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∆-normal spaces and decompositions of
normality
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Abstract. Generalizations of normality, called (weakly) (func-
tionally) ∆-normal spaces are introduced and their interrelation with
some existing notions of normality is studied. ∆-regular spaces are
introduced which is a generalization of seminormal, semiregular and
θ-regular space. This leads to decompositions of normality in terms of
∆-regularity, seminormality and variants of ∆-normality.
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1. Introduction and preliminaries

To investigate properly the existing notions of general topology, topologists
adopted various techniques. Decomposition of a given topological property in
terms of two weaker properties is one of them. None of the existing classical
notions of general topology remain untouched of decomposition process. Since
normality is an important property, its decomposition is desirable. First step
in this direction was initiated by Vigilino [18] and Singal and Arya [13], where
a decomposition of normality was given in terms of almost normal spaces and
seminormal spaces. Another decomposition of normality was given in [6] in
terms of θ-normality and its variants. Mack [10] introduced δ-normal spaces
and the same has been utilised in [8] to give a factorization of normality. In
an attempt to get another decomposition of normality in terms of seminormal
spaces, in this paper we introduce the notion of ∆-normal spaces.

Let X be a topological space and let A ⊂ X . Throughout the present paper
the closure of a set A will be denoted by A or clA and the interior by intA. A
set U ⊂ X is said to be regularly open [9] if U = intU . The complement of
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a regularly open set is called regularly closed . A point x ∈ X is called a θ-
limit point (respectively δ-limit point) [17] of A if every closed (respectively
regularly open) neighbourhood of x intersects A. Let clθA (respectively clδA)
denotes the set of all θ-limit point (respectively δ-limit point) of A. The set
A is called θ-closed (respectively δ-closed) if A = clθA (respectively A =
clδA). The complement of a θ-closed (respectively δ-closed) set will be referred
to as a θ-open (respectively δ-open) set. The family of θ-open sets as well as
the family of δ open sets form topologies on X. The topology formed by the
set of δ-open sets is the semiregularization topology whose basis is the family
of regularly open sets. A space X is said to be almost regular [12] if every
regularly closed set and a point out side it are contained in disjoint open sets. A
space is called semi-normal [18] if for every closed set F and each open set U
containing F, there exists a regular open set V such that F ⊂ V ⊂ U . A space
is called almost normal [13] if every pair of disjoint closed sets one of which
is regularly closed are contained in disjoint open sets and a space X is said to
be mildly normal [15] ( or κ-normal [16]) if every pair of disjoint regularly
closed sets are contained in disjoint open sets. A space is almost completely

regular [13] if for every regularly closed set A and a point x /∈ A, there exists
a continuous function f : X → [0, 1] such that f(x) = 0 and f(A) = 1. A space
X is said to be nearly compact [14] if every open covering of X admits a finite
subcollection the interiors of the closures of whose members cover X .

A subset G of a space X is called a regular Gδ-set if it is the intersection of

a sequence of closed sets whose interiors contain G, i.e., G =
∞
⋂

n=1

Fn =
∞
⋂

n=1

F o
n ,

where each Fn is a closed subset of X . The complement of a regular Gδ-set is
called a regular Fσ-set [10].

In a topological space, every zero set is a regular Gδ-set and every regular
Gδ-set is θ-closed.

In general the θ-closure operator is a Čech closure operator (see [11]) but not
a Kuratowski closure operator, since θ-closure of a set may not be θ-closed (see
[4]). However, the following modification yields a Kuratowski closure operator.

Definition 1.1 ([5]). Let X be a topological space and let A ⊂ X. A point
x ∈ Xis called a uθ-limit point of A if every θ-open set U containing x
intersects A. Let Auθ denote the set of all uθ-limit points of A.

Lemma 1.2 ([7]). The correspondence A → Auθ is a Kuratowski closure op-
erator.

It turns out that the set Auθ is the smallest θ-closed set containing A.

Definition 1.3. A topological space X is said to be

(i) θ-normal [6] if every pair of disjoint closed sets one of which is θ-
closed are contained in disjoint open sets;

(ii) Weakly θ-normal[6] if every pair of disjoint θ-closed sets are con-
tained in disjoint open sets;
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(iii) Functionally θ-normal [6] if for every pair of disjoint closed sets
A and B one of which is θ-closed there exists a continuous function
f : X →[0,1] such that f(A) = 0 and f(B)=1;

(iv) Weakly functionally θ-normal (wf θ-normal)[6] if for every pair
of disjoint θ-closed sets A and B there exists a continuous function
f : X → [0,1] such that f(A) = 0 and f(B)= 1; and

(v) θ-regular[6] if for each closed set F and each open set U containing
F , there exists a θ-open set V such that F ⊂ V ⊂ U .

