information where offspring group 
proportions are calculated as mean of the parent group proportions and unknown parent is assigned to a group. 
The GLS model can be presented as

 

where µi is an r by 1 vector of unknown general means of the groups. Note that this GLS model assumes that the 
variance of gene content is the same in all groups (Garcia-Baccino et al. 2017). Estimator to the base population 
AF of the groups for marker i are solutions

        [2]

which is an r by 1 vector. In some cases, it is useful to estimate the AF using the observed genotypes, i.e., ig-
nore the pedigree structure. This can be done using simplified equations:                    and                       . We 
call these least squares (LS) estimators. Note that the computation of observed genotype data AF neglects the 
pedigree-based covariance structure between the genotyped animals.
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Computational algorithms
Computationally, the most challenging terms in formulas [1] and [2] are due to (A22)

-1 , particularly when n is large. 
Note that the computations involving  (A22)

-1 need to be done for each group and marker, i.e., in total mr times. 
Fortunately, all terms involving (A22)

-1 are independent from the marker genotypes in M and can be factored as a 
common multiplier which is calculated only once. 

For the single group case, formula [1] can be written as                where                                                                is a row 
vector of length n. Note that the c vector can be written

            [3]

where f=(A22)
-11n is an n by 1 vector. For the multiple group case, formula [2] can be written          where 

       is an r by n matrix. Like for the c vector, the C matrix can be expressed 

           [4]

where F=(A22)
-1Q is an n by r matrix. Note that for the multiple group case, (A22)

-1 is needed in r multiplica-
tions due to the r columns in Q. Thus, solving each of the AF requires multiplication of the marker vector mi 
by a constant vector c or matrix C. An alternative approach is to calculate all AF simultaneously by          and           
             for the single and multiple group cases, respectively.

Computations of the f vector and the F matrix need the inverse matrix (A22)
-1. As described in Strandén et al. 

(2017), the computations involving this matrix can be made efficiently using submatrices of the inverse of the full 
relationship matrix A. Animals can be assigned to two sets: set 1 has the non-genotyped ancestors of genotyped 
animals, set 2 has the genotyped animals. Then, the relationship matrix A  and its inverse A-1  can be expressed 
by submatrices referring to the two sets:

        and    

According to the rules of matrix algebra, inverse of the  A22 matrix can be expressed using elements of the inverse 
matrix A-1:

          [5]

Computations involving sub-matrices of A-1  can be made by using the pedigree list (Henderson 1976, Quaas 1976). 
Note that while the whole population pedigree can hold millions of animals, the matrix A can be restricted to in-
clude only genotyped animals and their ancestors. For example, non-genotyped progeny of these do not contrib-
ute information to AF. This reduction of the A matrix to genotyped animals and their ancestors can reduce sub-
stantially the amount of computations.

Consider calculating v=(A22)
--1s where s is an n by 1 vector. According to formula [5], we need to compute  

v=(A22)
-1s= (A22 –A21(A11)-1A12)s. This calculation can be split into the following three steps (Strandén et al. 2017):

1) 

2)

3)

Steps 1) and 3) involve sparse submatrices A12 and A21 of A-1. Because these steps compute a submatrix by vector 
product, the calculations can be performed using pedigree information without making the submatrices (Hen-
derson 1976, Quaas 1976). Step 2) can be calculated by solving y1 in A11y1=x1 which can be done by alternative ap-
proaches (see “Solving approaches in Bpop”). 

The above three steps can be used to calculate vector f in equation [3],           , by assigning vector s to be 
1n, and the result v equals f. For the computation of equation [4],    the three steps need to be done 
r times, separately for each column of Q, to compute columns of F. Hence, vector s is a column of Q, and the re-
sult v is the corresponding column in F.
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Bpop program

We have written an easy-to-use software, called Bpop, to calculate estimates to the base population AF using the 
described approaches. To address large populations and numbers of genotyped animals, Bpop has been written 
with Fortran 95.

