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Jaakko Pietarinen and Asko Mäki-Tanila
Department of Agricultural Sciences, University of Helsinki, P.O. Box 28, 00014 Helsinki, Finland

e-mail: Jaakko.Pietarinen@helsinki.fi

Maternally affected traits, such as juvenile growth and survival, provide resilience in mammal species, in particular 
for reindeer living in extreme northern habitat. The genetic variation in such traits is caused by direct and maternal 
genetic effects (DGE and MGE, respectively). We used Willham’s variance-component approach and extended a 
family index with the focal individual and its full- and half-sibs to an approximated BLUP (pseudo-BLUP) by includ-
ing the parents’ estimated breeding values. Most of the deviations of the predicted responses from the simulated 
ones were 4.1% for DGE and 5.3% for MGE. The benefits of index and BLUP selection are high in the case of nega-
tive correlation, large full-sib family and in particular, when maternal half-sibs are available. Higher economic value 
for MGE than for DGE is needed, since with equal heritabilities and economic weights for the effects the maternal 
response is 40 to 70% of the direct one. With negative correlation, records on collateral relatives beyond sibs are 
possibly needed. They would support also the prediction of MGE in uniparous reindeer lacking full-sib information.
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Introduction

Maternal effects are common and important in all mammals and describe the effects a mother (dam) has on her 
offspring’s phenotype. In general, such effects are social interaction or indirect genetic effects with possible envi-
ronmental component (Dickerson 1947, Willham 1963, Moore et al. 1997, Bijma 2006, Wolf and Wade 2009). In 
natural populations maternal care and other maternal effects are important in determining the survival and other 
fitness traits of the young (Donohue 1999, Hereford and Moriuchi 2005, Räsänen and Kruuk 2007). In heterogene-
ous and extreme northern environments utilized by semi-domesticated reindeer with the habitat of the animal un-
dergoing yearly changes, maternal effects have an important role in phenotypic plasticity providing a fast, adaptive 
(but temporary) response to the changing environment shared by offspring and mother (Mousseau and Fox 1998). 

Animal breeding research has been occupied by the genetic basis of maternal effect as an indirect genetic effect 
(IGE) affecting the total genetic variation available for selection (Bijma et al. 2007). In meat producing livestock 
species, maternal effects are important for traits relating to growth such as birth weight, weaning weight, aver-
age daily gain etc. 

Many maternal effects consist of behavior traits and one option would be to perform selection on behavioral ob-
servations (Chiang et al. 2002). In circumventing laborious data recording problems, animal breeders have facili-
tated the selection on maternal traits by the use of statistical methods. The variation in maternal traits can be 
modelled by Willham’s (1963, 1972) variance component model expressing the phenotype as the sum of individ-
ual’s direct effect and its’ dam’s maternal effects.

Our goal is the development of methodology to assess the design and volume of data collection to reach satis-
factory accuracy of breeding values for direct and maternal effects with multi-generation information. A general 
(analytical) method is desirable because the alternative, stochastic simulation, would give answers only to specific 
situations. Simulation have been used for example by Lourenco et al. (2013) to study the effect of genetic evalua-
tion method and Maiorano et al. (2019) to study selection when using pooled semen. Where available, maternal 
half-sibs are expected to be efficient in predicting MGE (Willham 1963, Noble et al. 2014, Maiorano et al. 2019).

Wray and Hill (1989) introduced an analytical method for approximating the use of multi-generation pedigree 
information for predicting the response to selection (often now called pseudo-BLUP). The method starts from 
a selection index on collateral relatives’ phenotypic information and mimics the influence of pedigree informa-
tion using parents’ estimated breeding values (EBV’s) and iterating over generations. The compact method lends 
itself to extensions, e.g. Villanueva et al. (1993) extended the method to multi-trait context, which was applied 
by Mulder and Bijma (2005) to study genetic evaluation in traits under GxE interaction. Dekkers (2007) used an 
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approximation to study the benefits of computing and using genomic EBV’s. Mulder (2016) resorted to pseudo-
BLUP approach in investigating the gains due to genomic selection for selection strategies under GxE interaction.