(vi) Σ-normal[8] if for each closed set F and each open set U containing
F , there exists a regular Fσ set V such that F ⊂ V ⊂ U .

2. ∆-normal spaces

Definition 2.1. A topological space X is said to be

(i) ∆-normal if every pair of disjoint closed sets one of which is δ-closed
are contained in disjoint open sets;

(ii) Weakly ∆-normal if every pair of disjoint δ-closed sets are contained
in disjoint open sets;

(iii) Weakly functionally ∆-normal (wf ∆-normal) if for every pair
of disjoint δ-closed sets A and B there exists a continuous function
f : X → [0,1] such that f(A) = 0 and f(B)= 1.

Theorem 2.2. For a topological space X, the following statements are equi-
valent.

(a) X is ∆-normal.
(b) For every closed set A and every δ-open set U containing A there exists

an open set V such that A ⊂ V ⊂ V ⊂ U .
(c) For every δ-closed set A and every open set U containing A there exists

an open set V such that A ⊂ V ⊂ V ⊂ U .
(d) for every pair of disjoint closed sets A and B one of which is δ-closed

there exists a continuous function f : X → Y such that f(A) = 0 and
f(B) = 1.

(e) For every pair of disjoint closed sets one of which is δ-closed are con-
tained in disjoint θ-open sets.

(f) For every δ-closed set A and every open set U containing A there exists
a θ-open set V such that A ⊂ V ⊂ Vuθ ⊂ U .

(g) For every closed set A and every δ-open set U containing A there exists
a θ-open set V such that A ⊂ V ⊂ Vuθ ⊂ U .

(h) For every pair of disjoint closed sets A and B, one of which is δ-closed
there exist θ-open sets U and V such that A ⊂ U , B ⊂ V and Uuθ ∩
Vuθ = φ.

Proof. To prove the assertion (a) ⇒ (b), let X be a ∆-normal space and let U
be an δ-open set containing a closed set A. Now A is closed set which is disjoint
from the δ-closed set X −U . By ∆-normality of X there are disjoint open sets
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V and W containing A and X − U , respectively. Then A ⊂ V ⊂ X − W ⊂ U .
Since X − W is closed, A ⊂ V ⊂ V ⊂ U .

To prove the implication (b) ⇒ (c), let U be a open set containing a δ-closed
set A. Then X − A is an δ-open set containing the closed set X − U . So by
hypothesis there exists an open set W such that X − U ⊂ W ⊂ W ⊂ X − A.
Let V = X − W . Then A ⊂ V ⊂ X − W ⊂ U . Since X − W is closed,
A ⊂ V ⊂ V ⊂ U .

To prove the implication (c) ⇒ (d), let A be a δ-closed set disjoint from a
closed set B. Then A ⊂ X − B = U1 (say). Since U1 is open, there exists
a open set U1/2 such that A ⊂ U1/2 ⊂ U1/2) ⊂ U1. Again, since closure of

an open set is δ-closed, U1/2 is a δ-closed set, so there exist open sets U1/4

and U3/4 such that A ⊂ U1/4 ⊂ U1/4 ⊂ U1/2 and U1/2 ⊂ U3/4 ⊂ U3/4 ⊂ U1.
Continuing the above process, we obtain for each dyadic rational r, a δ-open
set Ur satisfying r < s implies U r ⊂ Us. Let us define a mapping f : X →[0,1]
by

f(x) =

{

inf { x : x ∈ Ur } if x belongs to some Ur,
1 if x does not belongs to any Ur.

Clearly f is well defined and f(A) = 0, f(B) = 1. Now it remains to prove
that f is continuous. To this end we first observe that if x ∈ Ur, then f(x) ≤ r.
Similarly f(x) ≥ r if x /∈ U r. To prove continuity, let x ∈ X and (a, b) be an
open interval containing f(x). Now choose two dyadic rationals p and q such
that a < p < f(x) < q < b. Let U = Uq−Up. Then U is an open set containing

x. Now for y ∈ U , y ∈ Uq. So f(y) ≤ q. Also as y ∈ U , y /∈ Up. Thus f(y) ≥ q.
And so f(y) ∈ [p, q]. Therefore f(U) ⊂ [p, q] ⊂ (a, b). Hence f is continuous.