The program expects at least names of pedigree and marker genotype files which include the input information 
for the calculations. By default, the relationship matrix computations, v=(A22)

-1s, do not use inbreeding coeffi-
cients because the program does not compute them. The pedigree information can be supported by inbreeding 
coefficients from a file such that the relationship matrix computations include inbreeding coefficients. All the in-
formation to compute elements of the A22 matrix is included in the pedigree of the genotyped animals and their 
ancestors. The Bpop program prunes the given pedigree to contain only the genotyped animals and their ances-
tors before the AF estimation. 

The pedigree file is expected to have a line for each animal. Each row has three numbers. The first column has the 
animal ID code and the next two columns have its parent ID codes. All ID codes must be positive 64-bit integer 
numbers which can be at most 263-1. Unknown parent ID code is either zero or a negative number.

The genotypes are expected to be in a text file. The first column in the genotype file has the ID code numbers. 
The genotypes of an individual are on the same line after its ID code. The genotypes are assumed to have count 
of one of the alleles, i.e., numbers zero, one or two, as described earlier. By default, the genotypes are expected 
to be space separated integer numbers. Option “-FMT” (Table 1) enables user to give a fixed format with Fortran 
syntax. For example, -FMT “(i10,26x,50240i1)” assumes there to be a 10-digit ID code, 26 spaces, and 50240 gen-
otypes without space separation. Number of markers in the format (50240 in the example above) has to be equal 
or more than in the genotype file. The program calculates and uses the actual number of markers on the first row 
of the genotype file if a too large number of genotypes is given in the format.

The base population AF are computed by equation [1] when no information on groups is provided. The base pop-
ulation animals can be assigned to groups for which the base population AF are estimated using equation [2]. The 
group numbers should be negative integer numbers in the place of unknown parents, i.e., any negative integer 
value as a parent indicates that the animal has a missing parent. These group numbers are needed for the base 
population animals only. In other words, the program calculates elements of the Q matrix for each animal by trac-
ing the pedigree to the base population identified by the base population unknown parent group numbers. In or-
der to estimate base population AF for the groups using equation [2], option “-group n” has to be given where n 
is equal to or more than the number of groups in the pedigree. More Bpop program options are in Table 1.

Table 1. Bpop program requires always the file names of pedigree and marker genotype (M matrix) as user input. Optional input, 
their description and defaults are given below.

Option Description

-info       print program instructions, current option values and stop.

-nthr n Number of threads. Default is 1.

-a <file>   output file name for the estimated base population allele frequencies. Default: marker genotype 
file appended with “_AF_MTH” where MTH equals the calculation method (IOP, IM, or CHM).

-F <file>   input file name for the inbreeding coefficients file (INPUT). 
Defaut file format: <id> <number> <inbreeding coefficient>

-Fcol c   column number for the inbreeding coefficients in the -F file option. Default is 3.

-m1 c    change default column number (2) of the first marker in the marker file.

-FMT FMT    format given for <id code> and <genotypes>, e.g. -FMT “(i2,1x,6i1)”.

-CR v convergence statistic threshold value in iterative solving, default 10-5.

-groups n   allele frequencies by group (negative unknown parent number),
n= maximum number of groups in the pedigree.
Default:  n=1, and negative parent numbers are ignored. 

-proportions <file> write the group proportions in Q by genotyped animal to file.
Default: no file created.

Calculation method (only one can be used):

-IOP        iteration on pedigree.

-IM         iteration in memory (default).

-CHM        CHOLMOD approach.



AGRICULTURAL AND FOOD SCIENCE
I. Strandén & E.A. Mäntysaari (2020) 29: 166–176

170

In the Bpop program, the base population AF are computed by   for a single group population, and by 
               for a multiple group population, where i is the marker number, and mi is column i in the marker matrix M. 
The marker genotypes M are assumed to be in a file where each line has all markers for an individual. In order to 
save memory and allow large genotyped populations, the M matrix is not stored to memory. Instead, the geno-
type file is read line by line, i.e., rows of matrix M are processed. The c vector or the C matrix is kept in memory. 
Multiplication of each marker row of M by c or C is performed to all markers simultaneously, and the result is ac-
cumulated to the AF estimates. For example, consider AF matrix            . It is calculated by sum

           , where c.j is column j of C and m.j is row j of M.