The objectives of our study are to: Extend and validate a pseudo-BLUP approximation to traits influenced by ma-
ternal effects. Study the outcome of selection schemes for direct and maternal effects with different economic 
weights, design and volume of data collection. We discuss implications for data collection and selection schemes, 
in particular for reindeer.

Materials and methods
Quantitative genetic framework

A maternally affected phenotype (   ) is made of an individual’s direct genetic effect (DGE)     and its dam’s (through-
out the text subscript d) maternal genetic effects (MGE)       (covering both pre- and postnatal effects), and the 
trait is expressed as (    deviation from the population mean):

           (1)

where     is (possibly correlated) environmental components of both indirect and direct effects and c stands for the 
effect of common environment shared by the full-sibs. We assume an infinitesimal model with normally distrib-
uted genetic effects (Fisher 1918, Bulmer 1980). We use the notation        and         for direct and maternal genetic 
variance, respectively and           for their covariance. Further        is the variance due to common environment and 
       is the variance due to other environmental effects. 

The genetic (co)variances among the selected parents are affected by (possibly different) selection in the two sex-
es and the covariance between the effect and selection criterion (phenotype) (         and           covariance between     
   and DGE and MGE, respectively) (Pearson 1903, Bulmer 1971, Robertson 1977). For example, the cova-
riance amongst selected dams is                                    where                  ,   is the intensity of selection and  
    is the truncation point on the standardized scale. 

Table 1. Notation of parameters
𝑝𝑝𝑝𝑝, 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝2 phenotype, phenotypic variance 

DGE or 𝑎𝑎𝑎𝑎 direct genetic effect. 
MGE or 𝑚𝑚𝑚𝑚 maternal genetic effect. 
IGE indirect genetic effect 
𝑒𝑒𝑒𝑒 (𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒2), 𝑐𝑐𝑐𝑐(𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐2)   environmental effect (its variance), effect (and covariance) of common 

environment 
𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠  dam and sire (also used as subscript) 
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎2(ℎ𝑎𝑎𝑎𝑎2),𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚2 (ℎ𝑚𝑚𝑚𝑚2 )  variance (heritability) of DGE and MGE 

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚),𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝,𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝  covariance (correlation) between DGE and MGE, their covariances 
with phenotype  

𝑖𝑖𝑖𝑖, 𝚤𝚤𝚤𝚤,̅ 𝑥𝑥𝑥𝑥  intensity of selection, average intensity across sexes, truncation point 
on the standardized scale of normal distribution 

𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘�  variance reduction term and its average across sexes 
𝑡𝑡𝑡𝑡 (0) subscript for generation number (base generation) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹����,𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹����  mean of full- and half-sib phenotypes 
𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 ,𝒃𝒃𝒃𝒃  index coefficient of information source j, vector of selection index 

coefficients 
𝑓𝑓𝑓𝑓,𝑛𝑛𝑛𝑛, 𝐹𝐹𝐹𝐹  mating ratio, number of full-sibs and number of sires 
𝐻𝐻𝐻𝐻,𝒘𝒘𝒘𝒘  selection goal, vector of economic weights 
EBV (GEBV)  (genomically) estimated breeding value,  
𝐼𝐼𝐼𝐼  selection index 

𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼2,𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼 ,𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼   selection index variance, covariance of genetic effects a and m with 
index 

 𝒙𝒙𝒙𝒙,𝑷𝑷𝑷𝑷,𝑮𝑮𝑮𝑮  vector of information sources, their (co)variance matrix and their 
covariance matrix with genetic effects  

 

𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑎𝑎 + 𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 + 𝑐𝑐𝑐𝑐 + 𝑒𝑒𝑒𝑒, (1) 

