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Near-infrared (NIR) diffuse reflectance spectroscopy for 
the prediction of carbon and nitrogen in an Oxisol

Espectroscopia de reflectancia difusa por infrarrojo cercano (NIR) 
para la predicción de carbono y nitrógeno de un Oxisol

Jesús H. Camacho-Tamayo1, Yolanda Rubiano S.2, and Maria del Pilar Hurtado S.3

ABSTRACT RESUMEN

The characterization of soil properties through laboratory 
analysis is an essential part of the diagnosis of the potential 
use of lands and their fertility. Conventional chemical analyzes 
are expensive and time consuming, hampering the adoption of 
crop management technologies, such as precision agriculture. 
The aim of the present paper was to evaluate the potential of 
near-infrared (NIR) diffuse reflectance spectroscopy for the 
prediction of the carbon and nitrogen of Typic Hapludox. In 
the A and B horizons, 1,240 samples were collected in order to 
determine the total carbon (TC) and nitrogen (TN) contents, 
obtain the NIR spectral curve, and build models using partial 
least squares regression. The use of diffuse reflectance spec-
troscopy and statistical techniques allowed for the quantifica-
tion of the TC with adequate models of prediction based on 
a small number of samples, an residual prediction deviation 
RPD greater than 2.0, an R2 greater than 0.80 and a low root 
mean square error RMSE. For TN, models with a good level 
of prediction were not obtained. The results based on the NIR 
models were able to be integrated directly into the geostatistical 
evaluations, obtaining similar digital maps from the observed 
and predicted TC. The use of pedometric techniques showed 
promising results for these soils and constitutes a basis for the 
development of this area of research on soil science in Colombia.

La caracterización de las propiedades del suelo mediante 
análisis de laboratorio es parte esencial en el diagnóstico del 
potencial de uso de las tierras y de su fertilidad. Los análisis 
químicos convencionales son costosos y demorados, lo que 
dificulta la adopción de tecnologías de gestión de cultivos, como 
la agricultura de precisión. El objetivo del presente trabajo fue 
evaluar el potencial de la espectroscopía de reflectancia difusa 
por infrarrojo lejano (NIR) en la predicción del carbono y del 
nitrógeno de un Typic Hapludox. Se recolectaron 1.240 mues-
tras en los horizontes A y B, para determinar los contenidos 
de carbono total (TC) y nitrógeno total (TN), obtener las 
respuestas espectrales NIR y elaborar los modelos mediante 
regresión por mínimos cuadrados parciales. El uso de las es-
pectroscopía de reflectancia difusa y de técnicas estadísticas 
permitió la cuantificación del TC, con modelos de predicción 
adecuados con bajo número de muestras, desviación residual 
de la predicción RPD mayores de 2,0, R2 mayores de 0,80 y 
error cuadrático medio RMSE bajos. Para TN no se obtuvieron 
modelos con buen nivel de predicción. Para TC, los resultados 
obtenidos a partir de los modelos NIR pudieron integrarse 
directamente en las evaluaciones geoestadísticas, obteniendo 
mapas digitales y espectro-digitales similares. El uso de las 
técnicas pedométricas, mostró resultados promisorios para 
estos suelos y se constituye en una base para el desarrollo de 
esta área de investigación de la ciencia del suelo en Colombia.

Key words: Oxisol, pedometrics, soil mapping, geostatistics. Palabras clave: Oxisol, pedometría, mapeo de suelos, geo- 
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Introduction

The determination of characteristics and properties of soils 
through appropriate descriptions and laboratory analyses 
is a task that is basic to the understanding and evaluation 
of soil quality (Cortés and Malagón, 1984), where carrying 
out routine physical and chemical analyses is required, 
which in the majority of the cases are expensive and require 

time-consuming sample pre-processing or the use of (en-
vironmentally harmful) chemical extractants. This, along 
with some properties of the soil, principally the physical 
and chemical ones, which are not static and uniform in 
space and time, makes spatial and temporal analysis even 
more difficult because of the high number of samples re-
quired for a complete understanding of the dynamics of 
the soil (Plant, 2001).
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There exists a worldwide search for the development of 
cheap and rapid methodologies for carrying out soil analy-
ses (Shepherd and Walsh, 2007), which for example support 
environmental monitoring (Okin and Painter, 2004), mod-
eling of biological or agricultural production processes in 
productive systems known as precision agriculture or site 
specific management (Cruz et al., 2011; Tittonell et al., 2008).