Solving approaches in Bpop
Computation of GLS estimates can be done following the three steps described earlier in section “Computational 
algorithms”. Two of the steps, numbered 1) and 3) are matrix times vector multiplications. Computationally most 
challenging is step 2) which requires calculating v=(A22)

-1s, i.e., solving y1 in A11 y1= x1. This solving of a linear system 
of equations can be done in many ways, and the Bpop program allows choosing one of three alternatives (Table 1). 
Two of the approached, options named IOP and IM, use preconditioned conjugate gradient (PCG) iteration, and 
the third option, named CHM, uses direct solving by CHOLMOD library (Davis and Hager 2009, Chen et al. 2008). 

In the IOP and IM approaches, PCG iteration is used to solve y1 in A11 y1=x1. In PCG, the core iteration step involves 
multiplication of a vector by the A11 matrix. In the IOP aproach, the required computations are done by reading 
pedigree list of the genotyped animals and their ancestors without ever explicitly forming the A11 matrix (see Ap-
pendix). Because no A11 matrix was formed for the IOP approach, the RAM memory need is expected to be small. 
In the IM approach, the A11 matrix is stored in memory as a sparse matrix and used in PCG. 

The IOP and IM methods (options “-IOP” and “-IM”) use the preconditioned conjugate gradient (PCG) method in  
solving y1 in A11 y1= x1. Diagonal of the A11 matrix is used as the preconditioner in the PCG method. Convergence 
statistic at the iteration round k is

where         is vector of solutions at round k, and x1 is the right-hand side. Convergence is assumed when  ck is less 
than 10-5. The default convergence limit can be changed using option “-CR” (Table 1).

In the CHM approach, the sparse A11 matrix is built in memory as in the IM approach. Inverse of the A11 matrix can 
be dense although the A11 matrix is sparse. Consequently, sparse Cholesky factorization of A11 by CHOLMOD library 
is used in solving of A11 y1=x1, i.e., a direct method is used instead of PCG iteration. The factorization is done with 
minimal fill-ins of the (sparse) matrix. CHOLMOD includes high-performance left-looking supernodal factorization 
and solving methods (Ng and Peyton 1993) based on LAPACK (Anderson et al. 1999) and BLAS (Basic Linear Algebra 
Subprograms) (Dongarra et al. 1990). The use of CHOLMOD requires two steps: ordering/factorization, and solv-
ing. The first step is done only once, and the direct solving is done for each vector s which is 1n or a column in Q.

Study design and data
The three approaches (IOP, IM and CHM) were tested in estimation of AF using beef cattle data from the Irish 
Cattle Breeding Federation (ICBF). The full pedigree had 10.26 million animals of which 1.50 million were geno-
typed. The genotyped animals had an ancestor pedigree of 1.83 million non-genotyped animals. The animals had 
been genotyped using different versions of ICBF IDB SNP chip but before the analyses these were imputed to the 
standard Illumina Bovine SNP50 Bead Chip (Illumina, San Diego, USA). There were 50240 markers from 29 bovine 
autosomes available for the analysis. Original pedigree of the genotyped animals had 46 unknown parent groups 
which were determined by breed of animal with unknown parent(s). Groups having average proportion in the Q 
matrix lower than 0.01% were combined to one group such that the final number of groups was 24. Average pro-
portion of the combined group in the Q matrix was 0.01%. 

It was first verified whether all three approaches gave the same solutions, and after that they were compared 
according to computing time to calculate v=(A22)

-1s, i.e., step 2), total computing time, and peak random access 
memory (RAM) use. Number of PCG iterations is reported for the IOP and IM approaches. The full 1.50 million 
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genotyped data were used in estimation of base population AF for two base populations: a single group and a 
24-group population. In addition, single population AF were computed using randomly sampled 0.1, 0.5 and 1 
million genotyped animals in order to investigate scalability of computations.