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎 
2  𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 

2  
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐   

2  
𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 
2 

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚  − 𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎 

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎2⁄  𝑘𝑘𝑘𝑘 = 𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥) 
𝑥𝑥𝑥𝑥 

𝑖𝑖𝑖𝑖 

𝑎𝑎𝑎𝑎 
𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑  

𝑝𝑝𝑝𝑝 

𝑒𝑒𝑒𝑒 

𝑝𝑝𝑝𝑝 

𝑎𝑎𝑎𝑎 



AGRICULTURAL AND FOOD SCIENCE
J. Pietarinen & A. Mäki-Tanila (2020) 29: 395–404

397

Selection does not affect the (co)variances        ,            and            (0 referring to the base generation) due to seg-
regation. Therefore in the generation t the aforementioned covariance is  

(the bar refers to the mean across sexes). The response to selection (or the visible change in the phenotype) after 
a generation of phenotypic selection (cf Willham 1972) is 

                   . 

An asymptotic response is reached within few generations when the Bulmer effect reaches a balance and 
                                                     ,  and                                   .  The response can be written

                                                                                  , where              and               are the (co)variances among selected dams.

Selection index framework
We construct the family index based on the phenotype of an individual (       ), the mean phenotype of its full-sibs 
             (excluding the individual) and the mean phenotype of its half-sibs              (excluding the individual and the 
full-sib family where it belongs to).          of the individual is for either effect                     

                                                                                                               where bj  is the respective index weight of the relative’s information.  
 
In a hierarchical mating structure, each sire (subscript s throughout the text) mates with f dams and each dam has 
n offspring. The variances of        and         in generation t are according to Willham (1963):

          and

                                                                                                                                                                   .   

Usually a two-trait approach is used for maternal traits, while in constructing the selection index resorting to the 
same phenotypic information, we use the approach similar to Van Vleck (1970). The aggregate selection goal of 
maternally affected trait can be written H = [a   m]w, where w is a 2 × 1 vector for economic weights for DGE 
and MGE, respectively (e.g. in the case of equal weighting, w is a vector of ones). The selection index is I = b x, 
where x is a vector of information sources (in addition to p,           and           also the dam’s and sire’s index and the mean 
index of half-sibs’ dams) and b is a 6 × 1 vector of selection index coefficients solved from the ordinary selection 
index equation b = P–1 G w. The formulae for the covariances in the P matrix are:

                  ,     ,             , 

    and          and the variance of index values amongst  

selected dams (and sires) is:                              and                              ) and dams of the half sibs is 
      and                           and                   .  The matrix  P  (in generation t) is a (co)- 

variance matrix (2) of information sources without common environmental variance.

                 (2) 

The Gt matrix (for generation t) has a column for both direct and maternal effect corresponding to the covariance 
of a respective genetic effect with the sources of information in the index

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎0
2  𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0

  𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0
  

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =
1
2
�𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡−1) − 𝑘𝑘𝑘𝑘� 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1)𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1) 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1)

2⁄ � +
1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚0 

Δ𝑎𝑎𝑎𝑎 + Δ𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 =  
𝚤𝚤𝚤𝚤̅

𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡)
(𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)

2 + 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡) +
1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1) +

1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1)
2 ) 

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡)
2 = 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(∞)

2 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡)
2 =  𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(∞)

2  𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =  𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(∞)  

𝑖𝑖𝑖𝑖 �𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(∞)
2 + 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(∞) +

1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 +

1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑

2 � 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝�  𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑  
1
2
𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑
2  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹����𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑏𝑏1 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑏𝑏2 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹����𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑏𝑏3 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹����𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜎𝜎𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹����𝑡𝑡𝑡𝑡
2 = �

1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎2 + 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚2 + 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 �

(𝑡𝑡𝑡𝑡−1)
+ 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡

2 + (
1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎0
2 + 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡

2 )/(𝑛𝑛𝑛𝑛 − 1) 