To prove the assertion (d) ⇒ (e), Let A, B be disjoint closed sets in X ,
where B is δ-closed. By the hypothesis there exists a continuous function f :
X →[0,1] such that f(A) = 0 and f(B) = 1. Since every continuous function
lifts back every θ-open set to θ-open set, the set f−1[0, 1/2) and f−1 (1/2, 1]
are disjoint θ-open sets containing A and B respectively.

To prove (e) ⇒ (f), let A be a δ-closed set in X and let U be an open set
containing A. Since A and X−U are disjoint, by hypothesis there exist disjoint
θ-open sets V and W such that A ⊂ V and X−U ⊂ W . So A ⊂ V ⊂ X−W ⊂
U . Since X − W is θ-closed and Vuθ is the smallest θ-closed set containing V ,
A ⊂ V ⊂ Vuθ ⊂ U .

To prove (f) ⇒ (g), let A be a closed set contained in a δ-open set U . Then
X −U is a δ-closed set contained in the open set X −A. By hypothesis, there
exists a θ-open set W such that X−U ⊂ W ⊂ Wuθ ⊂ X−A. Let V = X−Wuθ.
Then A ⊂ V ⊂ X − W ⊂ U . Since X − W is θ-closed and Vuθ is the smallest
θ-closed set containing V , A ⊂ V ⊂ Vuθ ⊂ U .

To prove (g) ⇒ (h), let A be a closed set disjoint from a δ-closed set B.
Then X −B is a δ-open set containing A. So there exists a θ-open set W such
that A ⊂ W ⊂ Wuθ ⊂ X − B. Again by hypothesis there exists a θ-open set
U such that A ⊂ U ⊂ Uuθ ⊂ W ⊂ Wuθ ⊂ X − B. Let V = X − Wuθ, then U
and V are θ-open sets containing A and B respectively and Uuθ ∩ Vuθ = ∅.
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The assertion (h) ⇒ (a) is obvious. �

Theorem 2.3. A topological space X is weakly ∆-normal if and only if for
every δ-closed set A and a δ-open set U containing A there is an open set V
such that A ⊂ V ⊂ V ⊂ U .

Proof. Let X be a weakly ∆-normal space and U be a δ-open set containing
a δ-closed set A. Then A and X − U are disjoint δ-closed sets in X . Thus
by weak ∆-normality of X there are disjoint open sets V and W containing A
and X − U , respectively. Then A ⊂ V ⊂ X − W ⊂ U . Since X − W is closed,
A ⊂ V ⊂ V ⊂ U .

Conversely, let A and B be two disjoint δ-closed sets in X . Then U = X−B
is a δ-open set containing the δ-closed set A. Thus by the hypothesis there exists
an open set V such that A ⊂ V ⊂ V ⊂ U . Then V and X − V are disjoint
open sets containing A and B, respectively. Hence X is weakly ∆-normal. �

The following diagram is immediate from the definitions.

normal

��

almost normal

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

∆-normal //

66mmmmmmmmmmmm

��

wf∆-normal

�� ((QQQQQQQQQQQQQ

fθ-normal //

��

wfθ-normal

��

w∆-normal

vvmmmmmmmmmmmmm

// κ-normal

θ-normal // wθ-normal

None of the above implication is reversible (See Examples 2.4 - 2.8 below, [6,
Example 3.6 - 3.8] and [5, Example 3.4]).

Example 2.4. A functionally θ-normal and weakly functionally ∆-normal
space which is not ∆-normal.

Let X = {a, b, c, d} and τ = {{a, b}, {b}, {b, c}, {c}, {b, c, d}, {a, b, c}, X, φ}.
Here the δ-closed set { c, d } and closed set { a } can not be separated by
disjoint open sets. Thus the space is not ∆-normal but the space is functionally
θ-normal and weakly functionally ∆-normal.

Example 2.5. A functionally θ-normal space which is not weakly ∆-normal.
Let X be the set of positive integers. Define a topology on X by taking every

odd integer to be open and a set U ⊂ X is open if for every even integer p ∈ U ,
the predecessor and successor of p are also in U . The space is not weakly ∆-
normal as disjoint δ-closed sets { 2, 3, 4 } and { 6 } cannot be separated by
disjoint open sets. But the space is functionally θ-normal.