We used a multi-core computer with two Intel® Xeon® E5-2680 v2 (2.8 GHZ) processors. A single thread was most-
ly used. However, parallel computing using at most 10 CPU cores was tested when computations used the CHM 
approach.

The Bpop program has command line options (Table 1). An example command line to estimate base population 
AF using the ICBF data set:

Bpop -a IM.dat -FMT “(i10,26x,50240i1)” -F ICBF.inbr ICBF.ped ICBF_geno.dat

In this case, the default approach (IM) will be used in the computations because no computing approach is giv-
en. The inbreeding coefficients are in file “ICBF.inbr”, the pedigree is in file “ICBF.ped” and the genotypes in file 
“ICBF_geno.dat”. The estimated base population AF will be written to file “IM.dat”. Because no “-groups” option 
was given, a single population is assumed. Including command “-groups 50” would estimate base population AF 
for the groups given in the pedigree defined as negative parent numbers for the animals without known parents. 
The number 50 in the option “-groups” is at least as large as the number of groups in pedigree.

Results and discussion

The studied three approaches gave the same or almost the same AF estimates. Correlations between AF from any 
two approaches were 1.00000 for the single population analysis with the largest difference of 0.0001 in estimat-
ed base population AF for any marker by any two approaches. For the 24-group case, the correlations between 
AF for the approaches were 1.00000 and the larger difference was 0.0002. Thus, the PCG iteration based and the 
direct solver based approaches reached almost the same solutions.

Computing time due to calculating the c vector in [3] took only a fraction of the total computing time (Table 2). 
Consequently, differences in total computing time between the three approaches were small. The CHM approach 
was the slowest because the extra computing time due to making the factorization took all the computing time 
benefits attained by fast solving of the c vector. The factorization took 4.38 min and 1.15 min with one and ten 
cores, respectively. When the number of genotyped animals was reduced, the total computing time reduced as 
well (Table 3). In general, all approaches showed similar total computing times. 

The approaches needed different amount of RAM (Table 2) which was expected. The IOP approach required least 
amount of RAM. In IOP, only the pedigree list is read, and computations require some extra memory. In the IM 
and CHM approaches, it was necessary to have the sparse matrix A11 of size 1828434, i.e., number of ancestors 
to the genotyped animals, in RAM. The matrix was stored in compressed sparse row format where each non-zero 
coefficient value was stored in a double precision real and its column number in a 32-bit integer. The number of 
non-zero elements in A11 was 4140064. Thus, less than 0.001% of the elements in A11 were non-zero. The need-
ed additional memory due to this sparse matrix was about 130 MB (Table 2). Note that the memory need of 130 
MB includes also some extra memory allocation for the sparse matrix because the space was allocated before the 
actual number of non-zeros in the A11 matrix was known. The IM approach showed some speed benefit over the 
other approaches although the total computing time was not much affected (Table 2). 

Table 2. Number of PCG iterations (N), wall clock time for computing the c factor (Tc), total wall clock time (TT) and peak memory use 
(RAM) in single group allele frequency estimation when using all genotypes and computations are based on iteration on pedigree 
(IOP), iteration in memory (IM), or sparse Cholesky factorization (CHM).

Approach N iteration Tc (min) TT (min) RAM (GB)

IOP 400 1.18 52.5 0.67

IM 381 0.32 50.9 0.80

CHM – 4.63 55.9 7.53

CHM, parallel – 1.42 50.4 8.20
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Table 3 illustrates the effect of increase in the number of genotyped animals to peak RAM. The IOP and IM ap-
proaches showed only a modest increase in peak RAM but RAM increase for the CHM approach was faster. How-
ever, even in the CHM approach, the increase in peak RAM was quite linear in the number of genotyped animals. 

The CHM method is based on a direct solving approach where reordering of the equations is used to minimize 
both the memory use and the number of computations in the factorization and solving steps. The additional RAM 
in the CHM approach over the IM approach increased as the number of genotyped animals increased. When all 
1.50 million genotyped animals were used in the computations, the CHM method needed ten times more mem-
ory than merely storing the A11 matrix as in the IM approach (Table 3). 