𝜎𝜎𝜎𝜎𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆����𝑡𝑡𝑡𝑡
2 =

1
4
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1)𝑠𝑠𝑠𝑠
2 +

1
𝑓𝑓𝑓𝑓 − 1

�
1
4
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1)𝑑𝑑𝑑𝑑
2 + 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡−1)𝑑𝑑𝑑𝑑

2 + 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡−1)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐2� +
1

(𝑓𝑓𝑓𝑓 − 1)𝑛𝑛𝑛𝑛
�

1
2
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎0
2 + 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒2� 

𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑 =  𝜎𝜎𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹����𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑 =
1
2 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡−1) +  𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡−1)  𝜎𝜎𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹����𝑝𝑝𝑝𝑝 =

1
4𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡−1)𝑠𝑠𝑠𝑠
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            (3)

Alternatively we can construct the family index using independent information sources (within full-sib family devia-
tions and full sibs within half-sibs, i.e. no covariances) and have                                                                                       ,   
where the three independent information sources demonstrate the influence of full-sib information versus within 
family deviations and half-sib mean. The diagonal elements in P are:         ,
and       . The G matrix is:

            (4)

Using independent information sources in the case of maternal half-sibs (S = sires per dam) the diagonal elements 

of Pt are then:                                                        , 

         and

                (with the off-diagonals being zero) 

and              (5)

Pseudo-BLUP
The family index can be extended to include information available on the parents, i.e. their EBV, and the index for 
individual would be                      where  is the 
mean of the paternal half-sibs’ dams’ EBV´s. We can mimic the effect of accrued pedigree information by repeat-
ing the calculations over generations and arrive at an approximated BLUP (or pseudo-BLUP) of breeding values 
(Wray and Hill 1979). In the pseudo-BLUP the available information for the index accumulates over generations, 
and the individual’s EBVs become more accurate (corresponding to the effect of large and information rich re-
lationship matrix in BLUP), which leads to higher response to selection. After the initiation of (co)variances, the 
steps for predicting the response at each generation for index selection and pseudo-BLUP are (i) calculation of in-
dex coefficients and responses, and (ii) updating (co)variances in P and G.

We used pseudo-BLUP method to study the influence of variable family full-sib family size and mating ratio. With 
both paternal and maternal half-sibs, different heritabilities and genetic correlation between DGE and MGE. In 
addition, the common environmental variance amongst full-sibs and variable economic weights for the effects 
was investigated. 

Simulation
We compared the pseudo-BLUP prediction with stochastic simulation results using R-program (R Core Team 2019). 
The packages cpgen (Hauer 2015) and Matrix (Bates and Maechler 2018) were used for optimization of matrix 
calculations. Each new discrete generation was generated with 50 sires each mated with 10 females producing 10 
offspring each with the selection intensity (proportion selected) across offspring generation being approximate-
ly 2.4 (2%) for males and 1.4 (20%) for females. High full-sib family size was chosen because selection for MGE is 
then more successful and the substantial differences in selection intensities in the sexes were used to mimic the 
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possibilities in many species. At the beginning, we generated unrelated parents and grandparents, and by random 
mating, an offspring generation in order to produce maternally affected phenotypes and genetic values for the first 
selection candidates. We used the R-package MCMCglmm (Hadfield 2010) to generate the starting values for ge-
netic effects in the founder population. Selected individuals were randomly mated to generate the offspring with 
consideration of the effect of possible inbreeding on the segregation variance utilizing the R-package pedigree 
(Coster 2012) in estimating the inbreeding coefficients. In the simulation the evaluation was based on either phe-
notype, family index or BLUP with full pedigree information. The selection was carried out for 10 generations with 
equal economic weights for the two effects, and an asymptotic response was reached. We ran all simulated cases 
multiple (50) times to establish reliable estimates (expressed with standard errors) for the means across replicates.   