Example 2.6. A weakly ∆-normal space which is not weakly functionally
∆-normal
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Let X denote the interior of the unit square S in the plane together with
the points (0, 0) and (1, 0), i.e. X = intS∪ {(0, 0), (1, 0) }. Every point in
intS has the usual Euclidean neighourhoods. The points (0, 0) and (1, 0) have
neighbourhoods of the form Un and Vn respectively, where

Un = {(0, 0)} ∪ {(x, y) : 0 < x < 1/2, 0 < y < 1/n} and
Vn = {(1, 0)} ∪ {(x, y) : 1/2 < x < 1, 0 < y < 1/n}.
The space X is weakly ∆-normal, since every pair of disjoint δ-closed sets are

separated by disjoint open sets. However, the δ-closed sets {(0, 0)} and {(1, 0)}
do not have disjoint closed neighbourhoods and hence cannot be functionally
separated.

Example 2.7. A ∆-normal space which is not normal.
Let X = {a, b, c, d} and τ = {{a, b}, {b, c}, {b} ,{d}, {b, d}, {a, b, c}, {a, b, d},

{b, c, d}, X , φ } .

Example 2.8. An almost normal space which is not weakly ∆-normal.
Let X = {a, b, c} and τ = {{b, c}, {a, c}, {c}, X , φ }.

Theorem 2.9. For a Hausdorff space X, the following statements are equiva-
lent.

(a) X is normal.
(b) X is ∆-normal.
(c) X is functionally θ-normal.
(d) X is θ-normal.

Proof. The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are immediate from definitions
and Theorem 2.2. The implication (d) ⇒ (a) is shown in [6, Theorem 3.5]. �

Lemma 2.10. In an almost regular space every δ-closed set is θ-closed.

Theorem 2.11. In an almost regular space the following statements are equiv-
alent.

(a) X is ∆-normal.
(b) X is functionally θ-normal.
(c) X is θ-normal.

Proof. By Lemma 2.10, every δ-closed set is θ-closed. Thus in an almost regular
space every θ-normal space is ∆-normal. �

Theorem 2.12. In an almost regular space the following statements hold.
(a) Every weakly functionally θ-normal space is weakly functionally ∆-normal.
(b) Every weakly θ-normal space is weakly ∆-normal.

Recall that a space X is an Ro-space [2] if for every open set U in X , x ∈ U

implies {x} ⊂ U . Ro-spaces are called S1-spaces in [1].

Theorem 2.13. A ∆-normal Ro-space is almost completely regular.

Proof. Let X be a ∆-normal Ro-space. Let A be a regular closed set and

x /∈ A. Then x ∈ X − A. Since X is Ro, {x} ∈ X − A. So {x} is a closed set
disjoint from the δ-closed set A. Thus by Theorem 2.2, there exists a continuous
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function f : X → [0, 1] such that f({x}) = 0 and f(A) = 1. Hence X is almost
completely regular. �

Theorem 2.14. A Hausdorff weakly functionally ∆-normal space is almost
completely regular.

Proof. Let X be a Hausdorff weakly functionally ∆-normal space. Let x ∈ X
and A be a regularly closed set in X such that x /∈ A. As X is Hausdorff, {
x } and A are disjoint δ-closed sets. Thus by weak functional ∆-normality of
X there exists a continuous function f : X → [0, 1] such that f(x) = 0 and
f(A) = 1. So f is almost completely regular. �

Theorem 2.15. A Hausdorff weakly ∆-normal space is almost regular.

Proof. Let X be a Hausdorff weakly ∆-normal space. Let A be a regularly
closed set not containing x. By [3, 2.3], every singleton in X is θ-closed. So
{ x } and A are disjoint δ-closed sets which can be separated by disjoint open
sets by weak ∆-normality. �

Corollary 2.16. A Hausdorff weakly ∆-normal space is weakly functionally
θ-normal.

Proof. It is immediate in view of Theorem 2.15 and the fact that an almost
regular weakly θ-normal space is weakly functionally θ-normal (see [5, Theorem
5.18]). �

3. Decompositions of normality

Definition 3.1. A topological space x is said to be ∆-regular if for every
closed set F and each open set U containing F , there exists a δ-open set V
such that F ⊂ V ⊂ U .

Clearly, every θ-regular space as well as every semi-normal space is ∆-
regular.

Theorem 3.2. Every semiregular space is ∆-regular.

Proof. Let F be a closed set contained in an open set U . For every x ∈ F
there exists a regular open set Ux such that x ∈ Ux ⊂ U . Let

⋃

x∈F

Ux = V .

Thus F ⊂ V ⊂ U , where V need not be regular open but δ-open. Hence X is
∆-regular. �

The following diagram well illustrates the interrelations that exist among
variants of regularity and normality.
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normal //

��

Z-normal // Σ-normal

wwooooooooooo

seminormal

��

θ-regular

wwoooooooooooo

∆-regular semiregularoo regularoo

ggOOOOOOOOOOO

However, none of the above implications is reversible as is well exhibited by
the following examples and Example 3.8 in [8].