The subsets of genotyped animals in Table 3 were a random sample from the 1.50 million genotyped animals. In 
practice, number of genotyped animals increases due to genotyping of young animals. Most of the new genotyped 
animals can be expected to have at least one of the parents genotyped. Consequently, the number of non-zero 
elements in A11 can be expected to increase slowly. Thus, the IM approach will continue to have a low memory 
need and the memory increase in the CHM approach can be expected to be tolerable in the future (Masuda et al. 
2016, Taskinen et al. 2017). In the analysis of our data sets, the number of non-zero elements in A11 matrix was 
0.97 million, 2.62 million, 3.52 million, and 4.14 million, for the cases of 0.10, 0.50, 1.00 and 1.50 million geno-
typed animals, respectively. Thus, number of non-zero elements increased at a slower pace than the number of 
genotyped animals.

Performance of the approaches adopted in this study to compute term (A22)
-1 times a vector has been investigat-

ed in solving mixed model equations from a ssGBLUP model. Strandén et al. (2017) used PCG iteration to solve 
ssGBLUP. In regular ssGBLUP, the A22 matrix was computed and inverted. The three approaches using formula [5] 
for (A22)

-1 were used to decrease total computing time. They found that the solver computing time increased, but 
preprocessing time decreased, when formula [5] was used. Time to solve MME increased by c. 25% by IOP, c. 11% 
by IM, and c. 2% by CHM in comparison to the regular ssGBLUP. However, the total computing time decreased by 
almost 30% when using CHM because there was no need to make and invert A22. Advantage of the CHM approach 
is expected to increase, when the number of genotyped animals increases because computing time for inverting 
A22 increases qubically in number of genotyped animals but the increase in computing time due to formula [5] is 
linear (Masuda et al. 2016). In contrast, in the base population AF estimation, total computing time by the CHM 
approach was often more than by the IOP and IM approaches because the preprocessing time to make the fac-
torization was substantial in comparison to the need to compute the c vector only once.

Aldridge et al. (2018) estimated base population AF using the GLS method for a single population. They compared 
a direct sparsity preserving solving approach (GLS_Sparse) similar to our CHM approach to an approach where the  
matrix was explicitly made and inverted (GLS_Full). The GLS_Sparse approach needed 49 seconds and 1.3 GB RAM 
with 1,670 SNP markers from 100,078 genotyped animals. The GLS_Full approach needed about 32 h and 118.2 
GB of RAM. When the number of markers was increased to 50,100, the GLS_Sparse approach took 6 minutes and 
37.6 GB of RAM. These numbers support the conclusion that the implemented implicit computing approach for 
the A22 matrix is efficient. The smaller memory need by the Bpop program than the GLS_Sparse approach in the 
100,000 genotyped case can be due to differences in the direct solver or having the M matrix in memory or other 
reasons. Thus, direct comparison of programs should be treated with caution.

We did not consider any approach where the A22 matrix would be formed explicitly because the number of geno-
typed animals in our data was so large. In practice, when the number of genotyped animals increases sufficiently, 
preprocessing time to make A22 becomes unfeasible due to the large memory requirements. For example, when 
genotypes are available from 1.5 million animals, dense square matrix of the size 1.5 million stored in double pre-
cision would take about 18 terabytes. When a dense lower triangle or packed matrix is used, storing the A22 ma-
trix in single precision would still require 4.5 terabytes.

Table 3. Total wall clock time in minutes (TT) and peak memory use in giga bytes (RAM) in single group allele frequency 
estimation when number of genotyped animals was 100,000 (100K), 500,000 (500K), 1,000,000 (1M), and 1,500,000 (1.5M), 
and computations use iteration on pedigree (IOP), iteration in memory (IM), or sparse Cholesky factorization (CHM).