We tested the three cases with different genetic correlations (       ) between DGE and MGE (0.5, 0.0, –0.5) keep-
ing the heritabilities for the effects at 0.30. We studied a whole range of genetic parameter values (results not 
shown) and here a high heritability for MGE was used to better demonstrate the potential selection response in 
MGE.  The deviations due to the covariance of common environmental effects were not simulated.  

Results
Phenotypic, family index and pseudo-BLUP selection

Overall, the analytical methods predict in a satisfactory way the outcome of the simulated response to selection 
(Fig. 1 and Table 2). The difference between the analytical prediction and the simulated response to selection was 
on average below 4.1% for DGE and 5.3% for MGE. Standard error of the simulated response mean in the last gen-
eration ranged from 0.003 to 0.007. For MGE, the predicted response to family index selection was slightly below 
the simulated gain for                 and vice versa for                .       

 
The family index and pseudo-BLUP are very accurate in predicting DGE. When                ,  the response to pheno-
typic selection for MGE with        = 0 is about half of that in DGE, reflecting the one generation gap in the expres-
sion of the maternal effect. With family index or BLUP, the difference is less drastic, but the response of DGE is 
still ∼70% higher than that of MGE. The phenotypic selection is the least efficient and does not yield any gain for 
       <  0, while the family index and BLUP are qualitatively different with the latter yielding the highest response.  
With        < 0, the MGE response to family index and BLUP selection is positive in contrast to the phenotypic se-
lection and almost 40% of that in DGE.  

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 0 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0 

Fig. 1. Predicted and averaged simulated responses (in phenotypic standard deviation (σp) units of the base generation) 
when the selection (across 5 generations) is on either phenotype, family index or aggregate (and equally weighted) BLUP 
breeding values. Heritabilities:                   = 0.3 and         = –0.5. The simulated population is made of 50 sires each mated to 
10 females and having 10 offspring each. Selection intensity follows this structure being 2.4 for males and 1.4 for females. 
Simulation replicates (gray) are shown for BLUP selection.
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The asymptotic rate of response is, in general, 75–80% of the first generation response but this difference is con-
sistent over the cases, indicating that the latter could be used for comparing selection strategies. This has been 
observed in the earlier studies (cf Wray and Hill 1989).

With           < 0 the pseudo-BLUP has a considerable prediction error (some 20%) indicating need to add information 
sources beyond full- and half-sibs and their parents’ EBV’s.  

Variable family size and mating ratio
In general, with paternal half-sibs, higher f improves the response of DGE (with slight relative decrease for the ma-
ternal effect) while larger n improves the response of MGE (cf Table 4). With uncorrelated DGE and MGE, half-sib 
information alone does not capture any maternal effect variation, as implied by the G matrix in (4). Similar results 
have been found analytically by Lande and Kirkpatrick (1990), who did not consider the Bulmer effect or inbreeding. 

Maternal half-sibs
While paternal half-sibs provide no information on MGE when        = 0, maternal half-sibs are very valuable even 
then (Table 3) and with equal heritabilities the MGE response is twice the DGE one. Further when        ≠ 0, the in-
dividual’s own record is better in predicting MGE than its full-sibs.

Different heritabilities
When                   and          is highly negative, then with paternal half-sib structure the negative response in MGE is 
moderated having data from large n (Table 4, upper section). When          is moderately negative, the MGE response 
is positive with large n. In general, when f increases the response for MGE effect decreases, if         is small and pos-
itive (for example        < 0.75, Table 4). 

When                   (Table 4, lower section), and         is highly negative (–0.75), selection favors MGE almost exclusive-
ly, even if f is high. When          is less negative (–0.25) or positive, the response for DGE is higher as f increases and 
is, in general, lower for higher n. The selection response for MGE is again proportional to n and lower with larger 
f as was noticed for the equal heritability case.