A technological option is the use of spectroscopy. Reflec-
tance spectroscopy studies energy reflecting material as 
part of the division of the incident energy, depending on 
the wavelength. Various fractions of the energy incident on 
the element are reflected, absorbed, and or transmitted and 
occurs reflection specular and / or diffuse. Specular reflec-
tion occurs mainly on smooth (polished) surfaces, whose 
roughness is less than the considered wavelength. Diffuse 
reflection occurs especially on rough surfaces and is the 
result of the penetration of a portion of the incident beam 
to within the body, such as occurs with soil particles. In 
short, the energy reflected by a solid body is a combination 
of the two kinds of mentioned reflection and its magnitude 
depends on the particle size, structure, mineralogy and soil 
water content, microrelief, and other characteristics. For 
soils, visible and infrared spectra result from electronic 
and vibrational processes. Despite fundamental vibration 
bands that lie in the mid- and far-infrared regions, vibra-
tional processes yield characteristics in the NIR region due 
to the excitation of overtones and combination of tones of 
the fundamental modes of anion groups (e.g., OH, CO3 and 
SO4; Hunt and Salisbury, 1970). Therefore, soil constituents 
present weak, broad and, in most of the cases, over-lapping 
and masking VIS–NIR spectral responses. However, a soil 
VIS–NIR response contains important information about 
soil mineralogy.

Diffuse reflectance spectroscopy is a sensing method that 
can be utilized to enhance or replace conventional methods 
of soil analysis. This technique has undergone high devel-
opment in the last two decades, overcoming some limita-
tions and gaining a greater diversity of robust statistical 
methodologies that can more precisely relate the spectrum 
variability to the soil properties’ variability. Soil spectros-
copy is fast and convenient, less costly, non-destructive, 
simple, and, on occasion, more precise than conventional 
forms of analysis, reinforced by the use of other techniques 
such as multivariate statistics and geostatistics (Tittonel et 
al., 2008). The advantage of this technology is that a single 
spectrum allows for the simultaneous characterization of 
diverse soil properties.

The spectral band that extends from 1,000 to 2,500 nm 
(near infrared, NIR) is presently the most widely used in the 

observation of the spectral signature of soils. Commonly, 
air transported spectral sensors, as well as orbitals, cover 
the VIS and NIR bands. Although these bands are the ones 
most widely used, studies have also been carried out on the 
ultraviolet band (UV) (Bogrekci and Lee, 2007) or with the 
use of gamma rays (Elias, 2004; Pires et al., 2005).

The potential use of diffuse reflectance in agriculture and 
specifically in the study of soil properties has been em-
ployed by various authors (Cozzolino and Moron, 2006; 
Vasques et al., 2008; Sarkhot et al., 2011; Ramírez-Lopez et 
al., 2013), by means of the use of spectra in the VIS, NIR, 
and MIR regions. The absorption of energy in the visible 
(VIS) region and next to the near infrared (NIR) (between 
400 and 1,500 nm) is due to the carbon content of the soil 
and to the iron oxides, especially through minerals such as 
hematite and goethite, while the NIR is strongly related to 
the water, clay minerals, carbonates and organic material 
content (Viscarra Rossel and Chen, 2011); seeing that, in 
the region of 2,200 and 2,300 nm, the kaolinite and gibbsite 
contents can be clearly identified. In the MIR region, by the 
same token, regions related to minerals and a great number 
of peaks, which are related to OH groups, can be defined, 
where the zone that spans 2,700 to 2,900 nm stands out. For 
these reasons, the aim of the present paper was to evaluate 
the potential of NIR diffuse reflectance spectroscopy for 
the prediction of carbon and nitrogen in Typic Hapludox 
from the eastern plains of Colombia and to later develop 
prediction maps with the spectral data models for carbon 
and nitrogen.

Materials and methods

Location and characterization of the area of study. This 
study was carried out at the Carimagua Experimental Sta-
tion, located in the municipality of Puerto Gaitán (Meta, 
Colombia), with geographical coordinates 4°37’N and 
71°19’W and an altitude of 175 m. The zone is characterized 
as having a slightly undulating relief, with slopes between 2 
and 5%; covered with native savanna (used for more than 30 
years for extensive cattle raising); and having a sub-humid 
tropical climate, with an average temperature of 27.8°C and 
average annual precipitation of 2,240 mm, which is con-
centrated between the months of April and November. The 
predominant soils of the zone are highly-fertilized Oxisols, 
which are characterized as being strongly acidic (pH <5) 
and having low organic matter contents. The studied soil 
belongs to the Carimagua-Tomo complex, with taxonomic 
components: Typic Hapludox and Tropectic Hapludox.
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Field sampling and laboratory analysis. A system of 
rigid grid sampling was established, where containers were 
placed perpendicularly at 320 m, in an area of around 5,100 
ha, totaling 470 profile points. In addition, 150 points were 
selected in a pilot area, equivalent to 10% of the area of 
study, in order to guarantee an observation of 2.5 ha. All of 
the points were georeferenced with GPS (precision ± 1 m) 
and the sampling of the soil was carried out for the surface 
A horizon and the subsurface B, for a total of 1,240 samples.