Example 3.3. A ∆-regular space which is not θ-regular. Every open set in
Example 2.5 is regular open and the only θ-open set in X is X itself. So the
space is ∆-regular but not θ-regular.

Example 3.4. A ∆-regular space which is not semiregular. Let X = {a, b, c}
and let τ = {{a}, {a, b},X, φ}. This space is ∆-regular but not semiregular.

Theorem 3.5. An Ro ∆-regular space is semiregular.

Proof. Let X be an Ro ∆-regular space. Let x ∈ X and let U be an open set

containing x. Since X is an Ro-space, {x} ⊂ U . So by θ-regularity of X , there

exists a δ-open set V such that {x} ⊂ V ⊂ U . Since V is the union of regular
open sets, there exists a regular open set W such that x ∈ W ⊂ V ⊂ U . So X
is semiregular. �

Theorem 3.6. Every nearly compact θ-regular space is ∆-normal.

Proof. Let A and B be two disjoint closed sets where A is δ-closed. Since
every δ-closed subset of a nearly compact space is N-closed relative to X , A
is N-closed relative to X . Now A ⊂ X − B. Thus by θ-regularity of X , there
exists a θ-open set V such that A ⊂ V ⊂ X − B. Now for every x ∈ A, there
exists an open set Ux such that x ∈ Ux ⊂ Ux ⊂ V . Thus U = {intUx : x ∈ A}
is a regular open cover of A. Since A is N-closed relative to X , there exist a

finite subcollection {intUxi
: x ∈ A} which covers A. Then P =

n
⋃

i=1

intUxi

and Q =
n
⋂

i=1

(X − Uxi
) are disjoint open sets containing A and B respectively.

Hence X is ∆-normal. �

Remark 3.7. Even a compact ∆-regular space need not be weakly ∆-normal.
e.g.; Let X = {a, b, c} and τ = {{b, c}, {a, c}, {c}, φ, X}. Here the space is
compact and ∆-regular but not θ-regular.

The following Theorem and the corollary provides factorizations of normality
in terms of ∆-regularity, seminormality and variants of ∆-normality.
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Theorem 3.8. In a ∆-regular space the following statements are equivalent.
(a) X is normal.
(b) X is ∆-normal.
(c) X is weakly functionally ∆-normal.
(d) X is weakly ∆-normal.

Proof. The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are immediate. To prove (d) ⇒
(b), let X be ∆-regular, w∆-normal space. Let A and B be two disjoint closed
subsets of X , where one of them is δ-closed say A. Then A ⊂ X − B. Thus
by ∆-regularity of X , there exists a δ-open set U such that A ⊂ U ⊂ (X −B).
So A and X − U are disjoint δ-closed sets which can be separated by disjoint
open sets by weak ∆-normality. Hence X is δ-normal. To show that (b) ⇒ (a),
let A and B be two disjoint closed subsets of X . Since X is ∆-regular, there
is a δ-open set W such that A ⊂ W ⊂ X − B. Then X − W is a δ-closed set
containing B. By ∆-normality of X , there exist disjoint open sets U and V
containing A and X − W , respectively and so A and B respectively. �

Corollary 3.9. In a seminormal space the following statements are equivalent.
(a) X is normal.
(b) X is ∆-normal.
(c) X is weakly functionally ∆-normal.
(d) X is weakly ∆-normal.

Corollary 3.10. In a semiregular space the following statements are equiva-
lent.

(a) X is normal.
(b) X is ∆-normal.
(c) X is weakly functionally ∆-normal.
(d) X is weakly ∆-normal.

Theorem 3.11. In a θ-regular space the following statements are equivalent.
(a) X is normal.
(b) X is ∆-normal.
(c) X is functionally θ-normal.
(d) X is weakly functionally ∆-normal.
(e) X is θ-normal.
(f) X is weakly functionally θ-normal.
(g) X is weakly ∆-normal.
(h) X is weakly θ-normal.

Proof. The implications (a) ⇒ (b) ⇒ (c) ⇒ (e) ⇒ (h), (a) ⇒ (b) ⇒ (d) ⇒
(f) ⇒ (h) and (a) ⇒ (b) ⇒ (d) ⇒ (g) ⇒ (h) are immediate. To prove (h)
⇒ (a), let X be a θ-regular weakly θ-normal space by [6, Theorem 3.11], X is
normal. �
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