Table 2. The predicted (pred) and simulated (sim) rate of response (in σp units of the base generation) to selection on phenotype, 
family index and approximated BLUP of the aggregate genotype of equally weighted direct (  ) and maternal (   ) effect. 
The response is shown for first generation and an average rate across generations 7 to 10.                  = 0.3 and         = –0.5, 0.0, 
+0.5. The population is made of 50 sires each mated with 10 dams producing 10 offspring each and the selection intensity is 
2.4 in males and 1.4 in females. 

Selection criterion phenotype index BLUP

effect generation pred sim pred sim pred sim

0.5

1 0.671 0.731 0.738 0.741 0.753 0.762

7 to 10 0.541 0.544 0.539 0.563 0.574 0.546

1 0.536 0.579 0.588 0.587 0.585 0.593

7 to 10 0.433 0.445 0.398 0.434 0.444 0.440

0

1 0.575 0.587 0.579 0.593 0.596 0.589

7 to 10 0.443 0.449 0.426 0.454 0.459 0.426

1 0.288 0.292 0.345 0.341 0.341 0.357

7 to 10 0.222 0.219 0.247 0.253 0.267 0.259

–0.5

1 0.468 0.429 0.371 0.399 0.392 0.404

7 to 10 0.353 0.357 0.288 0.314 0.309 0.291

1 0 –0.002 0.139 0.118 0.130 0.131

7 to 10 0 0.004 0.110 0.118 0.112 0.140

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 
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Economic weights

Equal weighting of DGE and MGE gives the highest total response independent of the sign of      (Table 5A). 
When       <  0 the response with prioritized MGE (w = [1 2]) gives a better MGE response, in particular for high 
       . With           >  0 , the response in MGE is substantial and close to that in DGE with moderate or high         (results 
not shown). When either effect is ignored in the selection goal, the co-response in MGE smaller than the DGE one.

Common environmental variance
A high common environmental variance decreases only the accuracy of EBV for MGE (Table 5B). This is reflected 
also as a reduced overall response.

Table 3. The effect of independent family information sources on selection response after one generation of selection when each 
dam is mated to multiple sires (maternal half sibs). f = 5 or 10 and n = 2 or 10,                  = 0.3 and        = –0.5, 0.0, +0.5. Selection  
intensity was 2.06 in both sexes. 

Mating ratio = 5

Information sources for the pedigree index

 = –0.5         = 0.0        = 0.5

2 full-sibs per sire

Direct 0 0.033 0.111 0.227 0.267 0.360 0.402 0.448 0.559

Maternal 0.403 0.379 0.321 0.455 0.439 0.405 0.502 0.509 0.529

10 full-sibs per sire

Direct 0 0.130 0.241 0.242 0.389 0.522 0.416 0.567 0.727

Maternal 0.454 0.358 0.277 0.485 0.43 0.387 0.520 0.546 0.586

Mating ratio = 10

2 full-sibs per sire

Direct 0 0.032 0.103 0.240 0.281 0.370 0.415 0.464 0.571

Maternal 0.445 0.421 0.368 0.481 0.465 0.433 0.519 0.526 0.546

10 full-sibs per sire

Direct 0 0.139 0.246 0.248 0.407 0.536 0.422 0.588 0.743

Maternal 0.473 0.369 0.292 0.496 0.437 0.396 0.527 0.556 0.596

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 

Table 4. The effect of family structure on the rate of response to selection (in units of  the base generation) in 
direct (   ) and maternal (    ) effect as the mean rate of response in generations 7 to 10 with equal weight on the 
effects. Heritabilities:       = 0.3,       = 0.1  and       = 0.1,       = 0.3 and         = –0.75, –0.25, 0.25 or 0.75. The number 
of sires was 50 and selection intensity was 2.06 for both sexes.