The samples were dried at a temperature of 35ºC until they 
reached equilibrium moisture and sifted in a mesh of 2 
mm for the determination of total carbon (TC) and total 
nitrogen (TN), using an element determinator (TruSpec 
CN Carbon Nitrogen Determinator, LECO, St. Joseph, 
MI). The spectral curves were acquired through a NIRS 
6500 sensor (FOSS NIRSystems, Herisau, Switzerland), 
which gives a scan of spectral response at 2 nm, from an 
average of 64 scans per wavelength, in the region between 
1,000 and 2,500 nm.

Data analysis. A qualitative characterization was carried 
out in which the intensity of the reflectance, the charac-
teristic peaks, and the behavior at different depths were 
analyzed. Due to the heterogeneous composition of soils, 
the spectral curves hold information that is consisted of 
different combinations and overtones of spectral responses 
of the soil components, which results in a high number of 
representative bands, including simple compounds (Reeves 
III, 2010). According to Ramírez-López et al. (2013), the 
spectral responses of soils are non-specific, which makes 
the spectral information of soils highly complex. This 
makes the spectral curves of soils vary according to the 
concentration of the materials that compose them, allow-
ing one to infer differences between soil samples, either for 
their classification or for the differentiation of horizons, 
even ending in proposing a classification of spectral curves, 
intimately related to characteristic peaks, principally given 
the mineral, organic material, iron oxide, sand, and clay 
content.

For the calibration of the models, 10 groups of 100, 200, 
300, 400, 500, 600, 700, 800, 900, and 1,000 samples were 
formed, leaving 200 samples to validate the model obtained 
for each sample group. The formation of each group was 
done using the conditioned Latin Hypercube Sampling 
(cLHS) (Minasny and McBratney, 2006). The cLHS tech-
nique consists of selecting initial values for the construc-
tion of the model, stratifying the range of each one of the 
entry data of the model, in order to thus guarantee that the 
initial values of each range of the entry data are selected. 

This technique allows for the reduction of the number of 
simulations necessary to obtain a reasonable result.

In the calibrations, it was considered that the spectral re-
sponses could be normalized and could receive different 
mathematical treatment in order correct possible noise or 
deformities (preprocessing). Among these techniques, SNV 
(standard normal variation) was considered, with which 
inconvenient optics are corrected; along with detrend, in 
order to correct the tendency of the data; and MSC (mul-
tiplicative signal correction), which corrects the multiple 
dispersion and is recommended when various groups of 
samples are identified. It is also possible to smooth the 
points and eliminate some signal noise using various filters 
(i.e., Median Filter, Wavelet, Savitzky-Golay).

For the elaboration of the models, the “leave one out” 
method was used, which provides information about the 
uncertainty of the models (generated with different par-
tial least square –PLS- factors) based on the re-sampling 
method, from crossed validation. On the other hand, the 
number of PLS factors was chosen using the results of the 
validation of the models as a criterion, where the coefficient 
of determination (R2), root mean square error (RMSE), 
mean error (ME), standard deviation error (SDE) and the 
residual prediction deviation (RPD) were considered. The 
calibration and validation of the models was done with the 
ParLes program v. 1.0, developed by Viscarra-Rosel (2008).

Once the models were calibrated and validated, the mea-
surements of location and dispersion of the laboratory 
data (measured) and the predictions from the models were 
verified, where the similarity among the measured and 
predicted data could be observed. Afterwards, the experi-
mental semivariograms were calculated, for the measured 
as well as for the predicted data from the models, with the 
established sample groups. Diverse theoretical models of 
semivariance exist, which can be fitted to the experimental 
semivariogram. Webster and Oliver (2007) presented a 
discussion with respect to the characteristics and condi-
tions they should fulfill.