100K 500K 1M 1.5M

Approach TT RAM TT RAM TT RAM TT RAM

IOP 3.7 0.63 17.4 0.63 35.0 0.63 55.0 0.67

IM 3.7 0.63 16.5 0.65 32.5 0.73 50.9 0.80

CHM 3.8 0.95 17.5 3.20 34.8 5.53 55.9 7.53
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In this study, benefits of using parallel computing were small (Table 2). The CHOLMOD library can be compiled 
to use one CPU or several CPUs. Thus, it allows exploiting parallel computing. Parallel computing decreased time 
in the CHOLMOD computing steps but, as already noticed, this step takes only a fraction of the total computing 
time. In addition to the parallel CHOLMOD, we tested parallel computing in the AF estimation by using parallel 
versions of DAXPY and DGEMV subroutines available in LAPACK/BLAS from the Intel Math Kernel Library© (Intel 
Math Kernel Library Reference Manual, 2014). Parallel computing did not give much advantage here either. In the 
current implementation, one row of M is in memory at a time which leads to calling the parallel subroutines as 
many times as there are genotyped animals. Benefits from parallel computing are likely to be larger when the full 
M matrix is in RAM as in Aldridge et al. (2018). Then, one matrix times matrix product using DGEMM or SGEMM 
subroutine call can be used and, thus, the parallel subroutines use data from all animals simultaneously. How-
ever, having the M matrix in RAM would increase the peak RAM substantially. The M matrix for our full genomic 
data would take about 600 GB in double precision, which has to be used in order to use the DGEMM subroutine. 
If single precision subroutine SGEMM is considered to give sufficient numerical accuracy, then the RAM need is 
halved. A hybrid approach would allow reading and using genotypes from several individuals at a time. This hy-
brid approach would have a lower RAM use than storing the full M matrix in RAM and, perhaps, more efficient 
matrix times matrix computations by DGEMM than in the current implementation.

Estimation of base population AF to groups decreased differences between the approaches. Table 4 has comput-
ing times from estimating base AF for the 24 groups. In general, the results were similar to those for single group 
in Table 2. However, the difference in peak RAM was not as large between the approaches for the multiple group 
case as for the single group case. This is most likely due to the increase in RAM need due to the 24 groups each of 
which required a column in the Q matrix. In other words, the group proportions for the genotyped animals and 
their ancestors were temporarily needed in the computation of the Q matrix which was stored in RAM in double 
precision and took almost 650 MB. The difference in peak RAM between IOP and IM approaches was minimal be-
cause memory was deallocated after the full Q matrix had been made, and the Q2 submatrix of only the genotyped 
animals was used in the base AF computations. The additional memory needed to store A11 in the IM approach 
was so small that the deallocated RAM from the full Q memory was more than enough for its use.

Conclusions

A computationally efficient program called Bpop was written to estimate base population AF using a GLS approach. 
Computationally the most demanding step involves inverse of pedigree relationship matrix between genotyped 
animals, (A22)

-1 , times a vector or a matrix. The A22 matrix is dense. We presented and implemented three alter-
native approaches which do not require explicitly making the (A22)

-1 matrix. These approaches used an equivalent 
matrix formula of (A22)

-1 involving sparse matrices. This formulation allowed use of marker data from many geno-
typed animals. The computing step involving the reformulated (A22)

-1 matrix was very fast. The three approaches 
had small differences in total computing time but had larger differences in the needed amount of peak computer 
memory. Thus, choice of the computing approach can be made based on the available computer memory.

Availability and requirements
The program Bpop is provided free of charge for the scientific community, but users are required to credit its use in 
any publication. Commercial users must contact the authors. Bpop executable is available for Linux upon request 
from the corresponding author. The program is under ongoing development, and due to the number of features, 
some combinations of options may not have been tested thoroughly.

Table 4. Average number of PCG iterations (N), wall clock time for calculating the C matrix in Formula [4] (TC), total wall clock time 
(TT) and peak memory use (RAM) in multi group allele frequency estimation when computation use iteration on pedigree (IOP), 
iteration in memory (IM), or sparse Cholesky factorization (CHM).