–0.75 –0.25 0.25 0.75

FS family size 2 10 2 10 2 10 2 10

mating ratio Direct response                 = 0.3,        = 0.1

2 0.465 0.480 0.505 0.512 0.553 0.563 0.604 0.615

20 0.51 0.511 0.537 0.533 0.576 0.579 0.619 0.627

Maternal response

2 –0.146 –0.138 0.016 0.041 0.152 0.174 0.275 0.290

20 –0.174 –0.162 –0.002 0.026 0.144 0.164 0.279 0.290

Direct response                 = 0.1,        = 0.3

2 –0.006 –0.069 0.129 0.105 0.215 0.212 0.286 0.293

20 –0.073 –0.128 0.14 0.105 0.235 0.229 0.302 0.309

Maternal response

2 0.169 0.311 0.251 0.344 0.362 0.419 0.474 0.506

20 0.250 0.384 0.241 0.344 0.350 0.405 0.481 0.509

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻���� 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻���� 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻���� 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻���� ,𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻���� 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻���� ,𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻���� 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����,𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻����, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����,𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻����, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻����,𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻����, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

ℎ𝑎𝑎𝑎𝑎2 = 0.3,ℎ𝑚𝑚𝑚𝑚2 = 0.1 

ℎ𝑎𝑎𝑎𝑎2 = 0.1,ℎ𝑚𝑚𝑚𝑚2 = 0.3 

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 

ℎ𝑚𝑚𝑚𝑚2  ℎ𝑚𝑚𝑚𝑚2  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻���� ,𝐹𝐹𝐹𝐹𝐻𝐻𝐻𝐻���� 
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚 

ℎ𝑎𝑎𝑎𝑎2 = 0.3,ℎ𝑚𝑚𝑚𝑚2 = 0.1 

ℎ𝑎𝑎𝑎𝑎2 = 0.3,ℎ𝑚𝑚𝑚𝑚2 = 0.1 
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Discussion
Methodology and results

The main result of the study is the development of an analytical approximation for an animal model BLUP selection 
for traits influenced by maternal effects. Reduction of genetic variance due to Bulmer effect is considered enabling 
the comparison for simulated truncation selection. Because the number of sires was 50 (implying negligible rate 
of inbreeding), in the pseudo-BLUP there was no need to adjust the segregation genetic variance for inbreeding, 
neither to reduce selection intensity due to finite population size (cf Meuwissen 1991).

Khaw et al. (2014) mentioned the construction of pseudo-BLUP for IGE, while due to the large number of required 
parameters and subsequent complicated structures ultimately preferred to use simulation in their study. Maternal 
traits represent a simple case for IGE and in our approach only few additional parameters are needed in a single 
trait case to arrive at compact pseudo-BLUP expressions.  

In general, BLUP selection gave (slightly) higher response compared to family index. The rate of genetic change 
asymptotes when selection is carried over several generations. The increased FS family size always benefits the 
selection of MGE. Although rarely available within the same generation, maternal half-sibs are naturally more 
desirable than paternal half-sibs (Maiorano et al. 2019) in increasing the accuracy of MGE predictions. In animal 
breeding studies         is often found to be negative (Bradford 1972, Koch 1972, Robinson 1972, Bijma 2006). Phe-
notypic selection fails to achieve any gain for negative           . In such a case, the family index and BLUP are qualita-
tively different. The cases with highly negative          demonstrate that pseudo-BLUP should be extended to include 
collateral information sources beyond full- and half-sibs and their parents’ EBV’s.