Once the model of best fit for each property was established, 
the degree of spatial dependence (DSD) was verified by 
means of the relation between the nugget effect and the 
sill. The DSD is classified as strong if it is higher than 75%, 
moderate for a DSD between 25 and 75%, and weak with a 
DSD below 25% (Cambardella et al., 1994). It is important 
that the nugget effect not be greater than 50% of the value 
of the sill so that the model of spatial correlation can cor-
rectly describe reality (Cressie, 1993). In other situations, 
the noise in the measurements would explain the spatial 
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FIgURE 1. Spectral curves of the Oxisol from the Carimagua Experimental Station (Puerto Gaitán, Colombia) for the A (left) and B (right) horizons.
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variability more than the correlation of the phenomenon. 
In these cases, the model fit to the experimental semivar-
iogram is called the pure nugget effect (Goovaerts, 1998).

For the geostatistical analysis, GS+ ™ v. 9 (Gamma Design 
Software, LLC, Plainwell, MI) was used, on the basis of 
which the theoretical semivariogram models were selected 
based on the least value of the sum of the squared residuals, 
the coefficient of determination (R2) of the equation of fit 
and on the similar values obtained between the real value 
and the predicted value, which are obtained in the crossed 
validation (CVC), appropriate indicators for this purpose 
(Cucunubá-Melo et al., 2011).

Form the semivariogram models of the properties that 
expressed spatial dependency, the prediction was carried 
out by the ordinary kriging method, which is considered to 
be the best unbiased linear predictor, with minimum vari-
ance (Diggle and Ribeiro, 2000), for making a prediction 
at non-sampled sites, the results being presented by means 
of digital maps (with data obtained from laboratory data) 
and digital spectra (with data predicted from the models). 
This procedure was performed with the Surfer® program 
v.9 (Golden Software, Golden, CO).

Results and discussion

The spectral curves of soils from Carimagüa correspond to 
typical samples of Oxisols (Fig. 1), with low or medium con-
tents of organic matter and the presence of iron oxides, but 
greater reflectances than those reported for Oxisols in Sao 
Paulo (Brazil) by Demattê et al. (2012) and Genú and De-
mattê (2012) and for Oxisols in Hawaii (USA) by McDowell 
et al. (2012), indicating a greater effect from the processes 
of weathering on the Eastern Plains of Colombian, associ-
ated with a higher average annual temperature and greater 
precipitation. The growing behavior of between 1,000 and 

1,300 nm allows for the confirmation that they are highly 
weathered soils (Demattê et al., 2004). In these curves, the 
high contents of kaolinite in the clay can be verified, which 
are manifested in the peaks located at 1,900 and 2,200 nm, 
for all sites and horizons (Genú and Demattê, 2012). In a 
similar manner, the presence of gibbsite can be verified 
through the slight concavity that is exhibited at 2,265 nm.

The small ref lectance at the beginning of the curves 
(1,000-1,400 nm) is directly related to the contents of TC 
(or organic material) and greater contents of Fe2O3 present 
in the goethite (Demattê et al., 2004). In general, organic 
material absorbs energy and promotes a low intensity of 
reflectance throughout the spectrum, which tends to di-
minish at greater wavelengths, which is also exhibited in 
the subsurface horizons (McDowell et al., 2012). Because 
of this, it can be observed that the curves of the analyzed 
subsurface horizons show greater reflectance, due to the 
smaller content of TC as well as iron, which is manifested 
principally at the beginning and the middle of the curves.

The results of the elaboration of the models can be seen in 
Tab. 1, which correspond to the calibration of the models 
for each group of samples and the validation of them with 
200 samples. For the construction of the models, around 
100 fits were tried for each property, resulting from the 
combination of transformations or the application of pre-
processing, pre-treatments, derivation, or elimination of 
noise in the spectral curves. Of these models, those that 
showed the least RMSE and the greatest values of R2 and 
RPD were used.

For TC, a more robust model was obtained than for TN, as 
can be observed in the results for the models of calibration 
and validation (Tab. 1), with an R2 greater than 0.70 in the 
calibration as well as in the validation of the model. Various 
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forms of carbon, either organic, total, or the fractions that 
it is composed of, exhibit good models regardless of the soil 
class that is studied (Vasques et al., 2008; Sarkhot et al., 
2011; McDowell et al., 2012; Kodaira and Shibusawa, 2013).

For the calibrations carried out for the 10 groups defined 
for each property with the representative models, it was 
verified that when the number of samples increased, the 
values of the R2 and the RPD increased, while the RMSE 
diminished, showing that an increase in the samples allows 
for the creation of more robust models.