Approach N iteration TC (min) TT (min) RAM (GB)

IOP 300 10.5 89.7 1.68

IM 286 5.3 85.5 1.68

CHM – 4.7 91.3 8.38

CHM, parallel – 1.8 85.3 9.05
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Appendix: Solving y1=(A11)-1x1 iteratively

Bpop program has three alternative approaches to solve the equation A11 y1= x1.In two of the approaches, pre-
conditioned conjugate gradient (PCG) iteration is used. These two alternatives use either a A11 matrix stored in 
memory (the IM approach) or a pedigree list information without explicitly making A11 (the IOP approach) for the 
necessary computations in PCG iteration. All three approaches use the same rules as those used to make the full   
A-1 using a pedigree list (Henderson 1976, Quaas 1976). In the PCG method (e.g., Strandén and Lidauer 1999) used 
by the IM and IOP approaches, each iteration requires multiplication of the current search direction vector d1 by 
the coefficient matrix A11. Thus, every iteration of PCG calculates product s= A11d1. In the following, we will be de-
scribed the computational steps for this product in the IOP approach.

The product s= A11d1can be computed by considering the full A-1d matrix product rules, where d2=0, and by updat-
ing only those elements that change vector , i.e., non-genotyped ancestors to the genotyped animals. According 
to the rules of making  A-1 (Henderson 1976, Quaas 1976), the product  A-1d can be computed by proceeding the 
pedigree list (in any order) and updating elements of individual i, its sire s and dam d in the result vector s. For 
example, when both parents are known, update for individual i and its parents is  

where fi = 4/(4–k–Fs–Fd), k=2 is the number of known parents to individual i, Fs is inbreeding coefficient of sire, and 
Fd is inbreeding coefficient of dam. Corresponding update formulas are available for individuals with only one or 
no known parents. Note that the computations can be efficiently performed from right to left such that no matri-
ces are stored (Strandén and Lidauer 1999):

1) 

2)              .

Because the IOP approach is used to calculate s=A11d1, not A-1d, the multiplications of d can be limited to the non-
genotyped ancestors of the genotyped animals. Likewise, the update is applied to these non-genotyped ances-
tors as well.

Figure 1 has a Fortran-type pseudo code for the multiplication s=A11d1. The ‘pedigree’ table has pedigree informa-
tion for all genotyped animals and their ancestors. For every individual, the pedigree has three numbers: individual, 
sire and dam ID numbers. In the Bpop program, the full pedigree has been pruned to have the genotyped animals 
and their ancestors. Furthermore, the animal ID codes have been renumbered to be consecutive integer numbers 
from one to the number of animals N. There are three vectors. Vector F has the pre-calculated inbreeding coeffi-
cients, vector d has the current values to be multiplied by A11, and vector s will have the result of the multiplication.

supdate=fi �
-0.5
-0.5

1
� [-0.5 -0.5 1] �

ds
dd
di

� w 

1) c=[-0.5 -0.5 1] �
ds
dd
di

� 
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s = 0

do i=1,N

  (id, sire, dam) = pedigree(i) ! ID, its sire and dam numbers

  ! step 1): compute multiplier c

  k = 0 ! number of known parents

  f = 0 ! sum of parent inbreeding coefficients

  c = 0 ! result from the first step multiplication

  if (sire > 0) then ! sire known?

    k = k + 1

    f = f + F
sire

    if (sire in A11) c = c – 0.5*d
sire

  end if

  if (dam > 0) then ! dam known?

    k = k + 1

    f = f + F
dam

    if (dam in A11) c = c – 0.5*d
dam

  end if

  if (id in A11) c = c + d
id

  ! Step 2): update vector s 

  if (c is nonzero) then

    d = 4/(4-k-f)

    if (sire in A11) s
sire

= s
sire

 – 0.5*d*c

    if (dam in A11) s
dam
 = s

dam
 – 0.5*d*c

    if (id in A11) s
id
 = s

id
 + d*c

  end if

end do

Fig. 1. Pseudo code example of calculation of product s=A11d1