Implications for selection schemes
The developed tool is a useful tool in assessing a short-term outcome of a selection scheme for a maternally af-
fected trait. We considered simple examples on selecting for early growth performance. Using the parameters of 
Nordberg et al. (2005) for daily gain until two months’ age (DG2) in sheep, let       ,        ,         and the proportion of 
common environmental variance be 0.3, 0.1, –0.4 and 0.0 for DG2, respectively. Asymptotic response to selection 
were predicted with 25 ewes per ram and 3 lambs per (Finnsheep) ewe. In males and females, the proportion se-
lected was 10 and 50%. The asymptotic response in DGE was 70–75% of the first generation response. With given 
genetic parameters, very high (1:3) economic weight was needed before any positive response was achieved in 
the maternal effect. In this case the asymptotic response in the direct effect was 13–29% lower than the one with 
equal economic weights. In reindeer research, our aim is to find an optimum data collection strategy for under-
standing the selection on average daily gain (ADG) from birth to autumn (cf Rönnegård et al. 2003). For the trait, 
Muuttoranta et al. (2014) found       = 0.27 – 0.52,        = 0.22 – 0.31 and         = –0.74 – –0.80. In reindeer there are 
in practice no full-sibs within a year class and the selection has to be based on calf’s own record and those of its 
maternal half-sibs. Using        = 0.40,        = 0.25 and         = –0.50, with equal weighting of the effects we need in-
formation on more (3–5) half-sibs, to have a positive  response in MGE or high (1:3) economic weight. The reduc-
tion in the heritabilities and genetic correlation was almost negligible in both examples.  

Table 5. The asymptotic rate of response to selection (mean from 7th to 10th generation, in units of the base generation). There 
were 50 sires with f = 10 and n = 10. Selection intensity was 2.06 for both sexes. (A) The impact of changing the economic 
weights (w) for direct (   ) and maternal (    ) effect when       = 0.3, and         = 0.1, 0.3 or 0.5 and         = –0.5. (B) The impact of 
common environmental variance (      ) when       =        = 0.3 and          = 0.5 or –0.5. 

A B

w=[1 0] w=[2 1] w=[1 1] w=[1 2] w=[0 1]          = 0.5         = –0.5

0.1
0.538 0.531 0.509 0.404 -0.302

-0.099 -0.079 -0.053 0.016 0.174 0.0 0.607 0.443 0.331 0.124

0.3
0.513 0.468 0.331 0.089 -0.224 0.1 0.608 0.441 0.355 0.090

-0.180 -0.049 0.124 0.307 0.386 0.3 0.607 0.439 0.378 0.056

0.5
0.521 0.428 0.196 -0.025 -0.234

-0.262 0.011 0.322 0.496 0.548

ℎ𝑚𝑚𝑚𝑚2  

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑚𝑚𝑚𝑚2  

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑚𝑚𝑚𝑚2  

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑚𝑚𝑚𝑚2  

ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 
ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 ℎ𝑎𝑎𝑎𝑎2 = ℎ𝑚𝑚𝑚𝑚2 = 0.3 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐2 

𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐2 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑚𝑚𝑚𝑚 

𝑚𝑚𝑚𝑚 

𝑚𝑚𝑚𝑚 

𝑚𝑚𝑚𝑚 

𝑎𝑎𝑎𝑎 

𝑎𝑎𝑎𝑎 

𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 

𝑎𝑎𝑎𝑎 
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In reindeer, due to intermediate accuracy and delays over several generations in the evaluation of maternal genet-
ic effects, an early selection for their improvement would benefit from the use of genomic information in parent 
diagnostics and ultimately in genomic selection. Lillehammer et al. (2020) used simulation in analyzing genomic 
selection for maternal traits in sheep with extant large scale recording scheme. In reindeer for these purposes, 
we need to develop a cheap SNP panel based possibly on the recent genome sequence information (Weldene-
godguad et al. 2020). The marker information can be incorporated in the pseudo-BLUP as a correlated informa-
tion (Dekkers 2007) which would provide a useful method to assess also the benefits of genomic selection and an 
optimum recording scheme (Mulder 2016).

Conclusions 

The pseudo-BLUP for maternal traits provides a basis to assess the requirements for data collection and selection 
strategies. It is obvious that to handle negative genetic correlation between direct and maternal effects in approx-
imating BLUP selection we need also more distant collateral relatives.  The pseudo-BLUP is very flexible and can 
be extended to multi-trait situation and therefore for the consideration of several economically important traits 
and the utilization of genomic information. 
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