It must also be considered that the RMSE, which depends 
on the studied property, was low. In general, these values 
vary according to the soil class and the quantity that a spe-
cific element can exhibit. For the present study, the values of 
RMSE found for TC and TN were close to or less than those 
reported in different soil classes by other authors (Gogé et 
al., 2012). In a similar manner, the RMSE varied sensitively 
when a low number of samples was used, independent of 
the property, which justifies not using a low number of 
samples for the construction of the models.

On the other hand, the residual prediction deviation (RPD) 
is the factor that indicates the precision behavior of the 

prediction in comparison with the average composition 
of all the samples. For this factor, Saeys et al. (2005) stated 
that models with an RPD less than 1.5 indicate that the 
calibration cannot be used, values of RPD between 1.5 and 
2.0 reveal the possibility of differentiating the variability 
of the data, while values of RPD greater than 2.0 indicate a 
better predictive performance of the model; RPDs greater 
than 3.0 are considered excellent. Without a doubt, the 
interpretation of the value of the RPD depends on the 
context and the purpose for which the measurements and 
predictions will be used (Fearn, 2002), especially when 
one works with heterogeneous materials such as soil. In 
general, various authors prefer to work with RPDs obtained 
in the validation, where RPDs< 1.4 are considered slightly 
or not at all representative, values of RPD between 1.4 and 
2.0 are considered for reasonable predictions, and RPDs > 
2.0 are considered excellent for prediction (Chang et al., 
2001; Cozzolino and Moron, 2006; Minasny et al., 2009; 
Kodaira and Shibusawa, 2013), from which it is emphasized 
that the resultant model for TN does not show an adequate 
level of predictability.

Once the models were calibrated and validated, measures of 
location and dispersion on the laboratory data (measured) 
and those predicted from the models were verified (Tab. 2), 

TABlE 1. Results of the calibration and validation of the models for total carbon (TC) and total nitrogen (TN).

Samples
TC calibration TC validation TN calibration TN validation

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

100 0.77 0.26 2.09 0.74 0.28 2.02 0.20 0.04 1.12 0.23 0.03 1.17 
200 0.79 0.25 2.17 0.77 0.26 2.13 0.25 0.03 1.15 0.25 0.03 1.19 
300 0.81 0.24 2.27 0.80 0.24 2.08 0.28 0.03 1.18 0.27 0.03 1.22 
400 0.83 0.22 2.43 0.82 0.23 2.18 0.31 0.03 1.20 0.30 0.03 1.24 
500 0.85 0.21 2.58 0.83 0.22 2.22 0.35 0.03 1.24 0.32 0.03 1.24 
600 0.86 0.20 2.67 0.85 0.21 2.21 0.38 0.03 1.27 0.36 0.03 1.25 
700 0.87 0.19 2.80 0.86 0.20 2.24 0.39 0.03 1.28 0.37 0.03 1.24 
800 0.87 0.19 2.91 0.87 0.20 2.26 0.42 0.03 1.31 0.38 0.03 1.25 
900 0.88 0.19 2.95 0.87 0.19 2.27 0.43 0.03 1.33 0.39 0.03 1.26 

1,000 0.89 0.18 2.99 0.88 0.19 2.27 0.44 0.03 1.33 0.42 0.03 1.26 

R2, coefficient of determination; RPD, residual prediction deviation; RMSE, root mean square error.

TABlE 2. Descriptive statistics of the contents of total carbon (TC) and total nitrogen (TN) for the measured (Mea) and predicted (Pre) data from the 
spectral models.

Property Mean Median CV (%) Minimum Maximum Skewness Curtosis
A horizon

TCMea 1.884 1.890 13.70 1.190 2.550 -0.03 -0.09
TCPre 1.888 1.899 11.19 1.136 2.422 -0.20 -0.03
TNMea 0.122 0.121 25.94 0.033 0.212 0.19 0.09
TNPre 0.119 0.118 13.87 0.076 0.174 0.42 0.51

B horizon
TCMea 0.917 0.920 21.51 0.351 1.550 0.26 0.20
TCPre 0.945 0.952 21.91 0.332 1.526 0.01 -0.10
TNMea 0.071 0.069 33.26 0.009 0.153 0.35 0.12
TNPre 0.072 0.073 15.83 0.036 0.113 -0.21 0.26

cv, coefficient of variation.
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TABlE 3. Parameters of the theoretical semivariogram models, obtained for total carbon and total nitrogen for measured and predicted data from 
spectral models.

Parameters
Total carbon (%) Total nitrogen (%)

Measured Predicted Measured Predicted
A horizon

Model Spherical Spherical Exponential Exponential
C0 0.033 0.017 1.07·10-4 3.21·10-5

C0 + C 0.067 0.041 9.34·10-4 3.09·10-4

Range. m 1120 1250 870 960
R2 0.80 0.76 0.75 0.73

CVC 0.86 0.91 0.74 0.90
DSD 0.51 0.58 0.89 0.82

B horizon
Model Spherical Spherical Exponential Exponential

C0 0.023 0.021 5.5·10-5 3.7·10-5

C0 + C 0.048 0.041 4.5·10-4 1.4·10-4

Alcance. m 2100 2040 660 3450
R2 0.91 0.93 0.67 0.94

CVC 0.90 0.95 0.67 0.95
DSD 0.50 0.53 0.92 0.59

CVC: cross validation coefficient; DSD: degree of spatial dependence

FIgURE 2. Contour maps of total carbon-TC for the A horizon (A, measured and B, predicted ) and for the B horizon (C, measured and D, predicted).
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FIgURE 3. Contour maps of total nitrogen-TN for the A horizon (A, measured and B, predicted ) and for the B horizon (C, measured and D, predicted).

where the similarity between the measured data and the 
predicted data can be observed. This similarity is greater 
for TC, due to the better performance of the model with 
respect to the results obtained for TN, with similar values 
of mean and median, as well as of the behavior of the co-
efficient of variation (CV) and the skewness and kurtosis. 
The low representatively found for the nitrogen model is 
verified by the greater difference in the CV between the 
minimum and maximum values, as well as between the 
measured and predicted values.

The contents of TC varied between low and medium, the 
content in the A horizon was greater due to the presence 
of vegetation and residues at the surface. The TN showed a 
behavior similar to the TC. The values found in this study 
coincide with those reported by Phiri et al. (2001) and 
Camacho-Tamayo et al. (2008).

On the other hand, the spatial behavior of TC and TN was 
analyzed from the measured and predicted data (Tab. 3). 

Large differences between the measured and predicted data 
were not observed from the spectral models. In general, the 
use of predicted data in the construction of semivariograms 
does not modify the tendency of spatial variation of the 
properties, as is verified in the obtained models, although 
differences for TN in the B horizon were identified due to 
the poor representativity of the model. For the other results, 
values of R2 and CVC above 0.70 can be observed, with a 
similar range and DSD.

It is convenient to point out that the spatial variability of 
the soil properties and their relation to the errors associ-
ated with the sampling can promote changes in the results. 
On the other hand, errors in the soil sampling are gener-
ally greater than the errors derived from the soil analysis 
in particular (Cantarella et al., 2006). This gives a large 
advantage to the use of reflectance spectroscopy since its 
outliers can be rapidly and efficiently identified before the 
laboratory analysis, when models are elaborated, allowing 
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a savings of time and economic resources in samples that 
possibly do not give information that is relevant or related 
to the aim of a specific study.

With the results obtained in the semivariogram models, 
contour maps were constructed for TC (Fig. 2) and TN 
(Fig. 3), on the basis of ordinary kriging. The contour maps 
obtained for the TC from the predicted data (spectral maps) 
showed a high correspondence with the maps obtained 
from measured values for each horizon, with coefficients 
of determination above 0.85 for the two horizons studied. 
For TN, the map obtained from the laboratory data differs 
from the spectral map, given that the prediction of the data 
from the model obtained is not adequate.

The results confirm that the prediction made for TC from 
the spectral models in the NIR regions is an effective 
tool, which together with computational and statistical 
techniques, provides the basis of high-resolution field 
scale mapping of TC, through source reliable informa-
tion. These results enable its applicability in geologically 
homogeneous areas, which, in the case of Colombia, cover 
about 20 million hectares (Phiri et al., 2001) in the Eastern 
Plains, an area that has had high agricultural development 
in the last decade.

Conclusions

The coefficient of correlation found in the calibration and 
validation of the model of TC, together with the low amount 
of errors found, indicates that laboratory analyses can 
substitute, in large part, for spectral models. In the case of 
TN, it would be convenient to improve the model so that, 
in the future, laboratory analyses can be substituted.

The use of predicted values of soil properties from spectral 
models allows for the identification of the spatial structures 
of the properties; that is to say, this methodology can be 
implemented in the mapping of the spatial variability of 
soil properties.
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